

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAUNO: SEMI-ASYNCHRONOUS FEDERATED REIN- FORCEMENT LEARNING FRAMEWORK FOR TASK OF- FLOATING IN EDGE SYSTEMS

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Edge computing addresses the growing data demands of connected-device net-
014 works by placing computational resources closer to end users through decen-
015 tralized infrastructures. This decentralization challenges traditional, fully cen-
016 tralized orchestration, which suffers from latency and resource bottlenecks. We
017 present **FAuNO**—*Federated Asynchronous Network Orchestrator*—a buffered,
018 asynchronous *federated reinforcement-learning* (FRL) framework for decentral-
019 ized task offloading in edge systems. FAuNO adopts an actor–critic architecture
020 in which local actors learn node-specific dynamics and peer interactions, while a
021 federated critic aggregates experience across agents to encourage efficient coopera-
022 tion and improve overall system performance. Experiments in the *PeersimGym*
023 environment show that FAuNO consistently matches or exceeds heuristic and fed-
024 erated multi-agent RL baselines in reducing task loss and latency, underscoring its
025 adaptability to dynamic edge-computing scenarios.¹

026 1 INTRODUCTION

028 The growth of connected device networks, such as the Internet of Things (IoT), has led to a surge
029 in data generation. Traditionally, Cloud Computing handled these computational demands, but
030 increased network traffic and latency became apparent as these networks expanded Min et al. (2019).
031 Edge Computing (EC) extends the cloud by bringing computational resources closer to end-users,
032 addressing latency and traffic issues Varghese & Buyya (2018). Despite distinguishing between
033 Mobile Edge Computing (MEC) and Fog computing, this paper treats them interchangeably, focusing
034 on their goal of minimizing device-to-cloud distances Yu et al. (2020). The EC paradigm distributes
035 computational resources, making centralized network orchestration inefficient. Centralization would
036 require aggregating data at a single node, straining the network, and creating a single point of
037 failure Baek & Kaddoum (2023). This highlights the value of decentralized orchestration, particularly
038 through Task Offloading (TO). Optimal TO in such distributed environments involves managing
039 multiple factors, including task latency, energy consumption, and task completion reliability Zhu et al.
040 (2019). Traditional optimization methods often struggle to efficiently manage these complex systems,
041 due to the dynamic, time-varying, and complex environments of Edge Systems Xu et al. (2018).
042 Reinforcement Learning (RL) Baek & Kaddoum (2023); Zhu et al. (2019), is a powerful candidate and
043 dominant approach to solving the TO problem. Specifically, Multi-Agent Reinforcement Learning
044 (MARL) has been explored as a promising solution for decentralized orchestration in Edge Systems
045 Baek & Kaddoum (2023); Gao et al. (2022). The ability of MARL agents to iteratively learn optimal
046 strategies through simultaneous interaction with an environment makes them particularly suited for
047 decentralized edge systems Lin et al. (2023); Zhang et al. (2023). Due to the nature of MARL, it
048 is common to have some form of message exchange Zhang et al. (2018); Baek & Kaddoum (2023)
049 between participants, as this reduces the uncertainty generated by having multiple agents interacting
050 simultaneously, making it particularly suitable for Federated Learning (FL), which has recently gained
051 academic interest as an efficient and distributed approach to agent cooperation in learning Consul
052 et al. (2024). When FL is applied to MARL and the agents only have partial observability of the state,
053 as is commonly the case in decentralized systems where obtaining information about all nodes comes
at a premium, it creates a paradigm known as Vertical Federated Reinforcement Learning (VFRL) Qi

¹Repository: <https://anonymous.4open.science/r/FAuNO-C976/README.md>

054 et al. (2021). The MARL problem is transformed from one in which agents focus solely on their
 055 own objectives into a global optimization problem that accounts for the collective objectives of the
 056 participants in the federation. FL also mitigates the strain on the network by avoiding the exchange of
 057 large amounts of information, since agents only need to periodically share their learned updates that
 058 are aggregated into a global unified model solving the global objective. This enables agents to benefit
 059 from each other's knowledge while minimizing communication overhead. However, conventional
 060 FL suffers when stragglers delay aggregation or drop updates, reducing training efficiency and
 061 wasting samples. This can be addressed by adopting a buffered semi-asynchronous strategy, in
 062 which faster nodes continue contributing updates without waiting, while slower nodes are still able to
 063 align with the evolving global critic. FAuNO adopts a buffered semi-asynchronous strategy, where
 064 faster nodes continue contributing updates without waiting, while slower nodes are still able to align
 065 with the evolving global critic. In this way, we extend Federated Buffering Nguyen et al. (2021) to
 066 reinforcement learning, enabling continuous local training without being bottlenecked by stragglers.
 067 We summarize the motivations and principal contributions of this work below.

068 Motivations & Contributions

- 070 • We address the **TO problem in edge systems** by framing it within a **Partially Observable Markov**
 071 **Game (POMG)**, enabling decentralized decision-making under partial observability.
- 072 • We introduce **FAuNO**, the first framework to integrate **buffered semi-asynchronous aggregation**
 073 with **actor-critic MARL (PPO)** in a federated setting for edge offloading. Our adaptation of Fed-
 074 Buff to reinforcement learning enables faster agents to contribute multiple updates without waiting
 075 for stragglers, improving sample efficiency under heterogeneous conditions. By federating only the
 076 **critic** while keeping **actors local**, FAuNO mitigates heterogeneity, respects partial observability,
 077 and supports fully decentralized execution. Through empirical evaluation, we show that FAuNO
 078 **outperforms or matches FRL and heuristic baselines** in terms of task completion time and task
 079 completion.
- 080 • We **extend the PeersimGym** environment to support **federated update exchanges** over the
 081 simulated network (details in annex 7). This extension simulates the communication of the updates
 082 affecting how and when updates are propagated and aggregated. As a result, the evaluation reflects
 083 the conditions of realistic edge systems.

084 Background & Related Work

085 TO involves transferring computations from constrained devices to more capable ones, addressing
 086 the *what, where, how, and when* of offloading Fahimullah et al. (2022). TO methods include vertical
 087 offloading to higher-tier systems Qiu et al. (2019), horizontal offloading among peers Baek et al.
 088 (2019), and hybrid approaches Baek & Kaddoum (2023). Offloading target selection may prioritize
 089 proximity Van Le & Tham (2018); Yu et al. (2020) or queue length Baek et al. (2019), or consider
 090 unrestricted selection, accounting for consequences of offload failures. Failures are affected by
 091 factors like latency Dai et al. (2022), resource capacity Van Le & Tham (2018), energy shortages,
 092 or others Peng & et al. (2022). This study focuses on *Binary TO* Hamdi et al. (2022) for indivisible
 093 tasks with horizontal and vertical offloading.

094 RL has been applied to TO in both single-agent and multi-agent settings. In the single-agent case, TO
 095 is commonly modeled as an MDP and solved with Q-learning in Fog networks Baek et al. (2019),
 096 DQN in ad-hoc mobile clouds Van Le & Tham (2018), DDPG for task dependencies Liu et al. (2023),
 097 SARSA variants for real-time MEC Alfakih et al. (2020), and DQN extensions for delay-sensitive
 098 tasks Liu et al. (2022). Bandit formulations have also been used to simplify binary offloading while
 099 optimizing latency and energy Zhu et al. (2019). In the multi-agent case, MARL methods address
 100 resource allocation and collaboration in heterogeneous, partially observable environments. For
 101 example, in Baek & Kaddoum (2020) TO in Multi-Fog systems is modeled as a Stochastic Game,
 102 and a Deep Recurrent Q-Network (DRQN) with Gated Recurrent Units is employed to handle partial
 103 state observations.

104 FRL has been explored for TO in Edge systems, emphasizing agent cooperation. However, most
 105 RL research in TO focuses on parallel RL, where agents act on independent environment replicas,
 106 not considering the uncertainty introduced by shared environments. In Li et al. (2023), a multi-TO
 107 algorithm is developed that uses a Double Deep Q-Network (DDQN) and K-Nearest neighbors to
 108 obtain local offloading schemes. The agents then participate in training a global algorithm using

108
109
110 Table 1: Comparison of RL-based Task Offloading approaches.
111
112
113
114

Work	Multi-Agent	Federated	Actor-Critic	Partially Obs.	Shared Env.	Buffered Async.	OSS Env.
Baek et al. (2020) Baek & Kaddoum (2020)	✓		DRQN	✓			
Baek et al. (2022) Baek & Kaddoum (2023)	✓	✓	✓	✓		✓	
Zang et al. (2022) Zang et al. (2022)	✓	✓	DQN	✓			
Li et al. (2023) Li et al. (2023)	✓	✓	DDQN				
Peng et al. (2024) Peng et al. (2024)	✓		Dueling DQN	✓			
FAuNO (ours)	✓	✓	✓	✓	✓	✓	✓

115
116
117 a weighted federated averaging algorithm. A unary outlier detection technique is used to manage
118 stragglers.

119 In Consul et al. (2024), a hierarchical FRL model is proposed for frame aggregation and offloading
120 of Internet of Medical Things data, optimizing energy and latency by aggregating learned parameters
121 from body-area devices to edge and central servers. In Chen & Liu (2022) an FRL-based joint
122 TO and resource allocation algorithm to minimize energy consumption on the IoT devices in the
123 Network, considering a delay threshold and limited resources is proposed. The considered approach
124 uses DDPG locally and a FedAvg McMahan et al. (2017) based algorithm for the global solution.
125 In Tang & Wong (2022), a binary TO algorithm for MEC systems is proposed, employing dueling
126 and double DQN with LSTM to improve long-term cost estimation for delay-sensitive tasks. In
127 Zang et al. (2022), a scenario with multiple agents in the same environment is considered, and
128 FEDOR – a Federated DRL framework for TO and resource allocation to maximize task processing is
129 proposed. In FEDOR, Edge users collaborate with base stations for decisions, and a global model is
130 aggregated using FedAvg, with an adaptive learning rate improving convergence. Although FEDOR
131 considers multiple agents in the same scenario, the decision-making depends on base stations for
132 smoothing the offloading decisions of the multiple agents. In Baek & Kaddoum (2023), FLoadNet
133 is proposed as a framework that combines local actor networks with a centralized critic, trained
134 synchronously in a federated manner, to enable collaborative task offloading in Edge-Fog-Cloud
135 systems. Their solution learns what information to share between nodes to enhance cooperation
136 and their offloading scheme learns the optimal paths for tasks to take through a Software-defined
137 Network. In the Industrial IoT(IIoT) setting with dependency-based tasks, Peng et al. (2024) propose
138 SCOF that considers a Federated Duelling DQN, that is aggregated with a FedAvg-based approach
139 and utilizes differential privacy (DP) to improve the security of the update exchanges. Focusing on
140 selecting the best offloading targets from a pool of Edge Servers.

141 Lastly, none of the studied solutions uses an environment that facilitates the comparison of the
142 proposed algorithms, which we do by training and benchmarking our solution in the PeersimGym
143 environment Metelo et al. (2024). The comparison with the related work is summarized in Table 1.

144 2 FEDERATED TASK OFFLOADING PROBLEM

145
146 In this section, we elaborate on the system modeling of our Edge System and formulate the TO
147 problem as a global optimization problem that will be solved by all the participants in the network
148 orchestration. Lastly, we formulate the local learning problem of the participants as a POMG.
149

150 2.1 SYSTEM MODEL

151 We consider a set of nodes $\mathcal{W} = W_1, \dots, W_k$ comprising the network entities (e.g., edge servers,
152 mobile users). These nodes offer computational resources to a set of clients, such as IoT sensors
153 that require processing for collected data. Time is discretized into equidistant intervals $t \in \mathbb{N}_0$.
154 The system includes two types of entities, as illustrated in Fig. 1. **Clients** generate computational
155 workloads in the form of tasks for accessible nodes, following a Poisson process with rate λ ; the set
156 of all clients is denoted by \dot{C} . **Workers**, denoted by \dot{W} , provide computational resources and are
157 represented as nodes with specific properties. Each worker W^n maintains a task queue Q_t^n at time
158 t , with a maximum capacity Q_{\max}^n . Whenever the capacity is reached, no new tasks are accepted
159 until there is available space. The Workers are characterized by the number of CPU cores N_ϕ^n , the
160 per-core frequency ϕ^n (in instructions per time step), and a transmission power budget \mathcal{P}_n . Workers
161 periodically share their state with neighbors. A single machine can be both a worker and a client.

Figure 1: Edge System Architecture of our system model. The workers are capable of independently offloading tasks, exchanging information, and FL model updates through the communication channels.

Task Model: Computational requirements are modeled as tasks in our system. Let $T = \{\tau_i\}, i \in \mathbb{N}$ be the set of all tasks, where a task with ID i is represented as $\tau_i = \langle i, \rho_i, \alpha_i^{\text{in}}, \alpha_i^{\text{out}}, \xi_i, \delta_i \rangle$, with the following attributes: i as a unique task identifier, ρ_i as the number of instructions to be processed, α_i^{in} as the total input data size, α_i^{out} as the output data size, ξ_i as the CPU cycles per instruction, and δ_i as the task deadline, or maximum allowed latency for the return of results. A task is dropped if it arrives at a node with a full queue or if its deadline expires.

Communication Model: The communication model defines the latency of message transmission between nodes in the same neighborhood, where a node can only communicate directly with its neighbors. Each entity within a node can send and receive messages, modeled as the tuple $\langle \omega_i, \omega_j, \alpha \rangle$, where ω_i is the origin node ID, ω_j is the destination node ID, and α represents the message size. To measure transmission delay, we consider the *Shannon-Hartley* theorem Anttalainen (2003). According to this theorem, the latency for transmitting α bits between nodes W_i and W_j is given by:

$$T_{i,j}^{\text{comm}}(\alpha) = \frac{\alpha}{B_{i,j} \log_2(1 + 10^{\frac{\mathcal{P}_i + G_{i,j} - \omega_0}{10}})}, \quad (1)$$

where $T_{i,j}^{\text{comm}}(\alpha)$ is the transmission time, $B_{i,j}$ is the bandwidth between nodes, \mathcal{P}_i is the source node's transmission power, $G_{i,j}$ is the channel gain, and ω_0 is the noise power. See annex 10.1 for details on communication protocols.

2.2 PROBLEM FORMULATION

We aim to optimize workload orchestration based on task processing latency and avoid the loss of tasks due to resource exhaustion. At time-step t , we define the system as a tuple $\langle W, \dot{W}, \dot{C}, \mathcal{C}, T_t \rangle$. Each node can decide to process a task locally or offload it to a neighbor, represented by the action variable a_t^i for worker i . The delay incurred by the decisions of all agents is given by:

$$D_n(T_t, \dot{W}) = \sum_{a_t^n} d(a_t^n) \quad (2)$$

The function $d(a_t^n)$ represents the local extra delay of the decision made by agent n , defined as:

$$d(a_t^n) = \chi_D^{\text{wait}} T_{i,a_t^n}^{\text{wait}}(\tau_k) + \chi_D^{\text{comm}} T_{i,a_t^n}^{\text{comm}}(\alpha_k^{\text{out}}) + \chi_D^{\text{exc}} T_{i,a_t^n}^{\text{exc}}(\tau_k). \quad (3)$$

This function is a weighted sum of three time-related terms associated with offloading decisions, based in Baek et al. (2019); Kumari et al. (2022). The delay function incorporates hyperparameters χ_D^{wait} , χ_D^{comm} , and $\chi_D^{\text{exc}} \geq 0$. The delay terms for a given action a_t^n are:

$$T_{\dot{w}^n, a_t^n}^{\text{wait}}(\tau_k) = \frac{Q_n^t}{N_\phi^n \phi_n} + \sum_{j \neq n} \frac{Q_j}{N_\phi^j \phi_j} I_j(a_t^n), \quad (4)$$

which represents the waiting time for task τ_k in the queue of node W_i (and W_j in case it is offloaded). Here, ϕ_i is the computing service rate of node W_i , Q_n^t is the queue size of the same at time t , and N_ϕ^i is its number of processors. The indicator function $I_j(a_t^n)$ equals 1 if the task is processed locally on node w_n (i.e., $I_n(a_t^n) = 1$) or offloaded to a neighboring node W_j (i.e., $I_j(a_t^n) = 1$) with $j \neq n$. The term $T_{i,a_t}^{\text{comm}}(\alpha_k^{\text{out}})$ denotes the communication cost of TO, defined as a delay (eq. 1), where a_t^n indicates the neighboring node i . If the task is executed locally, this term becomes zero. The term:

$$T_{i,a_t}^{\text{exc}}(\tau_k) = \frac{t\rho_k\xi_k}{N_\phi^i \phi_{a_t^n}} - \frac{t\rho_k\xi_k}{N_\phi^n \phi_n} \quad (5)$$

represents the difference in execution costs for tasks processed locally versus those processed at the target node. Here, ρ_k denotes the number of instructions per task, and ξ_k represents the number of CPU cycles per instruction. Hence, to minimize the delay in processing the tasks at each time-step, we wish to find the solution to the constrained optimization problem:

$$\min_{\{a_t^n\}_{w_n \in \mathcal{W}}} D(T_t, \dot{W}) \quad (6)$$

$$\text{subject to } C_1 : \delta_i \leq t_C \quad (7)$$

$$C_2 : Q^n \leq Q_{\max}^n \quad (8)$$

The solution must also respect a set of constraints to minimize task drops: no tasks may be offloaded to overloaded nodes, as indicated by constraint eq. 7, and no tasks should breach their deadlines. Additionally, no node should exceed its computational resource limit, as outlined in eq. 8. Although the constraints are enforced by dynamics of the environment, in practice, we relax this constraints to penalties to the objective.

Partially-Observable Markov Game. To solve the TO problem with distributed and decentralized agents, we define it as a Partially-Observable Markov Game (POMG) Hu et al. (2024), represented as a tuple $\langle \mathcal{N}, \mathcal{S}, \mathcal{O}, \Omega, \mathcal{A}, P, R \rangle$. Here, $\mathcal{N} = 1, \dots, n$ denotes a finite set of agents; \mathcal{S} is the global state space that includes the information about all the nodes and tasks in the network; $\Omega = \{o_i\}_{i \in \mathcal{N}}$ is the set of Observation Spaces, where o_i is the observation space of agent i , that has information about the workers in its neighborhood, \dot{N}_n ; $\mathcal{O} = \{O_i\}_{i \in \mathcal{N}}$ s.t. $O_i : \mathcal{S} \rightarrow o_i$ is the set of Observation Functions for each agent, where O_i is the observation function of agent i . The observation function maps the state to the observations for each agent. Each agent's observations includes information about its local computational and communication resources, the information shared by its neighbors on the same, and information about the next offloadable task. The details on the observation space are provided in 10.2. $\mathcal{A} = \{A_i\}_{i \in \mathcal{N}}$ is the set of action spaces, where A_i is the action space of agent i . Each agent is able to select whether to send a task to one of its neighbors or process it locally; $P : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$ is the unknown global state transition function; Lastly, $R = \{R_i\}_{i \in \mathcal{N}}$ s.t. $R_i \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$ - is the reward function for agent i . Each agent will consider the local reward given by:

$$R_i(s_t, a_t^i) = U - d(a_t^i) + \chi_O O(s_t, a_t^i) \quad (9)$$

Where U is a constant utility term, $\chi_O \geq 0$ is a weighting parameter, and the term $\chi_O O(s_t, a_t^i)$ is the distance to overload the workers involved in an offloading, we define $O(s_t, a_t) = -\log(p_t^{Oa_t})/3$. And, $p_t^{Oa_t} = \max(0, \frac{Q_{a_t}^{\max} - Q_{a_t}}{Q_{a_t}^{\max}})$, represents the distance to overloading node W_i , and $Q'_{a_t} = \min(\max(0, Q_{a_t} - \phi_{a_t}) + 1, Q_{a_t}^{\max})$ is the expected state of the queue at node W_{a_t} , after taking action a_t .

3 FAUNO

We now present FAUNO—Federated Asynchronous Network Orchestration—a framework designed to provide remote computing power to a group of clients, while load balancing in a decentralized fashion with an FRL-based algorithm. The FAUNO nodes also act as workers. A detailed breakdown of FAUNO node components is provided in annex 8.

270 3.1 FEDERATED REINFORCEMENT LEARNING TASK OFFLOADING SOLUTION
271

272 We consider two components to our solution: a local component and a global component. The local
273 component utilizes Proximal Policy Optimization (PPO) Schulman et al. (2017). This algorithm
274 belongs to the Actor-Critic family of algorithms, meaning that there is an actor component that learns
275 to interact directly with the environment and a critic component that learns to evaluate the actor and
276 guides the training. We federated the critic network in our solution so that the experience of all the
277 agents is used to guide the local learning of the agents. Our global solution for training the critic
278 network builds on FedBuff Nguyen et al. (2021), a buffered asynchronous aggregation method that
279 we adapt to RL by allowing agents to keep training and sending updates to the global critic without
280 stopping after the first round. This prevents stragglers from blocking progress while still incorporating
281 shared updates into the global critic. The crux of the proposed algorithm is that by federating the
282 global network, we mitigate selfish behavior among agents and improve sample efficiency through
283 continuous, non-blocking training.

284 **Local Policy Optimization** Our local optimization uses an adaptation of PPO to FL, combined
285 with Generalized Advantage Estimation (GAE) Schulman et al. (2018) for computing advantages. In
286 our version, agents independently interact with the environment and, after a configurable number of
287 training steps, share their latest critic network with the global manager. Upon receiving an updated
288 global model, each agent incorporates it as the next critic for training. The local optimization
289 procedure is summarized in algo. 1, with full details provided in annex 11.1.

290 **Global Algorithm** The Global Algorithm is responsible for managing the federation and aligning
291 the local solutions from each participant to derive the global solution. We employ a non-blocking
292 semi-asynchronous method to tackle the following optimization problem:
293

$$294 \min_w f(w), \text{ s.t. } f(w) := \frac{1}{m} \sum_{k=1}^m p_k l_k(w; \theta_k). \quad (10)$$

297 Here, m represents the number of participants, and θ_k are the parameters of the actor-network for the
298 agent identified by k . The variable w corresponds to the global critic parameters, and p_k is the weight
299 assigned to agent k 's loss function. In our algorithm, l_k is equivalent to the symmetric of eq. 41.

300 FAuNO's semi-asynchronous design addresses heterogeneity and stragglers. Faster agents contribute
301 updates more frequently, while slower ones do not block progress. The gradients are buffered at the
302 global manager (GM), with newer updates from the same agent replacing older ones and increasing
303 the weight of that agent's last update in the aggregation. The weights are computed following algo. 3.
304 The global critic is updated once updates from \bar{K} distinct agents are received. This allows for agents
305 to continue training without waiting for the global training round to complete, allowing for continuous
306 training even under straggling devices. To mitigate policy divergence and allow for specialization on
307 each node as well, we federate only the critic network, while keeping the actors local. Furthermore,
308 each agent's observation space is standardized and includes its own queue size, neighbors' queue and
309 capacity states, aggregate task instruction counts, and features of the next task to be processed, more
310 details in annex 10.2. Upon aggregation, the GM updates the global critic via a weighted average:

$$311 \hat{w} = w + \sum_{k \in \bar{K}} p_k \nabla w_k, \quad (11)$$

314 where $\bar{K} \geq K$ is the set of buffered updates. The coefficient p_k is calculated based on the number of
315 update steps each agent performed, ensuring that $\sum_{k \in \bar{K}} p_k = 1$.

316 Fig. 2 provides an overview of the FAuNO training global model training process. The global
317 algorithm can be observed in algo. 2 in annex 9.
318

319 4 PERFORMANCE EVALUATION
320

322 In this section, we evaluate FAuNO's performance using two standard TO metrics: average task
323 completion time and percentage of completed tasks—the proportion of tasks that were created and
whose results were successfully returned to the originating client. We compare FAuNO against

324
325
326
327
328
329
330
331
332
333
334
335
336

(a) Agents independently train local actor–critic models. Following algo 1

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

(b) Agents asynchronously transmit their critic updates to the Global Manager, which stores them in a buffer.

(c) When a new update from an already known agent arrives, the older entry in the buffer is replaced, and the agent's weight in the upcoming aggregation is increased according to its training steps.

(d) Once updates from K distinct agents are available, these are aggregated following eq. equation 11, producing a new global critic that is then redistributed to all agents.

Figure 2: The figure illustrates the sequence of operations carried out by the Global Manager (GM) during the asynchronous aggregation of local critic updates in FAuNO. Each agent trains its actor–critic model locally and periodically transmits only the critic weights to the GM. The GM buffers received updates, retaining only the most recent one from each agent and weighting it proportionally to the number of local steps performed. Once updates from at least K distinct agents are collected, a FedAvg-style aggregation is applied to update the global critic, which is then redistributed to all agents for continued local training.

two baseline algorithms: Least Queues(LQ), which offloads tasks to the worker with the shortest queue, and an adaptation of the synchronous FRL solution, SCOF Peng et al. (2024). Since no public implementation of SCOF was available, we reimplemented the algorithm and released the code in FAuNO’s repository. For fairness, we adapted SCOF to our observation and reward spaces and disabled its DP component, as privacy was not the focus of this work, and DP typically reduces accuracy. These adaptations ensure comparability without diminishing SCOF’s core capabilities. Details on the baselines are provided in annex 11.2. We benchmark our solution using PeersimGym Metelo et al. (2024), with realistic topologies generated by the Ether tool Rausch et al. (2020). These are structured as hierarchical star topologies, where a stronger server provides resources to a small set of client nodes, and a more powerful central server supports the intermediate servers. We also evaluate on synthetic topologies composed of 10 and 15 nodes randomly distributed in a 100×100 area. In these settings, the number of high-capacity nodes remains fixed, while the number of client nodes increases. All tests use realistic task distributions enabled by PeersimGym’s integration with the Alibaba Cluster Trace workload generator Tian et al. (2019), which we have rescaled to better suit the considered edge devices. Each algorithm is trained for 40 episodes, for a total of 400,000 steps, and evaluated during training all presented results are the average result for the metric in question across the 40 episodes. Finally, we present an ablation study on the impact of agent heterogeneity on convergence and the impact of reducing the K parameter on the performance of the algorithm; due to space constraints, the ablation on the K parameter is in annex 6. Additional details on the testing setup, topologies, workloads, and hyperparameters used are provided in annexes 11 and 12.

378 4.1 ETHER BASED TOPOLOGIES
379
380381 Table 2: Finished Tasks Ratio
382
383

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	2	4	2	4	2	4
FAuNO	0.973±0.008	0.974±0.006	0.964±0.008	0.965±0.005	0.920±0.015	0.926±0.010
SCOF	0.943±0.030	0.940±0.022	0.860±0.052	0.832±0.035	0.715±0.057	0.666±0.045
LeastQueues	0.943±0.004	0.948±0.003	0.928±0.004	0.934±0.003	0.909±0.005	0.914±0.006

384 Table 3: Response Time (in simulation ticks)
385
386

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	2	4	2	4	2	4
FAuNO	170.208±13.573	165.174±7.775	204.282±14.168	199.448±9.045	262.350±13.103	246.271±8.745
SCOF	56.393±18.287	46.237±15.163	153.042±22.472	144.737±20.229	109.865±25.088	85.381±22.444
LeastQueues	258.412±9.073	239.590±6.635	278.219±8.926	256.989±7.658	296.598±7.790	269.761±5.071

387 Tab. 2 and 3 report the average percentage of completed tasks and the average task response time
388 for each algorithm, across varying topologies and task arrival rates (λ). A general trend is that
389 performance degrades as the number of nodes and λ increase, primarily due to faster exhaustion of
390 computational and shared resources (e.g., cloudlets). Despite this, FAuNO consistently achieves the
391 highest task completion rates in most scenarios and outperforms the heuristic baselines in response
392 time. Although SCOF achieves lower response times, it does so at the cost of significantly reduced
393 task completion. We attribute this to the heterogeneity of the nodes and the reduced sample efficiency
394 of the synchronous FRL, making it so that using a single global network without the local specialization
395 sets an orchestration strategy that is too general, which leads to offloading from high-capacity nodes
396 when they fill up, leading to task expiration and exclusion from the response time.

402 4.2 RANDOM TOPOLOGY
403
404405 Table 4: Finished Tasks Ratio
406

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	10	15	10	15	10	15
FAuNO	0.882±0.049	0.770±0.042	0.764±0.068	0.557±0.038	0.570±0.050	0.335±0.021
SCOF	0.862±0.066	0.673±0.058	0.684±0.064	0.435±0.045	0.465±0.062	0.251±0.029
LeastQueues	0.946±0.008	0.855±0.022	0.928±0.009	0.665±0.030	0.803±0.052	0.358±0.026

412 Table 5: Response Time (in simulation ticks)
413

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	10	15	10	15	10	15
FAuNO	307.222±19.105	489.358±14.685	365.190±20.482	539.846±12.691	416.433±13.899	513.129±9.378
SCOF	318.740±19.275	428.266±22.082	348.579±18.172	416.573±27.193	365.207±16.676	388.341±18.723
LeastQueues	425.877±24.507	603.833±21.076	493.780±22.037	619.894±10.063	576.914±23.472	522.105±9.968

414 As in the Ether networks, increasing the network size significantly degrades performance in both
415 task completion rate(tab. 4 and response time (tab. 5). This effect is exacerbated by the considered
416 topology maintaining a fixed number of cloudlets while increasing the number of client nodes. In
417 contrast to the more structured topology with a single cloudlet, the LQ algorithm outperforms FAuNO
418 in task completion. This can be explained by the larger accessibility to more powerful nodes in
419 the random topology, leading to more offloading and concurrent tasks being processed. A deeper
420 analysis of the impact of topology is available in 6.3. However, LQ’s disregard for local processing
421 capabilities results in substantially higher response times. SCOF exhibits the opposite behavior: due
422 to the presence of more powerful nodes distributed across the network compared to the Ether scenario,
423 its centralized, non-personalized orchestration favors local processing. This reduces communication
424 overhead and improves response time, but at the expense of lower task completion. FAuNO achieves
425 a balanced trade-off between the two metrics. Moreover, the higher task completion rate of LQ in
426 random topologies follows from the abundance of remote computational resources afforded by dense
427 connectivity. Under high task arrival rates, local nodes saturate quickly and offloading becomes the
428 only effective option. In this setting, LQ can exploit the large number of available remote queues,
429
430
431

432 Table 6: Global disagreement score (\downarrow better)
433

Variant \downarrow / Packet-drop D \rightarrow	0.3	0.5	0.8
FAuNO vs FAuNO	74.5	232.7	289.8
FAuNO vs Oracle critic	63.6	240.1	307.2
Pure MARL ($D = 1$)	147.54	262.22	313.81

434
435 Table 7: Disagreement scores. MARL (packet-
436 drop rate 1.0) vs. centralized; FAuNO not shown
437

Variant	Global disagreement δ
Pure MARL vs Pure MARL	319.35
Fully centralized oracle vs MARL	325.55

438
439 preventing any single destination from becoming heavily congested. As a result, this experiment
440 serves as a strong stress test, effectively benchmarking FAuNO against a heuristic whose behavior
441 aligns closely with the structure of the random topology.
442

443 4.3 LEARNING UNDER HETEROGENITY

444 To evaluate FAuNO’s stability under asynchronous, non-IID conditions, we designed a heterogeneous
445 workload experiment using the 15-node random topology. The network was partitioned into three
446 regions, each configured to process a specific workload class with different task sizes and arrival
447 rates. Clients in each region generated tasks only from their corresponding class distribution;
448 the details on the experiment, algorithms considered and the result analysis are available in the
449 annex 6.1. We compared three training setups: FAuNO, pure MARL PPO, where agents learn without
450 any shared critic, and a centralized oracle where all nodes share a single critic model. To assess
451 consistency between the different critics, we introduced a critic-agreement protocol and measured
452 critic consistency using a global disagreement score (eq. 13), δ , based on pairwise RMSE across
453 sampled states (eq. 12). During each evaluation episode, we sampled 500 global states and collected
454 observations from each agent. To correct for the fact that agents processing faster task streams
455 naturally accumulate higher rewards, all values were normalized by the corresponding task arrival rate
456 before computing disagreement. Results are summarized in Tab. 6 and 7. As expected, disagreement
457 between critics decreases when the packet-drop rate is reduced, indicating more consistent models as
458 communication becomes more reliable. FAuNO’s critics approach the predictions of the centralized
459 oracle at low drop rates, confirming that aggregation yields stable shared learning. By contrast, the
460 pure MARL variant showed substantially higher disagreement, highlighting its divergence under
461 heterogeneous workloads. These results confirm that FAuNO is robust to non-IID conditions and
462 mitigates policy inconsistency even when agents face systematically different task distributions.
463

464 5 CONCLUSION, LIMITATIONS & FUTURE WORK

465 We addressed the decentralized TO problem in edge systems by modeling it as a cooperative objective
466 over a federation of agents, formalized within a POMG. To this end, we proposed **FAuNO**, a novel
467 FRL framework that integrates buffered semi-asynchronous aggregation with local PPO-based training.
468 FAuNO enables decentralized agents to learn task assignment and resource usage strategies under
469 partial observability and limited communication, while maintaining global coordination through a
470 federated critic. Empirical evaluation in the PeersimGym environment confirms FAuNO’s superiority
471 over heuristic and FRL baselines in terms of task loss and latency, highlighting its adaptability to
472 dynamic and heterogeneous edge settings.
473

474 **Limitations.** From a security perspective, the current formulation assumes that all nodes are honest
475 and cooperative. Adversarial and Byzantine behavior, although likely to occur in real-world edge
476 environments, is not considered, and privacy preservation is also outside the present scope. At
477 the system level, we consider only simulated environments, and we model a stable network with
478 reliable nodes and communication links, excluding failures, congestion, and bandwidth constraints.
479 Furthermore, we do not consider energy costs that could trade off with latency. These assumptions
480 simplify the evaluation but omit factors critical to practical edge deployments. Algorithmically, the
481 leveraging of FedBuff introduces a bias toward faster clients, potentially underrepresenting slower
482 nodes. Moreover, reliance on a GM creates a single point of failure and a potential bottleneck in very
483 large networks. Lastly, this study relies exclusively on simulation and does not include deployment
484 on real edge infrastructures.
485

Future Work. Future work will focus on relaxing current assumptions to better match practical edge
486 deployments, enabling a transition toward using FAuNO in real edge environments. This includes

486 supporting dynamic topologies and node mobility, handling intermittent connectivity, and addressing
 487 adversarial participation. At the system level, we plan to extend our objective to consider data locality,
 488 fault tolerance, and energy-consumption. Algorithmically, we will address the single-manager
 489 bottleneck by exploring hierarchical or decentralized critics to improve scalability and robustness. We
 490 also intend to incorporate energy-aware objectives to capture trade-offs between latency and resource
 491 use, and to design defenses against malicious agents to enhance security. Lastly, we plan to investigate
 492 the theoretical properties of semi-asynchronous federated actor-critic learning, including the effects
 493 of staleness, non-IID workloads, and delayed aggregation on convergence and value-function bias.
 494

495 REPRODUCIBILITY STATEMENT

496
 497 We provide an anonymous repository at <https://anonymous.4open.science/r/FAuNO-C976>, which
 498 contains the complete codebase developed for this paper. This includes implementations of all
 499 proposed methods, test configurations, hyperparameters, and supporting scripts required to re-run the
 500 experiments and reproduce the reported results. Furthermore, the detailed implementation choices,
 501 hyperparameters, and training configurations are also partially documented in annex 11. The annex
 502 further includes descriptions of the experimental setup and evaluation protocol. Together, these
 503 materials are intended to enable full reproducibility of our results.
 504

505 REFERENCES

506
 507 Taha Alfakih, Mohammad Mehedi Hassan, Abdu Gumaei, Claudio Savaglio, and Giancarlo Fortino.
 508 Task offloading and resource allocation for mobile edge computing by deep reinforcement learning
 509 based on sarsa. *IEEE Access*, 8:54074–54084, 2020.

510 Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
 511 Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier
 512 Bachem. What matters in on-policy reinforcement learning? A large-scale empirical study. *CoRR*,
 513 abs/2006.05990, 2020. URL <https://arxiv.org/abs/2006.05990>.

514 Tarmo Anttalainen. *Introduction to telecommunications network engineering*. Artech House telecommu-
 515 nications library. 2nd edition, 2003. ISBN 9781580535007.

516 Jung-yeon Baek, Georges Kaddoum, Sahil Garg, Kuljeet Kaur, and Vivianne Gravel. Managing fog
 517 networks using reinforcement learning based load balancing algorithm. In *2019 IEEE Wireless
 518 Communications and Networking Conference (WCNC)*, pp. 1–7, 2019. doi: 10.1109/WCNC.2019.
 519 8885745.

520 Jungyeon Baek and Georges Kaddoum. Heterogeneous task offloading and resource allocations via
 521 deep recurrent reinforcement learning in partial observable multifog networks. *IEEE Internet of
 522 Things Journal*, 8(2):1041–1056, 2020.

523 Jungyeon Baek and Georges Kaddoum. Floodnet: Load balancing in fog networks with cooperative
 524 multiagent using actor-critic method. *IEEE Trans. Netw. Serv. Manage.*, 2023.

525 Nikhil Barhate. nikhilbarhate99/ppo-pytorch, July 2024. URL <https://github.com/nikhilbarhate99/PPO-PyTorch>.

526 X. Chen and G. Liu. Federated deep reinforcement learning-based task offloading and resource
 527 allocation for smart cities in a mobile edge network. *Sensors*, 22(13):4738, 2022. doi: 10.3390/
 528 s22134738.

529 Prakhar Consul, Ishan Budhiraja, Ruchika Arora, Sahil Garg, Bong Jun Choi, and M. Shamim
 530 Hossain. Federated reinforcement learning based task offloading approach for mec-assisted
 531 wban-enabled iomt. *Alexandria Engineering Journal*, 86:56–66, 2024. ISSN 1110-0168. doi:
 532 <https://doi.org/10.1016/j.aej.2023.11.041>.

533 Fei Dai, Guozhi Liu, Qi Mo, WeiHeng Xu, and Bi Huang. Task offloading for vehicular edge
 534 computing with edge-cloud cooperation. *World Wide Web*, 25(5):1999–2017, 2022.

540 Muhammad Fahimullah, Shohreh Ahvar, and Maria Trocan. A review of resource management
 541 in fog computing: Machine learning perspective. 2022. doi: 10.48550/arXiv.2209.03066.
 542 arXiv:2209.03066 [cs].

543 Zhen Gao, Lei Yang, and Yu Dai. Large-scale computation offloading using a multi-agent rein-
 544 forcement learning in heterogeneous multi-access edge computing. *IEEE Transactions on Mobile*
 545 *Computing*, 2022.

546 Aisha Muhammad A. Hamdi, Farookh Khadeer Hussain, and Omar K. Hussain. Task offloading in
 547 vehicular fog computing: State-of-the-art and open issues. *Future Generation Computer Systems*,
 548 133:201–212, 2022. ISSN 0167-739X. doi: 10.1016/j.future.2022.03.019.

549 Tianyi Hu, Zhiqiang Pu, Xiaolin Ai, Tenghai Qiu, and Jianqiang Yi. Measuring policy distance
 550 for multi-agent reinforcement learning. In *Proceedings of the 23rd International Conference on*
 551 *Autonomous Agents and Multiagent Systems*, AAMAS '24, pp. 834–842, 2024.

552 Nidhi Kumari, Anirudh Yadav, and Prasanta K. Jana. Task offloading in fog computing: A survey of
 553 algorithms and optimization techniques. *Computer Networks*, 214:109137, 2022. ISSN 1389-1286.

554 Jie Li, Zhiping Yang, Xingwei Wang, Yichao Xia, and Shijian Ni. Task offloading mechanism based
 555 on federated reinforcement learning in mobile edge computing. *Digital Communications and*
 556 *Networks*, 9(2):492–504, 2023. doi: 10.1016/j.dcan.2022.04.006.

557 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 558 Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*,
 559 2:429–450, 2020.

560 Lixia Lin, Wen Zhou, Zhicheng Yang, and Jianlong Liu. Deep reinforcement learning-based task
 561 scheduling and resource allocation for noma-mec in industrial internet of things. *Peer-to-Peer*
 562 *Networking and Applications*, 16(1):170–188, 2023.

563 Shumei Liu, Yao Yu, Xiao Lian, Yuze Feng, Changyang She, Phee Lep Yeoh, Lei Guo, Branka Vucetic,
 564 and Yonghui Li. Dependent task scheduling and offloading for minimizing deadline violation ratio
 565 in mobile edge computing networks. *IEEE Journal on Selected Areas in Communications*, 41(2):
 566 538–554, 2023. doi: 10.1109/JSAC.2022.3233532.

567 Xiaowei Liu, Shuwen Jiang, and Yi Wu. A novel deep reinforcement learning approach for task
 568 offloading in mec systems. *Applied Sciences*, 12(21), 2022. ISSN 2076-3417. doi: 10.3390/
 569 app122111260.

570 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 571 Communication-Efficient Learning of Deep Networks from Decentralized Data. In *Proceed-
 572 ings of the 20th International Conference on Artificial Intelligence and Statistics*, volume 54 of
 573 *Proceedings of Machine Learning Research*, pp. 1273–1282, 2017.

574 Frederico Metelo, Cláudia Soares, Stevo Racković, and Pedro Ákos Costa. Peersimgym: An
 575 environment for solving the task offloading problem with reinforcement learning. In *Machine*
 576 *Learning and Knowledge Discovery in Databases. Applied Data Science Track*, pp. 38–54, Cham,
 577 2024. Springer Nature Switzerland. ISBN 978-3-031-70378-2.

578 Minghui Min, Liang Xiao, Ye Chen, Peng Cheng, Di Wu, and Weihua Zhuang. Learning-based
 579 computation offloading for iot devices with energy harvesting. *IEEE Transactions on Vehicular*
 580 *Technology*, 68(2):1930–1941, 2019.

581 John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael G. Rabbat, Mani
 582 Malek, and Dzmitry Huba. Federated learning with buffered asynchronous aggregation. *CoRR*,
 583 abs/2106.06639, 2021.

584 Kai Peng, Peiyun Xiao, Shangguang Wang, and Victor C.M. Leung. Scof: Security-aware com-
 585 putation offloading using federated reinforcement learning in industrial internet of things with
 586 edge computing. *IEEE Transactions on Services Computing*, 17(4):1780–1792, 2024. doi:
 587 10.1109/TSC.2024.3377899.

594 Xin Peng and et al. Deep reinforcement learning for shared offloading strategy in vehicle edge
 595 computing. *IEEE Systems Journal*, 2022.

596

597 Jiaju Qi, Qihao Zhou, Lei Lei, and Kan Zheng. Federated reinforcement learning: Techniques,
 598 applications, and open challenges. *Intelligence & Robotics*, 2021. doi: 10.20517/ir.2021.02.
 599 arXiv:2108.11887 [cs].

600 Xiaoyu Qiu, Luobin Liu, Wuhui Chen, Zicong Hong, and Zibin Zheng. Online deep reinforcement
 601 learning for computation offloading in blockchain-empowered mobile edge computing. *IEEE*
 602 *Transactions on Vehicular Technology*, 68(8):8050–8062, 2019.

603

604 Thomas Rausch, Clemens Lachner, Pantelis A Frangoudis, Philipp Raith, and Schahram Dustdar.
 605 Synthesizing plausible infrastructure configurations for evaluating edge computing systems. In *3rd*
 606 *USENIX Workshop HotEdge 20*, 2020.

607 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 608 optimization algorithms. 2017. doi: 10.48550/arXiv.1707.06347. arXiv:1707.06347 [cs].

609

610 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
 611 continuous control using generalized advantage estimation. *arXiv*, 2018. URL <http://arxiv.org/abs/1506.02438>.

612

613 Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
 614 for reinforcement learning with function approximation. In *Proceedings of the 12th International*
 615 *Conference on Neural Information Processing Systems (NIPS)*, pp. 1057–1063, 1999.

616

617 Ming Tang and Vincent W.S. Wong. Deep reinforcement learning for task offloading in mobile
 618 edge computing systems. *IEEE Transactions on Mobile Computing*, 21(6):1985–1997, 2022. doi:
 10.1109/TMC.2020.3036871.

619

620 Huangshi Tian, Yunchuan Zheng, and Wei Wang. Characterizing and synthesizing task dependencies
 621 of data-parallel jobs in alibaba cloud. In *Proc. ACM Symp. Cloud Comput.*, 2019.

622

623 Duc Van Le and Chen-Khong Tham. A deep reinforcement learning based offloading scheme in
 624 ad-hoc mobile clouds. In *IEEE INFOCOM WKSHPS*, pp. 760–765, 2018.

625

626 Blesson Varghese and Rajkumar Buyya. Next generation cloud computing: New trends and research
 627 directions. *Future Generation Computer Systems*, 79:849–861, 2018. ISSN 0167-739X.

628

629 Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold Liu, and Dejun
 630 Yang. Experience-driven networking: A deep reinforcement learning based approach. In *IEEE*
 631 *INFOCOM 2018 - IEEE Conference on Computer Communications*, pp. 1871–1879, 2018. doi:
 10.1109/INFOCOM.2018.8485853.

632

633 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and
 634 YI WU. The surprising effectiveness of ppo in cooperative multi-agent games. In S. Koyejo,
 635 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural*
 636 *Information Processing Systems*, volume 35, pp. 24611–24624. Curran Associates, Inc., 2022.
 637 URL https://proceedings.neurips.cc/paper_files/paper/2022/file/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf.

638

639 Shuai Yu, Xu Chen, Zhi Zhou, Xiaowen Gong, and Di Wu. When deep reinforcement learning
 640 meets federated learning: Intelligent multimescale resource management for multiaccess edge
 641 computing in 5g ultradense network. *IEEE Internet of Things Journal*, 8(4):2238–2251, 2020.

642

643 Lianqi Zang, Xin Zhang, and Boren Guo. Federated deep reinforcement learning for online task
 644 offloading and resource allocation in wpc-mec networks. *IEEE Access*, 10:9856–9867, 2022. doi:
 10.1109/ACCESS.2022.3144415.

645

646 Fan Zhang, Guangjie Han, Li Liu, Yu Zhang, Yan Peng, and Chao Li. Cooperative partial task
 647 offloading and resource allocation for iiot based on decentralized multi-agent deep reinforcement
 648 learning. *IEEE Internet of Things Journal*, 2023.

648 Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-
649 agent reinforcement learning with networked agents. *CoRR*, abs/1802.08757, 2018.
650

651 Zhaowei Zhu, Ting Liu, Yang Yang, and Xiliang Luo. Blot: Bandit learning-based offloading of tasks
652 in fog-enabled networks. *IEEE Trans. Parallel Distrib. Syst.*, 2019.

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **6 ABLATIONS**
 703

704 **6.1 HETEROGENEOUS SETTING EXPERIMENT**
 705

706 We designed a heterogeneous workload experiment to evaluate whether FAuNO’s federated critic
 707 converges stably under asynchronous, non-IID conditions, the precise setting where policy incon-
 708 sistency would arise. We set specific regions of the network to handle different task types and have
 709 different cadences of arriving applications, λ .

710 We focus on the 15-node random topology detailed in 12, partitioned into 3 regions. Each of these
 711 regions is designed to process a specific workload class with different task types varying in number
 712 of instructions, ρ in MBytes, data size, α^{in} and task arrival rate λ . We define each of the workload
 713 classes as:

714

- 715 • **W1** ($\lambda=0.5$; $\rho=38, \alpha^{\text{in}}=32e7$) this class is composed of nuc:2, rpi5 8G:2, rpi5 6G:1
- 716 • **W2** ($\lambda=1$; $\rho=16$; $\alpha^{\text{in}}=64e7$) this class is composed of nuc:2, rpi5 8G:2, rpi4:1
- 717 • **W3** ($\lambda=2.0$; $\rho=64$; $\alpha^{\text{in}}=16e7$) this class is composed of nuc:1, rpi5 6G:2, rpi4:2

719 A client attached to node i draws tasks only from that node’s class distribution.
 720

721 **Training variants to compare**
 722

723

- 724 • FAuNO (federated critic)
- 725 • Pure MARL PPO, agents train only on local observations with no shared global model
 (implemented by discarding all critic updates so that no global model learning occurs)
- 726 • Centralized oracle, where all participants share a single global critic network that is trained
 directly by all the participants without a decentralized global learning.

730 **Critic-agreement protocol**
 731

732

- 733 1. **Evaluation set:** For M states, $\{s_m\}$, collect the observations, $o_i(s_m)$, of each agent of that
 given state. During an evaluation episode, we sample around $M = 500$ distinct global
 states.
- 734 2. **Value Prediction matrix:** We then build matrix $V \in \mathbb{R}^{N \times M}$, where line i represents the
 evaluation of critic i and column m is the evaluation of point m . Thus, entry $V_{i,m}$ is defined
 as

$$739 \quad V_{i,m} = V_i(o_i(s_m))$$

740 And, we also built the V_* matrix with the evaluation of the centralized critic model for the
 741 same observations.

742

- 743 3. **Pair-wise RMSE:** We then compute our metrics. A matrix where for each agent, we have
 the Root Mean Squared Error (RMSE) between the different state evaluations. This metric
 is meant to capture the differences on evaluating the observations by each of the agents.
 Each entry of this matrix is given by:

747

$$748 \quad \text{RMSE}_{ij} = \sqrt{\frac{1}{M} \sum_m (V_{i,m} - V_{j,m})^2}. \quad (12)$$

749

750 Where the $V_{i,m}$ is the evaluation of agent i , to provide a global metric of divergence of the
 751 matrix, we consider the global disagreement score computed as:

753

$$754 \quad \delta = \frac{2}{N(N-1)} \sum_{i < j} \text{RMSE}_{ij}. \quad (13)$$

755

These same metrics are then re-computed for V_* .

756 **Comparison of the value function between nodes and against the V_*** The group with a higher
 757 rate of task arrival λ will have better chances of increasing the received reward; thus, the estimate of
 758 the value will not be comparable. To have a fair measure of the quality between the different agent
 759 groups, we use the following normalization, for every node i :

$$\tilde{V}_{i,m} = V_{i,m}/\lambda_i$$

763 We study the global disagreement score, δ , across packet drop rates D . As expected, disagreement
 764 decreases as D is reduced (tab.6), reflecting more consistent agents. The federated critic increasingly
 765 aligns across the network as communication becomes more reliable. tab.6 shows that this alignment
 766 approaches the centralized oracle's predictions at low D , confirming that FAuNO benefits from
 767 improved communication and maintains stable shared learning even in highly heterogeneous settings.
 768 In contrast, tab.7 demonstrates that the MARL variant suffers from substantially higher disagreement
 769 under the same conditions. We must disclose that, although the MARL agent had begun converging,
 770 training was not completed but we expect the divergence to increase with training.

771 This analysis confirms that FAuNO's federated critic is robust to non-IID workloads and can mitigate
 772 policy inconsistency even when agents face systematically different distributions.

774 6.2 K EXPLORATION

775 Table 8: Straggler and aggregation-threshold ablation results (mean \pm s.d.)

777 Setting	778 Finished-task ratio	779 Avg. response time (ticks)
K = 0.3, s = 0.3	0.77 \pm 0.02	258.85 \pm 5.95
K = 0.3, s = 0.5	0.76 \pm 0.02	259.74 \pm 6.91
K = 0.3, s = 0.8	0.76 \pm 0.02	260.07 \pm 7.02
K = 0.5, s = 0.3	0.76 \pm 0.02	259.09 \pm 6.35
K = 0.5, s = 0.5	0.76 \pm 0.02	258.83 \pm 7.71
K = 0.5, s = 0.8	0.76 \pm 0.02	260.86 \pm 6.97

785 We evaluated FAuNO's robustness under straggler conditions and varying aggregation thresholds.
 786 Let s denote the fraction of gradients dropped before reaching the global node. In the straggler test,
 787 the objective is not to improve performance metrics but to avoid collapse. FAuNO achieves this
 788 goal: even when 80% of gradients are dropped ($s = 0.8$), both the finished-task ratio and average
 789 response time remain well within one standard deviation of their baseline values. This demonstrates
 790 that FAuNO gracefully degrades to local MARL when global connectivity is severely reduced,
 791 maintaining essentially the same performance. We also examined buffer sensitivity by doubling the
 792 aggregation threshold from $K = 0.3$ to 0.5 . This change affects performance by less than 1% in
 793 either metric, indicating that FAuNO is robust to variations in buffer size under this workload.

794 6.3 IMPACT OF TOPOLOGY ON PERFORMANCE ON SYNTHETIC NETWORKS

795 Table 9: Connection counts by topology and node type

797 Connection 798 Type	799 Random (10 nodes)	799 Random (15 nodes)	799 2 Clusters (23 nodes)	799 4 Clusters (45 nodes)
800 nuc–nuc	2.4	2.4	0	0
801 nuc–rpi	3.2	8.4	8	8
802 rpi–nuc	3.2	4.2	1	1
803 rpi–rpi	3.2	7.6	0	0
804 srv–nuc	0	0	2	4
805 srv–rpi	0	0	16	32

806 The stronger task completion rate of LQ in random topologies reflects important topology-specific
 807 dynamics. As shown in Table 9, the random topologies considered in our experiments exhibit high
 808 connectivity between weaker RPIs and stronger NUCs (e.g., approximately 8.4 connections per RPI
 809 in the random topology with 15 nodes). This connectivity enables offloading with relatively low delay
 and cost, helping avoid congestion at any single NUC, which in turn makes LQ essentially optimal in

810 these networks. With abundant remote computation capacity and limited contention, benchmarking
 811 against LQ in such settings effectively pushes FAuNO to its limits.
 812

813 In contrast, our reward shaping was designed to discourage excessive offloading to mitigate latency
 814 and congestion in the star-like topologies generated by Ether. This global reward structure thus
 815 introduces a bias toward local processing. LQ, being reactive and unconstrained by this reward
 816 design, offloads more aggressively and achieves higher task throughput, albeit with higher delay. This
 817 illustrates a throughput–latency trade-off shaped jointly by topology and reward structure.
 818

6.4 ABLATION ON THE FEDERATED COMPONENTS

820 In this section, we compare several configurations of the global optimization layer. Alongside the
 821 FAuNO setup presented in the main text, we evaluate three additional variants: a synchronous version
 822 of FAuNO, a configuration that federates only the actor, and a configuration that federates both
 823 actor and critic. All variants follow the same overall optimization procedure, differing only in the
 824 parameters participating in global aggregation.
 825

In the actor-only variant, the global objective is:

$$\min_{\theta} f(\theta), \quad f(\theta) = \frac{1}{m} \sum_{k=1}^m p_k l_k(\theta; w_k), \quad (14)$$

830 and aggregation proceeds analogously to Eq. equation 11, but applied to the actor parameters:
 831

$$\hat{\theta} = \theta + \sum_{\theta \in \bar{K}} p_k \nabla w_k. \quad (15)$$

834 In the actor–critic variant, both parameter sets participate in the global update:
 835

$$\min_{w, \theta} f(w, \theta), \quad f(w, \theta) = \frac{1}{m} \sum_{k=1}^m p_k l_k(w, \theta), \quad (16)$$

839 with actor and critic updates aggregated using equation 15 and equation 11.
 840

In the synchronous variant, agents only perform local training while holding the most recent global
 841 model, and aggregation is triggered solely after a full round of updates has been received.
 842

843 These variants allow us to directly assess the individual contributions of critic-only federation and the
 844 semi-asynchronous buffer mechanism by contrasting FAuNO with actor-only, actor–critic, and fully
 845 synchronous alternatives.
 846

6.4.1 EXPERIMENTS

Random Topology Results

848 These experiments use the weight configuration from Table 31, rely on the alternative problem
 849 formulation in Appendix 2.2, and follow the same experimental setup described in Section 4.2.
 851

852 Tables 10 and 11 present the finished-task ratio and response-time results for the different aggregation
 853 strategies in the random-topology setting. The results show that FAuNO achieves a higher task
 854 completion rate than the variant that federates only the actor. While the two variants exhibit comparable
 855 response-time behavior, the higher completion ratio indicates that FAuNO makes more effective
 856 use of the available computational resources. For this reason, we consider FAuNO the preferable
 857 configuration among the evaluated options.
 858

Table 10: Finished Tasks Ratio

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	2	4	2	4	2	4
FAuNO	0.882 \pm 0.049	0.770\pm0.042	0.764\pm0.068	0.557\pm0.038	0.570\pm0.050	0.335\pm0.021
FAuNO (Fed. Actor)	0.888 \pm 0.044	0.756 \pm 0.054	0.741 \pm 0.068	0.505 \pm 0.034	0.542 \pm 0.053	0.306 \pm 0.018
FAuNO (Fed. Actor & Critic)	0.890 \pm 0.057	0.759 \pm 0.049	0.734 \pm 0.075	0.518 \pm 0.045	0.560 \pm 0.050	0.318 \pm 0.022
FAuNO (Sync)	0.877 \pm 0.055	0.763 \pm 0.042	0.746 \pm 0.055	0.530 \pm 0.042	0.560 \pm 0.053	0.324 \pm 0.023

864
865
866 Table 11: Response Time (in simulation ticks)
867
868
869
870
871
872
873
874
875
876
877
878
879
880

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	10	15	10	15	10	15
FAuNO	307.222\pm19.105	489.358 \pm 14.685	365.190 \pm 20.482	539.846 \pm 12.691	416.433 \pm 13.899	513.129 \pm 9.378
FAuNO (Fed. Actor)	308.576 \pm 16.320	469.830 \pm 11.346	362.134 \pm 12.131	496.677 \pm 10.633	405.929 \pm 12.692	474.001 \pm 10.559
FAuNO (Fed. Actor & Critic)	314.765 \pm 18.595	474.993 \pm 11.876	367.260 \pm 13.635	491.064 \pm 11.397	404.677 \pm 10.772	477.402 \pm 7.83
FAuNO (Sync)	302.760 \pm 19.873	474.553 \pm 13.187	363.699 \pm 13.945	512.065 \pm 10.156	412.764 \pm 13.968	486.376 \pm 11.241

871
872 Ether Topology Results
873

874 These experiments use the weight configuration from Table 31, rely on the alternative problem
875 formulation in Appendix 2.2, and follow the same experimental setup described in Section 4.2. In
876 the Ether-based topologies, FAuNO clearly outperforms the federated-actor variant, and matches or
877 outperforms both the actor-critic or the synchronous variant, achieving substantially higher throughput
878 when the number of tasks arriving becomes higher and the risk of overloading increases. We attribute
879 the actor-only performance gap to the sensitivity of the actor network to weight perturbations
880 introduced during aggregation, which appears to hinder stable policy improvement when the actor is
881 federated.

882 Table 12: Finished Tasks Ratio
883

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	2	4	2	4	2	4
FAuNO	0.973 \pm 0.008	0.974 \pm 0.006	0.964\pm0.008	0.965\pm0.005	0.920\pm0.015	0.926\pm0.010
FAuNO (Fed. Actor)	0.959 \pm 0.021	0.966 \pm 0.015	0.891 \pm 0.038	0.896 \pm 0.020	0.754 \pm 0.049	0.736 \pm 0.027
FAuNO (Actor & Critic)	0.971 \pm 0.012	0.974 \pm 0.006	0.932 \pm 0.020	0.940 \pm 0.012	0.833 \pm 0.035	0.848 \pm 0.026
FAuNO (Sync)	0.975\pm0.008	0.976\pm0.007	0.943 \pm 0.017	0.950 \pm 0.012	0.868 \pm 0.024	0.875 \pm 0.013

884 Table 13: Response Time (in simulation ticks)
885

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	2	4	2	4	2	4
FAuNO	170.208 \pm 13.573	165.174 \pm 7.775	204.282 \pm 14.168	199.448 \pm 9.045	262.350 \pm 13.103	246.271 \pm 8.745
FAuNO (Actor)	75.027\pm10.810	62.660 \pm 11.372	109.899 \pm 11.867	97.184\pm6.892	143.984 \pm 10.680	123.519 \pm 5.377
FAuNO (Actor & Critic)	112.681 \pm 12.550	105.716 \pm 10.889	148.427 \pm 15.277	138.236 \pm 10.152	198.605 \pm 15.209	192.819 \pm 11.451
FAuNO (Sync)	117.291 \pm 13.444	102.204 \pm 11.706	160.493 \pm 14.854	141.316 \pm 13.852	222.994 \pm 14.357	198.281 \pm 10.543

894
895 6.5 COMPARING ALIGNMENT ALGORITHMS
896

897 In this section we benchmark FAuNO’s aggregation mechanism. We incorporated into FAuNO a
898 FedProx Li et al. (2020) style proximal term to the objective solved locally by each of the agents:

$$\Psi(w, w_0) = \frac{\mu}{2} \|w_k - w\|^2, \quad (17)$$

899 between the local critic weights, w_k , and the global critic weights, w , during the computing of the
900 agent gradients when computing the local agent objectives. Originating the following objective,

$$L_t^F(\theta, w) = \mathbb{E}_t \left[L_t^{\text{CLIP}}(\theta) - c_1 L_t^{\text{VF}}(w) + c_2 S_{\pi_\theta}(s_t) + \Psi(w, w_0) \right]. \quad (18)$$

901 Where the w_0 is a copy of the latest pulled global model. We will henceforth refer to standard
902 FAuNO as simply FAuNO, and the FAuNO trained with the proximal term as FAuNOPROX. For all
903 experiments we considered a $\mu = 0.005$.

904
905 6.5.1 EXPERIMENTS
906

907 Tables 14 and 15 report the comparison between the FAuNO and the FAuNOPROX in the random
908 topologies, and tables 16 and 17 report the comparison between FAuNO and FAuNOPROX in the ether-
909 based topologies. These experiments follow the same experimental setup described in Section 4.1 and
910 Section 4.2 respectively. In the random-topology experiments, FAuNOPROX underperforms relative to
911 FAuNO consistently processing less tasks, although we still observe the trade-off between throughput
912 and response time. A plausible explanation for this results, is the structure of the observation space
913 (Section 10.2), which is designed to provide structurally similar state representations across agents.
914 In this setting, the proximal term in FedProx, that focuses in handling non-i.i.d state constructions,
915 offers limited benefit and may restrict useful updates collected from different nodes.

918 **Ether topology results:**919 Table 14: Finished Tasks Ratio
920

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	2	4	2	4	2	4
FAuNO	0.973±0.008	0.974±0.006	0.964±0.008	0.965±0.005	0.920±0.015	0.926±0.010
FAuNO(PROX)	0.964±0.016	0.967±0.009	0.923±0.023	0.918±0.021	0.807±0.047	0.823±0.030

921 Table 15: Response Time (in simulation ticks)
922

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	2	4	2	4	2	4
FAuNO	170.208±13.573	165.174±7.775	204.282±14.168	199.448±9.045	262.350±13.103	246.271±8.745
FAuNO(PROX)	180.040±13.590	174.239±8.066	212.129±8.242	197.196±7.443	246.862±7.644	231.045±5.480

923 **Random topology results:**924 Table 16: Finished Tasks Ratio
925

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	10	15	10	15	10	15
FAuNO	0.882±0.049	0.770±0.042	0.764±0.068	0.557±0.038	0.570±0.050	0.335±0.021
FAuNO(PROX)	0.853±0.072	0.697±0.067	0.675±0.093	0.475±0.042	0.493±0.066	0.276±0.028

926 Table 17: Response Time (in simulation ticks)
927

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	10	15	10	15	10	15
FAuNO	307.222±19.105	489.358±14.685	365.190±20.482	539.846±12.691	416.433±13.899	513.129±9.378
FAuNO(PROX)	328.024±12.126	475.331±18.708	360.794±15.652	484.038±14.355	382.343±19.206	442.796±11.775

928 **6.6 ALTERNATIVE REWARD FORMULATION**

929 To complement the shaped-reward experiments, we also include a sparse reward baseline that retains
930 only task-level utility and drop penalties. This minimal formulation provides a lower-information
931 setting that helps assess FAuNO’s stability when the reward signal is significantly reduced.

932 **6.6.1 PROBLEM FORMULATION**

933 We aim to optimize workload orchestration based on task processing latency and avoid the loss of
934 tasks due to resource exhaustion. At time-step t , we define the system as a tuple $\langle W, \dot{W}, \dot{C}, \mathcal{C}, T_t \rangle$.
935 Each node can decide to process a task locally or offload it to a neighbor, represented by the action
936 variable a_t^i for worker i . To encourage efficient task orchestration, we define an objective function
937 that focuses on maximizing serviced clients. At each time-step t , the reward is
938

$$R_t = U_t - D_t, \quad (19)$$

939 where $U_t = \alpha \bar{\tau}_c$ is the utility from completed tasks, $D_t = \alpha \bar{\tau}_d$ is the penalty from dropped tasks,
940 and F_t is a reward shaping component. Here, $\bar{\tau}_c$ and $\bar{\tau}_d$ denote the number of tasks completed and
941 dropped since the previous step, and α is a task-level reward unit.

942 The objective at each step is therefore to select node-level actions that maximize R_t , balancing
943 throughput, latency, and stability of the system. This induces the constrained optimization problem:

$$\max_{\{a_t^n\}_{w_n \in \dot{W}}} R_t \quad (20)$$

$$\text{subject to } C_1 : \delta_i \leq t_C \quad (21)$$

$$C_2 : Q^n \leq Q_{\max}^n \quad (22)$$

944 where C_1 prohibits offloading toward nodes violating their operational limits (preventing propagation
945 of overload), and C_2 constrains queue sizes to mitigate excessive service delays. These constraints
946 are enforced by the environment but translated into penalties within the reward to ensure smooth
947 optimization during training.

Partially-Observable Markov Game. To solve the TO problem with distributed and decentralized agents, we define it as a Partially-Observable Markov Game (POMG) Hu et al. (2024), represented as a tuple $\langle \mathcal{N}, \mathcal{S}, \mathcal{O}, \Omega, \mathcal{A}, P, R \rangle$. Here, $\mathcal{N} = 1, \dots, n$ denotes a finite set of agents; \mathcal{S} is the global state space that includes the information about all the nodes and tasks in the network; $\Omega = \{o_i\}_{i \in \mathcal{N}}$ is the set of Observation Spaces, where o_i is the observation space of agent i , that has information about the workers in its neighborhood, \dot{N}_n ; $\mathcal{O} = \{O_i\}_{i \in \mathcal{N}}$ s.t. $O_i : \mathcal{S} \rightarrow o_i$ is the set of Observation Functions for each agent, where O_i is the observation function of agent i . The observation function maps the state to the observations for each agent. Each agent's observations includes information about its local computational and communication resources, the information shared by its neighbors on the same, and information about the next offloadable task. The details on the observation space are provided in 10.2. $\mathcal{A} = \{A_i\}_{i \in \mathcal{N}}$ is the set of action spaces, where A_i is the action space of agent i . Each agent is able to select whether to send a task to one of its neighbors or process it locally; $P : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$ is the unknown global state transition function; Lastly, $R = \{R_i\}_{i \in \mathcal{N}}$ s.t. $R_i \in \mathcal{O} \times \mathcal{A} \times \mathcal{O} \rightarrow \mathbb{R}$ - is the reward function for agent i . Each agent will consider the local reward given by:

$$R_i(o_i^t, a_i^t, o_i^{t+1}) = U_t^i - D_t^i + F_t^i(o_i^t, o_i^{t-1}), \quad (23)$$

where a potential-based reward shaping term is added to the base objective in 9. The shaping component is

$$F_t^i(o_i^t, o_i^{t-1}) = \Phi_t^i - \Phi_{t-1}^i, \quad (24)$$

where the potential at time-step t for node i is defined as

$$\Phi_t^i = w_g (T_r^{i,t} + T_p^{i,t} + T_c^{i,t} + T_o^{i,t}), \quad (25)$$

with w_g a global weighting factor. Each term captures a distinct operational property of the node:

$$T_r^{i,t} = \frac{w_r}{1 + \bar{R}_t^i}, \quad (26)$$

which penalizes increases in the node i 's average response time $\bar{R}^{i,t}$, defined as the mean completion delay of tasks processed by the node.

$$T_p^{i,t} = w_f \frac{\mathcal{T}_p^{i,t}}{1 + \mathcal{T}_d^{i,t} + \mathcal{T}_p^{i,t}}, \quad (27)$$

which promotes higher throughput by increasing the relative proportion of completed tasks. Here $\mathcal{T}_p^{i,t}$ is the total number of processed tasks at the node and $\mathcal{T}_d^{i,t}$ the total number of dropped tasks by the node.

$$T_c^{i,t} = w_c \mathcal{T}_O^{i,t}, \quad (28)$$

which penalizes overloads, where $\mathcal{T}_O^{i,t}$ is the number of overload occurrences recorded at the node.

$$T_o^{i,t} = -w_o \frac{Q_t^i}{Q_{\max}^i}, \quad (29)$$

a direct penalty on queue occupancy, where Q_t^i is the queue length and Q_{\max}^i the maximum queue capacity of node i . The coefficients w_r , w_o , w_f , and w_c control the relative importance of the response-time, queue-load, throughput, and overload contributions within the potential function.

6.6.2 EXPERIMENT RESULTS

Tables 19 and 18 present the results for the ether-based topologies, and Tables 20 and 21 report the results for the random topologies, other than the objective being solved we follow the test setup from section 4. Using the reduced-information reward, FAuNO obtains lower task-completion ratios than LQ, even in the ether setting, but continues to outperform SCOF. This behaviour is consistent with the minimal structure of the sparse reward even with the reward shaping, which provides limited feedback on queue dynamics, overload conditions, or local resource constraints. Both heuristic methods exploit their fixed decision rules independently of the reward, whereas FAuNO receives substantially less guidance for learning effective offloading strategies.

1026 In the ether topologies, the simplified reward leads to faster processing due to the inherent through-
 1027 put-latency trade-off, but the lack of shaping prevents FAuNO from matching the heuristics' ability
 1028 to capitalize on available remote resources. In the random topologies, the heuristic methods continue
 1029 to benefit from dense connectivity, while FAuNO maintains stable training under the sparse objective.

1030 Overall, these experiments serve as a sparse-reward baseline demonstrating FAuNO's behaviour
 1031 under minimal feedback and highlighting the role of reward structure in guiding learning under partial
 1032 observability.

1034 Results for the ether based topologies

1035 Table 18: Finished Tasks (in simulation ticks)

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	2	4	2	4	2	4
FAuNO	0.971±0.012	0.970±0.008	0.921±0.024	0.920±0.019	0.809±0.037	0.810±0.031
SCOF	0.937±0.027	0.931±0.024	0.868±0.050	0.832±0.048	0.720±0.050	0.668±0.049
LeastQueues	0.943±0.004	0.948±0.003	0.928±0.004	0.934±0.003	0.909±0.005	0.914±0.006

1042 Table 19: Response Time (in simulation ticks)

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	2	4	2	4	2	4
FAuNO	116.350±24.117	128.639±18.481	176.122±13.143	183.136±11.347	234.280±7.513	228.712±5.787
SCOF	141.254±38.572	135.879±24.767	77.623±23.393	60.140±14.816	132.559±21.705	87.377±21.738
LeastQueues	258.412±9.073	239.590±6.635	278.219±8.926	256.989±7.658	296.598±7.790	269.761±5.071

1049 Results for the random topologies

1050 Table 20: Finished Tasks (in simulation ticks)

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	10	15	10	15	10	15
FAuNO	0.837±0.082	0.694±0.069	0.676±0.089	0.467±0.038	0.496±0.061	0.285±0.025
SCOF	0.858±0.069	0.690±0.054	0.675±0.064	0.428±0.047	0.482±0.062	0.243±0.034
LeastQueues	0.946±0.008	0.855±0.022	0.928±0.009	0.665±0.030	0.803±0.052	0.358±0.026

1058 Table 21: Response Time (in simulation ticks)

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	10	15	10	15	10	15
FAuNO	313.700±14.388	478.446±18.919	356.469±17.983	486.970±16.111	388.021±16.474	445.638±11.494
SCOF	306.651±22.589	413.587±20.072	344.903±16.542	411.175±31.781	373.415±17.686	395.833±14.413
LeastQueues	425.877±24.507	603.833±21.076	493.780±22.037	619.894±10.063	576.914±23.472	522.105±9.968

1065 6.7 ABLATION AGAINST MULTI-AGENT ALGORITHMS WITH GLOBAL STATES

1066 In this ablation, we compare FAuNO with a centralized MARL baseline, MAPPO Yu et al. (2022),
 1067 under conditions that favor the latter. MAPPO serves as an oracle benchmark in which each agent
 1068 has access to the full global state rather than its local observation. For a fully equitable comparison,
 1069 the environment would need to propagate global state information through the transition dynamics;
 1070 however, for the purpose of this study we evaluate MAPPO using complete state information without
 1071 having to send the state information through the network to establish an upper bound on performance.

1072 Our implementation follows the variant of MAPPO in which each agent maintains its own actor and
 1073 critic networks. The critic receives the full global state, enabling it to condition on the observations
 1074 of all agents, while the actor conditions only on the agent's local information. This contrasts with
 1075 FAuNO, where critics are federated using local observations and actors remain fully decentralized.
 1076 The MAPPO configuration therefore provides an oracle reference point illustrating the performance
 1077 obtainable when global information is directly available to the value function, we note that in a real
 1078 system this information would need to be aggregated at the centralized node, before any decision
 1079 could be made.

1080 6.7.1 GLOBAL OBSERVATION MODELLING
1081

1082 For the oracle experiments, we construct a global state that aggregates all node-level information
1083 normally accessible only partially accessible to each node through their local observations. At time
1084 step t , the global state contains, for every node W^p , its queue size at the time-step Q_t^p , its identifier
1085 n^p , and information about the next task scheduled for processing, τ_t^i . Formally, the observation for
1086 each agent is constructed by:

$$1087 O_{i,t}^g = \langle \tau_t^i, n^1, Q_t^1, n^2, Q_t^2, \dots, n^{|W|}, Q_t^{|W|}, \rangle. \quad (30)$$

1088 Where τ_t^p encodes the attributes of the next task at node i :

$$1089 \tau_t^p = (\mathbb{I}_{\text{local}}^p, \rho_t^p, \alpha_p^{\text{instr}}, \alpha_p^{\text{in}}, \alpha_p^{\text{out}}). \quad (31)$$

1090 Here, $\mathbb{I}_{\text{local}}^p$ indicates whether the next task is assigned for local execution, ρ_t^p is the task's current
1091 progress, α_p^{instr} is the total required instructions, and α_p^{in} and α_p^{out} are its input and output sizes.

1092 In contrast to the local observation space, the global state does not require padding or placeholder
1093 values, since it provides complete system information independent of network connectivity. This
1094 representation is used for the oracle MAPPO, which conditions on the full system state rather than
1095 localized observations.

1096 6.7.2 EXPERIMENT RESULTS
1097

1100 Tables 23 and 22 present the results for the ether-based topologies, and Tables 24 and 25 report
1101 the results for the random topologies. Other than the objective being solved, we follow the same
1102 experimental setup as in Section 4.

1103 As expected, the model with access to global observations outperforms FAuNO. Since MAPPO
1104 conditions its critic on the full system state, it can be regarded as an upper bound on the performance
1105 achievable by any PPO-based decentralized method in this environment. In this light, the gap between
1106 MAPPO and FAuNO provides a direct measure of the value of global information.

1107 Across the ether topologies, the performance of FAuNO remains close to that of the oracle MAPPO
1108 baseline. Task-completion rates differ only marginally in low and moderate load regimes, and
1109 response times remain within a similar range despite FAuNO operating solely from local observations.
1110 This suggests that the federated critic is able to approximate the global value signal effectively enough
1111 to guide decentralized actors toward near-oracle behavior. In higher-load settings, MAPPO maintains
1112 a clearer advantage, which is consistent with the regime where global state information yields stronger
1113 gains. Even so, FAuNO continues to track the oracle closely rather than collapsing under partial
1114 observability.

1115 Overall, FAuNO's results lie near those of the full-information baseline in the ether topologies,
1116 indicating that the semi-asynchronous federated critic can recover much of the benefit of global
1117 coordination without requiring system-wide visibility.

1118 **Results for the ether based topologies**

1119 Table 22: Finished Tasks (in simulation ticks)

1120 Algorithm	1121 $\lambda = 0.5$		1122 $\lambda = 1$		1123 $\lambda = 2$	
	1124 2	1125 4	1126 2	1127 4	1128 2	1129 4
1130 FAuNO	0.971 \pm 0.012	0.970 \pm 0.008	0.921 \pm 0.024	0.920 \pm 0.019	0.809 \pm 0.037	0.810 \pm 0.031
1131 MAPPO	0.976 \pm 0.012	0.977 \pm 0.006	0.955 \pm 0.013	0.952 \pm 0.009	0.878 \pm 0.022	0.885 \pm 0.015

1132 Table 23: Response Time (in simulation ticks)

1133 Algorithm	1134 $\lambda = 0.5$		1135 $\lambda = 1$		1136 $\lambda = 2$	
	1137 2	1138 4	1139 2	1140 4	1141 2	1142 4
1143 FAuNO	116.350 \pm 24.117	128.639 \pm 18.481	176.122 \pm 13.143	183.136 \pm 11.347	234.280 \pm 7.513	228.712 \pm 5.787
1144 MAPPO	114.903 \pm 22.825	98.887 \pm 8.966	143.937 \pm 16.653	137.958 \pm 11.061	219.118 \pm 15.619	203.494 \pm 10.227

1145 **Results for the random topologies**

1134

Table 24: Finished Tasks (in simulation ticks)

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

7 EXTENDING PEERSIMGYM

1153

1154

The PeersimGym Metelo et al. (2024) environment for TO with multi-agent reinforcement learning was not originally designed for federated learning. To address this, we extended it with the FL Updates Manager (FLManager) to enable the exchange of FL updates across the simulated network. The FL process begins with the FL algorithm determining which updates to share. These updates are sent to the environment, where the FLManager generates an ID for each update, calculates its size, and stores the relevant information. This data is then transmitted to the simulation, which sends a dummy message with the size of the update from the node hosting the source agent to the node hosting the destination agent through the network. FL agents can then query the FLManager for completed updates, prompting it to retrieve any updates that have traversed the simulated network. To ensure compatibility with other environments, we decoupled the FLManager from PeersimGym and introduced a customizable mechanism for computing the number of steps an update takes to arrive. The code for the FLManager is available in the FAuNO repository (<https://anonymous.4open.science/r/FAuNO-C976>; anonymized).

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

8 FAUNO NODES

1170

1171

1172

Each FAuNO node consists of three key components: the orchestration agent or manager, the information exchange module, and the resource provisioning component. As our focus is on developing an algorithm for the decentralized orchestration of clients' computational requirements, we keep the other components generic for adaptability across various scenarios. As illustrated in Fig. 3, one of the participants assumes the role of FAuNO GM, managing the global model; this role can be assumed by any node in the network. In our experiments, the data processing and collection layers are built into the simulation.

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

We provide the pseudocode for the two phases of FAuNO learning. We also provide the actual code developed in our git repository (<https://anonymous.4open.science/r/FAuNO-C976>; anonymized). The first component we mention is the Local algorithm, as seen in the algo. 1 ran by the participants in the Federation:

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

Table 24: Finished Tasks (in simulation ticks)

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	10	15	10	15	10	15
FAuNO	0.837 \pm 0.082	0.694 \pm 0.069	0.676 \pm 0.089	0.467 \pm 0.038	0.496 \pm 0.061	0.285 \pm 0.025
MAPPO	N/A	N/A	N/A	N/A	N/A	N/A

Table 25: Response Time (in simulation ticks)

Algorithm	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	10	15	10	15	10	15
FAuNO	313.700 \pm 14.388	478.446 \pm 18.919	356.469 \pm 17.983	486.970 \pm 16.111	388.021 \pm 16.474	445.638 \pm 11.494
MAPPO	N/A	N/A	N/A	N/A	N/A	N/A

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206

Figure 3: Deployment diagram representing the different components in the basic and GM FAUNO Nodes, with the arrow representing that some messages are exchanged between the nodes.

1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214

1215 **Algorithm 1** FAuNOLocalPPO

1216 **Require:** Initial critic weights w_0 , learning rate local critic η_{critic} , learning rate local actor η_{actor} ,
 1217 initial actor weights θ_0 , minibatch size M , number of steps between trainings N , number of
 1218 steps before sharing weights with global T

1219 1: $\theta_{\text{old}} \leftarrow \theta_0$
 1220 2: $w \leftarrow w_0$
 1221 3: steps $\leftarrow 0$
 1222 4: version $\leftarrow 0$
 1223 5: **for** iteration $= 1, 2, \dots$ **do**
 1224 6: $w, \text{version} \leftarrow \text{checkIfNewerGlobalArrived}()$ {Resets number of steps since last
 update}
 1225 7: **for** step $= 1, 2, \dots, N$ **do**
 1226 8: Run policy $\pi_{\theta_{\text{old}}}$ in environment for timesteps
 1227 9: **end for**
 1228 10: Compute advantage estimates $\hat{A}_1, \dots, \hat{A}_T$ using $V(\cdot; w)$
 1229 11: Optimize surrogate L_t^F w.r.t. θ and w , with K epochs and minibatch size M
 1230 12: $\theta_{\text{old}} \leftarrow \theta$
 1231 13: steps \leftarrow steps + 1
 1232 14: **if** iteration mod $T = 0$ **then**
 1233 15: shareUpdatesWithGlobal(∇w , steps, version) {Asynchronous operation}
 1234 16: **end if**
 17: **end for**

1236

1237 In this algorithm, the $\text{checkIfNewerGlobalArrived}()$ function checks whether a newer version of
 1238 the global critic model has been sent. If so, it returns the updated model; otherwise, it returns the
 1239 current model, w , that the agent has trained. Similarly, the $\text{shareUpdatesWithGlobal}(u, \text{steps}, \text{version})$
 1240 function asynchronously shares the latest updates, u , with the global node. We note that minimizing
 1241 the negative of eq. 41, $-L_t^F$, is equivalent to maximizing the original objective.

Then we look at the global algorithm executed by one of the nodes in the federation in algo. 2.

1242 **Algorithm 2** FAuNOGlobalManager

1243 **Require:** Global critic learning rate η_{critic} , local actor learning rate η_{actor} , client training steps Q ,
 1244 buffer size K , all participating agents m , minibatch size M , number of steps between trainings
 1245 N , number of steps before sharing weights with global T

1246 **Ensure:** FL-trained global critic model w_g

1247 1: $w_g \leftarrow w_0$

1248 2: Initialize Buffer $\leftarrow \{\}$ {Start with an empty buffer}

1249 3: $k \leftarrow 0$

1250 4: **while** not converged **do**

1251 5: Run FAuNOLocalPPO($w_0, \eta_{\text{critic}}, \eta_{\text{actor}}, \theta_0, M, N, T$) on m {Asynchronous operation}

1252 6: **if** client update received and used latest k **then**

1253 7: Receive Δ_i , steps_i , version_i from client i

1254 8: **if** $\Delta_i \notin \text{Buffer}$ **then**

1255 9: Add Δ_i , steps_i , version_i to Buffer

1256 10: $k \leftarrow k + 1$

1257 11: **else if** $\text{steps}_i > \text{steps}$ stored in Buffer **then**

1258 12: Replace Δ_i in Buffer with the newer one

1259 13: **end if**

1260 14: **if** $k \geq K$ **then**

1261 15: $w_g \leftarrow w_g + \sum_{k \in \text{Buffer}} \text{computeCoefficient}(\text{Buffer}, k) \Delta_k$

1262 16: Clear Buffer

1263 17: $k \leftarrow 0$

1264 18: sendLatestModelToClients () {Asynchronous operation}

1265 19: **end if**

1266 20: **end if**

21: **end while**

1267 In this algorithm, $\text{computeCoefficient}()$ calculates the weight of each update based on the number
 1268 of updates each agent sent, see 3, and $\text{sendLatestModelToClients}()$ is a method that sends the latest
 1269 global critic network to all the clients.

1271 **Algorithm 3** computeCoefficient

1272 **Require:** Buffer with updates Buffer, target agent k

1273 **Ensure:** Coefficient of agent k 's update

1274 1: $\text{total_}k \leftarrow 0$

1275 2: $\text{no_steps} \leftarrow 0$

1276 3: **for** each entry $i \in \text{Buffer}$ **do**

1277 4: $\text{agent}_i \leftarrow \text{agent that sent entry } i$

1278 5: $\text{steps}_i \leftarrow \text{steps performed in } i\text{'s update}$

1279 6: $\text{total_}k \leftarrow \text{total_}k + \text{steps}_i$

1280 7: **if** $k == \text{agent}_i$ **then**

1281 8: $\text{no_steps} \leftarrow \text{steps}_i$

1282 9: **end if**

10: **end for**

11: **return** $\text{no_steps}/\text{total_}k$

10 PEERSIMGYM ENVIRONMENT AND THE POMG

10.1 COMMUNICATION PROTOCOLS

1291 There are three types of messages shared between the nodes. These are

1293 • **Exchange of information to neighbors** - Our framework assumes that each node can share
 1294 its local state only with directly connected neighbors through low-overhead broadcast or
 1295 multicast mechanisms. This realistically mirrors real-world edge deployments, where full
 1296 global state observability is impractical due to network size, reliability, and cost constraints.

- **Exchange of tasks** - Our framework assumes that tasks can be offloaded between directly connected nodes within their neighborhood, allowing localized workload distribution without reliance on centralized coordination.
- **Exchange of federated updates** - Model updates are propagated to the global node through multihop communication when direct connectivity is not available.

10.2 OBSERVATION SPACE

The observation space for agent p in node W^p at time step t consists of it's own queue size Q_t^p , the latest queue size known for each of it's neighbors $\{Q_t^j | W_j \in \tilde{W}^p\}$, where \tilde{W}^p is the node W^p 's neighborhood, and the percentage of space free for itself, F_t^p , and each of the neighbors, F_t^j , computed as:

$$F^n = Q_t^n / Q_{max}^n \quad (32)$$

Then on the task dimension they observe information about the tasks to be processed in particular the total number of instructions in the queue given by eq. 33, the total number of instructions of tasks assigned to be processed locally given by eq. 34 where $\mathbb{I}_{\text{local}_p}(\tau^i)$ is the identifier whether task τ^i was assigned to be processed locally in node p . Lastly, we have information on the next task to be processed, namely, its id i , the current progress of the task at time-step t , ρ_t^i , the total instructions, and the data input, α_i^{in} , and output size, α_i^{out} .

$$Q_{\rho,t}^p = \sum_{\tau_i \in Q_p} \rho^i \quad (33)$$

$$Q_{\rho,t}^{p,\text{local}} = \sum_{\tau_i \in Q_p} \mathbb{I}_{\text{local}}(\tau^i) \quad (34)$$

$$\mathbb{I}_{\text{local}_p}(\tau^i) = \begin{cases} \rho^i, & \text{if } \tau^i \text{ is local} \\ 0, & \text{otherwise} \end{cases} \quad (35)$$

Moreover, we convert the observations of all the agents to be structurally similar by normalizing and padding the observation spaces, ensuring consistent input dimensionality and robustness to network topological changes or node failures. Specifically, missing neighbors are represented using normalized placeholder values (-1), maintaining stable critic evaluation despite node heterogeneity.

10.3 SIMULATION REALISM

To mitigate the reality gap inherent to simulation-based evaluation, we leverage PeersimGymMetelo et al. (2024) together with the two integrated tools, grounded in real-world data. First, workloads are generated using traces derived from Alibaba CloudTian et al. (2019), providing CPU, memory, and temporal profiles that reflect actual cluster behavior. Second, topologies are synthesized with Ether Rausch et al. (2020), which produces edge-computing infrastructures aligned with real edge deployment scenarios, such as urban sensing. Together, these components supply PeersimGym with realistic load patterns, resource variability, and communication structures, enabling evaluation conditions that approximate an operational edge system.

11 IMPLEMENTATION DETAILS

11.1 PPO FORMULATION

PPO Schulman et al. (2017) is a policy gradient method grounded in the Policy Gradient Theorem Sutton et al. (1999), which enables training a policy approximator by estimating the policy gradient and applying stochastic gradient ascent:

$$\hat{g} = \mathbb{E}_t \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \hat{A}_t^{GAE} \right] \quad (36)$$

1350 Here, π_θ is the policy being optimized, and \hat{A}_t is an estimator for the Advantage Function computed
 1351 with Generalized Advantage Estimation Schulman et al. (2018).

$$1353 \quad \hat{A}_t^{GAE} = \sum_{l=0}^{k-1} (\lambda\gamma)^l \delta_{t+l}^V \quad (37)$$

$$1356 \quad s.t. \delta_t^V = -V(s_t) + \sum_{i=0}^{k-1} \gamma^k r_{t+i}, \quad (38)$$

1359 Here, k can vary from state to state and is upper-bounded by a parametrized value, N , while $V(\cdot)$
 1360 would be an estimator for the value function.

1361 The PPO algorithms work by running a policy for a parametrizable number of steps and storing
 1362 information not only about the state, action, and reward, but also about the probability assigned to the
 1363 chosen action. This information is then utilized in the next training step for computing the objective
 1364 function, which in the case of PPO-Clip, is given by:

$$1365 \quad L^{\text{CLIP}}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right] \quad (39)$$

1367 Here, $r_t(\theta)$ denotes the probability ratio:

$$1369 \quad r_t(\theta) = \frac{\pi_\theta(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}. \quad (40)$$

1372 The rationale behind using the probability ratio is that when an action with a higher advantage
 1373 is selected and the new policy assigns a higher probability to that action, then the ratio will be
 1374 bigger than zero, obtaining an overall higher objective. Conversely, if the probability increases for a
 1375 negative advantage, then the objective function decreases faster. The clipping and the minimum are
 1376 set in place so that the final objective is a lower bound (i.e., a pessimistic bound) on the unclipped
 1377 objective Schulman et al. (2017). This prevents excessive deviations from the original policy in a
 1378 single update, avoiding large, harmful updates caused by outliers.

1379 Due to the Actor-Critic nature of the PPO algorithm, two components must be trained: the critic
 1380 and the actor. Consequently, when utilizing automatic differentiation frameworks, like PyTorch,
 1381 Schulman et al. Schulman et al. (2017) recommend maximizing the following objective:

$$1382 \quad L_t^F(\theta, w) = \mathbb{E}_t \left[L_t^{\text{CLIP}}(\theta) - c_1 L_t^{\text{VF}}(w) + c_2 S_{\pi_\theta}(s_t) \right], \quad (41)$$

1384 where we have the objective of the Actor, L^{CLIP} , as shown in eq. 39. The critic's loss function,
 1385 $L^{\text{VF}}(w)$, where w is the parameters of the critic network, given by,

$$1387 \quad L_t^{\text{VF}}(w) = (r + \gamma V(s_{t+1}) - V(s_t))^2. \quad (42)$$

1389 And an entropy term, $S[\pi_\theta](s_t)$ to promote exploration. The c_1 and c_2 are coefficients weighing the
 1390 different components of the objective.

1391 And, because we are exploring an FL approach, the agents will share the gradients they obtained
 1392 while training the local critic networks following algo. 1 in annex 9.

1394 11.2 BASELINES

1396 To compare FAuNO, we implement a set of baseline policies. We classify these baseline policies into
 1397 two different categories, the first is the heuristic baselines **Least Queue**, which selects the observable
 1398 worker with the smallest queue size relative to its maximum queue size and offloads the next eligible
 1399 task to that worker. The purpose of the heuristic baseline is to provide a reference point that is widely
 1400 understood and accessible, serving as a benchmark for expected performance, offering a familiar
 1401 comparison point that helps contextualize the results.

1402 We then consider the State-of-the-art synchronous FRL algorithm, SCOF Peng et al. (2024), in
 1403 the spirit of looking at the benefits of considering the improvements of an asynchronous training
 mechanism that keeps training even, considering heterogeneous devices and communication delays.

1404 SCOF is an algorithm designed for TO in the IIoT setting with a focus on vertical offloading from
 1405 Edge devices to a set of Edge Nodes from the SBCs, not considering the offloading mechanics
 1406 of the Edge Nodes themselves. The algorithm itself considers a Federated Duelling DQN, that
 1407 is aggregated with a FedAvg-based approach and utilizes differential privacy (DP) to improve the
 1408 security of the update exchanges. We could not find any implementation of SCOF, so we provided our
 1409 implementation of the algorithm based on SCOF’s paper Peng et al. (2024) in FAuNO’s repository.
 1410 Since no public implementation of SCOF was available, we reimplemented the algorithm and released
 1411 the code in FAuNO’s repository. To ensure a fair comparison with FAuNO, which does not use DP,
 1412 we disabled SCOF’s DP component, as DP often reduces accuracy and was not the focus of this
 1413 study. We further adapted SCOF to our Markov game formulation and edge setting, modifying the
 1414 observation and reward structures for compatibility. These adaptations were applied consistently and
 1415 do not disadvantage SCOF beyond removing features absent in FAuNO.

1416 11.3 VERSIONING AND CONTROLLING STALE MODELS

1417 Each global model carries a version identifier that tracks the most recent global update, this identifier
 1418 is shared with the agents when they send the models to the global. Agents store this version locally
 1419 and attach it to every update they send. The Global Manager accepts only updates matching the
 1420 current global version, ensuring that stale updates derived from outdated models are discarded and
 1421 freshness is maintained throughout training.

1424 11.4 HYPERPARAMETERS USED FOR FAUNO

1425 We based our choice of hyperparameters on Andrychowicz et al. (2020). The parameters used for
 1426 FAuNO:

1427 Table 26: Hyperparameters Used in FAuNO Experiments

1430 Parameter	1431 Value	1432 Explanation
γ	0.90	Discount factor for the long-term reward computation
ϵ	0.5	PPO clipping parameter
η	0.00001	Learning rate for the global model (affects critic)
μ	0.005	Scales the the proximal term in PPO
Actor Learning rate	0.001	Learning rate for the actor network
Critic Learning rate	0.0003	Learning rate for the critic network
Critic Loss coefficient	0.5	Coefficient for the critic loss term
Entropy Loss coefficient	0.5	Coefficient for the entropy loss term
Save interval	1500 steps	Frequency at which models are saved
Steps per exchange	150 steps	Number of steps before exchanging data
Steps per episode	150 steps	Number of steps per training episode
Batch size	30	Size of batches for gradient updates

1444 For SCOF, we adopted the hyperparameter settings reported in the original paper Peng et al. (2024).
 1445 For parameters not specified, we selected values empirically. A complete list of settings is provided
 1446 in the repository under `configs/algo_configs`.

1448 11.5 NETWORK ARCHITECTURE

1450 The architectures for the PPO are based on the ones in Barhate (2024)

1452 12 TEST SETUP

1454 Here, we give the concrete simulation setup configurations and elaborate on the baseline algorithms
 1455 used. More details are available in the repository FAuNO repository²

1456
 1457 ²<https://anonymous.4open.science/r/FAuNO-C976/README.md>

1458

1459 **Actor Network Architecture**

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

(a) Actor Network

1478 **Critic Network Architecture**

1479

1480

1481

1482

(b) Critic Network

Figure 4: Actor-Critic Neural Network Representations

1483 **12.1 ETHER EXPERIMENT PARAMETERS**

1484

1485

1486

1487

1488

1489

1490

1491

1492

The experiments are based on two distinct network topologies generated using Ether, with 2 and 4 AoT clusters. Each simulated AoT cluster consists primarily of SBCs, modeled as Raspberry Pi 3s, along with a base station equipped with an Intel NUC and two GPU units, and a remote, more powerful server. The topologies vary in cluster numbers, ranging from one to four clusters, and correspondingly in node counts, from 12 to 31. The number of agents making task-offloading decisions scales with the number of nodes, with all SBCs, NUCs, and the remote server hosting an agent. This results in 10 to 23 agents across different topologies. We configure the simulation so that only the nodes at the edge of the network, the SBCs, will directly receive tasks. The specific number of each node type is available in tab. 27, and the number of nodes taking up a given function is available in tab. 28.

No. Clusters	SBCs	NUCs	GPU units	Servers
2	16	2	4	1
4	32	4	8	1

1496 Table 27: Cluster Composition Table

No. Clusters	No Agents	Nodes getting tasks from clients	Total nodes
2	19	16	23
4	37	32	40

1501 Table 28: Cluster Configuration Table

1502

1503

The visualization produced for each of the scenarios can be observed in fig.5a

1504

1505

1506

Regarding the capabilities of the different components involved in the simulation, we relied on the hardware specifications generated by the Ether tool. We supplemented this information with data we found for each machine. This information is available in tab. 29.

1507

1508

1509

1510

1511

Task generation at each SBC node follows a $Poisson(\lambda)$ distribution over a simulation episode of 1000 time steps, with each time step scaled by a factor of 10, making each tick equivalent to 1/10th of a second, for a total of 10,000 ticks per episode. Each agent makes an offloading decision at every time step, performing 30 episodes, with the ability to take action at each tick. A full list of the parameters used in our simulation can be found in tab. 30. We note that all time-dependent functions are scaled as well.

(a) Topology with 2 AoT clusters, consisting of 12 SBCs, 2 NUCs, 4 GPU units, and 1 server. The total number of nodes is 19, and 15 agents manage task-offloading decisions, as outlined in tab. 27.

(b) Topology with 4 AoT clusters, consisting of 18 SBCs, 4 NUCs, 8 GPU units, and 1 server. The total number of nodes is 31, with 23 agents managing task-offloading decisions, as shown in tab. 27.

Figure 5: Visualization of the different simulations used.

Table 29: Device Capacities

Device	CPU (Millis)	Memory (Bytes)
Raspberry Pi 4	7200	6442450944
Raspberry Pi 5 6GB	9600	6442450944
Raspberry Pi 6 8GB	9600	8589934592
Intel NUC	14800	68719476736
Cloudlet	290400	1880000000000

1558
1559
The tables 31 and 32 includes the reward weights used for the random topology experiments based on the eq.9 objective.

12.2 ARTIFICIAL NETWORK EXPERIMENT PARAMETERS

1563
1564
1565
We consider two topologies with 10 and 15 nodes randomly distributed across a 100x100 square. These topologies have an increasing number of SBCs and a fixed number of NUCs. All SBCs receive tasks, and all the nodes in the topology have agents controlling them. The SBCs are picked randomly in equal proportions from the options in tab.29. The concrete number of nodes for each is given

1566

Table 30: Parameter values in the experimental setup.

1567

Simulation time, T	1000 s		
Task instructions, ρ_i	8×10^7	Task utility, α	100
CPI, ξ_i	1	Weight global, w_g	1
Deadline, δ_i	100	Weight response time, w_r	1
Bandwidth, $B_{i,j}$	4 MHz	Weight overloads, w_c	1
Transmission power, P_i	40 dbm	Weight occupancy, w_o	1
Scale	10	Weight processing, w_p	1

1575

Table 31: Delay Weight Parameters

1576

Weight Parameter	Value
χ_D^{wait}	0.6
χ_D^{exc}	1
χ_D^{comm}	1
χ_O	60

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Table 32: Delay Weight Parameters

Weight Parameter	Value
χ_D^{wait}	0.6
χ_D^{exc}	1
χ_D^{comm}	0.4
χ_O	60

in tab. 33: We consider the same hyperparameters explained in 26. And consider similar training conditions to the ether-based topologies.

12.3 ALIBABA CLUSTER TRACE-BASED WORKLOAD

The workload considered for the experiments in the paper was based on the integration of Peer-simGym Metelo et al. (2024) with an Alibaba Cluster trace-based workload generation tool Tian et al. (2019). However, the original task sizes were unsuitable for the edge environment under study, particularly for client nodes, which became overwhelmed and dropped nearly 90% of tasks. To address this, we implemented a rescaling mechanism that adjusted the number of instructions per task while keeping all other characteristics the same. After evaluating several scaling factors, we selected a 10% reduction, which maintained a meaningful level of computational demand without causing excessive task loss.

12.4 COMPUTATIONAL REQUIREMENTS

The tests were all executed in a private High-Performance Computer, orchestrated by Slurm. Each Slurm job utilized 16 GB of RAM memory, 4 cores, and a MiG partition with one compute partition and 10 GB of memory of an Nvidia A100 GPU. Each of the tests that utilized a GPU took about 10 to 18 hours, depending on the number of agents, to complete the 400 000 steps.

13 USE OF LARGE LANGUAGE MODELS (LLMs)

Large language models were used solely as assistive tools to improve the clarity and readability of the manuscript. Their role was limited to editing for grammar, style, and wording. All research ideas, methodology, analysis, results, and conclusions were conceived and written by the authors. The authors carefully reviewed and verified all text to ensure accuracy and that the original meaning of the content was not violated, and we take full responsibility for the final content.

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

No. Nodes	SBCs	NUCs
10	5	5
15	10	5

Table 33: Cluster Composition Table