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ABSTRACT

Bayesian optimization (BO) is a sequential decision-making tool widely used for op-
timizing expensive black-box functions. Recently, Large Language Models (LLMs)
have shown remarkable adaptability in low-data regimes, making them promising
tools for black-box optimization by leveraging contextual knowledge to propose
high-quality query points. However, relying solely on LLMs as optimization agents
introduces risks due to their lack of explicit surrogate modeling and calibrated
uncertainty, as well as their inherently opaque internal mechanisms. This structural
opacity makes it difficult to characterize or control the exploration–exploitation
trade-off, ultimately undermining theoretical tractability and reliability. To address
this, we propose LLINBO: LLM-in-the-Loop BO, a hybrid framework for BO that
combines LLMs with statistical surrogate experts (e.g., Gaussian Processes (GP)).
The core philosophy is to leverage contextual reasoning strengths of LLMs for
early exploration, while relying on principled statistical models to guide efficient
exploitation. Specifically, we introduce three mechanisms that enable this collabo-
ration and establish their theoretical guarantees. We end the paper with a real-life
proof-of-concept in the context of 3D printing.

Figure 1: Diagrams of existing methods and the proposed algorithms: LLINBO-Transient,
LLINBO-Justify, and LLINBO-Constrained, introduced in Secs. 2.3–2.5.

1 INTRODUCTION

BO has emerged as a powerful tool for black-box optimization (BBO), providing a principled
framework for balancing exploration and exploitation. BO is particularly useful in scenarios where
function evaluations are costly, such as in drug discovery (Korovina et al. (2020)), interaction design
(Liao et al. (2023)), and hyperparameter tuning (HPT) (Cho et al. (2020)). Starting with an initial
dataset, BO employs a surrogate model, most commonly a GP . The GP is capable of quantifying
uncertainty and is used to approximate both the mean and variance of the black-box function. The
next query point, hereafter referred to as a design, is then selected by maximizing an acquisition
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function (AF) that quantifies the potential benefit of evaluating a particular point, thereby strategically
balancing exploration and exploitation. BO then augments the dataset with the new design–outcome
tuple and proceeds sequentially. The past decade has witnessed many success stories for BO, and its
theoretical guarantees have been well established for a range of commonly used AFs (Srinivas et al.
(2009); Agrawal & Goyal (2012)). These guarantees are typically regret-based, ensuring that, with
high probability, one can asymptotically recover an optimal design.

Recently, the few-shot learning capabilities of LLMs and their ability to generate high-quality outputs
from minimal examples have made them attractive tools for optimization tasks (Yang et al. (2024)).
In particular, LLMs have shown strong empirical performance over random search (Liu et al. (2024)),
largely due to their ability to leverage problem context to fast-track the exploration of promising
designs. Intuitively, LLMs act like domain experts, using contextual cues to identify high-quality
designs early in the optimization process. At each iteration, different phases of BO, including initial
data generation, proposing new designs, and surrogate modeling, are carried out by the LLM through
appropriately tailored prompts (Liu et al. (2024); Yang et al. (2024)). These prompts incorporate
the current dataset, typically presented as a list of design-response pairs, together with the problem
context, enabling the LLM to function as an optimizer. This prompting framework allows LLMs to
act as potential agents for BBO without the need for explicit surrogate modeling or large amounts of
observed data. We refer to this class of approaches, where LLMs are solely responsible for proposing
design candidates and serve as the surrogate model in BO, as LLM-assisted BO.

Main considerations and contributions. While recent work on LLM-assisted BO (Liu et al. (2024);
Guo et al. (2024); Song et al. (2024); Yang et al. (2024)) has demonstrated promise in generating
reasonable query designs, several limitations hinder its broader applicability. Most importantly, LLMs
do not provide explicit surrogate modeling or calibrated uncertainty, both of which are essential
for principled exploration–exploitation trade-offs. Consequently, although LLMs can accelerate
optimization in the early stages, their effectiveness systematically degrades as more data are collected
and surrogate models strengthen. As we highlight later, this degradation is a central characteristic
that we explicitly model and hedge against in our proposed framework.

Moreover, LLMs remain inherently opaque, making the aforementioned trade-off difficult to interpret
or control. This structural opacity, combined with their inability to quantify uncertainty in a principled
way, introduces significant risks, particularly in applications where cost or safety is critical, ultimately
undermining theoretical tractability and reliability. For instance, in the case of smooth functions,
the predictive capability of GPs, in terms of both the predicted mean and variance as measured
by generalization bounds, has a known rate of improvement as more data is gathered (Srinivas
et al. (2009)). The same result is hard to characterize for LLMs, whose internal mechanisms
for interpolating black-box functions are not fully understood and which currently lack calibrated
uncertainty estimates.

With this in mind, we propose LLINBO, a framework that combines the contextual reasoning strengths
of LLMs with the principled uncertainty quantification offered by statistical surrogates to enable more
trustworthy optimization. To operationalize this collaboration, we introduce a general framework
grounded in the philosophy of using LLM-suggested designs to sequentially refine and tailor BO.
Within this framework, we propose three approaches, which are inspired by recent developments in
federated learning, and analyze the theoretical properties of each. Through extensive simulations and
a real-world proof-of-concept in 3D printing, we demonstrate the effectiveness and robustness of the
proposed methods.

Relation to previous works. LLMs’ ability to utilize problem context has been actively investigated.
Recent work has also demonstrated that LLMs can generalize effectively from limited in-context
information (Lampinen et al. (2025); Brown et al. (2020)), making them particularly promising for
BBO, where the objective function is unknown and historical observations are limited (Liu et al.
(2024)). The use of LLMs for optimization is a growing research direction. An overview of existing
LLM-assisted BO can be found in Appendix A.

Based on our best knowledge, the proposed LLINBO is the first hybrid framework that integrates
both LLMs and GPs into the BO process to accelerate decision-making. We acknowledge that
incorporating external information into BO has been investigated in other settings. For example,
in Federated BO (F-BO, Dai et al. (2020); Yue et al. (2025); Chen et al. (2025); Dai et al. (2024)),
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clients cooperatively perform BO under different sharing schemes. In Human–AI Collaborative
BO (HAIC-BO, Hvarfner et al. (2022); Xu et al. (2024); Adachi et al. (2024)), human preferences
or belief distributions are incorporated into the BO process. By contrast, the role of LLMs in our
framework is fundamentally different from the role of clients in F-BO or humans in HAIC-BO. The
few-shot learning ability of LLMs enables the generation of high-quality candidate points in low-data
regimes (Liu et al. (2024); Brown et al. (2020)); however, this ability systematically degrades relative
to surrogate models as more data accumulate (also demonstrated in our experiments). clients and
humans in F-BO and HAIC-BO do not exhibit such properties. This distinction underpins the novelty
of our work: LLINBO explicitly models this degradation and introduces principled mechanisms to
hedge against LLM unreliability while leveraging their early-stage strengths in tandem with GPs.

We also acknowledge that LLM-assisted BO is still in its infancy. Existing work primarily focuses
on eliciting potentially good designs to evaluate directly from the LLM. This contrasts with BO
frameworks that incorporate external guidance, particularly HAIC-BO, where the information elicited
from humans is much richer. For instance, πBO introduced by Hvarfner et al. (2022) requires a
preference function from humans, while the method of Xu et al. (2024) relies on an expert function.
In comparison, the possibility of eliciting richer forms of information from LLMs beyond a single
candidate design per iteration remains largely unexplored. While we see this as an exciting direction
for future research, the scope of this paper is on ensuring the safe and trustworthy use of LLM-
suggested designs by validating and hedging them with surrogate models.

A detailed review of existing F-BO and HAIC-BO is provided in Appendix A; here, we focus on the
works that are most directly relevant to the proposed method. In Dai et al. (2020; 2021), Federated
Thompson Sampling for BO was introduced, where clients share GP Random Fourier Features
Rahimi & Recht (2007). Each client then selects the next design to query either based on its own
features or on those of another randomly chosen client. Alternatively, Chen et al. (2025) proposed a
constraint-sharing strategy, where clients resample their surrogates using shared constraints to guide
the next evaluation. While our framework differs in its ultimate objective, these principles have
directly inspired our hybrid collaboration between LLMs and statistical surrogates.

2 LLINBO: LLM-IN-THE LOOP BO

2.1 PRELIMINARIES

BO aims to find an optimal design x∗ that maximizes a black-box function f over a domain X by
sequentially selecting query designs. Given a total budget of T evaluations, the data at iteration
t ∈ [T ] is denoted as Dt−1 = {(xi, yi)}t−1

i=1 , where yi = f(xi) + ϵi and ϵi ∼ N (0, λ2).

At time t, BO selects the next design, denoted by xt, to observe by maximizing an AF, α(x, Ft−1),
where Ft−1 is the posterior belief of f conditioned on Dt−1. After selecting xt, a noisy observation
yt = f(xt) + ϵt is obtained, and the dataset is updated as Dt = Dt−1 ∪ {(xt, yt)}. This process is
then repeated until T is exhausted. The posterior belief is typically modeled using a GP (Kushner
(1964)), which requires a prior mean function µ(x) (often set to zero) and a kernel function k(x, x′)
encoding the smoothness of the function. This yields a posterior predictive distribution for f given as

f(x) | Dt−1 ∼ GP(µt−1(x), σ
2
t−1(x)),

with µt−1(x) = kt−1(x)
⊤(K+λ2I)−1y and σ2

t−1(x) = k(x, x)−kt−1(x)
⊤(K+λ2I)−1kt−1(x),

where K is the Gram matrix of the training inputs with Kij = k(xi, xj), ∀i, j ∈ [t− 1], kt−1(x) =
[k(x, x1), . . . , k(x, xt−1)]

⊤ being the covariance vector between the input x and the training inputs,
and y = [y1, . . . , yt−1]

⊤ is the vector of observed responses.

The posterior mean µt−1(x) and variance σ2
t−1(x) quantify our posterior belief about the function’s

value and uncertainty over X , which we denote compactly as Ft−1 = GP(Dt−1). While many AFs
have been proposed and their utility demonstrated, we focus without loss of generality on the Upper
Confidence Bound (UCB, Srinivas et al. (2009)), a widely used AF defined as

αUCB(x, Ft−1) = µt−1(x) + βtσt−1(x), (1)

where βt is a parameter that controls the trade-off between exploration and exploitation.
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2.2 LLM-IN-THE LOOP BO FRAMEWORK

We start by introducing the general framework and define the entity running BO as the client. At
each iteration t, we assume that the client can prompt an LLM agent A, such as ChatGPT, to suggest
a candidate design to query, denoted xLLM,t. This interaction can be implemented using a direct
prompt from the client to obtain a query design, or through recently developed approaches and prompt
templates tailored to the task at hand (Liu et al. (2024; 2025)).Simultaneously, the client learns the
posterior belief via a statistical surrogate conditioned on Dt−1 and evaluates xLLM,t accordingly.
While our framework does not prescribe a specific surrogate model, we assume without loss of
generality that the posterior belief is derived from a GP model, namely, Ft−1. Specifically, Ft−1

contains the information of µt−1(xLLM,t) and σ2
t−1(xLLM,t), which are used to evaluate xLLM,t with

respect to its predicted performance and associated uncertainty. Following this, the client may choose
to retain, refine, or reject agent A’s suggestion. For now, we describe this decision step only at a high
level in Algorithm 1, as it will be detailed in the three algorithms presented later.

Algorithm 1 LLM-in-the Loop BO Framework (LLINBO)
Input: D0, T , LLM Agent A, kernel function k, AF α.

1: for t = 1 to T do
2: Compute Ft−1 = GP(Dt−1)
3: Compute xGP,t by finding the maximizer of α(x, Ft−1).
4: Query A for a suggested design point: xLLM,t

5: Evaluate xLLM,t using Ft−1

6: Generate xt by refining, retaining or rejecting xLLM,t using mechanisms in Secs. 2.3–2.5
7: Obtain yt = f(xt) + ϵt and update the dataset: Dt ← Dt−1 ∪ (xt, yt)
8: end for
9: return argmaxxi

{yi | (xi, yi) ∈ DT }

Without steps 4–6 in Algorithm 1, this reduces to BO by selecting xt as xGP,t, and focusing only
on step 4 we recover LLM-assisted BO approaches, as in Liu et al. (2024). The added steps aim to
guide the sampling decision toward more grounded and theoretically justifiable choices that leverage
contextual LLM knowledge along with calibrated GP surrogates and their uncertainty.

We define the instantaneous regret at time t as rt = f(x∗) − f(xt), and the cumulative regret as
RT =

∑T
t=1 rt. The goal is to establish an upper bound on the RT for all mechanisms to ensure no

regret as T →∞. Our theoretical developments follow the assumptions below:
Assumption 1. f belongs to a Reproducing Kernel Hilbert Space (RKHS)Hk with kernel k, such
that ∥f∥Hk

≤ B for some constant B ≥ 0 and the kernel satisfies k(x, x′) ≤ 1 for all x, x′ ∈ X .
The observational noise ϵt is conditionally R-sub-Gaussian for some R ≥ 0 for all t ∈ [T ].
Assumption 2. Let γt−1 denote the maximum information gain after time t − 1, as defined in
Equation (4) of Vakili et al. (2021). AF is defined as in (1), where βt is defined as

βt = B +R

√
2(γt−1 + 1 + log

1

δ
) for some δ ∈ (0, 1).

2.3 LLINBO-TRANSIENT : EXPLORATION BY LLMS THEN EXPLOITATION BY GPs

Perhaps the most natural form of collaboration between an LLM and a BO method is to leverage the
LLM’s contextual reasoning early in the process, initially placing greater attention on xLLM,t, and
gradually transition to the GP’s suggestion xGP,t as more data are collected. The GP , with its ability
to systematically interpolate observed data and calibrate uncertainty, becomes increasingly reliable
for guiding exploitation (Gramacy (2020)).

More specifically, we propose that the query design xt at iteration t be selected as follows:

zt ∼ Bernoulli(p = pt), xt = zt · xGP,t + (1− zt) · xLLM,t,

where pt is a monotonically increasing sequence approaching 1 as t increases. Specifically, with
probability pt, xt is set to xGP,t, and with probability 1 − pt, it is set to xLLM,t. The proposed
LLINBO-Transient algorithm distributes exploration and exploitation across different models:
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LLMs facilitate early-stage exploration, while GPs focus on exploitation as more data becomes
available. Theoretically, this approach has the following guarantee.

Theorem 1 (Proof in Appendix B.1). Suppose that Assumptions 1-2 hold. Let pt ∈ [0, 1] be chosen
such that 1− pt ∈ O(1/t), Then, with probability at least 1− δ, RT is upper bounded by

RT ≤ BO(
√
T ) + βTO(

√
TγT ).

The assumption on pt implies that pt → 1 at rate 1 − O
(
1
t

)
. For example, one may choose

pt = 1− 1
t2 . With this assumption, the algorithm effectively controls the long-term risk of relying

on LLM suggestions throughout the optimization process. Based on this assumption, we apply the
Azuma–Hoeffding inequality introduced in Hoeffding (1963) to upper bound the cumulative regret
with high probability, which is a standard technique in the BO literature Dai et al. (2020).

2.4 LLINBO-JUSTIFY : SURROGATE-DRIVEN REJECTION OF LLM’S SUGGESTIONS

In contrast to the approach in Sec. 2.3, where xLLM,t is directly incorporated during early exploration,
here we exploit the posterior believe Ft−1 as an evaluator for xLLM,t. If the LLM suggestion is found
to be substantially worse than the current AF maximizer, it is rejected, and xGP,t is used instead.
Fundamentally, our goal is to enable the safe integration of LLMs into BO by rejecting suggestions
that significantly contradict a client’s optimal utility; an approach denoted as LLINBO-Justify.

Specifically, given xLLM,t and the AF constructed by Ft−1, the client rejects xLLM,t if

αUCB(xLLM,t, Ft−1) ≤ max
x

αUCB(x, Ft−1)− ψt, (2)

where ψt is the client-selected confidence parameter. The maximum value of the AF, together with
the selected ψt, defines the ψt-suboptimal region of the AF. Accordingly, xLLM,t is accepted and
assigned as xt if it lies within this region; otherwise, xt = xGP,t.

In the early stages, when the client places greater trust in the LLM’s suggestions, a larger ψt can be
chosen to promote broader exploration around xLLM,t, effectively enlarging ψt-suboptimal region
of the AF to investigate a wider area influenced by the LLM. Over time, we recommend gradually
decreasing ψt to rely more on the GP , whose uncertainty estimates become increasingly well-
calibrated as more data is collected. The dynamics of LLINBO-Justify on two benchmark tasks,
illustrating how it hedges against poor LLM suggestions, are provided in Appendix C.3.

An upper bound on RT for LLINBO-Justify is provided in Theorem 2. From (2), we observe
that, regardless of whether xLLM,t is accepted or not, the next query design xt (either xLLM,t or xGP,t)
always lies within the ψt-suboptimal region of αUCB(x, Ft−1). Leveraging this observation along
with classical UCB analysis techniques in Srinivas et al. (2009), the result follows directly.

Theorem 2 (Proof in Appendix B.2). Suppose that Assumptions 1-2 hold and ψt ∈ O(1/
√
t). Then,

with probability at least 1− δ, RT is upper bounded by

RT =

T∑
t=1

rt ≤
T∑

i=1

ψt + 2βT

T∑
i=1

σt−1(xt) = O(
√
T ) + βTO(

√
TγT ).

2.5 LLINBO-CONSTRAINED : CONSTRAIN SURROGATES ON LLM’S SUGGESTIONS

Apart from the two approaches above that depend on defining pt in LLINBO-Transient and ψt

in LLINBO-Justify, our third mechanism takes a different approach: it directly refines the GP
toward potential regions of improvement using xLLM,t, without requiring such predefined tuning.

Upon receiving xLLM,t, a client treats this as potentially good design. Namely, assumes that
f(xLLM,t) > κt−1, where κt−1 ≜ maxx µt−1(x) is the posterior mean maximizer. In other words,
xLLM,t is treated as a design that can potentially improve upon the current belief of the largest value
of f . Notice that this constraint may not hold, and we will show shortly how it can be automatically
accounted for. With this, the updated posterior belief is given as

F+
t−1 ≜ GP(Dt−1) | {f(xLLM,t) > κt−1} (3)
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This essentially leads to a constrained GP , a CGP . While CGP does not admit a closed-form posterior,
one can readily draw function realizations from it via rejection sampling and approximate the AF
using Monte Carlo (MC, Chen et al. (2025)).

In practice, to sample from F+
t−1, one can draw St realizations, denoted f̃t−1,s(xLLM,t) for s ∈ [St],

from Ft−1. We retain only those samples satisfying the constraint in (3), i.e., f̃t−1,s(xLLM,t) > κt−1.
Let It = {s | f̃t−1,s(xLLM,t) > κt−1} denote the index set of retained samples. For each s ∈ It, we
construct a GP based Dt−1 ∪ {(xLLM,t, f̃t−1,s(xLLM,t))}, and denote its posterior mean and variance
by µ+

t−1,s(x) and σ+
t−1,s(x)

2, respectively.

Fig. 2 illustrates the behavior of LLINBO-Constrained. Critically, more output samples are
retained when the constraint is satisfied, reflecting posterior support for xLLM,t as a high-quality
candidate. In such cases, the mean function under the updated surrogate F+

t−1 becomes elevated near
xLLM,t, highlighting promising regions for subsequent exploration (see Fig. 2(a)–(b)). Conversely,
when xLLM,t strongly contradicts the current posterior, no samples are retained (|It| = 0), and the
surrogate remains unchanged, i.e., Ft−1 = F+

t−1, effectively discarding xLLM,t in favor of xGP,t (see
Fig. 2(c)–(d)). This selective retention mechanism is key to maintaining the trustworthiness of the
BO process and underpins the theoretical guarantees discussed later.

(a) 10 realizations are sampled from Ft−1 (the light
purple curves). Only the points at xLLM,t that are
greater than κt−1 are retained (the two crosses).

(b) Two GPs (red and green curves and shaded
areas) are constructed based on the union of each
retained sample and Dt−1.

(c) All points lie below than κt−1. (d) The posterior remains unchanged.

Figure 2: Graphical illustration of LLINBO-Constrained: solid curve shows GP mean, shaded
area is the confidence interval, and dashed line is the true function f .

With these GPs, each constructed from the union of Dt−1 and a retained sample, the AF can be
approximated via MC methods. Without loss of generality, and focusing on UCB, we can approximate
the AF using the law of total variance as

αCGP-UCB(x, F
+
t−1) = µ̄+

t−1(x) + β̃t

√
σ+
t−1(x)

2 + s2t−1(x), where

µ̄+
t−1(x) =

∑
s∈It

µ+
t−1,s(x), st−1(x) =

1

|It| − 1

∑
s∈It

(
µ+
t−1,s(x)− µ̄

+
t−1(x)

)2
,

where β̃t is the client-specified confidence parameter, which will be discussed in Theorem 3. No-
tice that the index s is omitted from σ+

t−1,s(x) since it is identical for all s. This is because
the covariance function of a GP depends only on the input x, which is the same across all
samples, and not on the sampled responses f̃t−1,s(xLLM,t). Finally, we acquire xt by solving
xt = argmaxx∈X αCGP-UCB(x, F

+
t−1).

Theorem 3 (Proof in Appendix B.3). Suppose Assumption 1 holds. Then, for any δ ∈ (0, 1) and
T ∈ N, with probability at least 1 − δ

T , the following bound holds uniformly for all t ∈ [T ], all
retained indices s ∈ It, and all inputs x ∈ X :∣∣µ+

t−1,s(x)− f(x)
∣∣ ≤ β̃tσ+

t−1(x), where β̃t = 2B + 2R
√

2
(
γt + 1 + ln

(
4T
δ

))
+
√
2 ln

(
4StT

δ

)
.
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Theorem 3 includes an additional term involving St, reflecting the cost of sampling uncertainty. As
St grows, the potential for deviation increases, requiring a larger β̃t to maintain the same confidence
level. As such, Theorem 3 builds a uniform high-probability bound between the posterior mean of
the CGP and f . With this, Theorem 4 then upper bounds RT for LLINBO-Constrained.
Theorem 4 (Proof in Appendix B.3). Assume the conditions for Theorem 3 hold and suppose
St ∈ O(1/t). Then, with probability at least 1− δ, RT satisfies

RT =

T∑
t=1

rt ≤ O
(√

TγT (γT + ln(T ))
)
.

While our theory holds for constant choices of St, we recommend decreasing St as more data is
collected, since the surrogate model becomes better calibrated and more reliable over time.

3 NUMERICAL STUDIES

We evaluate the proposed methods on two core BO tasks: BBO and HPT, using two representative
benchmarks: BO and LLAMBO, the most recent state-of-the-art framework introduced by Liu et al.
(2024). While effective, implementing LLAMBO can be computationally expensive due to the
extensive prompting required to generate multiple candidate designs and surrogate evaluations. To
mitigate this overhead, we develop LLAMBO-light, a lightweight alternative that directly prompts
the LLM with the problem context and historical observations to produce the next evaluation design.
LLAMBO-light serves both as the embedded LLM agent within our proposed three mechanisms
and as a baseline. We should note that this is still an emerging area with limited prior work.

For each task with a D-dimensional design space, we generate an initial dataset D0 with D obser-
vations. This is done via prompting within the problem context, also known as warmstarting, for
methods that utilize LLMs, and via random sampling for BO. To capture the uncertainty in each
method’s performance, we perform a total of 10 replications. The surrogate model is a GP with zero
prior mean and a Matern kernel. ChatGPT-3.5-Turbo is used as the LLM agent. Detailed implemen-
tation of LLM agent, includes structured template and context for each problem can be found in
Appendix F. We use UCB as the AF, and set the relevant parameters as follows: pt = min(t2/T, 1),
St = 104/t2, ψt =

1
tσ0(xLLM,1) and βt = 2log tDπ2

0.1∗6 (as shown effective by Srinivas et al. (2009)).

BBO task. We utilize six commonly used simulation functions: Levy-2D, Rastrigin-2D, Branin-
2D, Bukin-2D, Hartmann-4D, and Ackley-6D from Surjanovic & Bingham (2013). For each
function, its characteristic patterns and the objective of the problem are incorporated into the prompts
as part of the problem context (see Appendix F.1). Performance is reported in terms of the best
observed regret, defined as Gt = f(x∗)− y∗t , where y∗t is the best outcome observed up to time t,
and f(x∗) denotes the true global maximum. The total budget is set to T = 10D.

Fig. 3 shows the regret curves for all methods across the six benchmark functions. Based on these
results, we highlight several key insights. First, and perhaps most evidently,LLAMBO-light and
LLAMBO significantly underperform compared to other benchmarks. In many cases, their regret
curves remain flat. This supports our motivation: LLMs can assist with BBO but are not yet reliable as
standalone agents. Second, methods involving LLMs, including ours, achieve a strong early lead. This
suggests that LLMs can effectively leverage problem context to quickly identify promising regions,
making them a useful complement to BO frameworks. Third, we observe that our hybrid mechanisms
consistently outperform the benchmarks across all functions. This superiority is especially evident
in the early rounds and gradually diminishes as more data is collected. This trend is not surprising;
statistical surrogate models become more accurate with more data, aligning with our core philosophy
of reducing reliance on LLMs as the optimization process progresses.

HPT task. We consider two physical simulation functions: the piston (Kenett & Zacks (1998))
and robot arm (An & Owen (2001)), along with three regression models: Random Forest (RF-4D),
Support Vector Regression (SVR-3D), and XGBoost (XGB-4D). The total budget is set to T = 5D.
For each simulation function, we generate 1,000 data points and define the regret as the best-observed
Mean Squared Error (MSE) at each iteration, where the MSE is obtained by fitting the corresponding
regression model and evaluating it via 10-fold cross-validation. A detailed description of each
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(a) Branin-2D (b) Ackley-6D (c) Hartmann-4D

(d) Levy-2D (e) Bukin-2D (f) Rastrigin-2D

Figure 3: Gt comparison for BBO. Each line shows the mean regret, shaded with 95% confi-
dence intervals. Proposed methods: LLINBO-Transient, LLINBO-Justify,
LLINBO-Constrained. Baselines: LLAMBO, LLAMBO-light, BO.

data–regression model pair, along with the corresponding problem formulation, is provided in the
prompt (see Appendix F.2). The results in Fig. 4 once again confirm the insights from the BBO task.
Namely, we find that LLMs are often capable of generating high-quality designs in the early iterations
by leveraging the problem context. Furthermore, our proposed LLM-GP collaborative mechanisms
yield significantly lower MSE compared to all benchmarks across the tasks.

(a) Piston with RF-4D (b) Piston with SVR-3D (c) Piston with XGB-4D

(d) Robot with RF-4D (e) Robot with SVR-3D (f) Robot with XGB-4D

Figure 4: MSE comparison for HPT. Each line shows the mean MSE, shaded with 95% confi-
dence intervals. Proposed methods: LLINBO-Transient, LLINBO-Justify,
LLINBO-Constrained. Baselines: LLAMBO, LLAMBO-light, BO.

We end by noting that, as highlighted earlier, HAIC-BO methods generally require much richer forms
of information from humans than what is elicited from LLMs in LLM-assisted BO approaches. This
makes a direct comparison between our method and HAIC-BO particularly challenging, even if one
were to treat humans as LLMs. Nevertheless, in Appendix C.1 we adapt πBO introduced by Hvarfner
et al. (2022)) so that the belief functions originally provided by humans can instead be extracted from
LLMs, and we present a comparison between πBO and our proposed method.

While all proposed methods perform well across both BBO and HPT tasks, the choice among them
ultimately depends on practical requirements. Guidelines for selecting among the variants and tuning
their hyperparameters are provided in Appendix D. In Appendices C.2 and C.4, we further examine
the performance of the proposed approaches in high-dimensional settings and under different LLM
configurations. Finally, Appendix E presents a detailed analysis of their computational complexity.
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4 APPLICATION TO 3D PRINTING

In addition to the numerical evaluation, we further assess the performance of our method through a
case study in 3D printing, aimed at reducing stringing in a printed product. Stringing (Fig. 5(b)) is a
prevalent defect in fused filament fabrication (FFF) 3D printing. FFF is commonly used for rapid
prototyping and low-cost part production. However, stringing degrades surface quality and often
requires additional post-processing (Paraskevoudis et al. (2020)). This study aims to optimize the
design parameters of a Creality Ender 3 desktop FFF printer (Fig. 5(a)), including nozzle temperature,
Z hop height, retraction distance, outer wall wipe distance, and coasting volume, using stringing
percentage as the outcome variable. Further details about the parameters can be found in Appendix G.

(a) (b) (c)

Figure 5: Demonstration of 3D printing experiments and results. (a): printer used, (b): stringing
between two columns, (c): benchmark results. Benchmarks: — LLAMBO-light, — LLAMBO,
— LLINBO-Transient, and — BO. For LLINBO-Transient, we use square and triangle
markers to indicate updates chosen based on an LLM or GP , respectively.

Experiment setup. All experiments were conducted on a single printer using PETG filament
(Holcomb et al. (2022)), selected for its high tendency to produce stringing (see Fig.5(b)). We adopted
a standard two-column geometry with a horizontal gap, commonly used in stringing evaluations
(Haque (2020)). At each iteration, after printing the object with the proposed parameters, the stringing
percentage (ranging from 0 to 100%) was quantified (details in Appendix G.1).

Due to the cost associated with this experiment (each run takes several hours), we limit our comparison
to LLINBO-Transient with pt = 1− 1

t , evaluated against LLAMBO, LLAMBO-light, and BO.
All other settings follow Sec. 3. The prompts specifying the problem context and controllable
parameters are provided in Appendix G.2. Unlike Sec. 3, the objective here is not full evaluation, but
to demonstrate the effectiveness of our method and the broader potential of LLMs in optimal design.

Several insights can be draw from the results shown in Fig. 5(c): (i) Our approach demonstrates
strong overall performance and ultimately achieves near-zero stringing. (ii) Methods utilizing LLMs
achieve a strong head start compared to BO, highlighting the value of LLMs in optimal design. (iii)
Consistent with our simulation results, LLAMBO and LLAMBO-light perform poorly and do not
exhibit a decreasing trend in regret. (iv) While BO shows improvement over time, our hybrid approach
outperforms it. This again highlights the collaboration benefits between LLMs and surrogate experts.

5 CONCLUSION

The proposed LLINBO framework leverages LLMs’ contextual reasoning to generate high-quality
designs early, while surrogate models refine and guide the search as data accumulates. The mecha-
nisms developed under LLINBO exhibit strong performance, as demonstrated by both simulation and
real-world case studies. While the use of LLMs in optimization remains in its infancy, we believe
this line of research holds great promise for enabling more adaptive, data-efficient, and practical
optimization strategies across a wide range of applications. The strength of our hybrid framework
depends on parameters that are sensitive to how well the LLM understands the problem context in
early stages. A promising direction is to link these parameters to a metric that quantifies an LLM
understanding. Our overarching framework can potentially help design LLM-assisted optimization
beyond black-box settings.
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A MORE RELATED WORKS

LLM-assisted BO. Recently, with the few-shot learning ability of LLMs to generate high-quality
answers from limited input, leveraging LLMs in the BO process has emerged as a promising yet
relatively new research direction. For example, Liu et al. (2025) employed LLMs to solve multi-
objective optimization problems, while Guo et al. (2024) extended their use to a broader set of tasks,
including combinatorial optimization. More recently, Song et al. (2024) explored how LLMs can
enhance BBO by leveraging textual knowledge and sequence modeling to improve generalization.
SLLMBO is proposed to solve HPT task by combining TPE and the reasoning strength of LLMs
(Mahammadli & Ertekin (2022)). A detailed investigation of Kristiadi et al. (2024) is conducted
to assess the LLM’s ability to assist BO process. These works highlight the potential of LLMs in
various optimization settings, a direction that remains actively under investigation.

Recently, a variety of approaches have emerged that leverage LLMs to address black-box optimization.
For example, Li et al. (2025) introduced LLaMEA-BO, where an LLM generates and iteratively
refines BO pseudocode. FunBO Aglietti et al. (2024) learns novel acquisition functions, represented
as Python programs, using FunSearch and achieves improved performance in both in-distribution and
out-of-distribution settings. BioDiscoveryAgent Roohani et al. (2024) is an LLM-driven closed-loop
system for designing genetic perturbation experiments, outperforming BO baselines by leveraging
biological reasoning and tool-augmented analysis.

While recent LLM-assisted BO methods involve leveraging LLMs at various stages of the optimization
pipeline and across diverse applications, the primary contribution of this paper is not to introduce yet
another LLM-based optimizer, but rather to ensure that the optimization process involving an LLM
agent is both efficient and trustworthy.

F-BO To enable collaboration between LLMs and statistical surrogates in enhancing BO, while
leveraging the distinctive ability of LLMs to provide a set of designs, we draw inspiration from the
literature on F-BO. Federated learning (FL) aims to establish a collaborative framework that allows
clients to work together while keeping their own data private. This setting has directly influenced
prior work in F-BO, where a single design is often shared across clients.

For example, Yue et al. (2025) developed a consensus framework for collaborative BO, where the next
design to query is selected as a weighted combination, dictated by a dynamically coupled stochastic
consensus matrix, of the AF maximizers from all clients in the system, including each client’s own.
Other works like Chen et al. (2025) and Dai et al. (2020) require only the design from other clients,
while the former requires a design point from other clients directly, and the latter requires Random
Fourier Features (Rahimi & Recht (2007)). A recent review on federated and collaborative BO can
be found in Al Kontar (2024).

Table 1: Comparison of LLINBO with related BO frameworks incorporating external information.

Feature LLINBO HAIC-
BO

F-BO LLM-
assisted
BO

Minimal assumption on external info ✓ ✗ ✓ ✓/✗
Theoretical guarantees ✓ ✓/✗ ✓ ✗
Handles early LLM strength, later weakness ✓ ✗ ✗ ✓/✗
Preserves BO structure ✓ ✓ ✓ ✗
Dynamic reliance adjustment ✓ ✗ ✗ ✗

HAIC-BO In contrast, HAIC-BO requires richer information compared with F-BO, as privacy
concerns are not considered in this setting. For instance, COBOL (Xu et al. (2024)) requires explicit
beliefs about the function from the user, while CoExBO (Adachi et al. (2024)) relies on preference
pairs provided by a human. Similarly, πBO (Hvarfner et al. (2022)) assumes access to a formal prior
distribution specified by a human expert, and the method in (AV et al. (2022)) requires information
about good and bad regions of the design space. Another key difference between our framework and
HAIC-BO lies in the assumptions placed on LLMs or humans. Notably, our method does not impose
any assumptions on the capacity of LLMs; instead, it hedges against poor suggestions through three
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distinct hedging processes. By contrast, HAIC-BO often introduces behavioral assumptions about
humans; for example, AV et al. (2022) assumes that a human expert follows a BO-like strategy.

We acknowledge all works that tried to cooperate with outside information to make decision-making
more efficient, and we use the table below to compare and highlight the key differences between
the proposed LLINBO framework and the rich existing works, including HAIC-BO, F-BO, and
LLM-assisted BO.

B TECHNICAL RESULTS

We first introduce two Lemmas that are quite common in BO analysis. Lemma 1 derives the
concentration between the posterior mean and the ground truth.

Lemma 1. (Theorem 2 of Chowdhury & Gopalan (2017)) Under Assumption 1 and 2, and let
λ̂t = 1 + 2/t. For arbitrary δ ∈ (0, 1), with probability at least 1− δ, we have:

|µt−1(x)− f(x)| ≤ |kt−1(x)
⊤(Kt−1 + λ̂tI)

−1[δ1, ..., δt−1]
⊤|

+ |f(x)− kn,t(x)⊤(Kt−1 + λ̂tI)
−1[f(x1), ..., f(xt−1)]

⊤| (4)

≤ (B +R
√

2 (γt−1 + 1 + ln (1/δ)))σt−1(x)

= βtσt−1(x), (5)

where δi = f(xi)− yi ∀i ∈ [t− 1].

With this Lemma, we can bound the regret raised at every iteration, which is stated in Lemma 2.

Lemma 2 (Theorem 3 in Chowdhury & Gopalan (2017)). Assume that Assumptions 1 and 2 hold.
UCB is used to select xt ∀t ∈ [T ]. With probability at least 1− δ, where δ ∈ (0, 1), the regret at time
t can be upper bounded by

rt = f(x∗)− f(xt) ≤ βtσt−1(xt) + µt−1(xt)− f(xt) ≤ 2βtσt−1(xt).

Next, when using the UCB as the AF, we present a commonly used lemma that bounds the cumulative
posterior variance at the selected design points in terms of the information gain.

Lemma 3 (Lemma 4 in Appendix of Chowdhury & Gopalan (2017)). Let x1, . . . , xT be the designs
selected by the algorithm. Then, the sum of the predictive standard deviations at these points can be
bounded by

T∑
t=1

σt−1(xt) ≤
√

4(T + 2)γT = O(
√
TγT ).

B.1 PROOF OF THEOREM 1

The proof builds on the approach of Dai et al. (2020), which uses the Azuma-Hoeffding inequality
to derive a high-probability upper bound on the regret, transforming the expected regret into a
probabilistic guarantee. Recall that when LLINBO-Transient is applied, xt is selected as

xt =

{
xLLM,t with probability 1− pt
xGP,t with probability pt

.

Let At and Bt be the event when xt is selected the same as xLLM,t and xGP,t, respectively. When
event At happens, the regret conditioned on At can be upper bounded with high probability via
Lemma 2. In this case, the expected regret at time t can be controlled via Lemma 4.

Lemma 4. Pick δ ∈ (0, 1), let δ′ = δ
2 and define βt the same as Assumption 2. Then, with probability

at least 1− δ′, we have

E[rt|Ft−1] ≤ pt(2βtσt−1(xGP,t)) + (1− pt)νt,

where Ft−1 denotes the filtration until t− 1 and νt = E[rt|Ft−1, Bt].
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Proof. As the choice of the next evaluation design is stochastic, one needs to consider the expected
regret given the current filter Ft−1, which can be written as

E[rt|Ft−1] = p(At)E[rt|Ft−1, At] + p(Bt)E[rt|Ft−1, Bt].

Note that the term E[rt|Ft−1, At] is deterministic and can be upper bounded with probability 1− δ′
via Lemma 2. Let νt = E[rt|Ft−1, Bt], we have

E[rt|Ft−1] = pt(f(x
∗)− f(xGP,t)) + (1− pt)νt

≤ pt(2βtσt−1(xGP,t)) + (1− pt)νt. (6)

The following lemma is used to transform the expected regret to an unexpected form with high
probability.

Lemma 5. (Azuma-Hoeffding Inequality) Given δ ∈ (0, 1) and a super-martingale Yt, t ∈ [T ].
Suppose with probability 1− δ, Yt − Yt−1 ≤ kt ∀t ∈ [T ] we have

p

|YT − Y0| ≤
√√√√−2logδ

T∑
t=1

k2t

 > 1− δ.

Let Xt = rt − (pt(2βtσt−1(xGP,t)) + (1− pt)νt), and define Yt =
∑t

s=1Xs with Y0 = 0. We
claim that Yt forms a super-martingale and hence apply Lemma 5 to bound YT − Y0 = YT . To verify
the super-martingale property of Yt, we compute the conditional expectation of its increments:

E[Yt − Yt−1|Ft−1] = E[Xt|Ft−1]

= E[rt − (pt(2βtσt−1(xGP,t)) + (1− pt)νt)|Ft−1]

= E[rt|Ft−1]− (pt(2βtσt−1(xGP,t)) + (1− pt)νt)
≤ 0. (by (6))

In this case, Yt is a super-martingale. Next, we derive the upper bound of |Yt − Yt−1|, which is
essential for applying Lemma 5:

|Yt − Yt−1| = |Xt|
= |rt − (pt(2βtσt−1(xGP,t)) + (1− pt)νt)|
≤ |rt|+ pt(2βtσt−1(xGP,t)) + (1− pt)νt (by triangle inequality)
≤ B + pt(2βtσt−1(xGP,t)) + (1− pt)B. (by Assumption 1)

As a result, by Lemma 5 and with probability 1− δ′, δ′ = δ
2 ,

YT ≤

√√√√−2 log δ′ T∑
t=1

(
B + (1− pt)B + 2ptβtσt−1(xGP,t)

)2
.
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With some simple algebra and with probability 1−δ′−δ′ = 1−δ, we can upper bound the cumulative
regret as

RT =

T∑
t=1

rt

≤
T∑

t=1

pt(2βtσt−1(xGP,t))︸ ︷︷ ︸
A

+

T∑
t=1

(1− pt)νt︸ ︷︷ ︸
B

+

√√√√−2logδ′
T∑

t=1

(B + (1− pt)B + 2ptβtσt−1(xGP,t))2︸ ︷︷ ︸
C

≤ βTO(
√
TγT )︸ ︷︷ ︸

A

+BO(logT )︸ ︷︷ ︸
B

+BO(
√
T ) +BO(logT ) + βTO(

√
TγT )︸ ︷︷ ︸

C

(by Lemma 3)

= BO(
√
T ) + βTO(

√
TγT ).

B.2 PROOF OF THEOREM 2

The process of selecting xt via LLINBO-Justify can be written as

xt =

{
xGP,t if αUCB(xLLM,t, Ft−1) < αUCB(xGP,t, Ft−1)− ψt

xLLM,t else
.

Note that no matter which cases is fulfilled, xt is the ψt-suboptimal of αUCB(·, ·). Also, for δ ∈ (0, 1)
and βt is selected the same as in Assumption 2. We can upper bound rt by

rt = f(x∗)− f(xt)
≤ µt−1(x

∗) + βtσt−1(x
∗)︸ ︷︷ ︸

A

− f(xt)︸ ︷︷ ︸
B

(by Lemma 1)

≤ µt−1(xGP,t) + βtσt−1(xGP,t)︸ ︷︷ ︸
A

− (µt−1(xt)− βtσt−1(xt))︸ ︷︷ ︸
B

(by Lemma 1)

≤ µt−1(xt) + βtσt−1(xt) + ψt︸ ︷︷ ︸
A

− (µt−1(xt)− βtσt−1(xt))︸ ︷︷ ︸
B

≤ ψt + 2βtσt−1(xt).

By assuming that ψt = O(1/
√
t) and by the Lemma 4 in Chowdhury & Gopalan (2017), which

allows us to bound the sum of variance at the evaluated designs, we have

RT =

T∑
t=1

rt ≤
T∑

i=1

δt + 2βT

T∑
i=1

σt−1(xt) = O(
√
T ) + βTO(

√
TγT ). (by Lemma 3)

B.3 PROOF OF THEOREMS 3 AND 4

We first introduce a lemma that includes some algebraic derivations, which will be useful for proving
the subsequent results.

Lemma 6 (Appendix C in Chowdhury & Gopalan (2017)). For any vector ϵ and let λ̂t = 1 + 2/t,
the following holds algebraically∣∣∣kt(x)⊤(Kt−1 + λ̂tI)

−1ϵ
∣∣∣ ≤ λ̂−1/2

t σt−1(x)

√
ϵ⊤Kt−1(Kt−1 + λ̂tI)−1ϵ,

ϵ⊤Kt−1(Kt−1 + λ̂tI)
−1ϵ ≤ ϵ⊤

(
(Kt−1 + (1− λ̂t)I)−1

)
ϵ,
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where Kt−1 denotes the Gram matrix at time t, defined identically as in the main paper but indexed
with a subscript to emphasize its dependence on the data available up to time t−1. Next, we derive the
AF via models constructed by Dt−1 ∪ {(xLLM,t, f̃t−1,s(xLLM,t))}, which we denoted those models
asMt,s ∀s ∈ It.

Lemma 7. (Lemma 1 in Chen et al. (2025)) Assuming EMt,s [α(x,Mt,s)] exists, and there exists a
function a : R→ R such that

α(x;F+
t−1) = Eg∼F+

t−1
[a(g(x))],

then

α(x, F+
t−1) = EMt,s [α(x,Mt,s)].

Lemma 7 arrives at the conclusion that the AF under the CGP can be computed by the expectation of
the AF across all modelsMt,s for all s ∈ It under certain conditions. Recall from Lemma 1 that for
the GP constructed using Dt−1, previously denoted by Ft−1, the difference between the posterior
mean µt−1(x) and the ground truth function f(x) can be bounded with a suitable βt. However, this
bound does not directly apply to the CGP , as it is constructed using both historical data and imagined
data (xLLM,t, f̃t−1,s(xLLM,t)). The following lemma provides a bound on this difference using a
newly constructed β̃t.

Theorem 5. (Theorem 3 in the main paper) Under Assumption 1, for any δ ∈ (0, 1) and T ∈ N, with
probability at least 1− δ

T , any sample index s ∈ It, and any t, we have:

|µ+
t−1,s(x)− f(x)| ≤ β̃tσ

+
t−1(x),

where β̃t = 2B + 2R
√

2(γt + 1 + ln(4T/δ)) +
√
2 ln(4StT/δ).

Proof. As s is fixed and we focusing on deriving the difference between µ+
t−1,s(x) and f(x), we

drop the subscript s for simplicity. Let k+t−1 and K+
t−1 denote the kernel vector and Gram matrix,

respectively, defined as in Section 2.1, except with the input set augmented to include xLLM,t; that
is, the input consists of the union of the previously observed designs x1, . . . , xt−1 and the LLM-
suggested point xLLM,t. Let δ̃ = f(xLLM,t)−f̃t−1(xLLM,t), one can express the term |µ+

t−1(x)−f(x)|
as

|µ+
t−1(x)− f(x)| ≤ |f(x)− k

+
t−1(x)

⊤
(
K+

t−1 + λ̂tI
)−1

[f(x1), ..., f(xt−1), f(xLLM,t)]
⊤|

+ |k+t−1(x)
⊤(K+

t−1 + λ̂tI)
−1[δ1, ..., δt−1, δ̃]

⊤| (by (4))

≤ |f(x)− k+t−1(x)
⊤
(
K+

t−1 + λ̂tI
)−1

[f(x1), ..., f(xt−1), f(xLLM,t)]
⊤|︸ ︷︷ ︸

A

+ |k+t−1(x)
⊤(K+

t−1 + λ̂tI)
−1[δ1, ..., δt−1, 0]

⊤|︸ ︷︷ ︸
B

+ |k+t−1(x)
⊤(K+

t−1 + λ̂tI)
−1[0, ..., 0, δ̃]⊤|︸ ︷︷ ︸

C

. (by triangle inequality)

Note that terms A and B can be bounded by B+R
√

2(γt + 1 + ln(2T/δ))) with probability at least
1− δ

2T according to (5). Based on Lemma 6, we can further bound the term C as

∣∣∣k+t−1(x)
⊤
(K+

t−1 + λ̂tI)
−1[0, ..., 0, δ̃]⊤

∣∣∣ ≤ λ̂−1/2
t σ+

t−1(x)

√[
0 δ̃

]
K+

t−1(K
+
t−1 + λ̂tI)−1

[
0 δ̃

]⊤
.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

With probability 1− δ
4T −

δ
4T = 1− δ

2T and by Lemma 6, the square root part of the above equation
can be further simplified as√[

0 δ̃
]
K+

t−1(K
+
t−1 + λ̂tI)−1

[
0 δ̃

]⊤
≤
√[

0 δ̃
]
K+

t−1(K
+
t−1 + (1− λ̂t)I−1 + I)−1

[
0 δ̃

]⊤
≤ ||δ̃||2
≤ |f(xLLM,t)− f̃t−1(xLLM,t)|
≤ |f(xLLM,t)− µt−1(xLLM,t)|+ |µt−1(xLLM,t)− f̃t−1(xLLM,t)|

≤ (B +R
√

2(γt + 1 + ln(4T/δ))))σt−1(xLLM,t)

+
√
2 ln(4StT/δ)σt−1(xLLM,t). (by Chernoff bound)

Note that f̃t−1(xLLM,t) is sampled from a normal distribution (Ft−1) with mean µt−1(xLLM,t) and
variance σ2

t−1(xLLM,t). In this case, one can apply the Chernoff Bound to control the difference
between all the samples and the mean response of the GP . As a result, term C can be bounded
by (B + R

√
2(γt + 1 + ln(4T/δ)) +

√
2 ln(4StT/δ))σ

+
t−1(x) with high probability. Finally, by

combining with term A, and with probability 1− δ
2T −

δ
2T = 1− δ

T , we have

|µ+
t−1(x)− f(x)| ≤ (2B + 2R

√
2(γt + 1 + ln(4T/δ)) +

√
2 ln(4StT/δ))σ

+
t−1(x)

= β̃tσ
+
t−1(x),

where β̃t = 2B + 2R
√

2(γt + 1 + ln(4T/δ)) +
√
2 ln(4StT/δ).

Lemma 8. For a set of S ≥ 2 samples X1, . . . , XS , if |Xs| ≤ c, ∀s ∈ [S], then the sample variance
satisfies:

ς =
1

S − 1

S∑
s=1

(Xs − X̄)2 ≤ 2c2.

Proof. Let X̄ be the sample mean as X̄ = 1
S

∑S
s=1Xs. This proof follows the definition of sample

variance

ς =
1

S − 1

S∑
s=1

(Xs − X̄)2 =
1

S − 1

S∑
s=1

|Xs − X̄|2 ≤
S

S − 1
c2 ≤ 2c2.

Now we are ready to derive the upper bound for the cumulative regret. Note that xt is selected as the
maximizer of the CGP-UCB, which means

µ̄t−1(xt) + β̃t

√
σ+
t−1(xt)

2 + s2t−1(xt) ≥ µ̄t−1(x) + β̃t

√
σ+
t−1(x)

2 + s2t−1(x) ∀x ∈ X .

We first deal with the error cause by s2t−1(x), which is the sample variance of the predicted mean at
x, or namely, k+t−1(x)(K

+
t−1 − λ̂tI)−1(y1, ..., yt−1, f̃t−1,s(xLLM,t))

⊤ ∀s ∈ It. Note that there is no
uncertainty in k+t−1(x)(K

+
t−1 − λ̂tI)−1 and also (y1, ..., yt−1), hence we can substract it and simply

consider the variance of

k+t−1(x)(K
+
t−1 − λ̂tI)−1

[
0 f̃t−1,s(xLLM,t)

]⊤ ∀s ∈ It.
In order to apply Lemma 8, we first derive the upper bound for k+t−1(x)(K

+
t−1 −

λ̂tI)
−1
[
0 f̃t−1,s(xLLM,t)−M

]⊤ ∀s ∈ It, where M = 1
|It|
∑

s∈It
f̃t−1,s(xLLM,t). With
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probability1− δ
4T and by Lemma 6, we have

k+t−1(x)(K
+
t−1 − λ̂tI)−1

[
0 f̃t−1,s(xLLM,t)−M

]⊤
≤ λ̂−1/2

t σ+
t−1(x)

√
[0, f̃t−1,s(xLLM,t)−M ]⊤(K+

t−1 + λ̂tI)−1[0, f̃t−1,s(xLLM,t)−M ]

≤ λ̂−1/2
t σ+

t−1(x)

√
(f̃t−1,s(xLLM,t)−M)2

≤ λ̂−1/2
t σ+

t−1(x)

√
(f̃t−1,s(xLLM,t)− µt−1(xLLM,t))2

= λ̂
−1/2
t σ+

t−1(x)|f̃t−1,s(xLLM,t)− µt−1(xLLM,t)|

≤ σ+
t−1(x)

√
2 ln(4StT/δ),

where the last inequality uses the fact that λ̂ ≤ 1 and by the Chernoff Bound. In this case, by
Lemma 8, the variance of k+t−1(x)(K

+
t−1 − λ̂tI)−1

[
0 f̃t−1,s(xLLM,t)

]⊤ ∀s ∈ It can be bounded
as

s2t−1(x) ≤ 4σ+
t−1(x)

2 ln(4StT/δ). (7)

Note that by Theorem 5, the ground truth f(xt) can be bounded by µ+
t−1,s(x)± β̃tσ

+
t−1(x) with high

probability for all index s in It, this also holds for the mean over all s ∈ It, that is,

µ̄+
t−1(x)− β̃tσ

+
t−1(x) ≤ f(x) ≤ µ̄

+
t−1(x) + β̃tσ

+
t−1(x).

With probability at least 1− δ, we can derive the upper bound for rt = f(x∗)− f(xt) as

rt = f(x∗)− f(xt)

≤ µ̄+
t−1(x

∗) + β̃tσ
+
t−1(x

∗)−
(
µ̄+
t−1(xt)− β̃tσ

+
t−1(xt)

)
=
(
µ̄+
t−1(x

∗)− µ̄+
t−1(xt)

)
+ β̃tσ

+
t−1(x

∗) + β̃tσ
+
t−1(xt)

≤ β̃t
√
σ+
t−1(xt)

2 + s2t−1(xt)− β̃t
√
σ+
t−1(x

∗)2 + s2t−1(x
∗) + β̃tσ

+
t−1(x

∗) + β̃tσ
+
t−1(xt)

≤ β̃tσ+
t−1(xt) + β̃tst−1(xt)− β̃tσ+

t−1(x
∗) + β̃tσ

+
t−1(x

∗) + β̃tσ
+
t−1(xt)

= 2β̃tσ
+
t−1(xt) + β̃tst−1(xt)

≤ O(
√
γt + ln(t))σ+

t−1(xt) +O(
√
γt ln(t)/t)σ

+
t−1(xt) (by (7) and Theorem 5)

≤ O(
√
γt + ln(t)σ+

t−1(xt).

The cumulative regret can be bounded as

Rt =

T∑
i=1

rt =

T∑
i=1

O(
√
γt + ln(t))σ+

t−1(xt)

≤ O(
√
γT + ln(T ))

T∑
i=1

σ+
t−1(xt)

≤ O(
√
γT + ln(T ))O(

√
TγT ) (by Lemma 3)

= O(
√
TγT (γT + ln(T )).

C ADDITIONAL EXPERIMENT

C.1 COMPARISON WITH HAIC BO

While the scale of external information considered in previous HAIC works is not directly comparable
to the setting of either LLM-assisted BO or the proposed methods, in this section we compare our
approach with πBO (Hvarfner et al. (2022)) on the Branin-2D and Levy-2D functions by replace
human’s effort on suggesting π(x), the preference function, using LLMs. Specifically, we provide
the problem context and the initial dataset as input to the LLM. For each function (defined on [0, 1]2),
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we then randomly select 100 points {zi}100i=1 and query the LLM for the probability of each point
being the optimum, denoted pi, i ∈ [100]. To approximate a continuous prior π(x), we normalize
the probabilities to sum to one and apply Kernel Density Estimation. The hyperparameter β is set to
T/100, following the settings in Hvarfner et al. (2022), and all other configurations remain the same
as in Section 3. The acquisition function in πBO is given by

απ(x, Ft−1) = α(x, Ft−1)π(x)
β/t,

where α is the acquisition function, which we set to UCB in this experiment. We also evaluate a
dynamic variant in which π(x) is updated at each iteration by re-querying the LLM with both the
problem context and the historical observations, where we call it πBO-dynamic.

Figure 6 presents the regret trajectories for all methods. We observe that our proposed approaches
consistently outperform πBO in both experimental settings. Notably, even though πBO updates the
preference function π(x) at every iteration using the LLM, its performance remains unstable and
unreliable. We acknowledge that extracting richer information from LLMs—beyond a single design
point per iteration—remains an open question and represents an exciting direction for future research.

(a) Branin-2D (b) Levy-2D

Figure 6: Regret comparison between proposed methods and πBO. Each line shows the regret
Gt, shaded with 95% confidence intervals. Proposed methods: LLINBO-Transient,
LLINBO-Justify, LLINBO-Constrained. Baselines: πBO, πBO-dynamic
BO.

C.2 EXPERIMENTS ON HIGH DIMENSIONAL SETTINGS

In this section, we evaluate the proposed methods on two BBO tasks using the Levy-15D and
Ackley-12D benchmark functions. All experimental settings—including hyperparameters, number
of replecations, LLM agents, GP configurations, and the size of the initial design—are kept identical
to those described in Section 3, except for the budget, which is set to T = 100.

(a) Levy-10D (b) Ackley-15D

Figure 7: Gt comparison for BBO. Each line shows the mean regret, shaded with 95% confi-
dence intervals. Proposed methods: LLINBO-Transient, LLINBO-Justify,
LLINBO-Constrained. Baselines: LLAMBO, LLAMBO-light, BO.

The plots in Fig.7 compare the regret curves over 100 iterations on two benchmark functions, Levy-
10D and Ackley-15D. The proposed LLINBO variants consistently decrease regret faster and more
steadily than the baselines, showing both lower mean regret and tighter confidence intervals. In con-
trast, the LLAMBO-based baselines remain much higher and flatter, indicating slower improvement
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and greater uncertainty throughout the optimization process. We hypothesize that this behavior arises
from the increased prompt length in higher-dimensional problems, which reduces the LLM’s ability
to consistently concentrate on the optimal region.

C.3 EXPERIMENTS ON THE DYNAMICS OF LLINBO-JUSTIFY

The key to the trustworthiness of LLINBO-Justify lies in its ability to leverage LLMs only when
their recommendations are deemed valuable, while discarding them whenever the statistical surrogate
model strongly believes that such suggestions would lead to inferior performance. In this experiment,
we would like to access this property on two different scenarios: BBO task using Levy-2D and HPT
task using Piston with XGB-4D.

From Figure 3, we observe that LLAMBO-light, the LLM agent embedded in LLINBO-Justify,
performs well on the Levy-2D function, in contrast to its behavior on the Piston with XGB-4D
task in Figure 4, where the regret remains almost constant after approximately six iterations. In
this experiment, we fix all parameters, LLM agent, BO settings, and initial data size, to be identical
to those in Section 3. Our goal is to quantify how frequently LLINBO-Justify accepts LLM-
generated suggestions. For clearer visualization, we set the optimization horizon to T = 20 for both
Levy-2D and Piston with XGB-4D.

Figure 8: Proportion when LLM is used in LLINBO-Justify between two tasks. Each line shows
the proportion of the 10 repeated experiments where LLM’s suggestion is used as the next design at
a specific iteration, shaded with 95% confidence intervals. Tasks: Levy-2D, Piston with
XGB-4D.

We repeat each setting 10 times and record, for every iteration and every repetition, whether the
LLM’s suggestion is selected as the next design point. Figure XX reports, for each iteration, the
proportion of runs in which the LLM suggestion was used. The results show that LLINBO-Justify
relies on LLM suggestions much more frequently in the Levy-2D case, but far less in the Piston with
XGB-4D setting. This behavior aligns with our expectations: the algorithm allows the LLM to guide
the optimization when its proposals appear promising, while discarding them otherwise.

Finally, aggregating across all repeated experiments, the proportion of iterations in which the LLM’s
suggestion was used is 0.295±0.0548 for Levy-2D, but only 0.105±0.222 for Piston with XGB-4D.

C.4 INFLUENCE OF PROMPT INFORMATIVENESS ON LLINBO

In this section, we investigate how the amount of contextual information provided to the LLM agent
affects the performance of our proposed LLINBO variants. Although the main focus of this work is
on integrating LLM agents into the BO framework, we appreciate the reviewer’s suggestion to explore
prompt ablations. This section presents additional experiments designed to assess the sensitivity of
our methods to different levels of LLM informativeness.
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To analyze the influence of LLM knowledge, we conducted HPT task on Robot with RF-4D. We
modified the prompt content used in LLAMBO-Light, which serves as the LLM agent in our
framework, under the following three settings:

• Fully informed: The prompt includes historical data, extracted data patterns, and Random
Forest model patterns.

• Partially informed: The prompt includes historical data and model patterns.
• Minimally informed: The prompt includes only the historical dataset.

All other experimental configurations were kept identical to those in the main paper. Performance is
summarized using the proportion of improvement,

It =
regret at t = 0− regret at t = T

regret at t = 0
,

where higher values indicate better optimization performance. For each setting, we conducted ten
independent repetitions and report the mean and standard deviation in Table 2.

Method Fully informed Partially informed Minimally informed
LLINBO-Transient 0.055± 0.011 0.052± 0.011 0.040± 0.012
LLINBO-Justify 0.065± 0.031 0.059± 0.029 0.062± 0.029
LLINBO-Constrained 0.061± 0.021 0.060± 0.017 0.062± 0.022

Table 2: Performance comparison under different levels of LLM contextual information. Values are
means and standard deviations over ten repetitions.

The performance of LLINBO-Transient is noticeably affected by the informativeness of the LLM
inputs. When the LLM receives limited contextual information, the optimization performance
declines. However, as the design process gradually shifts from the LLM to the GP through the
diminishing schedule of pt, the final regret converges across all settings. This behavior confirms the
importance of the diminishing-pt design, which reduces the algorithm’s dependence on potentially
noisy LLM guidance and enhances robustness.

In contrast, LLINBO-Justify consistently safeguards against poor LLLM suggestions through its
client-level, data-driven acceptance–rejection mechanism. Interestingly, its performance improves in
the minimally informed setting, highlighting the strength of validating each LLM suggestion using
surrogate uncertainty. This mechanism effectively mitigates risks caused by unreliable or noisy LLM
recommendations.

Finally, LLINBO-Constrained demonstrates strong robustness. When the LLM provides limited
or unhelpful information, the algorithm automatically defaults to classical BO steps, preventing any
deterioration in performance.

D SELECTION BETWEEN THE PROPOSED ALGORITHMS AND
HYPERPARAMETERS

Choosing between the proposed methods. It is noteworthy that the regret bounds for all three
methods contain no variables or assumptions on the LLMs, thereby ensuring the no-harm guar-
antees introduced by Xu et al. (2024). In other words, the quality of LLM suggestions does not
degrade their performance, and the choice among them can therefore be guided by practical needs.
LLINBO-Transient is the most interpretable and practical for non-expert users, employing an
explicit temporal schedule to reduce LLM influence over time. Importantly, the reliance on LLM
suggestions diminishes as the probability of querying the LLM approaches zero, making this variant
suitable for practitioners prioritizing transparency, simplicity, or scenarios where accessing LLMs is
costly. LLINBO-Justify adopts a more data-driven approach by learning a justification threshold
for LLM suggestions without altering the BO machinery, thereby maintaining interpretability while
offering adaptive control—an attractive option when flexibility is desired without structural changes.
Finally, LLINBO-Constrained is the most robust and theoretically grounded variant, integrating
LLMs and BO through a probabilistic constraint that automatically hedges against finite-sample
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uncertainty and requires no additional hyperparameter tuning, making it particularly well-suited for
safety-critical or resource-constrained settings where minimizing risk and avoiding hyperparameter
tuning are essential.

Selecting hyperparameters. We acknowledge that leveraging LLMs for BO is still in its early
stages. As such, tuning the algorithm’s parameters based on the LLM’s level of understanding
remains an open but important research direction. Nevertheless, we outline below general-purpose
strategies for selecting these parameters. For pt in LLINBO-Transient, our approach introduces
a diminishing reliance on the LLM over time. We therefore set 1− pt ∈ O(1/t2), which limits the in-
fluence of potentially unreliable LLM suggestions as optimization progresses. Indeed, we consistently
observed that the LLM’s ability to exploit diminishes rapidly over time, unsurprising since LLMs lack
explicit surrogate modeling and calibrated uncertainty; however, when the problem domain is well
understood by the LLM (e.g., hyperparameter tuning on standard datasets), the increase in pt can be
made more gradual. In contrast, the performance of the LLM is less critical in LLINBO-Justify,
as this variant is primarily data-driven and can automatically hedge against unreliable suggestions.
Following our theoretical results, we recommend using a conservative decreasing schedule for ψt

(O(1/t), Theorem 2 in the main paper) and setting ψ0 in a way that reflects the structure of the
acquisition function. For instance, when using UCB, ψ0 can be the posterior variance at the first
LLM-suggested point, or in the case of Thompson Sampling, the difference between the maximum
and minimum values in a posterior sample. Finally, LLINBO-Constrained was specifically
designed to minimize the need for hyperparameter tuning, with the only parameter being the sampling
size from the constrained GP, which should be dictated by available computational resources. We
recommend starting with the largest feasible sample size and then gradually reducing it (as permitted
by our theory) based on constraints. In our implementation, we began with a large sample size and
reduced it at a rate of O(1/t2), which offered a good balance between computational efficiency and
performance.

E COMPUTATIONAL COMPLEXITY OF LLINBO

In this section, we analyze the computational complexity of the three LLINBO variants—both
mathematically and empirically—and discuss the tradeoff between computational efficiency and
optimization performance, with particular emphasis on LLINBO-Constrained.

Let CLLM denote the computational cost of querying the LLM, and let CGP represent the cost
associated with extracting the next design point from the GP surrogate. For simplicity, we assume that
all LLM-related operations—including warm-starting and candidate sampling—incur the same cost
CLLM. Likewise, we assume all GP-related operations—sampling candidate points and optimizing
the acquisition function—incur a uniform cost CGP .

Handover property of LLINBO-Transient. By construction, the expected computational cost
of LLINBO-Transient up to time T is

E[CLLINBO-Transient] = (T0 +

T∑
t=1

(1− pt))CLLM +

T∑
t=1

pt CGP = O(log T )CLLM +O(T )CGP .

Thus, the LLM-related computation grows only sublinearly, which is desirable in modern BO
pipelines where LLM inference is typically more expensive—in both time and monetary cost—than
GP-based inference. The GP-related cost naturally scales asO(T ), matching the behavior of classical
BO.

We further formalize the frequency with which LLINBO-Transient queries the LLM in the
following lemma.
Lemma 9. Let Qt ∈ {0, 1} denote whether the algorithm queries the LLM at iteration t, with

P(Qt = 1 | Ft−1) = 1− pt,

and assume 1− pt = O(1/t). Let

IT =

T∑
t=1

Qt
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denote the cumulative number of LLM queries up to iteration T . Then, with probability at least 1− δ,

IT = O(
√
T ) as T →∞.

Thus, LLINBO-Transient hands over to standard BO with high probability.

Proof. Define the martingale

Yt =

t∑
s=1

(
Qs − (1− ps)

)
, Y0 = 0.

Then E[Yt | Ft−1] = Yt−1, and the increments satisfy |Yt − Yt−1| = |Qt − (1 − pt)| ≤ 1 almost
surely. Applying the Azuma–Hoeffding inequality (Lemma 5), we obtain

Pr
(
YT ≥ ϵ

)
≤ exp

(
− ϵ2

2T

)
.

Thus, with probability at least 1− δ,

YT ≤
√
2T log(1/δ).

Since IT =
∑T

t=1(1− pt) + YT and
∑T

t=1(1− pt) = O(log T ), we conclude that

IT ≤ O(log T ) +
√

2T log(1/δ) = O(
√
T )

with probability at least 1− δ. Therefore, the cumulative number of LLM calls is sublinear, implying
that LLINBO-Transient eventually relies primarily on GP-based BO.

Computational Complexity of LLINBO-Justify. Unlike LLINBO-Transient, the
LLINBO-Justify variant requires querying both the LLM and the GP at every iteration. Thus, its
expected computational cost is

E[CLLINBO-Justify] = (T0 + T )CLLM + T CGP .

Consequently, LLINBO-Justify incurs a higher cost than classical BO, LLAMBO-light (the
LLM agent alone), and LLINBO-Transient.

Computational Complexity of LLINBO-Constrained. The LLINBO-Constrained
method additionally requires generating multiple GP-based samples per iteration to enforce safety
constraints. Its expected complexity is

E[CLLINBO-Constrained] = (T0 + T )CLLM +

T∑
t=1

St CGP = O(T )CLLM +O(T + log T )CGP ,

where St denotes the number of surrogate evaluations at iteration t. Because St typically grows
with the number of clients or safety evaluations, this variant is the most computationally demanding
among the three.

Assuming CLLM > CGP , which reflects the common cost hierarchy in practice, we obtain the
following ordering of computational complexity:

CLLINBO-Constrained > CLLINBO-Justify > CLLAMBO-Light > CLLINBO-Transient > CBO.

This ordering highlights a fundamental tradeoff between computational cost and performance im-
provements through LLM-guided exploration. While LLINBO-Constrained is the most com-
putationally intensive, it provides robustness guarantees absent in the lighter methods. Conversely,
LLINBO-Transient offers strong practical efficiency while still benefiting from occasional LLM
guidance.
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Method Experiment Time (s)

BO Rastrigin-2D 12.19± 1.12
Robot with RF-4D 48.76± 3.82

LLAMBO
Rastrigin-2D 907± 12

Robot with RF-4D 3628± 48

LLAMBO-light
Rastrigin-2D 144± 5

Robot with RF-4D 432± 11

LLINBO-Transient
Rastrigin-2D 92.59± 11.12

Robot with RF-4D 278± 18.12

LLINBO-Justify
Rastrigin-2D 167± 4

Robot with RF-4D 668± 8

LLINBO-Constrained
Rastrigin-2D 224± 25.63

Robot with RF-4D 896± 31

Table 3: Summary of computational time (in seconds) across methods for two benchmark experiments,
averaged over 10 runs.

Empirical computation time. We evaluate the computational overhead of each method using two
benchmark tasks: Rastrigin-2D for Bayesian black-box optimization (BBO) and Robot with RF-4D
for hyperparameter tuning (HPT). All settings follow those used in the main experiments, and each
experiment is repeated 10 times. The reported runtimes correspond to the wall-clock time recorded
separately for each run. Experiments were conducted on a system with 5 nodes, each equipped with
dual Intel Xeon Platinum CPUs and 512 GB of RAM. The results are summarized in Table 3.

Based on Table 3, several observations can be made. First, the empirical results are consistent
with our theoretical analysis of computational complexity: LLINBO-Constrained is the most
computationally expensive among the LLINBO variants, while LLINBO-Transient is the most
efficient. LLAMBO exhibits the highest runtime overall, due to repeated interactions with both the
LLM and surrogate model at each iteration. Even though LLAMBO was implemented with parallelism,
it remains significantly slower than other methods. In contrast, LLAMBO-light is substantially
more efficient, as it avoids the repeated GP updates needed in full LLAMBO.

We also observe higher variance in computational time for the LLM-based methods compared
to BO. This can be attributed to occasional failures in LLM responses, such as format errors or
mismatched dimensions, which require re-querying. Furthermore, the large standard deviation for
LLINBO-Constrained is expected: when the number of retained samples is large, evaluating the
aggregated posterior mean and variance (as described in Theorem 3) dominates the computation for
that iteration, leading to increased variability across runs.

Trade-off between complexity and performance in LLINBO-Constrained. An experiment
on BBO task using Rastrigin-2D is performed to assess the trade-off between computational com-
plexity and the regret in LLINBO-Constrained. More specifically, we aim to link the set-
tings of S1 (initial sample size) and the decreasing rate of St to the performance. We consider
S1 = 100, 1000, 5000 and St = S1, St = S1/t, St = S1/t

2. All other settings are the same as in
the main paper. Fig. 9 shows the regret curves for each setting compared with the two baselines: BO
and LLAMBO-light.

We can derive several important insights from Fig. 9. First, BO consistently reduces regret across all
iterations, while the LLM-based agent (LLAMBO-light) is highly effective in the early phase but
struggles to provide meaningful improvements thereafter. This highlights a fundamental limitation of
LLM-guided exploration—strong initial performance followed by diminishing returns.

Second, the behavior of LLINBO-Constrained becomes increasingly similar to standard BO as
the decay rate of St increases. When St is constant, the algorithm remains partially influenced by the
LLM’s suggestions, which can be suboptimal in later stages. However, setting St = S1/t

2 yields
regret curves that closely align with BO, indicating that a faster decay reduces reliance on the LLM
at later iterations, when its suggestions become less reliable. This finding supports the use of an
aggressive decay schedule for St.
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(a) St = S1 (b) St = S1/t (c) St = S1/t
2

Figure 9: Gt comparison on Rastrigin-2D using different settings of S1 and St. Each line
shows the mean regret, shaded with 95% confidence intervals. Proposed methods:
LLINBO-Constrained with S1 = 100, LLINBO-Constrained with S1 = 1000,
LLINBO-Constrained with S1 = 5000. Baselines: BO, LLAMBO-light.

Third, varying S1 reveals a useful trade-off between early-stage performance and long-term robustness.
A larger initial S1 enables the algorithm to leverage the LLM’s few-shot learning strengths, as seen
in the yellow and purple curves in Fig. 9(a) and Fig. 9(b). These observations are consistent with our
design choices in Section 3, where we adopt St = 10000/t2, and align with the practical guidelines
provided in Appendix D. In practice, we recommend setting S1 based on available computational
resources and adopting a decay rate on the order of O(1/t2).
Finally, while the computational–performance trade-off is difficult to quantify precisely due to the
black-box nature of LLMs, the trend in the regret curves offers intuitive guidance. Since LLMs
perform well in the early iterations but fail to exploit in the later phase, setting a large S1 (to
fully utilize initial LLM strength) and decreasing it over time (to prioritize exploitation and reduce
computational cost) provides a balanced and practical strategy for LLINBO-Constrained.

F NUMERICAL EXPERIMENTS DETAILS

We utilize GPT-3.5-turbo as the LLM agent, selected for its demonstrated capability to generate
high-quality responses. The temperature parameter is set to its default value of 1.0. Prompt structures
for LLAMBO are primarily adapted from the methodology proposed by Liu et al. (2024). For each
task, we define a task-specific system prompt. Specifically, the system prompt for BBO is: "You are
an AI assistant that helps people find the maximum of a black-box function." and for hyperparameter
tuning tasks: "You are an AI assistant that helps me reduce the mean square error by tuning the
hyperparameters in a machine learning model."

We use SingleTaskGP in Python’s BOTorch package Balandat et al. (2020) as the surrogate model
when a statistical model is involved. Namely, its prior mean is set to be constant, where the constant
is learned while training, and the kernel function is set to be matern 5/2 with automatic relevance
determination.

F.1 EXPERIMENTAL DETAILS FOR BBO

For the BBO task, we employ the following simulation functions: Levy-2D, Rastrigin-2D, Branin-
2D, Bukin-2D, Hartmann-4D, and Ackley-6D, as implemented in the Virtual Library of Simulation
Experiments Surjanovic & Bingham (2013). Each function is rescaled to the unit hypercube [0, 1]D ,
and a negative sign is applied to the response to convert the problem into a maximization task. A
summary of these simulation functions is provided below.

• Levy-2D

wi = 1 +
xi − 0.5

4
, i = 1, 2

f(x) = − sin2(πw1)−
1∑

i=1

(wi−1)2
[
1 + 10 sin2(πwi + 1)

]
−(w2−1)2

[
1 + sin2(2πw2)

]
26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

• Rastrigin-2D
x′ = 10.24x− 5

f(x) = −12−
2∑

i=1

[
x′

2
i − 10 cos(2πx′i)

]
• Branin-2D

x′1 = 15x1 − 5, x′2 = 15x2

f(x) = −
(
x′2 −

5.1

4π2
x′21 +

5

π
x′1 − 6

)2

− 10

(
1− 1

8π

)
cos(x′1)− 10

• Bukin-2D
x′1 = 20x1 − 15, x′2 = 6x2 − 3

f(x) = −100
√
|x′2 − 0.01x′21 | − 0.01 |x′1 + 10|

• Hartmann-4D

f(x) = −
4∑

i=1

ai exp

− 4∑
j=1

Aij(xj − Pij)
2


With constants:

a = [1.0, 1.2, 3.0, 3.2]

A =

 10 3 17 3.5
0.05 10 17 0.1
3 3.5 1.7 10
17 8 0.05 10



P = 10−4 ×

1312 1696 5569 124
2329 4135 8307 3736
2348 1451 3522 2883
4047 8828 8732 5743


• Ackley-6D

f(x) = −20 exp

−0.2
√√√√1

6

6∑
i=1

x2i

− exp

(
1

6

6∑
i=1

cos(2πxi)

)
+ 20 + e

Prompts design for BBO task. To facilitate effective reasoning by the LLM, each function
is accompanied by a Description Card , which provides essential contextual information. The

Description Card includes the following components:

• Function Patterns: A high-level summary of the function’s characteristics, offering
partial information to guide the LLM’s reasoning. For example:
"Non-convex and multi-modal. The function exhibits a nearly flat outer region with a
prominent central depression, resulting in multiple local optima surrounding a single global
optimum. It is highly symmetric and separable, yet optimization remains challenging due to
the abundance of local maxima."

• Dimensionality: Specifies the number of input dimensions. Given that the input space
is normalized to the unit hypercube, this field simply indicates the dimensionality of the
design space.

The Function Patterns included in each Description Card are derived from the benchmark
function descriptions provided by Surjanovic & Bingham (2013), and a summary of these patterns is
presented in Table 4.

Next, we introduce Data Card , which collects the information of previously observed designs and
the responses. For example, at iteration 4, the Data Card would be x: (0.2334, 0.12), f(x): 1.2311;
x: (0.1217, 0.433), f(x): 1.091; x: (0.9, 0.5), f(x): 4.502; x: (0.108, 0.203), f(x): 3.22.
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Simulation
functions

Description Card [Function Patterns]

Levy-2D highly multimodal but with a unique global maximum.
Rastrigin-2D which is highly multimodal, non-convex function with a large number of regularly

spaced local minima.
Branin-2D smooth, multimodal benchmark with three global maxima
Bukin-2D steep, narrow, and highly non-convex landscape with a sharp valley and a unique

global maximum
Hartmann-4D 4-dimensional, non-convex, multi-modal and is composed of weighted, anisotropic

Gaussian-like bumps centered at different points, making it highly non-separable
and challenging to optimize.

Ackley-6D 6-dimensional, non-convex, and multi-modal. The function exhibits a nearly flat
outer region and a large hole at the center, resulting in many local optima surrounding
a single global optimum. It is highly symmetric and separable in nature, but
optimization is still challenging due to the numerous local maxima.

Table 4: Function patterns used in the Description Card for each simulation function.

In the LLAMBO framework, candidate sampling is facilitated by a structured prompt designed to elicit
a diverse set of potential query points. This mechanism is illustrated in the Candidate sampling phase
of Table 5. At each iteration, we prompt LLM 10 times to generate a total of 10 candidate points. To
enhance the diversity of these candidates, we follow the strategy outlined in Liu et al. (2024), where
the content of the Data Card is permuted across prompts.

The LLAMBO framework Liu et al. (2024) introduces a hyperparameter α = 0.1 to balance exploration
and exploitation during the candidate sampling phase. At iteration t, we compute the Target Score
based on the current observed values {yi} as follows:

Target Score =

{
mini yi + α · (maxi yi −mini yi), for minimization,
maxi yi − α · (maxi yi −mini yi), for maximization.

This value serves as a dynamic threshold to guide the LLM in proposing candidates that are both
competitive with current best observations and diverse enough to enable exploration.

In the LLAMBO framework, a surrogate prompt is used to estimate the predictive mean and variance
at each candidate point generated by the candidate sampling prompt. This process corresponds to the
Surrogate modeling phase illustrated in Table 5. To promote variability in the surrogate responses,
we similarly permute the Data Card across prompts. Finally, an AF is applied to select the next
query point. We adopt the Expected Improvement (EI) criterion Jones et al. (1998), consistent with
the acquisition strategy employed in Liu et al. (2024).

In contrast, the LLAMBO-light variant bypasses explicit surrogate querying by prompting LLM
directly with the problem formulation and historical observations to generate the next evaluation
point. This streamlined design process corresponds to the Candidate generation phase shown in
Table 5.
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Phases Prompts

Warmstarting
LLAMBO

LLAMBO-light

You are assisting me with maximizing a black-box function. The
function is Description Card [Function Patterns]. Suggest

Description Card [Dimensionality] promising starting points in the

range [0, 1]ˆ Description Card [Dimensionality]. Return the points

strictly in JSON format as a list of Description Card [Dimensionality]-
dimensional vectors. Do not include any explanations, labels, formatting, or
extra text. The response must be strictly valid JSON.

Candidate sampling
LLAMBO

The following are past evaluations of a black-box function. The function is
Description Card [Function Patterns]. Data Card The allowable

ranges for x is [0, 1]^ Description Card [Dimensionality]. Recommend

a new x that can achieve the function value of Target Score . Return only a

single Description Card [Dimensionality]-dimensional numerical vec-
tor with the highest possible precision. Do not include any explanations, labels,
formatting, or extra text. The response must be strictly valid JSON.

Surrogate modeling
LLAMBO

The following are past evaluations of a black-box function, which is
Description Card [Function Patterns]. Data Card The allowable

ranges for x is [0, 1]^ Description Card [Dimensionality]. Predict the
function value at x = x. Return only a single numerical value. Do not include
any explanations, labels, formatting, or extra text. The response must be strictly
a valid floating-point number.

Candidate generation
LLAMBO-light

The following are past evaluations of a black-box function, which is
Description Card [Function Patterns]. Data Card The allowable

ranges for x is [0, 1]^ Description Card [Dimensionality]. Based on
the past data, recommend the next point to evaluate that balances exploration
and exploitation: - Exploration means selecting a point in an unexplored or less-
sampled region that is far from the previously evaluated points. - Exploitation
means selecting a point close to the previously high-performing evaluations.
The goal is to eventually find the global maximum. Return only a single
Description Card [Dimensionality]-dimensional numerical vector with

high precision. The response must be valid JSON with no explanations, labels,
or extra formatting. Do not include any explanations, labels, formatting, or
extra text.

Table 5: Prompts used across different stages of LLAMBO and LLAMBO-light in the BBO task.
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F.2 EXPERIMENT DETAILS FOR HYPERPARAMETER TUNING TASK

The tuning objective for all models is to minimize the MSE. The search spaces for the hyperparameters
are specified as follows.

RF-4D

• max_depth (Maximum depth of a tree): [−1, 50] (integer; −1 indicates no limit)
• min_samples_split (Minimum samples to split an internal node): [2, 20] (integer)
• min_samples_leaf (Minimum samples required in a leaf node): [1, 20] (integer)
• max_features (Fraction of features to consider for best split): [0.1, 1.0]

SVR-3D

• C (Regularization parameter): C ∈ [0.01, 1000.0]

• epsilon (Epsilon in the ϵ-insensitive loss): ϵ ∈ [0.0001, 1.0]

• gamma (Kernel coefficient for RBF kernel): γ ∈ [0.0001, 1.0]

XGB-4D

• max_depth (Maximum depth of a tree): [1, 10] (integer)
• learning_rate (Step size shrinkage): [0.01, 0.3]
• subsample (Subsample ratio of the training set): [0.5, 1.0]
• colsample_bytree (Subsample ratio of columns per tree): [0.5, 1.0]

Prompts design for hyperparameter tuning task. The prompt settings for both LLAMBO and
LLAMBO-light in the hyperparameter tuning task follow the same configuration as in the BBO
task (α and AF), with the exception of the prompt structure. In particular, the hyperparameter tuning
prompts also require both the Description Card and the Data Card to capture the relevant model
specifications and historical evaluations.

Each Description Card specifies four key components:

• Data Patterns: Summarize key dataset features that help the LLM understand the task.
1. Piston simulation function: "The dataset models the cycle time of a piston moving

within a cylinder, based on seven physical input variables including mass, surface area,
pressure, and temperature."

2. Robot simulation function: "The dataset models the position of a planar robotic arm
consisting of four rotating joints and link lengths, computing the Euclidean distance of
the arm’s endpoint from the origin."

• Model Patterns: Describe the predictive model being used and any fixed configura-
tions.

• Controllable Hyperparameters: List the tunable hyperparameters along with
their types and ranges, and this matches the controllable parameters described previously.

• Dimensionality: The dimensions of controllable hyperparamters.

The Data Card for the hyperparameter tuning task may, for instance, take the form: (C, gamma):
(0.21, 12), accuracy: 0.899; (C, gamma): (0.98, 422), mean squared error: 1.00, where each entry
reflects a past evaluation consisting of a specific hyperparameter configuration and its corresponding
performance metric (i.e., MSE).

Together with the Description Card , which outlines the model and search space, the complete
prompt structure used in both LLAMBO and LLAMBO-light is illustrated in Table 6.
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Phases Prompts

Warmstarting
LLAMBO

LLAMBO-light

You are assisting with automated machine learning using
Description Card [Model Patterns] for a regression task.

Description Card [Data Patterns]. Model performance is evalu-
ated using mean squared error. I’m exploring a subset of hyperparameters
defined as Description Card [Controllable Hyperparameters].

Please suggest Description Card [Dimensions] diverse yet effective
configurations to initiate a Bayesian optimization process. Return the points
strictly in JSON format as a list of Description Card [Dimensions]-
dimensional vectors. Do not include any explanations, labels, formatting, or
extra text.

Candidate sampling
LLAMBO

The following are examples of the performance of a
Description Card [Model Patterns] measured in mean square

error and the corresponding model hyperparameter configurations.
Data Card Description Card [Data Patterns] The allowable

ranges for the hyperparameters are: Description Card [Controllable
Hyperparameters]. Recommend a configuration that can achieve
the target mean square error of Target Score . Return only a single

Description Card [Dimensions] -dimensional numerical vector with the
highest possible precision. The response needs to be a list and must be strictly
valid JSON. Do not include any explanations, labels, formatting, or extra text.

Surrogate modeling
LLAMBO

The following are examples of the performance of a
Description Card [Model Patterns] measured in mean square er-

ror and the corresponding model hyperparameter configurations. The model
is evaluated on a regression task. Data Card Description Card [Data
Patterns] Predict the mean square error when the model hyperparameter
configurations are set to be x. Return only a single numerical value between 0
and 1. Do not include any explanations, labels, formatting, or extra text. The
response must be strictly a valid floating-point number.

Candidate generation
LLAMBO-light

The following are examples of the performance of a
Description Card [Model Patterns] measured in mean square er-

ror and the corresponding model hyperparameter configurations. Data Card
Description Card [Data Patterns] Based on the past data, recommend

the next point to evaluate that balances exploration and exploitation: -
Exploration means selecting a point in an unexplored or less-sampled
region that is far from the previously evaluated points. - Exploitation
means selecting a point close to the previously high-performing evaluations.
The goal is to eventually find the global maximum. Return only a single
Description Card [Dimensionality]-dimensional numerical vector with

high precision. The response must be valid JSON with no explanations, labels,
or extra formatting. Do not include any explanations, labels, formatting, or
extra text.

Table 6: Prompts used across different stages of LLAMBO and LLAMBO-light in the hyperparame-
ter tuning task.
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G 3D PRINTING DETAILS

We define the controllable design parameters of the printer via a comprehensive correlation analysis,
and the selected variables of interest are summarized below.

• Nozzle Temperature: Temperature of the hot-end nozzle in °C.

• Z Hop Height: The vertical lift of the nozzle during travel (non-printing) moves.

• Coasting Volume: Volume of filament not extruded at the end of a line.

• Retraction Distance: Distance (mm) the filament is pulled back before a travel move.

• Outer Wall Wipe Distance: Distance (mm) the nozzle continues moving after the outer wall
ends.

G.1 QUALIFYING THE STRINGING PERCENTAGE

An image-based metric is used to qualify the stringing percentage. Printed parts were photographed
under consistent lighting conditions against a black background. Each image was converted to
grayscale to simplify processing, and a fixed region of interest (ROI) was cropped to capture the
space between the two vertical columns (see the left panel of Figure 10). This region should appear
empty when no stringing is present.

To differentiate potential stringing from the background, a pixel intensity threshold was selected
through trial-and-error. Pixels with intensity below the threshold were set to black, while those above
were set to white (see the right panel of Figure 10). The stringing percentage was then calculated as
the ratio of white pixels to the total number of pixels within the ROI. This approach offers a fast and
consistent approximation of stringing severity across multiple prints.

Figure 10: Grayscale image (BO, iteration 2) of the printed part with the region of interest (left panel),
and white pixels approximating the stringing amount (15.9%) over the region of interest (right panel).

G.2 PROMPTS DESIGN

The settings of LLMs are the same as in Appendix F.1. The system prompt is You are an AI assistant
that helps me optimize the 3D manufacturing process by controlling parameters. An example of
the Data Card is "(Nozzle Temperature, Z Hop Height, Coasting Volume, Retraction Distance,
Outer Wall Wipe Distance): (235, 0.3, 0.06, 4, 0.3), Stringing percentage: 12%. We also need a
Parameter Description Card to describe the controllable and fixed variables, which is

You are allowed to adjust only five slicing parameters: Nozzle Temperature: Range 220–260°C (step:
1°C), Z Hop Height: Range 0.1–1.0 mm (step: 0.1 mm), Coasting Volume: 0.02–0.1 mm3 (step: 0.01
mm3), Retraction Distance: 1.0–10.0 mm (step: 1 mm), and Outer Wall Wipe Distance: 0.0–1.0 mm
(step: 0.1 mm) Slicing settings below are fixed: Retraction Speed = 60 mm/s, Travel Speed = 178
mm/s, Fan Speed = 60%. Other slicing settings are set to be the software’s default values.
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The warmstarting prompt (for LLAMBO-light and LLAMBO), candidate sampling prompt
(for LLAMBO), surrogate modeling prompt (for LLAMBO), and candidate generation prompt(for
LLAMBO-light) are shown in Table 7.

Phases Prompts

Warmstarting
LLAMBO

LLAMBO-light

You are assisting with process planning for 3D printing a simple part using
Overture PETG filament on an Ender 3 Pro in a room-temperature environment
(around 22°C). The objective is to reduce stringing as much as possible, using
knowledge of PETG printing behavior. Parameter Description Card After
each print, stringing is measured via an image-based algorithm, returning a
percentage between 0 and 100%. You must now propose 2 promising combi-
nations of Nozzle Temperature (°C), Z Hop Height (mm), Coasting Volume
(mm³), Retraction Distance (mm), Outer Wall Wipe Distance (mm) that are
likely to minimize stringing, based on your understanding of PETG behavior.
Format your answer strictly as a valid JSON list of 5-dimensional vectors. Each
vector should be: [Nozzle Temperature (°C), Z Hop Height (mm), Coasting
Volume (mm³), Retraction Distance (mm), Outer Wall Wipe Distance (mm)].
Do not include any explanations, labels, formatting, or extra text.

Candidate sampling
LLAMBO

The following are past evaluations of the stringing percentage and their cor-
responding Nozzle Temperature (°C), Z Hop Height (mm), Coasting Vol-
ume (mm³), Retraction Distance (mm), Outer Wall Wipe Distance (mm) val-
ues: Data Card Parameter Description Card Recommend a new ([Noz-
zle Temperature (°C), Z Hop Height (mm), Coasting Volume (mm³), Retraction
Distance (mm), Outer Wall Wipe Distance (mm)) that can achieve the stringing
percentage of Target Score . Instructions: Return only one 5D vector: ‘[Noz-
zle Temperature (°C), Z Hop Height (mm), Coasting Volume (mm³), Retraction
Distance (mm), Outer Wall Wipe Distance (mm)]‘. Ensure the values respect
the allowed ranges and increments. Respond with strictly valid JSON format.
Do not include any explanations, comments, or extra text.

Surrogate modeling
LLAMBO

The following are past evaluations of the stringing percentage and the cor-
responding Nozzle Temperature (°C), Z Hop Height (mm), Coasting Vol-
ume (mm³), Retraction Distance (mm), Outer Wall Wipe Distance (mm).
Data Card Parameter Description Card Predict the stringing percentage

at ([Nozzle Temperature, Z Hop Height, Coasting Volume, Retraction Distance,
Outer Wall Wipe Distance) = x. The stringing percentage needs to be a single
value between 0 to 100. Return only a single numerical value. Do not include
any explanations, labels, formatting, percentage symbol, or extra text.

Candidate generation
LLAMBO-light

The following are past evaluations of the stringing percentage and their cor-
responding Nozzle Temperature (°C), Z Hop Height (mm), Coasting Volume
(mm³), Retraction Distance (mm), Outer Wall Wipe Distance (mm) values:
Data Card Parameter Description Card Your goal is to recommend the

next setting to evaluate that balances exploration and exploitation: Explo-
ration favors regions that are less-sampled or farther from existing evaluations.
Exploitation favors regions near previously low stringing percentages. The
ultimate objective is to find the global minimum stringing percentage. The
ideal stringing percentage is 0%. Instructions: Return only one 5-dimensional
vector: [Nozzle Temperature (°C), Z Hop Height (mm), Coasting Volume
(mm³), Retraction Distance (mm), Outer Wall Wipe Distance (mm)]. Ensure
the values respect the allowed ranges and increments. Respond with strictly
valid JSON format. Do not include any explanations and comments.

Table 7: Prompts used across different stages of LLAMBO and LLAMBO-light in the 3D printing
experiment.

33


	Introduction
	LLINBO: LLM-in-the Loop BO
	Preliminaries
	LLM-in-the Loop BO Framework
	LLINBO-Transient: Exploration by LLMs then Exploitation by GPs 
	LLINBO-Justify: Surrogate-driven Rejection of LLM's Suggestions
	LLINBO-Constrained: Constrain Surrogates on LLM's Suggestions

	Numerical Studies
	Application to 3D Printing
	Conclusion
	More Related Works
	Technical Results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorems 3 and 4

	Additional Experiment
	Comparison with HAIC BO
	Experiments on High Dimensional Settings
	Experiments on the Dynamics of LLINBO-Justify
	Influence of Prompt Informativeness on LLINBO

	Selection between the Proposed Algorithms and Hyperparameters
	Computational Complexity of LLINBO
	Numerical Experiments Details
	Experimental Details for BBO
	Experiment Details for Hyperparameter Tuning Task

	3D Printing Details
	Qualifying the Stringing Percentage
	Prompts Design


