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ABSTRACT

Edge computing addresses the growing data demands of connected-device net-
works by placing computational resources closer to end users through decen-
tralized infrastructures. This decentralization challenges traditional, fully cen-
tralized orchestration, which suffers from latency and resource bottlenecks. We
present FAuNO—Federated Asynchronous Network Orchestrator—a buffered,
asynchronous federated reinforcement-learning (FRL) framework for decentral-
ized task offloading in edge systems. FAuNO adopts an actor–critic architecture
in which local actors learn node-specific dynamics and peer interactions, while a
federated critic aggregates experience across agents to encourage efficient cooper-
ation and improve overall system performance. Experiments in the PeersimGym
environment show that FAuNO consistently matches or exceeds heuristic and fed-
erated multi-agent RL baselines in reducing task loss and latency, underscoring its
adaptability to dynamic edge-computing scenarios. 1

1 INTRODUCTION

The growth of connected device networks, such as the Internet of Things (IoT), has led to a surge
in data generation. Traditionally, Cloud Computing handled these computational demands, but
increased network traffic and latency became apparent as these networks expanded Min et al. (2019).
Edge Computing (EC) extends the cloud by bringing computational resources closer to end-users,
addressing latency and traffic issues Varghese & Buyya (2018). Despite distinguishing between
Mobile Edge Computing (MEC) and Fog computing, this paper treats them interchangeably, focusing
on their goal of minimizing device-to-cloud distances Yu et al. (2020). The EC paradigm distributes
computational resources, making centralized network orchestration inefficient. Centralization would
require aggregating data at a single node, straining the network, and creating a single point of
failure Baek & Kaddoum (2023). This highlights the value of decentralized orchestration, particularly
through Task Offloading (TO). Optimal TO in such distributed environments involves managing
multiple factors, including task latency, energy consumption, and task completion reliability Zhu et al.
(2019). Traditional optimization methods often struggle to efficiently manage these complex systems,
due to the dynamic, time-varying, and complex environments of Edge Systems Xu et al. (2018).
Reinforcement Learning (RL) Baek & Kaddoum (2023); Zhu et al. (2019), is a powerful candidate and
dominant approach to solving the TO problem. Specifically, Multi-Agent Reinforcement Learning
(MARL) has been explored as a promising solution for decentralized orchestration in Edge Systems
Baek & Kaddoum (2023); Gao et al. (2022). The ability of MARL agents to iteratively learn optimal
strategies through simultaneous interaction with an environment makes them particularly suited for
decentralized edge systems Lin et al. (2023); Zhang et al. (2023). Due to the nature of MARL, it
is common to have some form of message exchange Zhang et al. (2018); Baek & Kaddoum (2023)
between participants, as this reduces the uncertainty generated by having multiple agents interacting
simultaneously, making it particularly suitable for Federated Learning (FL), which has recently gained
academic interest as an efficient and distributed approach to agent cooperation in learning Consul
et al. (2024). When FL is applied to MARL and the agents only have partial observability of the state,
as is commonly the case in decentralized systems where obtaining information about all nodes comes
at a premium, it creates a paradigm known as Vertical Federated Reinforcement Learning (VFRL) Qi

1Repository: https://anonymous.4open.science/r/FAuNO-C976/README.md
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et al. (2021). The MARL problem is transformed from one in which agents focus solely on their
own objectives into a global optimization problem that accounts for the collective objectives of the
participants in the federation. FL also mitigates the strain on the network by avoiding the exchange of
large amounts of information, since agents only need to periodically share their learned updates that
are aggregated into a global unified model solving the global objective. This enables agents to benefit
from each other’s knowledge while minimizing communication overhead. However, conventional
FL suffers when stragglers delay aggregation or drop updates, reducing training efficiency and
wasting samples. This can be addressed by adopting a buffered semi-asynchronous strategy, in
which faster nodes continue contributing updates without waiting, while slower nodes are still able to
align with the evolving global critic. FAuNO adopts a buffered semi-asynchronous strategy, where
faster nodes continue contributing updates without waiting, while slower nodes are still able to align
with the evolving global critic. In this way, we extend Federated Buffering Nguyen et al. (2021) to
reinforcement learning, enabling continuous local training without being bottlenecked by stragglers.
We summarize the motivations and principal contributions of this work below.

Motivations & Contributions

• We address the TO problem in edge systems by framing it within a Partially Observable Markov
Game (POMG), enabling decentralized decision-making under partial observability.

• We introduce FAuNO, the first framework to integrate buffered semi-asynchronous aggregation
with actor–critic MARL (PPO) in a federated setting for edge offloading. Our adaptation of Fed-
Buff to reinforcement learning enables faster agents to contribute multiple updates without waiting
for stragglers, improving sample efficiency under heterogeneous conditions. By federating only the
critic while keeping actors local, FAuNO mitigates heterogeneity, respects partial observability,
and supports fully decentralized execution. Through empirical evaluation, we show that FAuNO
outperforms or matches FRL and heuristic baselines in terms of task completion time and task
completion.

• We extend the PeersimGym environment to support federated update exchanges over the
simulated network (details in annex 7). This extension simulates the communication of the updates
affecting how and when updates are propagated and aggregated. As a result, the evaluation reflects
the conditions of realistic edge systems.

Background & Related Work

TO involves transferring computations from constrained devices to more capable ones, addressing
the what, where, how, and when of offloading Fahimullah et al. (2022). TO methods include vertical
offloading to higher-tier systems Qiu et al. (2019), horizontal offloading among peers Baek et al.
(2019), and hybrid approaches Baek & Kaddoum (2023). Offloading target selection may prioritize
proximity Van Le & Tham (2018); Yu et al. (2020) or queue length Baek et al. (2019), or consider
unrestricted selection, accounting for consequences of offload failures. Failures are affected by
factors like latency Dai et al. (2022), resource capacity Van Le & Tham (2018), energy shortages,
or others Peng & et al. (2022). This study focuses on Binary TO Hamdi et al. (2022) for indivisible
tasks with horizontal and vertical offloading.

RL has been applied to TO in both single-agent and multi-agent settings. In the single-agent case, TO
is commonly modeled as an MDP and solved with Q-learning in Fog networks Baek et al. (2019),
DQN in ad-hoc mobile clouds Van Le & Tham (2018), DDPG for task dependencies Liu et al. (2023),
SARSA variants for real-time MEC Alfakih et al. (2020), and DQN extensions for delay-sensitive
tasks Liu et al. (2022). Bandit formulations have also been used to simplify binary offloading while
optimizing latency and energy Zhu et al. (2019). In the multi-agent case, MARL methods address
resource allocation and collaboration in heterogeneous, partially observable environments. For
example, in Baek & Kaddoum (2020) TO in Multi-Fog systems is modeled as a Stochastic Game,
and a Deep Recurrent Q-Network (DRQN) with Gated Recurrent Units is employed to handle partial
state observations.

FRL has been explored for TO in Edge systems, emphasizing agent cooperation. However, most
RL research in TO focuses on parallel RL, where agents act on independent environment replicas,
not considering the uncertainty introduced by shared environments. In Li et al. (2023), a multi-TO
algorithm is developed that uses a Double Deep Q-Network (DDQN) and K-Nearest neighbors to
obtain local offloading schemes. The agents then participate in training a global algorithm using
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Table 1: Comparison of RL-based Task Offloading approaches.

Work Multi-Agent Federated Actor-Critic Partially Obs. Shared Env. Buffered Async. OSS Env.
Baek et al. (2020) Baek & Kaddoum (2020) ✓ DRQN ✓
Baek et al. (2022) Baek & Kaddoum (2023) ✓ ✓ ✓ ✓ ✓
Zang et al. (2022) Zang et al. (2022) ✓ ✓ DQN ✓ ✓
Li et al. (2023) Li et al. (2023) ✓ ✓ DDQN
Peng et al. (2024) Peng et al. (2024) ✓ Dueling DQN ✓

FAuNO (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

a weighted federated averaging algorithm. A unary outlier detection technique is used to manage
stragglers.

In Consul et al. (2024), a hierarchical FRL model is proposed for frame aggregation and offloading
of Internet of Medical Things data, optimizing energy and latency by aggregating learned parameters
from body-area devices to edge and central servers. In Chen & Liu (2022) an FRL-based joint
TO and resource allocation algorithm to minimize energy consumption on the IoT devices in the
Network, considering a delay threshold and limited resources is proposed. The considered approach
uses DDPG locally and a FedAvg McMahan et al. (2017) based algorithm for the global solution.
In Tang & Wong (2022), a binary TO algorithm for MEC systems is proposed, employing dueling
and double DQN with LSTM to improve long-term cost estimation for delay-sensitive tasks. In
Zang et al. (2022), a scenario with multiple agents in the same environment is considered, and
FEDOR – a Federated DRL framework for TO and resource allocation to maximize task processing is
proposed. In FEDOR, Edge users collaborate with base stations for decisions, and a global model is
aggregated using FedAvg, with an adaptive learning rate improving convergence. Although FEDOR
considers multiple agents in the same scenario, the decision-making depends on base stations for
smoothing the offloading decisions of the multiple agents. In Baek & Kaddoum (2023), FLoadNet
is proposed as a framework that combines local actor networks with a centralized critic, trained
synchronously in a federated manner, to enable collaborative task offloading in Edge-Fog-Cloud
systems. Their solution learns what information to share between nodes to enhance cooperation
and their offloading scheme learns the optimal paths for tasks to take through a Software-defined
Network. In the Industrial IoT(IIoT) setting with dependency-based tasks, Peng et al. (2024) propose
SCOF that considers a Federated Duelling DQN, that is aggregated with a FedAvg-based approach
and utilizes differential privacy (DP) to improve the security of the update exchanges. Focusing on
selecting the best offloading targets from a pool of Edge Servers.

Lastly, none of the studied solutions uses an environment that facilitates the comparison of the
proposed algorithms, which we do by training and benchmarking our solution in the PeersimGym
environment Metelo et al. (2024). The comparison with the related work is summarized in Table 1.

2 FEDERATED TASK OFFLOADING PROBLEM

In this section, we elaborate on the system modeling of our Edge System and formulate the TO
problem as a global optimization problem that will be solved by all the participants in the network
orchestration. Lastly, we formulate the local learning problem of the participants as a POMG.

2.1 SYSTEM MODEL

We consider a set of nodesW = W1, . . . ,Wk comprising the network entities (e.g., edge servers,
mobile users). These nodes offer computational resources to a set of clients, such as IoT sensors
that require processing for collected data. Time is discretized into equidistant intervals t ∈ N0.
The system includes two types of entities, as illustrated in Fig. 1. Clients generate computational
workloads in the form of tasks for accessible nodes, following a Poisson process with rate λ; the set
of all clients is denoted by Ċ. Workers, denoted by Ẇ , provide computational resources and are
represented as nodes with specific properties. Each worker Wn maintains a task queue Qn

t at time
t, with a maximum capacity Qn

max. Whenever the capacity is reached, no new tasks are accepted
until there is available space. The Workers are characterized by the number of CPU cores Nn

ϕ , the
per-core frequency ϕn (in instructions per time step), and a transmission power budget Pn. Workers
periodically share their state with neighbors. A single machine can be both a worker and a client.

3
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Worker/Client Worker/Client Worker/Client

Communication
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Q
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Figure 1: Edge System Architecture of our system model. The workers are capable of independently
offloading tasks, exchanging information, and FL model updates through the communication channels.

Task Model: Computational requirements are modeled as tasks in our system. Let T = {τi}, i ∈ N
be the set of all tasks, where a task with ID i is represented as τi = ⟨i, ρi, αin

i , α
out
i , ξi, δi⟩, with the

following attributes: i as a unique task identifier, ρi as the number of instructions to be processed, αin
i

as the total input data size, αout
i as the output data size, ξi as the CPU cycles per instruction, and δi as

the task deadline, or maximum allowed latency for the return of results. A task is dropped if it arrives
at a node with a full queue or if its deadline expires.

Communication Model: The communication model defines the latency of message transmission
between nodes in the same neighborhood, where a node can only communicate directly with its
neighbors. Each entity within a node can send and receive messages, modeled as the tuple ⟨ωi, ωj , α⟩,
where ωi is the origin node ID, ωj is the destination node ID, and α represents the message size. To
measure transmission delay, we consider the Shannon-Hartley theorem Anttalainen (2003). According
to this theorem, the latency for transmitting α bits between nodes Wi and Wj is given by:

T comm
i,j (α) =

α

Bi,j log(1 + 10
Pi+Gi,j−ω0

10 )
, (1)

where T comm
i,j (α) is the transmission time, Bi,j is the bandwidth between nodes, Pi is the source

node’s transmission power, Gi,j is the channel gain, and ω0 is the noise power. See annex 10.1 for
details on communication protocols.

2.2 PROBLEM FORMULATION

We aim to optimize workload orchestration based on task processing latency and avoid the loss of
tasks due to resource exhaustion. At time-step t, we define the system as a tuple ⟨W, Ẇ , Ċ, C, Tt⟩.
Each node can decide to process a task locally or offload it to a neighbor, represented by the action
variable ait for worker i. The delay incurred by the decisions of all agents is given by:

Dn(Tt, Ẇ ) =
∑
an
t

d(ant ) (2)

The function d(ant ) represents the local extra delay of the decision made by agent n, defined as:

d(ant ) = χwait
D Twait

i,an
t
(τk) + χcomm

D T comm
i,an

t
(αout

k ) + χexc
D T exc

i,an
t
(τk). (3)

This function is a weighted sum of three time-related terms associated with offloading decisions,
based in Baek et al. (2019); Kumari et al. (2022). The delay function incorporates hyperparameters
χwait
D , χcomm

D , and χexc
D ≥ 0. The delay terms for a given action ant are:

Twait
ẇn,an

t
(τk) =

Qt
n

Nn
ϕϕn

+
∑
j ̸=n

Qj

N j
ϕϕj

Ij(a
n
t ), (4)
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which represents the waiting time for task τk in the queue of node Wi (and Wj in case it is offloaded).
Here, ϕi is the computing service rate of node Wi, Qt

n is the queue size of the same at time t, and N i
ϕ

is its number of processors. The indicator function Ij(a
n
t ) equals 1 if the task is processed locally

on node wn(i.e., In(ant ) = 1) or offloaded to a neighboring node Wj (i.e., Ij(ant ) = 1) with j ̸= n.
The term T comm

i,at
(αout

k ) denotes the communication cost of TO, defined as a delay (eq. 1), where ant
indicates the neighboring node i. If the task is executed locally, this term becomes zero. The term:

T exc
i,an

t
(τk) =

tρkξk

N
an
t

ϕ ϕan
t

− tρkξk
Nn

ϕϕn
(5)

represents the difference in execution costs for tasks processed locally versus those processed at the
target node. Here, ρk denotes the number of instructions per task, and ξk represents the number of
CPU cycles per instruction. Hence, to minimize the delay in processing the tasks at each time-step,
we wish to find the solution to the constrained optimization problem:

min
{an

t }ẇn∈Ẇ

D(Tt, Ẇ ) (6)

subject to C1 : δi ≤ tC (7)
C2 : Qn ≤ Qn

max (8)

The solution must also respect a set of constraints to minimize task drops: no tasks may be offloaded
to overloaded nodes, as indicated by constraint eq. 7, and no tasks should breach their deadlines.
Additionally, no node should exceed its computational resource limit, as outlined in eq. 8.

Partially-Observable Markov Game. To solve the TO problem with distributed and decentralized
agents, we define it as a Partially-Observable Markov Game (POMG) Hu et al. (2024), represented as
a tuple ⟨N ,S,O,Ω,A, P,R⟩. Here,N = 1, . . . , n denotes a finite set of agents; S is the global state
space that includes the information about all the nodes and tasks in the network; Ω = {oi}i∈N is the
set of Observation Spaces, where oi is the observation space of agent i, that has information about the
workers in its neighborhood, Ṅn; O = {Oi}i∈N s.t.Oi : S → oi is the set of Observation Functions
for each agent, where Oi is the observation function of agent i. The observation function maps the
state to the observations for each agent. Each agent’s observations includes information about its local
computational and communication resources, the information shared by its neighbors on the same,
and information about the next offloadable task. The details on the observation space are provided
in 10.2. A = {Ai}i∈N is the set of action spaces, where Ai is the action space of agent i. Each agent
is able to select whether to send a task to one of its neighbors or process it locally; P : S ×A → S is
the unknown global state transition function; Lastly, R = {Ri}i∈N s.t.Ri ∈ S ×A× S → R - is
the reward function for agent i. Each agent will consider the local reward given by:

Ri(st, a
i
t) = d(ait) + χOO(st, a

i
t) (9)

Where χO ≥ 0 is a weighting parameter, and the term χOO(st, a
i
t) is the distance to overload

the workers involved in an offloading, we define O(st, at) = − log(pOat
t )/3. And, pOat

t =

max(0,
Qmax

at
−Qat

Qmax
at

), represents the distance to overloading node Wi, and Q′
at

= min(max(0, Qat −
ϕat

) + 1, Qmax
at

) is the expected state of the queue at node Wat
, after taking action at.

3 FAUNO

We now present FAuNO—Federated Asynchronous Network Orchestration—a framework designed
to provide remote computing power to a group of clients, while load balancing in a decentralized
fashion with an FRL-based algorithm. The FAuNO nodes also act as workers. A detailed breakdown
of FAuNO node components is provided in annex 8.

3.1 FEDERATED REINFORCEMENT LEARNING TASK OFFLOADING SOLUTION

We consider two components to our solution: a local component and a global component. The local
component utilizes Proximal Policy Optimization (PPO) Schulman et al. (2017). This algorithm
belongs to the Actor-Critic family of algorithms, meaning that there is an actor component that learns

5
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to interact directly with the environment and a critic component that learns to evaluate the actor and
guides the training. We federated the critic network in our solution so that the experience of all the
agents is used to guide the local learning of the agents. Our global solution for training the critic
network builds on FedBuff Nguyen et al. (2021), a buffered asynchronous aggregation method that
we adapt to RL by allowing agents to keep training and sending updates to the global critic without
stopping after the first round. This prevents stragglers from blocking progress while still incorporating
shared updates into the global critic. The crux of the proposed algorithm is that by federating the
global network, we mitigate selfish behavior among agents and improve sample efficiency through
continuous, non-blocking training.

Local Policy Optimization Our local optimization uses an adaptation of PPO to FL, combined
with Generalized Advantage Estimation (GAE) Schulman et al. (2018) for computing advantages. In
our version, agents independently interact with the environment and, after a configurable number of
training steps, share their latest critic network with the global manager. Upon receiving an updated
global model, each agent incorporates it as the next critic for training. The local optimization
procedure is summarized in algo. 1, with full details provided in annex 11.1.

Global Algorithm The Global Algorithm is responsible for managing the federation and aligning
the local solutions from each participant to derive the global solution. We employ a non-blocking
semi-asynchronous method to tackle the following optimization problem:

minwf(w), s.t. f(w) :=
1

m

m∑
k=1

pklk(w, θk). (10)

Here, m represents the number of participants, and θk are the parameters of the actor-network for the
agent identified by k. The variable w corresponds to the global critic parameters, and pk is the weight
assigned to agent k’s loss function. In our algorithm, lk is equivalent to the symmetric of eq. 23.

FAuNO’s semi-asynchronous design addresses heterogeneity and stragglers. Faster agents contribute
updates more frequently, while slower ones do not block progress. The gradients are buffered at the
global manager (GM), with newer updates from the same agent replacing older ones and increasing
the weight of that agent’s last update in the aggregation. The weights are computed following algo. 3.
The global critic is updated once updates from K distinct agents are received. This allows for agents
to continue training without waiting for the global training round to complete, allowing for continuous
training even under straggling devices. To mitigate policy divergence and allow for specialization on
each node as well, we federate only the critic network, while keeping the actors local. Furthermore,
each agent’s observation space is standardized and includes its own queue size, neighbors’ queue and
capacity states, aggregate task instruction counts, and features of the next task to be processed, more
details in annex 10.2. Upon aggregation, the GM updates the global critic via a weighted average:

ŵ = w +
∑
k∈K̄

pk∇wk, (11)

where K̄ ≥ K is the set of buffered updates and
∑

k∈K̄ pk = 1. Fig. 2 illustrates the global training
flow. Upon aggregation, the GM updates the global critic via a weighted average:

ŵ = w +
∑
k∈K̄

pk∇wk, (12)

where K̄ ≥ K is the set of buffered updates. The coefficient pk is calculated based on the number of
update steps each agent performed, ensuring that

∑
k∈K̄ pk = 1. Fig. 2 illustrates the global training

flow. The global algorithm can be observed in algo. 2 in annex 9.

4 PERFORMANCE EVALUATION

In this section, we evaluate FAuNO’s performance using two standard TO metrics: average task
completion time and percentage of completed tasks—the proportion of tasks that were created and
whose results were successfully returned to the originating client. We compare FAuNO against

6
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Figure 2: Flow of the FAuNO global algorithm.

two baseline algorithms: Least Queues(LQ), which offloads tasks to the worker with the shortest
queue, and an adaptation of the synchronous FRL solution, SCOF Peng et al. (2024). Since no public
implementation of SCOF was available, we reimplemented the algorithm and released the code in
FAuNO’s repository. For fairness, we adapted SCOF to our observation and reward spaces and dis-
abled its DP component, as privacy was not the focus of this work, and DP typically reduces accuracy.
These adaptations ensure comparability without diminishing SCOF’s core capabilities. Details on
the baselines are provided in annex 11.2. We benchmark our solution using PeersimGym Metelo
et al. (2024), with realistic topologies generated by the Ether tool Rausch et al. (2020). These are
structured as hierarchical star topologies, where a stronger server provides resources to a small set of
client nodes, and a more powerful central server supports the intermediate servers. We also evaluate
on synthetic topologies composed of 10 and 15 nodes randomly distributed in a 100×100 area. In
these settings, the number of high-capacity nodes remains fixed, while the number of client nodes
increases. All tests use realistic task distributions enabled by PeersimGym’s integration with the
Alibaba Cluster Trace workload generator Tian et al. (2019), which we have rescaled to better suit
the considered edge devices. Each algorithm is trained for 40 episodes, for a total of 400,000 steps,
and evaluated during training all presented results are the average result for the metric in question
across the 40 episodes. Finally, we present an ablation study on the impact of agent heterogeneity on
convergence and the impact of the K parameter on the performance of the algorithm; due to space
constraints, the ablation on the K parameter is in annex 6. Additional details on the testing setup,
topologies, workloads, and hyperparameters used are provided in annexes 11 and 12.

4.1 ETHER BASED TOPOLOGIES

Tab. 2 and 3 report the average percentage of completed tasks and the average task response time
for each algorithm, across varying topologies and task arrival rates (λ). A general trend is that
performance degrades as the number of nodes and λ increase, primarily due to faster exhaustion of
computational and shared resources (e.g., cloudlets). Despite this, FAuNO consistently achieves the
highest task completion rates in most scenarios and outperforms the heuristic baselines in response
time. Although SCOF achieves lower response times, it does so at the cost of significantly reduced
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Table 2: Finished Tasks (as a ratio of total tasks created)

Algorithm λ = 0.5 λ = 1 λ = 2
2 4 2 4 2 4

FAuNO 0.967±0.014 0.957±0.008 0.956±0.015 0.957±0.010 0.893±0.015 0.896±0.012
LQ 0.943±0.004 0.948±0.003 0.943±0.004 0.948±0.003 0.910±0.005 0.915±0.006
SCOF 0.939±0.032 0.926±0.032 0.939±0.053 0.926±0.037 0.740±0.052 0.680±0.039

Table 3: Response Time (in simulation ticks)

Algorithm λ = 0.5 λ = 1 λ = 2
2 4 2 4 2 4

FAuNO 148.22±12.36 148.82±6.43 175.69±12.09 175.86±6.42 215.82±8.70 209.29±6.28
LQ 258.41±9.07 239.59±6.64 278.21±8.92 256.99±7.66 296.60±7.79 269.76±5.07
SCOF 127.14±24.34 75.46±41.04 66.43±25.70 45.70±15.10 102.19±24.07 69.61±17.89

task completion. We attribute this to the heterogeneity of the nodes, making it so that using a single
global network without the local specialization sets an orchestration strategy that is too general,
which leads to offloading from high-capacity nodes when they fill up, leading to task expiration and
exclusion from the response time.

4.2 RANDOM TOPOLOGY

Table 4: Response Time (in simulation ticks)

Algorithm λ = 0.5 λ = 1 λ = 2
10 15 10 15 10 15

FAuNO 301.32±12.34 404.53±7.55 337.66±10.46 411.09±4.79 353.16±9.27 385.42±4.90
LQ 377.32±11.34 439.73±8.26 401.64±17.04 433.19±5.82 408.26±10.38 388.61±4.51
SCOF 308.27±14.55 384.71±19.17 337.99±13.87 394.92±22.43 349.90±17.52 363.63±8.93

Table 5: Finished Tasks (as a ratio of total tasks created)

Algorithm λ = 0.5 λ = 1 λ = 2
10 15 10 15 10 15

FAuNO 0.886±0.036 0.769±0.035 0.785±0.050 0.596±0.032 0.631±0.035 0.388±0.027
LQ 0.912±0.0010 0.781±0.014 0.858±0.019 0.654±0.023 0.768±0.037 0.441±0.032
SCOF 0.8720±0.0360 0.7036±0.0542 0.7707±0.0548 0.5703±0.0413 0.6129±0.0608 0.3473±0.0249

As in the Ether networks, increasing the network size significantly degrades performance in both
task completion rate(tab. 4 and response time (tab. 5). This effect is exacerbated by the considered
topology maintaining a fixed number of cloudlets while increasing the number of client nodes. In
contrast to the more structured topology with a single cloudlet, the LQ algorithm outperforms FAuNO
in task completion. This can be explained by the larger accessibility to more powerful nodes in
the random topology, leading to more offloading and concurrent tasks being processed. A deeper
analysis of the impact of topology is available in 6.3. However, LQ’s disregard for local processing
capabilities results in substantially higher response times. SCOF exhibits the opposite behavior: due
to the presence of more powerful nodes distributed across the network compared to the Ether scenario,
its centralized, non-personalized orchestration favors local processing. This reduces communication
overhead and improves response time, but at the expense of lower task completion. FAuNO achieves
a balanced trade-off between the two metrics. As the number of nodes grows and the proportion
of weaker nodes increases, in some tests, FAuNO even surpasses SCOF in response time while
maintaining a competitive task completion rate relative to LQ. Moreover, the higher task completion
rate of LQ in random topologies stems from dense connectivity, which favors aggressive offloading.
Our reward shaping, tailored to mitigate congestion in star-like Ether topologies, biases FAuNO
toward local processing—explaining the observed trade-off in throughput versus delay.

8
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Table 6: Global disagreement score (↓ better)

Variant ↓ / Packet-drop D→ 0.3 0.5 0.8

FAuNO vs FAuNO 74.5 232.7 289.8
FAuNO vs Oracle critic 63.6 240.1 307.2
Pure MARL (D = 1) 147.54 262.22 313.81

Table 7: Disagreement scores. MARL (packet-
drop rate 1.0) vs. centralized; FAuNO not shown

Variant Global disagreement δ

Pure MARL vs Pure MARL 319.35
Fully centralized oracle vs MARL 325.55

4.3 LEARNING UNDER HETEROGENITY

To evaluate FAuNO’s stability under asynchronous, non-IID conditions, we designed a heterogeneous
workload experiment using the 15-node random topology. The network was partitioned into three
regions, each configured to process a specific workload class with different task sizes and arrival
rates. Clients in each region generated tasks only from their corresponding class distribution; the
details on the experiment and result analysis are available in the annex 6.1. We compared three
training setups: FAuNO, pure MARL PPO, where agents learn without any shared critic, and a
centralized oracle where all nodes share a single critic model. To assess consistency between the
different critics, we introduced a critic-agreement protocol and measured critic consistency using
a global disagreement score (eq. 14), δ, based on pairwise RMSE across sampled states (eq. 13).
During each evaluation episode, we sampled 500 global states and collected observations from
each agent. To correct for the fact that agents processing faster task streams naturally accumulate
higher rewards, all values were normalized by the corresponding task arrival rate before computing
disagreement. Results are summarized in Tab. 6 and 7. As expected, disagreement between critics
decreases when the packet-drop rate is reduced, indicating more consistent models as communication
becomes more reliable. FAuNO’s critics approach the predictions of the centralized oracle at low
drop rates, confirming that aggregation yields stable shared learning. By contrast, the pure MARL
variant showed substantially higher disagreement, highlighting its divergence under heterogeneous
workloads. These results confirm that FAuNO is robust to non-IID conditions and mitigates policy
inconsistency even when agents face systematically different task distributions.

5 CONCLUSION, LIMITATIONS & FUTURE WORK

We addressed the decentralized TO problem in edge systems by modeling it as a cooperative objective
over a federation of agents, formalized within a POMG. To this end, we proposed FAuNO, a novel
FRL framework that integrates buffered semi-asynchronous aggregation with local PPO-based train-
ing. FAuNO enables decentralized agents to learn task assignment and resource usage strategies under
partial observability and limited communication, while maintaining global coordination through a
federated critic. Empirical evaluation in the PeersimGym environment confirms FAuNO’s superiority
over heuristic and FRL baselines in terms of task loss and latency, highlighting its adaptability to
dynamic and heterogeneous edge settings.

Limitations. From a security perspective, the current formulation assumes that all nodes are honest
and cooperative. Adversarial and Byzantine behavior, although likely to occur in real-world edge
environments, is not considered, and privacy preservation is also outside the present scope. At the
system level, we model a stable network with reliable nodes and communication links, excluding
failures, congestion, and bandwidth constraints. Furthermore, we do not consider energy costs that
could trade off with latency. These assumptions simplify the evaluation but omit factors critical to
practical edge deployments. Algorithmically, the leveraging of FedBuff introduces a bias toward
faster clients, potentially underrepresenting slower nodes. Moreover, reliance on a GM creates a
single point of failure and a potential bottleneck in very large networks.

Future Work. Future work includes supporting dynamic topologies and node mobility, handling
intermittent connectivity, and addressing adversarial participation. At the system level, we plan to
extend our objective to consider data locality, fault tolerance, and energy-consumption. Algorith-
mically, we will address the single-manager bottleneck by exploring hierarchical or decentralized
critics to improve scalability and robustness. We also intend to incorporate energy-aware objectives
to capture trade-offs between latency and resource use, and to design defenses against malicious
agents to enhance security.

9
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REPRODUCIBILITY STATEMENT

We provide an anonymous repository at https://anonymous.4open.science/r/FAuNO-C976, which
contains the complete codebase developed for this paper. This includes implementations of all
proposed methods, test configurations, hyperparameters, and supporting scripts required to re-run the
experiments and reproduce the reported results. Furthermore, the detailed implementation choices,
hyperparameters, and training configurations are also partially documented in annex 11. The annex
further includes descriptions of the experimental setup and evaluation protocol. Together, these
materials are intended to enable full reproducibility of our results.
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6 ABLATIONS

6.1 HETEROGENEOUS SETTING EXPERIMENT

We designed a heterogeneous workload experiment to evaluate whether FAuNO’s federated critic
converges stably under asynchronous, non-IID conditions, the precise setting where policy incon-
sistency would arise. We set specific regions of the network to handle different task types and have
different cadences of arriving applications, λ.

We focus on the 15-node random topology detailed in 12, partitioned into 3 regions. Each of these
regions is designed to process a specific workload class with different task types varying in number
of instructions, ρ in MBytes, data size, αin and task arrival rate λ. We define each of the workload
classes as:

• W1 (λ=0.5; ρ=38,αin=32e7) this class is composed of nuc:2, rpi5 8G:2, rpi5 6G:1

• W2 (λ=1; ρ=16; αin=64e7) this class is composed of nuc:2, rpi5 8G:2, rpi4:1

• W3 (λ=2.0; ρ=64; αin=16e7) this class is composed of nuc:1, rpi5 6G:2, rpi4:2

A client attached to node i draws tasks only from that node’s class distribution.

Training variants to compare

• FAuNO (federated critic)

• Pure MARL PPO, no shared critic network considered (Obtained by always dropping
updates, so the agents never train anything in a centralized manner)

• Centralized oracle, where a single critic network is shared among all the participants.

Critic-agreement protocol

1. Evaluation set: For M states, {sm}, collect the observations,oi(sm), of each agent of that
given state. During an evaluation episode, we sample around M = 500 distinct global
states.

2. Value Prediction matrix: We then build matrix V ∈ RN×M , where line i represents the
evaluation of critic i and column m is the evaluation of point m. Thus, entry Vi,m is defined
as

Vi,m = Vi(oi(sm))

And, we also built the V⋆ matrix with the evaluation of the centralized critic model for the
same observations.

3. Pair-wise RMSE: We then compute our metrics. A matrix where for each agent, we have
the Root Mean Squared Error (RMSE) between the different state evaluations. This metric
is meant to capture the differences on evaluating the observations by each of the agents.
Each entry of this matrix is given by:

RMSEij =

√
1
M

∑
m

(
Vi,m − Vj,m

)2
. (13)

Where the Vi,m is the evaluation of agent i, to provide a global metric of divergence of the
matrix, we consider the global disagreement score computed as:

δ = 2
N(N−1)

∑
i<j

RMSEij . (14)

These same metrics are then re-computed for V⋆.
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Comparison of the value function between nodes and against the V∗ The group with a higher
rate of task arrival λ will have better chances of increasing the received reward; thus, the estimate of
the value will not be comparable. To have a fair measure of the quality between the different agent
groups, we use the following normalization, for every node i:

Ṽi,m = Vi,m/λi

We study the global disagreement score, δ, across packet drop rates D. As expected, disagreement
decreases as D is reduced (tab.6), reflecting more consistent agents. The federated critic increasingly
aligns across the network as communication becomes more reliable. tab.6 shows that this alignment
approaches the centralized oracle’s predictions at low D, confirming that FAuNO benefits from
improved communication and maintains stable shared learning even in highly heterogeneous settings.
In contrast, tab.7 demonstrates that the MARL variant suffers from substantially higher disagreement
under the same conditions. We must disclose that, although the MARL agent had begun converging,
training was not completed but we expect the divergence to increase with training.

This analysis confirms that FAuNO’s federated critic is robust to non-IID workloads and can mitigate
policy inconsistency even when agents face systematically different distributions.

6.2 K EXPLORATION

Table 8: Straggler and aggregation-threshold ablation results (mean ± s.d.)

Setting Finished-task ratio Avg. response time (ticks)

K = 0.3, s = 0.3 0.77± 0.02 258.85± 5.95
K = 0.3, s = 0.5 0.76± 0.02 259.74± 6.91
K = 0.3, s = 0.8 0.76± 0.02 260.07± 7.02
K = 0.5, s = 0.3 0.76± 0.02 259.09± 6.35
K = 0.5, s = 0.5 0.76± 0.02 258.83± 7.71
K = 0.5, s = 0.8 0.76± 0.02 260.86± 6.97

We evaluated FAuNO’s robustness under straggler conditions and varying aggregation thresholds.
Let s denote the fraction of gradients dropped before reaching the global node. In the straggler test,
the objective is not to improve performance metrics but to avoid collapse. FAuNO achieves this
goal: even when 80% of gradients are dropped (s = 0.8), both the finished-task ratio and average
response time remain well within one standard deviation of their baseline values. This demonstrates
that FAuNO gracefully degrades to local MARL when global connectivity is severely reduced,
maintaining essentially the same performance. We also examined buffer sensitivity by doubling the
aggregation threshold from K = 0.3 to 0.5. This change affects performance by less than 1% in
either metric, indicating that FAuNO is robust to variations in buffer size under this workload.

6.3 IMPACT OF TOPOLOGY ON PERFORMANCE ON SYNTHETIC NETWORKS

Table 9: Connection counts by topology and node type

Connection
Type

Random
(10 nodes)

Random
(15 nodes)

2 Clusters
(23 nodes)

4 Clusters
(45 nodes)

nuc–nuc 2.4 2.4 0 0
nuc–rpi 3.2 8.4 8 8
rpi–nuc 3.2 4.2 1 1
rpi–rpi 3.2 7.6 0 0
srv–nuc 0 0 2 4
srv–rpi 0 0 16 32

The stronger task completion rate of LQ in random topologies reflects important topology-specific
dynamics. As shown in Table 9, the random topologies considered in our experiments exhibit high
connectivity between weaker RPIs and stronger NUCs (e.g., approximately 8.4 connections per RPI
in the random topology with 15 nodes). This connectivity enables offloading with relatively low
delay and cost, helping avoid congestion at any single NUC.
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In contrast, our reward shaping was designed to discourage excessive offloading to mitigate latency
and congestion in the star-like topologies generated by Ether. This global reward structure thus
introduces a bias toward local processing. LQ, being reactive and unconstrained by this reward
design, offloads more aggressively and achieves higher task throughput, albeit with higher delay. This
illustrates a throughput–latency trade-off shaped jointly by topology and reward structure.

7 EXTENDING PEERSIMGYM

The PeersimGym Metelo et al. (2024) environment for TO with multi-agent reinforcement learning
was not originally designed for federated learning. To address this, we extended it with the FL
Updates Manager (FLManager) to enable the exchange of FL updates across the simulated network.
The FL process begins with the FL algorithm determining which updates to share. These updates are
sent to the environment, where the FLManager generates an ID for each update, calculates its size, and
stores the relevant information. This data is then transmitted to the simulation, which sends a dummy
message with the size of the update from the node hosting the source agent to the node hosting the des-
tination agent through the network. FL agents can then query the FLManager for completed updates,
prompting it to retrieve any updates that have traversed the simulated network. To ensure compatibility
with other environments, we decoupled the FLManager from PeersimGym and introduced a cus-
tomizable mechanism for computing the number of steps an update takes to arrive. The code for the
FLManager is available in the FAuNO repository (https://anonymous.4open.science/r/FAuNO-C976;
anonymized).

8 FAUNO NODES

Each FAuNO node consists of three key components: the orchestration agent or manager, the infor-
mation exchange module, and the resource provisioning component. As our focus is on developing
an algorithm for the decentralized orchestration of clients’ computational requirements, we keep the
other components generic for adaptability across various scenarios. As illustrated in Fig. 3, one of the
participants assumes the role of FAuNO GM, managing the global model; this role can be assumed
by any node in the network. In our experiments, the data processing and collection layers are built
into the simulation.

<<device>>
FAUNO
Node

[N]

<<device>>
Global Manager
FAUNO Node

<<artifact>>
FRL Client

<<artifact>>
Data Processing

<<artifact>>
Data Collection

Layer

<<artifact>>
FRL Server

<<artifact>>
FRL Client

<<artifact>>
Data Processing

<<artifact>>
Data Collection

Layer

HTTPS

Client
[M]

HTTPS
HTTPS

Figure 3: Deployment diagram representing the different components in the basic and GM FAuNO
Nodes, with the arrow representing that some messages are exchanged between the nodes.
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9 ALGORITHMS

We provide the pseudocode for the two phases of FAuNO learning. We also provide the actual code
developed in our git repository (https://anonymous.4open.science/r/FAuNO-C976; anonymized). The
first component we mention is the Local algorithm, as seen in the algo. 1 ran by the participants in
the Federation:
Algorithm 1 FAuNOLocalPPO

Require: Initial critic weights w0, learning rate local critic ηcritic, learning rate local actor ηactor,
initial actor weights θ0, minibatch size M , number of steps between trainings N , number of
steps before sharing weights with global T

1: θold ← θ0
2: w ← w0

3: steps← 0
4: version← 0
5: for iteration = 1, 2, . . . do
6: w, version ← checkIfNewerGlobalArrived() {Resets number of steps since last

update}
7: for step = 1, 2, . . . , N do
8: Run policy πθold in environment for timesteps
9: end for

10: Compute advantage estimates Â1, . . . , ÂT using V (·;w)
11: Optimize surrogate LF

t w.r.t. θ and w, with K epochs and minibatch size M
12: θold ← θ
13: steps← steps + 1
14: if iteration mod T = 0 then
15: shareUpdatesWithGlobal(∇w, steps, version) {Asynchronous operation}
16: end if
17: end for

In this algorithm, the checkIfNewerGlobalArrived() function checks whether a newer version of
the global critic model has been sent. If so, it returns the updated model; otherwise, it returns the
current model, w, that the agent has trained. Similarly, the shareUpdatesWithGlobal(u, steps, version)
function asynchronously shares the latest updates, u, with the global node. We note that minimizing
the negative of eq. 23, −LF

t , is equivalent to maximizing the original objective.

Then we look at the global algorithm executed by one of the nodes in the federation in algo. 2.
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Algorithm 2 FAuNOGlobalManager

Require: Global critic learning rate ηcritic, local actor learning rate ηactor, client training steps Q,
buffer size K, all participating agents m, minibatch size M , number of steps between trainings
N , number of steps before sharing weights with global T

Ensure: FL-trained global critic model wg

1: wg ← w0

2: Initialize Buffer← {} {Start with an empty buffer}
3: k ← 0
4: while not converged do
5: Run FAuNOLocalPPO(w0, ηcritic, ηactor, θ0, M , N , T ) on m {Asynchronous operation}
6: if client update received and used latest k then
7: Receive ∆i, stepsi, versioni from client i
8: if ∆i /∈ Buffer then
9: Add ∆i, stepsi, versioni to Buffer

10: k ← k + 1
11: else if stepsi > steps stored in Buffer then
12: Replace ∆i in Buffer with the newer one
13: end if
14: if k ≥ K then
15: wg ← wg +

∑
k∈Buffer computeCoefficient(Buffer, k)∆k

16: Clear Buffer
17: k ← 0
18: sendLatestModelToClients() {Asynchronous operation}
19: end if
20: end if
21: end while

In this algorithm, computeCoefficient() calculates the weight of each update based on the number
of updates each agent sent, see 3, and sendLatestModelToClients() is a method that sends the latest
global critic network to all the clients.

Algorithm 3 computeCoefficient

Require: Buffer with updates Buffer, target agent k
Ensure: Coefficient of agent k’s update

1: total_k ← 0
2: no_steps← 0
3: for each entry i ∈ Buffer do
4: agenti ← agent that sent entry i
5: stepsi ← steps performed in i’s update
6: total_k ← total_k + stepsi
7: if k == agenti then
8: no_steps← stepsi
9: end if

10: end for
11: return no_steps/total_k

10 PEERSIMGYM ENVIRONMENT AND THE POMG

10.1 COMMUNICATION PROTOCOLS

There are three types of messages shared between the nodes. These are

• Exchange of information to neighbors - Our framework assumes that each node can share
its local state only with directly connected neighbors through low-overhead broadcast or
multicast mechanisms. This realistically mirrors real-world edge deployments, where full
global state observability is impractical due to network size, reliability, and cost constraints.
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• Exchange of tasks - Our framework assumes that tasks can be offloaded between directly
connected nodes within their neighborhood, allowing localized workload distribution without
reliance on centralized coordination.

• Exchange of federated updates - Model updates are propagated to the global node through
multihop communication when direct connectivity is not available.

10.2 OBSERVATION SPACE

The observation space for agent p in node W p at time step t consists of it’s own queue size Qp
t ,

the latest queue size known for each of it’s neighbors {Qj
t |Wj ∈ W̃ p}, where W̃p is the node

W p’s neighborhood, and the percentage of space free for itself, F p
t , and each of the neighbors, F j

t ,
computed as:

Fn = Qn
t /Q

n
max (15)

Then on the task dimension they observe information about the tasks to be processed in particular the
total number of instructions in the queue given by eq. 16, the total number of instructions of tasks
assigned to be processed locally given by eq. 17 where Ilocalp(τ

i) is the identifier whether task τ i

was assigned to be processed locally in node p. Lastly, we have information on the next task to be
processed, namely, its id i, the current progress of the task at time-step t, ρit, the total instructions,
and the data input, αin

i , and output size, αout
i .

Qp
ρ,t =

∑
τi∈Qp

ρi (16)

Qp,local
ρ,t =

∑
τi∈Qp

Ilocal(τ
i) (17)

Ilocalp(τ
i) =

{
ρi, if τ i is local
0, otherwise

(18)

Moreover, we convert the observations of all the agents to be structurally similar by normalizing
and padding the observation spaces, ensuring consistent input dimensionality and robustness to
network topological changes or node failures. Specifically, missing neighbors are represented using
normalized placeholder values (-1), maintaining stable critic evaluation despite node heterogeneity.

11 IMPLEMENTATION DETAILS

11.1 PPO FORMULATION

PPO Schulman et al. (2017) is a policy gradient method grounded in the Policy Gradient Theorem Sut-
ton et al. (1999), which enables training a policy approximator by estimating the policy gradient and
applying stochastic gradient ascent:

ĝ = Et

[
∇θ log πθ(at | st)Ât

]
(19)

Here, πθ is the policy being optimized, and Ât is an estimator for the Advantage Function computed
with Generalized Advantage Estimation Schulman et al. (2018).

Ât =

k−1∑
i=0

γirt+i + γkV (st+k)− V (st), (20)

Here, k can vary from state to state and is upper-bounded by a parametrized value, N , while V (·)
would be an estimator for the value function.

The PPO algorithms work by running a policy for a parametrizable number of steps and storing
information not only about the state, action, and reward, but also about the probability assigned to the
chosen action. This information is then utilized in the next training step for computing the objective
function, which in the case of PPO-Clip, is given by:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(21)
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Here, rt(θ) denotes the probability ratio:

rt(θ) =
πθ(at | st)
πθold(at | st)

. (22)

The rationale behind using the probability ratio is that when an action with a higher advantage
is selected and the new policy assigns a higher probability to that action, then the ratio will be
bigger than zero, obtaining an overall higher objective. Conversely, if the probability increases for a
negative advantage, then the objective function decreases faster. The clipping and the minimum are
set in place so that the final objective is a lower bound (i.e., a pessimistic bound) on the unclipped
objective Schulman et al. (2017). This prevents excessive deviations from the original policy in a
single update, avoiding large, harmful updates caused by outliers.

Due to the Actor-Critic nature of the PPO algorithm, two components must be trained: the critic
and the actor. Consequently, when utilizing automatic differentiation frameworks, like PyTorch,
Schulman et al. Schulman et al. (2017) recommend maximizing the following objective:

LF
t (θ, w) = Et

[
LCLIP
t (θ)− c1L

VF
t (w) + c2Sπθ

(st)
]
, (23)

where we have the objective of the Actor, LCLIP, as shown in eq. 21. The critic’s loss function,
LVF(w), where w is the parameters of the critic network, given by,

LVF
t (w) = (r + γV (st+1)− V (st))

2
. (24)

And an entropy term, S[πθ](st) to promote exploration. The c1 and c2 are coefficients weighing the
different components of the objective.

And, because we are exploring an FL approach, the agents will share the gradients they obtained
while training the local critic networks following algo. 1 in annex 9.

11.2 BASELINES

To compare FAuNO, we implement a set of baseline policies. We classify these baseline policies into
two different categories, the first is the heuristic baselines Least Queue, which selects the observable
worker with the smallest queue size relative to its maximum queue size and offloads the next eligible
task to that worker. The purpose of the heuristic baseline is to provide a reference point that is widely
understood and accessible, serving as a benchmark for expected performance, offering a familiar
comparison point that helps contextualize the results.

We then consider the State-of-the-art synchronous FRL algorithm, SCOF Peng et al. (2024), in
the spirit of looking at the benefits of considering the improvements of an asynchronous training
mechanism that keeps training even, considering heterogeneous devices and communication delays.
SCOF is an algorithm designed for TO in the IIoT setting with a focus on vertical offloading from
Edge devices to a set of Edge Nodes from the SBCs, not considering the offloading mechanics
of the Edge Nodes themselves. The algorithm itself considers a Federated Duelling DQN, that
is aggregated with a FedAvg-based approach and utilizes differential privacy (DP) to improve the
security of the update exchanges. We could not find any implementation of SCOF, so we provided our
implementation of the algorithm based on SCOF’s paper Peng et al. (2024) in FAuNO’s repository.
Since no public implementation of SCOF was available, we reimplemented the algorithm and released
the code in FAuNO’s repository. To ensure a fair comparison with FAuNO, which does not use DP,
we disabled SCOF’s DP component, as DP often reduces accuracy and was not the focus of this
study. We further adapted SCOF to our Markov game formulation and edge setting, modifying the
observation and reward structures for compatibility. These adaptations were applied consistently and
do not disadvantage SCOF beyond removing features absent in FAuNO.

11.3 HYPERPARAMETERS USED FOR FAUNO

We based our choice of hyperparameters on Andrychowicz et al. (2020). The parameters used for
FAuNO:
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Table 10: Hyperparameters Used in FAuNO Experiments

Parameter Value Explanation
γ 0.90 Discount factor for the long-term reward computation
ϵ 0.5 PPO clipping parameter
η 0.00001 Learning rate for the global model (affects critic)
µ 0.005 Scales the the proximal term in PPO
Actor Learning rate 0.001 Learning rate for the actor network
Critic Learning rate 0.0003 Learning rate for the critic network
Critic Loss coefficient 0.5 Coefficient for the critic loss term
Entropy Loss coefficient 0.5 Coefficient for the entropy loss term

Save interval 1500 steps Frequency at which models are saved
Steps per exchange 150 steps Number of steps before exchanging data
Steps per episode 150 steps Number of steps per training episode
Batch size 30 Size of batches for gradient updates

For SCOF, we adopted the hyperparameter settings reported in the original paper Peng et al. (2024).
For parameters not specified, we selected values empirically. A complete list of settings is provided
in the repository under configs/algo_configs.

11.4 NETWORK ARCHITECTURE

The architectures for the PPO are based on the ones in Barhate (2024)

Input: state dim

FC 64
+ Tanh

FC 32
+ Tanh

FC action dim
+ Softmax

Actor Network Architecture

(a) Actor Network

Input: state dim

FC 256 + Tanh

FC 124 + Tanh

FC 1

Critic Network Architecture

(b) Critic Network

Figure 4: Actor-Critic Neural Network Representations

12 TEST SETUP

Here, we give the concrete simulation setup configurations and elaborate on the baseline algorithms
used. More details are available in the repository FAuNO repository2

2https://anonymous.4open.science/r/FAuNO-C976/README.md
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12.1 ETHER EXPERIMENT PARAMETERS

The experiments are based on two distinct network topologies generated using Ether, with 2 and
4 AoT clusters. Each simulated AoT cluster consists primarily of SBCs, modeled as Raspberry
Pi 3s, along with a base station equipped with an Intel NUC and two GPU units, and a remote,
more powerful server. The topologies vary in cluster numbers, ranging from one to four clusters,
and correspondingly in node counts, from 12 to 31. The number of agents making task-offloading
decisions scales with the number of nodes, with all SBCs, NUCs, and the remote server hosting an
agent. This results in 10 to 23 agents across different topologies. We configure the simulation so
that only the nodes at the edge of the network, the SBCs, will directly receive tasks. The specific
number of each node type is available in tab. 11, and the number of nodes taking up a given function
is available in tab. 12.

No. Clusters SBCs NUCs GPU units Servers
2 16 2 4 1
4 32 4 8 1

Table 11: Cluster Composition Table
No. Clusters No Agents Nodes getting tasks from clients Total nodes

2 19 16 23
4 37 32 40

Table 12: Cluster Configuration Table

The visualization produced for each of the scenarios can be observed in fig.5a

Regarding the capabilities of the different components involved in the simulation, we relied on the
hardware specifications generated by the Ether tool. We supplemented this information with data we
found for each machine. This information is available in tab. 13.

Task generation at each SBC node follows a Poisson(λ) distribution over a simulation episode of
1000 time steps, with each time step scaled by a factor of 10, making each tick equivalent to 1/10th
of a second, for a total of 10,000 ticks per episode. Each agent makes an offloading decision at
every time step, performing 30 episodes, with the ability to take action at each tick. A full list of the
parameters used in our simulation can be found in tab. 14. We note that all time-dependent functions
are scaled as well.

Table 13: Device Capacities

Device CPU (Millis) Memory (Bytes)
Raspberry Pi 4 7200 6442450944
Raspberry Pi 5 6GB 9600 6442450944
Raspberry Pi 6 8GB 9600 8589934592
Intel NUC 14800 68719476736
Cloudlet 290400 188000000000

Table 14: Parameter values in the experimental setup.

Simulation time, T 1000 s
Task input size, αin

i 150 Mbytes Task output size, αout
i 150 Mbytes

Task instructions, ρi 8×107 Task utility, ru 100
CPI, ξi 1 Weight waiting, χwait

D 1
Deadline, δi 100 Weight execution, χexc

D 0.5
Bandwidth, Bi,j 4 MHz Weight comm, χcomm

D 3
Transmission power, Pi 40 dbm Weight overload, χO 30
Scale 10

12.2 ARTIFICIAL NETWORK EXPERIMENT PARAMETERS

We consider two topologies with 10 and 15 nodes randomly distributed across a 100x100 square.
These topologies have an increasing number of SBCs and a fixed number of NUCs. All SBCs receive
tasks, and all the nodes in the topology have agents controlling them. The SBCs are picked randomly
in equal proportions from the options in tab.13. The concrete number of nodes for each is given
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(a) Topology with 2 AoT clusters, consisting of
12 SBC, 2 NUCs, 4 GPU units, and 1 server. The
total number of nodes is 19, and 15 agents manage
task-offloading decisions, as outlined in tab. 11.

(b) Topology with 4 AoT clusters, consisting of 18
SBC, 4 NUCs, 8 GPU units, and 1 server. The total
number of nodes is 31, with 23 agents managing
task-offloading decisions, as shown in tab. 11.

Figure 5: Visualization of the different simulations used.

in tab. 15: We consider the same hyperparameters explained in 10. And consider similar training
No. Nodes SBCs NUCs

10 5 5
15 10 5

Table 15: Cluster Composition Table
conditions to the ether-based topologies.

12.3 ALIBABA CLUSTER TRACE-BASED WORKLOAD

The workload considered for the experiments in the paper was based on the integration of Peer-
simGym Metelo et al. (2024) with an Alibaba Cluster trace-based workload generation tool Tian
et al. (2019). However, the original task sizes were unsuitable for the edge environment under study,
particularly for client nodes, which became overwhelmed and dropped nearly 90% of tasks. To
address this, we implemented a rescaling mechanism that adjusted the number of instructions per task
while keeping all other characteristics the same. After evaluating several scaling factors, we selected
a 10% reduction, which maintained a meaningful level of computational demand without causing
excessive task loss.
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12.4 COMPUTATIONAL REQUIREMENTS

The tests were all executed in a private High-Performance Computer, orchestrated by Slurm. Each
Slurm job utilized 16 GB of RAM memory, 4 cores, and a MiG partition with one compute partition
and 10 GB of memory of an Nvidia A100 GPU. Each of the tests that utilized a GPU took about 10
to 18 hours, depending on the number of agents, to complete the 400 000 steps.

13 USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models were used solely as assistive tools to improve the clarity and readability of
the manuscript. Their role was limited to editing for grammar, style, and wording. All research ideas,
methodology, analysis, results, and conclusions were conceived and written by the authors. The
authors carefully reviewed and verified all text to ensure accuracy and that the original meaning of
the content was not violated, and we take full responsibility for the final content.
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