Out-of-distribution algorithms for robust insect classification
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Abstract

Plants are exposed to various useful and harmful insect pests
during their growth cycle. Accurate identification of these
pests is critical for deciding on a timely and appropriate mit-
igation strategy with significant economic and environmen-
tal implications. Recent progress in deep learning-based ap-
proaches has resulted in insects exhibiting good accuracy.
However, deploying them in the wild is still problematic due
to the fact that input images that are wildly out of the dis-
tribution (for e.g., non-insect images like vehicles, animals,
or a blurred image of an insect or insect class that is not yet
trained on) can still produce insect classification. To counter
this, methods that ensure that a model abstains from making
predictions are needed. To address this issue, we leverage
the out-of-distribution detection concept that showed promis-
ing results in detecting out-of-distribution data in dermatol-
ogy tasks (Roy et al. 2022). In our work, we evaluate the per-
formance of state-of-the-art out-of-distribution (OOD) algo-
rithms on insect detection classifiers. These algorithms repre-
sent a diversity of methods of approaching an OOD problem.
Additionally, we focus on extrusive algorithms — i.e., algo-
rithms that wrap around a pre-trained classifier without the
need for additional co-training. We choose three OOD de-
tection algorithms: (i) Maximum Softmax Probability (MSP),
commonly referred to as the baseline algorithms (Hendrycks
and Gimpel 2016), (ii) Mahalanobis distance-based algo-
rithm which solves the problem using a generative classifi-
cation approach (Lee et al. 2018; Ren et al. 2021), and (iii)
Energy-Based Model OOD detection algorithm, which ex-
hibits SOTA for OOD detection (Liu et al. 2020). We per-
form an extensive series of evaluations of these OOD algo-
rithms across two performance axes: (a) how the accuracy of
the classifier impacts OOD performance, and (b) how the de-
gree of out-of-domain impacts OOD performance. The result
of our analysis shows OOD detection algorithms can signifi-
cantly improve from abstaining classification across different
settings of models’ structures and datasets. Thus, our OOD-
robust classifier improves user trust in using the application
for insect-pests classification.

Introduction
Insect pest-related diseases in crops and plants can be ob-
served at all stages of their growth, negatively affecting
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the quality and quantity of yields. Therefore, accurate de-
tection of insects is imperative for the decision-making of
strategies. The insect detection task was initially handled
with traditional machine-learning algorithms. In these al-
gorithms, first, a set of features such as color and texture
are extracted from images, and then an object detector cre-
ates a mapping from the feature space to their correspond-
ing label. SVM is one of the most common examples of
these algorithms used frequently by researchers in insect
detection problems (Ebrahimi et al. 2017; Kasinathan, Sin-
garaju, and Uyyala 2021). Such approaches require exten-
sive domain knowledge about the input data for feature ex-
traction and choice of classifiers. However, this issue has
been tackled with the emergence of deep learning algo-
rithms. In classifying 13 soybean pests, the performance of
5 models(Inception-v3, Resnet-50, VGG-16, VGG-19, and
Xception) was compared across the dataset of size 5000
samples in (Tetila et al. 2020). (Li et al. 2020) leveraged the
GoogLeNet and achieved 98 percent accuracy in a 10-class
insect classification task with a manually collected dataset.
Manual labeling of the large dataset requires extensive hours
of experts, which is not always accessible. Self-supervised
algorithms eliminate the need for labeling by utilizing spe-
cific parts of the image to predict other parts. (Kar et al.
2021) offered the BYOL, a self-supervised pest classifier al-
gorithm, with up to 93 percent accuracy. While these algo-
rithms achieved high accuracy in classifications, neither of
them could claim the certainty of their decisions or abstain
from classification in the case of uncertainty.

One of the initial algorithms proposed for handling
out-of-distribution data is maximum-softmax-probability
(MSP) (Hendrycks and Gimpel 2016). This algorithm relies
on the assumption that deep learning models are more con-
fident in the classification of in-distribution data rather than
out-of-distribution (OOD) ones. The paper used the softmax
value as a metric to measure the confidence of predictions.
Due to its simplicity and good performance, this algorithm
has been prevalent in addressing OOD detection. However,
it has been shown in practice that MSP has a high false posi-
tive rate in OOD detection. Liu et al. (2020) has proven the-
oretically and analytically that an energy-based model can
be a great substitute for MSP as they are aligned with the
probability density of in-distribution data.

Another group of OOD algorithms proposed introducing
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Figure 1: Out-of-distribution visualization in insect classification

part of the OOD data during the training process. Hendrycks,
Mazeika, and Dietterich (2018) modify the classifier’s cross-
entropy loss function and add an extra term to handle OOD
data so that the softmax distribution for OOD data will be
uniform. Researchers also incorporated OOD detection into
the classifier’s structure and designed a hierarchical outlier
detection algorithm (HOD) to identify outlier dermatolog-
ical conditions (Roy et al. 2022). Fort, Ren, and Lakshmi-
narayanan (2021) and Ren et al. (2019) also adjust the classi-
fier by adding an extra class to classify the OOD data during
the prediction.

While discriminative algorithms try to find the best deci-
sion boundaries, generative models focus on estimating the
in-distribution density. Scientists used this feature of gener-
ative models in solving the OOD problem (Choi and Jang
2018; Nalisnick et al. 2018; Ren et al. 2019; Serra et al.
2019). Among generative model-based OOD algorithms,
OOD detection based on Mahalanobis distance is the most
popular. Denouden et al. (2018) solves the OOD problem
in the context of auto-encoder architecture, using the fact
that auto-encoder is ineffective in encoding and reconstruct-
ing the OOD data in comparison to in-distribution ones.
They distinguish OOD data from in-distribution by defin-
ing a threshold based on the Mahalanobis distance metric
on reconstruction error. Moreover, Lee et al. (2018) extracts
class conditional gaussian distributions of deep learning fea-
tures based on Gaussian discriminant analysis, leading to
a Mahalanobis distance-based confidence score. Ren et al.
(2021) commented that the latter algorithm suffered from
near-OOD detection and offered an adjustment to the previ-
ous algorithm.

In this paper, for the first time, we impose the idea of out-
of-distribution detection in the agricultural domain. Also, we
evaluate the OOD algorithm’s performance in a large insect
dataset of iNaturalists. This differs from previous works,
which conduct their analysis on benchmark datasets such
as CIFAR10, CIFAR100, and SVHN, which have relatively
smaller data sizes. We evaluate the performance of the three

OOD methods (MSP, Mahalanobis distance, and energy-
based model) for the insect detection tasks on various fine-
tuned insect classifiers. Mainly, we answer the following
questions:

* How the model accuracy is affecting the OOD detection
performance?

* Does the OOD detection algorithms’ performance de-
pend on the distribution of the dataset?

The paper is organized as follows. Section 3 explains the
problem definition and each OOD detection method we eval-
uate. In section 4, we illustrate the evaluation results. In sec-
tion 5, we will conclude the research paper and the potential
future work.

Methods

To answer the above-mentioned questions, we first prepared
the datasets, next trained the insect classifiers, and last ap-
plied the OOD algorithms on the combination of insect clas-
sifiers and dataset and measured their performance. In the
following section, we will go through each of the processes
in more detail.

Datasets

We curated two series of datasets, one for in-distribution
(ID) and one for OOD. We used ID data for three main pur-
poses: (i) training the insect classifier, (ii) training the gener-
ative OOD algorithm (Mahalanobis distance), and (iii) eval-
uating the performance of OOD algorithms with respect to
distinguishing the ID data from OOD data. For these objec-
tives, we curated an insect dataset consisting of the top 142
agriculturally relevant species (in terms of economic impact
in North America). This dataset is a subset of the publicly
available iNaturalist dataset and consists of 2 million in-
sect pictures. We split the dataset into train and validation
sets with a ratio of 7 to 3 and then obtain the accuracy of
each classifier. We then divide the validation folder into two
equally sized smaller datasets. One was used for training the



OOD model (only for the generative OOD model), and the
other was used for evaluating the performance of OOD al-
gorithms.

For OOD data, we utilized four datasets with different de-
grees of similarity to ID data. We briefly describe each of
these datasets.

* ImageNet (Russakovsky et al. 2015) (far OOD): We
downloaded the ImageNet 2012 classification data with
1000 object categories. We then excluded all insect-
related objects from it.

* Human Face (Wang et al. 2020) (far OOD): We down-
loaded the data from the face mask recognition dataset
of the Kaggle competition', which includes pictures of
human faces with and without masks.

¢ Nonlnsecta (Van Horn et al. 2021) (near OOD): this
dataset is a subset of iNaturalist 2, where we exclude all
the Insecta images from it.

¢ OODInsect (near OOD): This dataset includes all insect
pictures that do not belong to any of the 142 classes of
ID data. This dataset is also collected from the iNatrualist
website.

Insect Classifiers Methods

* Resnet50 ResNet is a popular CNN model that was pro-
posed by He et al. (2016), and it has proven to produce
high classification accuracies for computer vision and
image classification tasks. The success was attributed to
the presence of skip connections in its residual blocks
that overcome the diminishing or exploding gradients.
We use a variant of this model, ResNet-50, which is 50
layers deep in our paper.

* RegnetY32 RegNet is an optimized design space devel-
oped by Radosavovic et al. (2020) where they explore
a diverse set of parameters of a network structure like
width, depth, groups, etc (commonly called as AnyNet,
an initial space of unconstrained models which uses mod-
els like ResNet (He et al. 2016) as its base). By conduct-
ing many experiments of trying different parameter val-
ues for the design space, they arrived at the optimized
RegNetX or RegNetY models. In this paper, we use the
RegNetY32 model for our experiments.

Out-of-distribution Methods

e Maximum Softmax Probability(MSP) (Hendrycks
and Gimpel 2016) This algorithm, simply by utilizing
the maximum/predicted class probability as a confidence
score, distinguishes between ID vs OOD data.

¢ Mahalanobis distance-based algorithm (Lee et al.
2018) In this algorithm, they solve the problem of OOD
binary classification with the help of a generative clas-
sifier. This classifier is created under Gaussian discrimi-
native analysis. For a given input data X and a classifier
with a range of labels, {1, ..., C'}, the algorithm assumes

"https://www.kaggle.com/datasets/ashwingupta3012/human-
faces
Zhttps://github.com/visipedia/inat.omp/tree/master /2021

that the class conditional distributions of predictions are
from a multivariate Gaussian distribution.

Using the output of the penultimate layer of the classi-
fier (denoted as f(z)), they assume P(f(x)ly = ¢) =

N (f(z)|pe, X) where . and X are consecutively mean
and covariance of the multivariate Gaussian distributions.
They calculate (1. and X for a given OOD training sample
{(z1,91), ..., (xn,yn)} with the following formula:

fhe = Ni Z f(s) O
=2 Y () i) - i@

They introduce Mahalanobis distance-based(MAH) con-
fidence score, M(x) as a distance from a sample x to the
closets class-conditional Gaussian distribution:

M(2) = max —(f(2) ~ i) S (f(@) —4e) 3)

Energy-based models (EBM) (Liu et al. 2020) The en-
ergy model is a function from F(z) : RP — R where
each input value is mapped into a non-probabilistic En-
ergy value. Energy values can be converted to probability
density through Gibbs distribution:

e~ E(zy)/T
p(ylz) = W 4)

The Helmholtz free energy function E(x) for x € RP is
expressible based on the denominator with the following
formula:

E(z) = —Tlog/ e~ El@y)/T )

Y

Based on the similarity of Equation 4 with the softmax
formula, we can replace the energy parameter E(z,y)
with the logit value of the classifier f(z) : RP? — RE
with — f, (z) and define the energy function for a given
classifier and input data as bellow:

K
E(x) = —TlogZefi(I)/T (6)

In the above formula, the parameter T is referred to as
temperature which we set 7' = 1 for the purpose of our
paper. We utilize the value returned from the energy func-
tion as a confidence score; we expect the in-distribution
data to return a lower value for the energy than OOD.

Results

We present our results in terms of answers to questions that
we had posed in the introduction:

RQ1. How does the model accuracy affect the OOD
detection performance? To answer this question, we first
trained the insect classifiers based on two different archi-
tectures for the classifier(ResNet50 and RegNetY32) for 50
epochs each. We trained our classifiers with the settings of
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Figure 2: The trend of OOD detection with respect to increment in accuracy
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Figure 3: Comparison between OOD datasets with different degrees of similarity to ID on OOD detection

the cross-entropy loss function and AdamW optimizer with
a start learning rate of 1e — 3. For loading the data, we utilize
the batch size of 256. We then choose epochs {0, 1, 10, 49}
to evaluate their accuracy on the validation set. Next, we
run all three OOD algorithms on the 4 chosen epochs of
Resnet50 and Regnet32. The result of our analysis is shown
in Figure 2 (left) and Figure 2 (right).

These figures illustrate the consistently better perfor-
mance of EBM in comparison to the other two approaches.
Furthermore, we also note that for the ResNet50 architec-
ture, better accuracy of the classifier leads to better OOD
detection, but this is not consistent in RegNetY32. This con-
tradicts the common notion that a good classifier will always
lead to good OOD Detection (Vaze et al. 2021). Our results
indicate more stability of OOD Detection in ResNet50 than
its counterpart, RegNetY32.

RQ2. Does the OOD detection algorithms’ per-
formance depend on the distribution of the out-of-
distribution dataset? To explore this question, we select 4

sets of data with a wide range of degrees of similarity to ID
data, as explained above. Then for the trained RegnetY32
model, we compare the in-distribution data to the four OOD
dataset: Imagenet, Human Face, NonlInsecta, and OODIn-
sect. Our results shown in Figure 3 also confirm our obser-
vations from RQI1 that EBM has the best performance on
all 4 OOD datasets. Also, the figures endorse the claim in
(Liu et al. 2020) about MSP having the highest FPR95. It
is also noticeable that MSP is not affected by the level near
OOD or far OOD. Despite MSP, EBM shows a significant
improvement in detecting near OOD. Moreover, we observe
that FPR9S5 for near OOD is lower in EBM and MAH in
comparison to far OOD.

Conclusions

Automated insect pest detection is an economically critical
agricultural task. It is important that well trained models,
when deployed in the wild, abstain from making predictions
when encountering data that is out of their training distribu-



tion. We explore and quantify the performance of several
OOD approaches applied to insect pest classification. We
expect this study to ensure enhanced trust worthiness of de-
ployed models.
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