

000 INFORMATION-THEORETIC BAYESIAN OPTIMIZATION FOR 001 BILEVEL OPTIMIZATION PROBLEMS 002 003 004

005 **Anonymous authors**
006 **Paper under double-blind review**
007
008
009

010 ABSTRACT 011

012 A bilevel optimization problem consists of two optimization problems nested as
013 an upper- and a lower-level problem, in which the optimality of the lower-level
014 problem defines a constraint for the upper-level problem. This paper considers
015 Bayesian optimization (BO) for the case that both the upper- and lower-levels
016 involve expensive black-box functions. Because of its nested structure, bilevel
017 optimization has a complex problem definition and, compared with other standard
018 extensions of BO such as multi-objective or constraint settings, it has not been
019 widely studied. We propose an information-theoretic approach that considers the
020 information gain of both the upper- and lower-optimal solutions and values. This
021 enables us to define a unified criterion that measures the benefit for both level
022 problems, simultaneously. Further, we also show a practical lower bound based
023 approach to evaluating the information gain. We empirically demonstrate the
024 effectiveness of our proposed method through several benchmark datasets.
025

026 1 INTRODUCTION 027

028 The bilevel optimization is a standard formulation for a decision making problem that has a hier-
029 archical structure. It consists of two optimization problems nested as an upper- and a lower-level
030 problem, in which the optimality of the lower-level problem defines a constraint for the upper-level
031 problem. For example, in the computational materials design, a target property should be optimized
032 under the constraint of the energy minimization. Bilevel optimization techniques is applicable to
033 hierarchical decision makings in a variety of contexts such as inverse optimal control (Suryan et al.,
034 2016), chemical reaction optimization (Abbassi et al., 2021), and shape optimization (Herskovits
035 et al., 2000).

036 We particularly focus on the case both level problems are defined by expensive black-box functions.
037 Most of BO studies for bilevel optimization consider applying BO only to the upper-level problem
038 (e.g., Kieffer et al., 2017; Dogan & Prestwich, 2023) as pointed out by (Chew et al., 2025). **On the**
039 **other hand, for example, consider the case that the upper- and lower- objective functions are defined**
040 **through simulators of a subject of interest. If these simulators consist of expensive computations**
041 **(such as quantum-mechanical calculations), in this bilevel optimization, both level problems are**
042 **expensive to evaluate. For example, the simulator-based optimization of a physical property of**
043 **inorganic crystals under the stability constraint (energy minimization) can be formulated as this class**
044 **of problems.**

045 **In existing studies in which the lower-level problem is not expensive**, typically, under a selected
046 query for the upper-level problem, repeated queries to the lower-level problem is required, and
047 further, the gradient of the lower-level problem is often assumed (e.g., Fu et al., 2024). Islam et al.
048 (2018) and Wang et al. (2021) consider BO in both levels, but repeated queries on lower-level is
049 still required. These approaches are not fully suitable when both levels are expensive black-boxes
050 in which the gradient is not available. On the other hand, recently a few methods without those
051 limitations have also been studied. Ekmekcioglu et al. (2024) combine the Thompson sampling
052 on the upper-level query and a knowledge gradient-based extension of multi-task BO on the lower-
053 level, but the theoretical justification for the combination of these two different criteria has not been
054 revealed. Further, Chew et al. (2025) propose the well-known GP upper confidence bound (UCB)
055 based approach to bilevel BO, called BILBO. Although BILBO has a theoretical regret guarantee,

054 in general, the performance of GP-UCB based methods depend on the selection of the balancing
 055 parameter of the exploitation and exploration, because the theoretically recommended value often
 056 does not provide the best performance (Srinivas et al., 2010).

057 We propose an information-theoretic approach that considers the simultaneous information gain for
 058 both the upper- and lower-optimal solutions and values, which we call bilevel information gain.
 059 This enables us to define a unified criterion that measures the benefit for both level problems
 060 simultaneously, which is not necessarily common in the case of bilevel methods as mentioned in
 061 the previous paragraph. Although the effectiveness of information-theoretic BO has been shown in
 062 several different contexts (e.g., Hennig & Schuler, 2012; Hernández-Lobato et al., 2014; Hoffman
 063 & Ghahramani, 2015; Wang & Jegelka, 2017; Hernández-Lobato et al., 2015; Hernandez-Lobato
 064 et al., 2016; Suzuki et al., 2020; Takeno et al., 2022a;b; Hvarfner et al., 2022; Tu et al., 2022), it has
 065 not been combined with bilevel optimization, to our knowledge. We first define bilevel information
 066 gain by extending the idea of the joint entropy search (Hvarfner et al., 2022; Tu et al., 2022).
 067 Unfortunately, the original definition of bilevel information gain is computationally intractable, and
 068 we show that a natural extension of the truncation based approximation, which has been widely
 069 employed in information-theoretic BO (e.g., Wang & Jegelka, 2017), can be derived. By combining
 070 the truncation based approximation and a variational lower bound (Takeno et al., 2022b), we obtain
 071 our criterion called Bilevel optimization via Lower-bound based Joint Entropy Search (BLJES).
 072 Further, while we mainly consider ‘coupled setting’ in which upper- and lower-level observations
 073 are obtained simultaneously, ‘decoupled setting’, in which a separate observation for each level is
 074 available, is also discussed. For example, in the case that the objective function values are outputs of
 075 some simulators (e.g., physical simulation), if a common simulator provides both level observations
 076 simultaneously, coupled setting is suitable, while if the upper- and the lower-level observations
 077 are from different simulators, decoupled setting can be more appropriate. We further propose an
 078 extension for the case that each level problem has inequality constraints (i.e., each level problem is a
 079 constraint problem).

080 Our contributions are summarized as follows.

- 081 • We show an information-theoretic formulation of bilevel BO, which has never been explored,
 082 to our knowledge. Bilevel information gain is defined to measure the benefit for both level
 083 problems.
- 084 • We derive a lower bound based approximation of bilevel information gain. We extend
 085 the standard truncation based approach in the single-level information-theoretic BO to the
 086 bilevel problem.
- 087 • We further propose extensions for decoupled setting and constraint problems. We show that
 088 our framework can handle these settings by a natural extension of bilevel information gain.

089 We demonstrate effectiveness of BLJES through functions generated from Gaussian processes and
 090 several benchmark problems.

092 2 PRELIMINARIES

095 **Bilevel optimization.** Let $f : \mathcal{X} \times \Theta \rightarrow \mathbb{R}$ and $g : \mathcal{X} \times \Theta \rightarrow \mathbb{R}$ denote the upper- and the lower-level
 096 objective functions, respectively, both of which are assumed to be costly black-box functions. The
 097 upper- and the lower-level variables are denoted by $\mathbf{x} \in \mathcal{X}$ and $\boldsymbol{\theta} \in \Theta$, respectively, where $\mathcal{X} \subset \mathbb{R}^{d_X}$
 098 and $\Theta \subset \mathbb{R}^{d_\Theta}$. The bilevel optimization problem is formulated as:

$$\begin{aligned} & \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \\ & \text{s.t. } \boldsymbol{\theta}^*(\mathbf{x}) = \arg \max_{\boldsymbol{\theta} \in \Theta} g(\mathbf{x}, \boldsymbol{\theta}), \end{aligned} \tag{1}$$

103 where $\boldsymbol{\theta}^*(\mathbf{x})$ represents the optimal solution of the lower-level problem for a given upper-level
 104 variable \mathbf{x} . For simplicity, we assume the lower-level optimum $\boldsymbol{\theta}^*(\mathbf{x})$ is uniquely determined for
 105 each \mathbf{x} (called optimistic setting (Sinha et al., 2020)). The bilevel optimal solution is denoted
 106 by $(\mathbf{x}^*, \boldsymbol{\theta}^*)$, while the lower-level optimum corresponding to a given \mathbf{x} is written as $(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))$,
 107 noting that $\boldsymbol{\theta}^* = \boldsymbol{\theta}^*(\mathbf{x}^*)$. The upper- and the lower-level optimal values are denoted by $f^* := f(\mathbf{x}^*, \boldsymbol{\theta}^*)$ and
 $g^* := g(\mathbf{x}^*, \boldsymbol{\theta}^*)$, respectively. Figure 1 shows an illustration. Observations of the



Figure 1: Example of Bilevel optimization ($d_X = 1, d_\Theta = 1$) and its optimal solution. For each upper-level variable x , the feasible solution is defined by $\theta^*(x) = \arg \max_\theta g(x, \theta)$, shown as the orange line. The optimal solution (x^*, θ^*) is the maximizer of f on the orange line.

objective functions contain additive Gaussian noise $y_{(x, \theta)}^f := f(x, \theta) + \epsilon^f$, $\epsilon^f \sim \mathcal{N}(0, \{\sigma_{\text{noise}}^f\}^2)$, and $y_{(x, \theta)}^g := g(x, \theta) + \epsilon^g$, $\epsilon^g \sim \mathcal{N}(0, \{\sigma_{\text{noise}}^g\}^2)$, where σ_{noise}^f and σ_{noise}^g are the noise standard deviations, respectively. Let $\mathcal{D}_t := \{(x_i, \theta_i, y_i^f, y_i^g)\}_{i=1}^n$ be the dataset that we have at the t -th iteration of BO, where $y_i^f := y_{(x_i, \theta_i)}^f$ and $y_i^g := y_{(x_i, \theta_i)}^g$. The number of observed points n is $t + n_0$, where n_0 is the number of the initial observations.

Gaussian process. The upper- and the lower-level objective functions are each modeled by independent Gaussian processes (GPs) with kernel functions $k^f((x, \theta), (x', \theta'))$ and $k^g((x, \theta), (x', \theta'))$, respectively. Given the dataset \mathcal{D}_t , the predictive distribution of an objective function $h \in \{f, g\}$ at a point (x, θ) is expressed as:

$$\begin{aligned} h(x, \theta) \mid \mathcal{D}_t &\sim \mathcal{N}(\mu_t^h(x, \theta), \{\sigma_t^h(x, \theta)\}^2), \\ \mu_t^h(x, \theta) &= \mathbf{k}^{h\top} (\mathbf{K}^h + \{\sigma_{\text{noise}}^h\}^2 \mathbf{I})^{-1} \mathbf{y}^h, \\ \{\sigma_t^h(x, \theta)\}^2 &= \mathbf{k}^h((x, \theta), (x, \theta)) - \mathbf{k}^{h\top} (\mathbf{K}^h + \{\sigma_{\text{noise}}^h\}^2 \mathbf{I})^{-1} \mathbf{k}^h, \end{aligned} \quad (2)$$

where $\mathbf{y}^h = (y_1^h, \dots, y_n^h)^\top$, $\mathbf{k}^h = (k^h((x, \theta), (x_1, \theta_1)), \dots, k^h((x, \theta), (x_n, \theta_n)))^\top$, and $\mathbf{K}^h \in \mathbb{R}^{n \times n}$ is the kernel matrix with an entry $k^h((x_i, \theta_i), (x_j, \theta_j))$ at a position (i, j) . Here, $\mathbf{I} \in \mathbb{R}^{n \times n}$ denotes the identity matrix.

Bayesian optimization. We consider BO for the bilevel optimization problem (1). Bayesian optimization is a method for efficiently optimizing black-box functions with a limited number of samples. At step t , GPs are fitted to the dataset \mathcal{D}_t , and the next query point is determined as $\arg \max_{x, \theta} \alpha_t(x, \theta)$, where $\alpha_t(x, \theta)$ denotes the acquisition function. After sampling the query point, the newly obtained data are added to the dataset, and the GPs are refitted.

3 BILEVEL OPTIMIZATION VIA LOWER-BOUND BASED JOINT ENTROPY SEARCH

We consider bilevel BO based on the information gain for the optimal solutions and values $(x^*, \theta^*, f^*, g^*)$ achieved by next observations $y_{(x, \theta)}^f$ and $y_{(x, \theta)}^g$, which we call bilevel information gain. Note that we regard the optimal $(x^*, \theta^*, f^*, g^*)$ as random variables defined by the predictive distributions of the objective functions $f(x, \theta)$ and $g(x, \theta)$. Our approach combines the concept of entropy search (Hennig & Schuler, 2012), in particular, joint entropy search (Hvorfner et al., 2022; Tu et al., 2022), and a variational lower bound based approximation of mutual information (MI). We refer to our proposed method as *Bilevel optimization via Lower-bound based Joint Entropy Search* (BLJES).

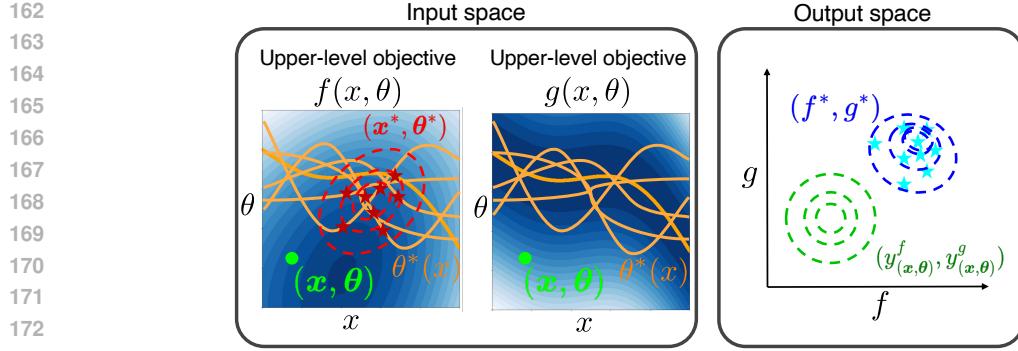


Figure 2: Schematic illustration of variables in $\text{MI}(y_{(x, \theta)}^f, y_{(x, \theta)}^g ; f^*, g^*, x^*, \theta^* | \mathcal{D}_t)$. The predictions at current (x, θ) are $y_{(x, \theta)}^f$ and $y_{(x, \theta)}^g$, depicted as the green distribution in the output space. At the optimal solution (x^*, θ^*) , the objective function values are $f^* = f(x^*, \theta^*)$ and $g^* = g(x^*, \theta^*)$. The optimal values f^* and g^* are represented as the blue distribution in the output space. The optimal solution (x^*, θ^*) , represented as the red distribution in the input space, should exist on $\theta^*(x)$, i.e., the optimal point of the lower-level problem. The red and blue stars are ‘samples’ of the optimal solutions (x^*, θ^*) and values (f^*, g^*) , respectively.

3.1 LOWER BOUND OF MUTUAL INFORMATION

Bilevel information gain is represented as the MI between the candidate observations $(y_{(x, \theta)}^f, y_{(x, \theta)}^g)$ and the set of the optimal solutions and their upper- and lower-objective values $\{f^*, g^*, x^*, \theta^*\}$:

$$\text{MI}(y_{(x, \theta)}^f, y_{(x, \theta)}^g ; f^*, g^*, x^*, \theta^* | \mathcal{D}_t),$$

for which an illustration is shown in Fig. 2. This criterion naturally allows simultaneous consideration of both the upper- and the lower-objectives. Since the direct evaluation of this MI is difficult, we employ a lower bound based approximation. Let $\Omega := \{y_{(x, \theta)}^f, y_{(x, \theta)}^g, f^*, g^*, x^*, \theta^*\}$. Our lower bound of the MI is derived by a technique that is often used in the context of the variational approximation (e.g., Poole et al., 2019):

$$\begin{aligned}
 \text{MI}(y_{(x, \theta)}^f, y_{(x, \theta)}^g ; f^*, g^*, x^*, \theta^* | \mathcal{D}_t) &= \mathbb{E}_{\Omega} \left[\log \frac{p(y_{(x, \theta)}^f, y_{(x, \theta)}^g | f^*, g^*, x^*, \theta^*, \mathcal{D}_t)}{p(y_{(x, \theta)}^f, y_{(x, \theta)}^g | \mathcal{D}_t)} \right] \\
 &= \mathbb{E}_{f^*, g^*, x^*, \theta^*} \left[\mathbb{E}_{y_{(x, \theta)}^f, y_{(x, \theta)}^g | f^*, g^*, x^*, \theta^*, \mathcal{D}_t} \left[\log \frac{q(y_{(x, \theta)}^f, y_{(x, \theta)}^g | f^*, g^*, x^*, \theta^*, \mathcal{D}_t)}{p(y_{(x, \theta)}^f, y_{(x, \theta)}^g | \mathcal{D}_t)} \right] \right. \\
 &\quad \left. + \text{KL} \left(p(y_{(x, \theta)}^f, y_{(x, \theta)}^g | f^*, g^*, x^*, \theta^*, \mathcal{D}_t) \parallel q(y_{(x, \theta)}^f, y_{(x, \theta)}^g | f^*, g^*, x^*, \theta^*, \mathcal{D}_t) \right) \right] \\
 &\geq \mathbb{E}_{\Omega} \left[\log \frac{q(y_{(x, \theta)}^f, y_{(x, \theta)}^g | f^*, g^*, x^*, \theta^*, \mathcal{D}_t)}{p(y_{(x, \theta)}^f, y_{(x, \theta)}^g | \mathcal{D}_t)} \right] =: \text{LB}(x, \theta), \tag{3}
 \end{aligned}$$

where KL is Kullback-Leibler (KL) divergence and $q(y_{(x, \theta)}^f, y_{(x, \theta)}^g | f^*, g^*, x^*, \theta^*, \mathcal{D}_t)$ is a variational distribution (q can be any density function as far as the KL divergence can be defined). The inequality of the last line can be taken because the KL divergence is non-negative (the equality holds when $p(y_{(x, \theta)}^f, y_{(x, \theta)}^g | f^*, g^*, x^*, \theta^*, \mathcal{D}_t) = q(y_{(x, \theta)}^f, y_{(x, \theta)}^g | f^*, g^*, x^*, \theta^*, \mathcal{D}_t)$). Similar lower bounds of the MI have been used in information-theoretic multi-objective and constraint BO (Ishikura & Karasuyama, 2025; Takeno et al., 2022b).

The variational distribution q is an approximation of $p(y_{(x, \theta)}^f, y_{(x, \theta)}^g | f^*, g^*, x^*, \theta^*, \mathcal{D}_t)$ for which an exact analytical representation is difficult to know. The difficulty is in the conditioning by the optimal solutions and values, for which the most widely accepted approach in information-theoretic BO is

216 to use truncated distributions (e.g., Wang & Jegelka, 2017; Suzuki et al., 2020; Tu et al., 2022). For
 217 example, in the case of well-known max-value entropy search (MES), proposed by (Wang & Jegelka,
 218 2017) for the standard single-level problem $\max_{\mathbf{x}} f(\mathbf{x})$, the predictive distribution conditioning on
 219 the max-value $f_{\text{unc}}^* := \arg \max_{\mathbf{x}} f(\mathbf{x})$ is approximated by the truncated normal distribution, i.e.,
 220 $p(f(\mathbf{x}) \mid f_{\text{unc}}^*) \approx p(f(\mathbf{x}) \mid f(\mathbf{x}) \leq f_{\text{unc}}^*)$. When f_{unc}^* is given, $f(\mathbf{x}') \leq f_{\text{unc}}^*$ should hold for any \mathbf{x}'
 221 (and there should exist at least one \mathbf{x}' such that $f(\mathbf{x}') = f_{\text{unc}}^*$), while MES simplifies this condition so
 222 that $f(\mathbf{x}) \leq f_{\text{unc}}^*$ holds only for the current \mathbf{x} . Similar simplifications have been employed by most
 223 of information-theoretic BO algorithms and shown superior performance.

224 We extend the truncation based approach to our bilevel problem as follows.

$$226 \quad q(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t) := p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+), \quad (4)$$

228 where $\mathcal{D}_t^+ = \mathcal{D}_t \cup \{(\mathbf{x}^*, \boldsymbol{\theta}^*, f^*, g^*)\}$ is the dataset augmented by the optimal point $(\mathbf{x}^*, \boldsymbol{\theta}^*, f^*, g^*)$.
 229 The right hand side has the three conditions, each of which can be interpreted as follows.

- 231 When f^* is given, $f(\mathbf{x}', \boldsymbol{\theta}^*(\mathbf{x}')) \leq f^*$ should hold for $\forall \mathbf{x}'$. However, this condition is
 232 computationally intractable as mentioned for the case of MES. Based on a similar idea of
 233 MES, the condition $f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*$ is only imposed on the current \mathbf{x} .
- 234 When g^* is given, $g(\mathbf{x}^*, \boldsymbol{\theta}') \leq g^*$ should hold for $\forall \boldsymbol{\theta}'$. We replace it with $g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*$ in
 235 which the inequality is only imposed on the current $\boldsymbol{\theta}$.
- 236 In the right hand side of (4), \mathcal{D}_t is replaced \mathcal{D}_t^+ . This condition can impose that the GPs
 237 satisfy $f(\mathbf{x}^*, \boldsymbol{\theta}^*) = f^*$ and $g(\mathbf{x}^*, \boldsymbol{\theta}^*) = g^*$ by adding $(\mathbf{x}^*, \boldsymbol{\theta}^*, f^*, g^*)$ into the training data.

238 By substituting (4) into (3) and using the conditional independence of $y_{(\mathbf{x}, \boldsymbol{\theta})}^f$ and $y_{(\mathbf{x}, \boldsymbol{\theta})}^g$ in the right
 239 hand side of (4), we see

$$241 \quad \text{LB}(\mathbf{x}, \boldsymbol{\theta}) = \mathbb{E}_{\Omega} \left[\log \frac{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+)}{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid \mathcal{D}_t)} \right]$$

$$245 \quad = \mathbb{E}_{\Omega} \left[\log \frac{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, \mathcal{D}_t^+)}{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \mathcal{D}_t)} + \log \frac{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+)}{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid \mathcal{D}_t)} \right]. \quad (5)$$

248 The inside of the expectation (5) can be analytically derived. For both the first and second terms,
 249 the denominators are the predictive distribution of the GPs, whose density can be obtained from
 250 (2). Next, we consider the numerator of the first term of (5). Although the truncation is imposed
 251 on $f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))$, the distribution is for $y_{(\mathbf{x}, \boldsymbol{\theta})}^f$ that has different input point $(\mathbf{x}, \boldsymbol{\theta})$ from the truncated
 252 point, unlike the case of MES. The following theorem shows that the analytical representation can
 253 still be derived even with this difference:

254 **Theorem 3.1.** Let (m_1^f, s_1^f) , (m_2^f, s_2^f) , and (m_3^f, s_3^f) be the mean and standard deviation of
 255 $p(f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \mid y_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathcal{D}_t^+)$, $p(f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \mid \mathcal{D}_t^+)$, and $p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \mathcal{D}_t^+)$, respectively. Then,

$$257 \quad p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, \mathcal{D}_t^+) = \begin{cases} \Phi \left(\frac{f^* - m_1^f}{s_1^f} \right) \phi \left(\frac{y_{(\mathbf{x}, \boldsymbol{\theta})}^f - m_3^f}{s_3^f} \right) / \left\{ \Phi \left(\frac{f^* - m_2^f}{s_2^f} \right) s_3^f \right\} & \text{if } \mathbf{x} \neq \mathbf{x}^*, \\ \phi \left(\frac{y_{(\mathbf{x}, \boldsymbol{\theta})}^f - m_3^f}{s_3^f} \right) / s_3^f & \text{otherwise,} \end{cases} \quad (6)$$

262 where ϕ and Φ are the probability density function (PDF) and cumulative density function (CDF) of
 263 the standard normal distribution, respectively.

265 The proof is in Appendix A.1. Note that all of $\{(m_i^f, s_i^f)\}_{i=1}^3$ can be analytically calculated from
 266 the GP posterior of f for which details are also shown in Appendix A.1. For the numerator in the
 267 second term of (5) can be reduced to the similar analytical form, which is shown in Appendix A.2.
 268 As a result, we obtain an analytical form of the inside of the expectation (5). **We also show that our**
 269 **lower bound (5) can be derived through an independence assumption on the posterior, described in**
Appendix B.

270 3.2 COMPUTATIONS
271

272 The expectation of (5) is approximated by the Monte-Carlo method by sampling $\Omega :=$
273 $\{y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g, f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*\}$. The sample of all the elements of Ω can be obtained through the sample
274 of the objective functions f and g . We use random Fourier feature (RFF) (Rahimi & Recht, 2008), by
275 which the GP posterior can be approximated by the Bayesian linear model. For a D -dimensional RFF
276 vector $\phi(\mathbf{x}, \boldsymbol{\theta}) \in \mathbb{R}^D$, the linear model $\mathbf{w}^{h\top} \phi(\mathbf{x}, \boldsymbol{\theta})$ can be constructed, where $\mathbf{w}^h \in \mathbb{R}^D$ is a parameter
277 vector and $h \in \{f, g\}$ represents one of objective functions. By sampling \mathbf{w}^h from the posterior,
278 approximate sample paths of f and g are obtained, which denoted as \tilde{f} and \tilde{g} , respectively. Then,
279 the sample of $(f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*)$ is obtained through $\max_{\mathbf{x}} \tilde{f}(\mathbf{x}, \tilde{\boldsymbol{\theta}}^*(\mathbf{x}))$ s.t. $\tilde{\boldsymbol{\theta}}^*(\mathbf{x}) = \arg \max_{\boldsymbol{\theta}} \tilde{g}(\mathbf{x}, \boldsymbol{\theta})$,
280 which can be seen as a white-box bilevel optimization problem. Since both \tilde{f} and \tilde{g} are represented
281 by the Bayesian liner model, they are differentiable. Then, the gradient $\partial \tilde{f}(\mathbf{x}, \tilde{\boldsymbol{\theta}}^*(\mathbf{x}))/\partial \mathbf{x}$ can be
282 obtained through the implicit function theorem (see Appendix C for detail), by which standard gradient
283 based optimization methods can be applied. The samples of $y_{(\mathbf{x}, \boldsymbol{\theta})}^f$ and $y_{(\mathbf{x}, \boldsymbol{\theta})}^g$ can be obtained
284 by adding the random noise from $\mathcal{N}(0, \{\sigma_{\text{noise}}^f\}^2)$ and $\mathcal{N}(0, \{\sigma_{\text{noise}}^g\}^2)$ to the sampled $f(\mathbf{x}, \boldsymbol{\theta})$ and
285 $g(\mathbf{x}, \boldsymbol{\theta})$, respectively.

286 Let K be the number of samplings of Ω . In a variety of contexts of information-theoretic BO (e.g.,
287 Wang & Jegelka, 2017), the superior performance has been repeatedly shown with small K settings
288 (e.g., 10). After obtaining K samples of Ω , the Monte-Carlo approximation of (5) can be calculated
289 for any $(\mathbf{x}, \boldsymbol{\theta})$ (Note that these K samples are reused during the acquisition function optimization
290 without regenerating for each candidate $(\mathbf{x}, \boldsymbol{\theta})$). Since (5) contains $\boldsymbol{\theta}^*(\mathbf{x})$, the maximization of the
291 approximate (5) is also bilevel optimization, for which gradient-based methods can also be applied
292 through the implicit function theorem (details are also in Appendix C).

293

294 4 EXTENSIONS
295

296 We here describe two extensions of BLJES, which are for decoupled setting and constraint problems.
297

298 4.1 DECOUPLED SETTING
299

300 We mainly consider the setting in which $y_{(\mathbf{x}, \boldsymbol{\theta})}^f$ and $y_{(\mathbf{x}, \boldsymbol{\theta})}^g$ are observed simultaneously, which we call
301 ‘coupled’ setting. On the other hand, only one of $y_{(\mathbf{x}, \boldsymbol{\theta})}^f$ or $y_{(\mathbf{x}, \boldsymbol{\theta})}^g$ can be separately observed in some
302 scenarios. In this paper, this setting is called ‘decoupled’ setting, inspired by the similar setting in
303 multi-objective BO (Hernandez-Lobato et al., 2016).

305 A natural criterion for decoupled setting is information gain obtained by only one of $y_{(\mathbf{x}, \boldsymbol{\theta})}^f$ or $y_{(\mathbf{x}, \boldsymbol{\theta})}^g$,
306 for which the lower bounds can be derived by the almost same way as (3):
307

$$308 \text{MI}(y_{(\mathbf{x}, \boldsymbol{\theta})}^f ; f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^* | \mathcal{D}_t) \geq \mathbb{E}_{\Omega} \left[\log \frac{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, \mathcal{D}_t^+)}{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | \mathcal{D}_t)} \right], \quad (7)$$

$$312 \text{MI}(y_{(\mathbf{x}, \boldsymbol{\theta})}^g ; f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^* | \mathcal{D}_t) \geq \mathbb{E}_{\Omega} \left[\log \frac{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g | g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+)}{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g | \mathcal{D}_t)} \right]. \quad (8)$$

315 The derivation is in Appendix D. For both the inside of the expectation of (7) and (8), the analytical
316 calculations shown in section 3.1 can be used. The expectation is approximated by Monte-Carlo
317 sampling of Ω , which is also same as coupled setting. As a result, the decision making not only for
318 selecting $(\mathbf{x}, \boldsymbol{\theta})$, but also selecting the upper- or the lower-observation (i.e., $y_{(\mathbf{x}, \boldsymbol{\theta})}^f$ or $y_{(\mathbf{x}, \boldsymbol{\theta})}^g$) can be
319 performed.

320

321 4.2 INCORPORATING CONSTRAINT PROBLEMS
322

323 In a more general formulation of bilevel optimization, constraints are imposed on both of the upper-
324 and the lower-level problems. When we have N and M inequality constraints for the upper- and the

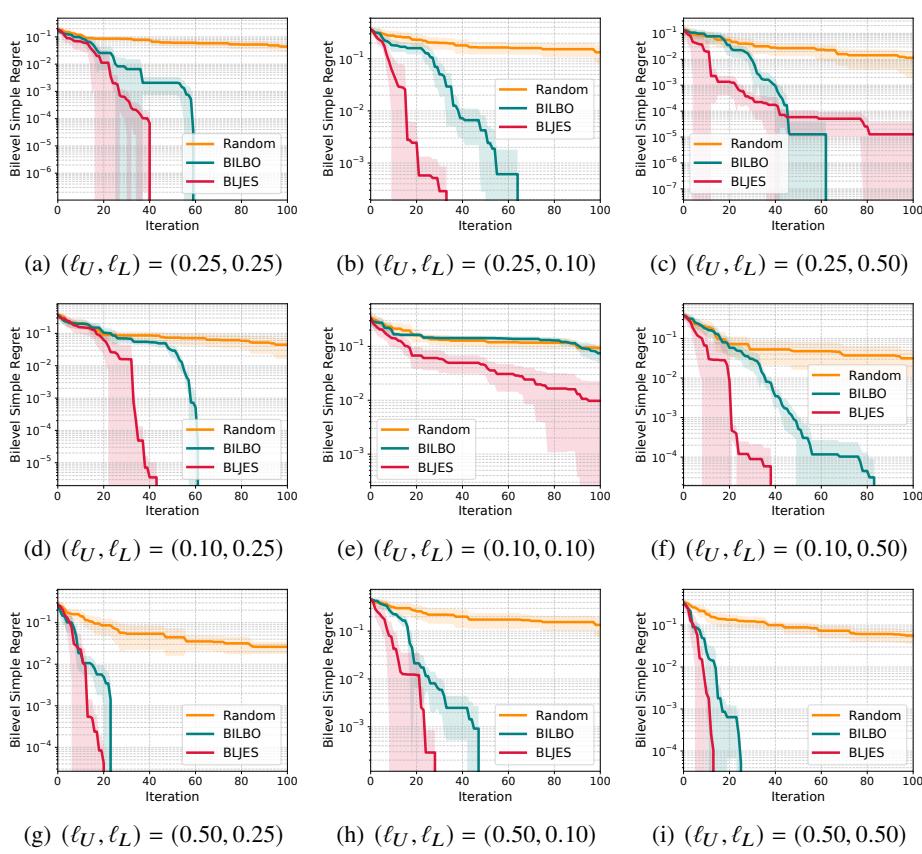


Figure 3: Regret comparison on functions from the GP prior.

lower-level problems, respectively, the bilevel optimization problem is written as

$$\begin{aligned} & \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}, \theta^*(\mathbf{x})) \\ & \text{s.t. } c_n^U(\mathbf{x}, \theta^*(\mathbf{x})) \geq 0, n = 1, \dots, N \\ & \theta^*(\mathbf{x}) = \arg \max_{\theta \in \Theta} \{g(\mathbf{x}, \theta) \mid c_m^L(\mathbf{x}, \theta) \geq 0, m = 1, \dots, M\}, \end{aligned}$$

where $c^U : \mathbb{R}^{d_x+d_\Theta} \rightarrow \mathbb{R}$ and $c^L : \mathbb{R}^{d_x+d_\Theta} \rightarrow \mathbb{R}$ are constraint functions. We assume that c^U and c^L are also expensive black-box functions and modeled by the independent GPs.

For constraint BO, Takeno et al. (2022b) show an information-theoretic approach based on a lower bound with a truncated variational distribution. By combining the truncation shown by (Takeno et al., 2022b) and our bilevel information gain, we can extend BLJES to the bilevel constraint problem. In particular, the conditioning on the predictive distributions by the optimal points are required to extend. For example, if f^* is given, the inequality $f(\mathbf{x}, \theta^*(\mathbf{x})) \leq f^*$ is imposed only when the constraints $c_n^U(\mathbf{x}, \theta^*(\mathbf{x})) \geq 0, n = 1, \dots, N$ hold (if the constraints are not satisfied, $f(\mathbf{x}, \theta^*(\mathbf{x}))$ is not truncated). Details are in Appendix E.

5 EXPERIMENTS

We evaluated the performance of BLJES by using sample path functions from the GP prior and several benchmark functions. For baselines, we employed Random selection and BILBO. The initial number of observations was set $n_0 = 5$ random points. The both level observations contain an additive noise whose mean is 0 and standard deviation is 10^{-3} . Each experiment was performed 10 times with different initial points. We used the Gaussian kernel for both the GPs of f and g , in which the prior mean, the kernel length-scale, the output scale, and the noise variance are optimized

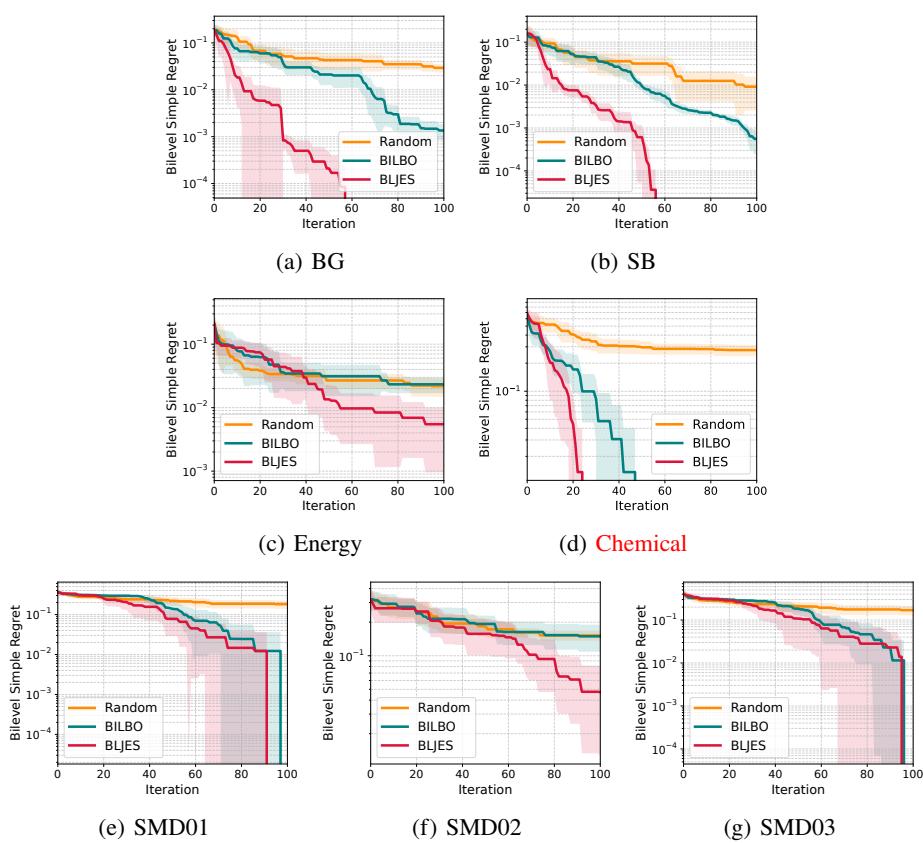


Figure 4: Regret comparison on benchmark problems.

by the marginal likelihood at every iteration. In BLJES, the number of Mont-Carlo samples was set as $K = 30$. We here employed the pool setting (query candidates are finite grid points defined later) because BILBO is proposed for the finite domain setting.

For the metric at the t -th iteration, we used the following criterion, denoted as bilevel simple regret:

$$\min_{i \in [n0+t]} \max_{h \in \{f, g\}} r_h(\mathbf{x}_i, \boldsymbol{\theta}_i), \quad (9)$$

where

$$r_f(\mathbf{x}_i, \boldsymbol{\theta}_i) = \max(0, f^* - f(\mathbf{x}_i, \boldsymbol{\theta}_i)) / (f^* - \min_{\mathbf{x}, \boldsymbol{\theta}} f(\mathbf{x}, \boldsymbol{\theta})),$$

$$r_g(\mathbf{x}_i, \boldsymbol{\theta}_i) = (g(\mathbf{x}_i, \boldsymbol{\theta}^*(\mathbf{x}_i)) - g(\mathbf{x}_i, \boldsymbol{\theta}_i)) / (g(\mathbf{x}_i, \boldsymbol{\theta}^*(\mathbf{x}_i)) - \min_{\boldsymbol{\theta}} g(\mathbf{x}_i, \boldsymbol{\theta})).$$

Our metric (9) takes the larger value between $r_f(\mathbf{x}_i, \boldsymbol{\theta}_i)$, which represents the regret of the upper-level problem, and $r_g(\mathbf{x}_i, \boldsymbol{\theta}_i)$, which represents those of the lower-level problem. Since $f(\mathbf{x}_i, \boldsymbol{\theta}_i)$ can be larger than f^* , the ‘max’ operation is taken to guarantee $r_f(\mathbf{x}_i, \boldsymbol{\theta}_i) \geq 0$, while the numerator of $r_g(\mathbf{x}_i, \boldsymbol{\theta}_i)$ is non-negative without ‘max’ from the definition of $\boldsymbol{\theta}^*(\mathbf{x}_i)$. The denominators of $r_f(\mathbf{x}_i, \boldsymbol{\theta}_i)$ and $r_g(\mathbf{x}_i, \boldsymbol{\theta}_i)$ are for absorbing the scale difference of two objectives. In (9), we employed the best value obtained during the entire search procedure by taking the minimum with respect to observed points.

We first provide the results on coupled setting for GP sample path functions (section 5.1) and benchmark functions (section 5.2). Further, the results on decoupled setting (section 5.3) and different K settings (section 5.4) are also reported. Appendix presents other details of the settings (Appendix F.1) and results such as a larger noise setting (Appendix F.2), the continuous domain (Appendix F.5), constraint problems (Appendix F.6), higher dimensional settings (Appendix F.7), comparison with a simplified variant of MLJES (Appendix F.8), the effect of RFF approximation (Appendix F.9), and the combined error of the MC sampling and RFF (Appendix F.10)..

432
433

5.1 SAMPLE PATH FROM GP PRIOR

434 We first used the sample path from the GP prior as the true objective functions, i.e., $f \sim \mathcal{GP}(0, k)$
 435 and $g \sim \mathcal{GP}(0, k)$, in which k is the Gaussian kernel $k((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}', \boldsymbol{\theta}')) = \exp\{-(\|\mathbf{x} - \mathbf{x}'\|^2 + \|\boldsymbol{\theta} - \boldsymbol{\theta}'\|^2)/(2\ell^2)\}$. For the length scale ℓ , we use different values $\ell_U \in \{0.25, 0.10, 0.50\}$ for f and
 436 $\ell_L \in \{0.25, 0.10, 0.50\}$ for g , respectively. The input space is $d_X = d_\Theta = 1$ and $[0, 1]$ for each. The
 437 candidate points are a combination of 100 grid points in each dimension (100^2 points).
 438

439 The results are shown in Fig. 3. Overall, BLJES shows superior performance for a variety of the
 440 length scale functions. Only for $(\ell_U, \ell_L) = (0.25, 0.50)$, BILBO decreased the regret to 0 faster at
 441 about 60 iterations, but BLJES also reached the small value (10^{-4}) around that iterations.
 442

443
444

5.2 BENCHMARK FUNCTIONS

445 We here used six benchmark problems. Two functions are created by combining benchmark functions
 446 of single-level optimization. In the first problem, denoted as BG, the upper objective is BraninHoo
 447 ($d_X = 1$) and the lower objective Goldstein-price ($d_\Theta = 1$), which was used in (Chew et al., 2025).
 448 In the second problem, denoted as SB, the upper objective is SixHumpCamel ($d_X = 1$) and the lower
 449 objective BraninHoo ($d_\Theta = 1$), which was used in (Ekmekcioglu et al., 2024). The third problem,
 450 denoted as Energy, is a simulator based energy market problem ($d_X = 2$ and $d_\Theta = 2$), and the fourth
 451 problem, denoted as Chemical, is about an optimization of simulated mass flow of Methyl Acetate
 452 ($d_X = 1$ and $d_\Theta = 3$). Chemical has one constraint function for the upper-level problem. Energy
 453 and Chemical data are introduced by (Chew et al., 2025), in which these are regarded as a real-world
 454 dataset (see Chew et al. (2025) for the detailed definitions). From the fourth to the sixth problems,
 455 denoted as SMD01, 02, and 03 ($d_X = 2$ and $d_\Theta = 2$), are test problems specifically designed for
 456 bilevel optimization benchmark (Sinha et al., 2014). The number of grid points in each dimension is
 457 100 for GB and SB (100^2 points), and 10 for Energy and SMD (10^4 points).
 458

459 The results are shown in Fig. 4. BLJES has obviously superior performance in BG, SB, Energy, and
 460 SMD02. For SMD01 and SMD03, similar performance is shown in BLJES and BILBO, both of
 461 which rapidly decrease the regret compared with Random.
 462

463

5.3 DECOUPLED SETTING

464
465
466
467

We here evaluate performance on decoupled setting, for which regret comparison is shown in Fig. 5.
 The objective functions are the same functions used before. We see that MLJES shows smaller regret
 values for most of problems except only for SMD02 in which BILBO shows better performance. The
 results indicate that our MI based criterion is effective also for decoupled setting.
 468

469

5.4 EFFECT OF THE NUMBER OF SAMPLINGS

470
471
472
473
474
475
476
477
478
479

We evaluate the effect of the number of samplings K on the performance. Figure 6 shows the regret of BLJES with $K = 10, 20, 30$, and 50 on the BG benchmark problem. Note that the result of $K = 30$ is same as Fig. 4 (a). Although $K = 50$ was slightly better than other settings in the end of the optimization, we do not see large differences. Similar tendency has been reported in information-theoretic BO studies (Wang & Jegelka, 2017; Takeno et al., 2022a). See in Appendix F.4 for the results on other problems.

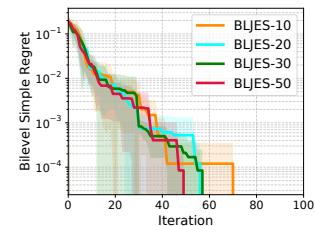


Figure 6: BLJES with different K on the BG benchmark.

480
481

6 LIMITATIONS

482
483
484
485

As we described in section 1, the bilevel BO in which both levels are expensive has not been widely studied, and we still have several limitations. For example, it is widely known that BO has difficulty for dealing with high dimensional problems, though many studies have considered remedies to mitigate it (e.g., reviewer by Malu et al., 2021; González-Duque et al., 2024). Constructing those high dimensional specific strategies for bilevel BO is one of obviously important directions.

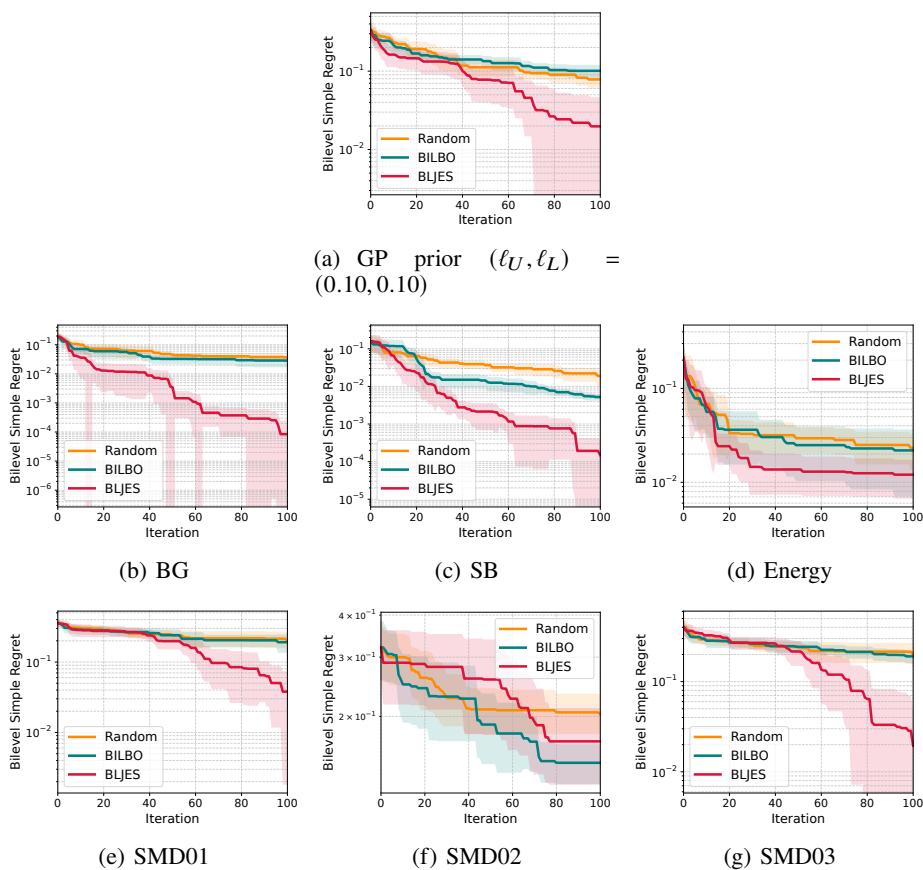


Figure 5: Regret comparison on benchmark problems under decoupled setting.

Another unresolved theme is the theoretical analysis of the approximation error of MI and the convergence of the optimization. The major approximation components of our MI estimator are the lower bound, RFF, and the MC sampling. Providing a theoretical guarantee for the combined approximation error is a challenging issue, though it is actually a common issue for information-theoretic BO methods. Particularly for GP-UCB based approaches including BILBO, the regret bound has been widely studied. On the other hand, for information-theoretic BO in general, the regret analysis is also still an open problem even for the simplest single-level standard problem setting (see Appendix G). Therefore, the regret analysis for information-theoretic BO including BLJES is still needed to be addressed.

7 CONCLUSION

We propose an information-theoretic approach to bilevel Bayesian optimization, called Bilevel optimization via Lower-bound based Joint Entropy Search (BLJES). BLJES considers information gain of optimal points and values of both the upper- and lower- level problems simultaneously, by which we can define a unified criterion that measures the benefit for both the problems. We derive a lower bound based approximation of bilevel information gain, which can be seen as a natural extension of the single level information-theoretic Bayesian optimization. Further, we also propose extensions for decoupled setting and constraint problems. The effectiveness of BLJES is demonstrated through sample path functions from Gaussian processes and benchmark functions.

540 REFERENCES

541

542 Malek Abbassi, Abir Chaabani, Lamjed Ben Said, and Nabil Absi. An approximation-based chemical
543 reaction algorithm for combinatorial multi-objective bi-level optimization problems. In *2021 IEEE*
544 *Congress on Evolutionary Computation (CEC)*, pp. 1627–1634, 2021.

545 Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
546 drew Gordon Wilson, and Eytan Bakshy. BoTorch: A framework for efficient monte-carlo
547 bayesian optimization. In *Advances in Neural Information Processing Systems 33*, 2020. URL
548 <http://arxiv.org/abs/1910.06403>.

549 Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search for multi-
550 objective Bayesian optimization. In *Advances in Neural Information Processing Systems 32*, pp.
551 7825–7835. Curran Associates, Inc., 2019.

553 Ruth Wan Theng Chew, Quoc Phong Nguyen, and Bryan Kian Hsiang Low. BILBO: Bilevel Bayesian
554 optimization. In *Proceedings of the 42th International Conference on Machine Learning*, 2025.

556 Vedat Dogan and Steven Prestwich. Bilevel optimization by conditional bayesian optimization. In
557 *Machine Learning, Optimization, and Data Science: 9th International Conference, LOD 2023,*
558 *Grasmere, UK, September 22–26, 2023, Revised Selected Papers, Part I*, pp. 243–258, Berlin,
559 Heidelberg, 2023. Springer-Verlag. ISBN 978-3-031-53968-8.

560 Omer Ekmekcioglu, Nursen Aydin, and Juergen Branke. Bayesian optimization of bilevel problems,
561 2024.

562 Shi Fu, Fengxiang He, Xinmei Tian, and Dacheng Tao. Convergence of bayesian bilevel optimization.
563 In *The Twelfth International Conference on Learning Representations*, 2024.

565 Miguel González-Duque, Richard Michael, Simon Bartels, Yevgen Zainchkovskyy, Søren Hauberg,
566 and Wouter Boomsma. A survey and benchmark of high-dimensional bayesian optimization of
567 discrete sequences. In *Proceedings of the 38th International Conference on Neural Information*
568 *Processing Systems*, Red Hook, NY, USA, 2024. Curran Associates Inc.

569 Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global optimization.
570 *Journal of Machine Learning Research*, 13(57):1809–1837, 2012.

572 Daniel Hernandez-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. Predictive entropy
573 search for multi-objective Bayesian optimization. In *Proceedings of The 33rd International*
574 *Conference on Machine Learning*, volume 48, pp. 1492–1501. PMLR, 2016.

576 José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. Predictive entropy
577 search for efficient global optimization of black-box functions. In *Advances in Neural Information*
578 *Processing Systems 27*, pp. 918–926. Curran Associates, Inc., 2014.

580 José Miguel Hernández-Lobato, Michael A. Gelbart, Matthew W. Hoffman, Ryan P. Adams, and
581 Zoubin Ghahramani. Predictive entropy search for Bayesian optimization with unknown con-
582 straints. In *Proceedings of the 32th International Conference on Machine Learning*, volume 37,
583 pp. 1699–1707. PMLR, 2015.

584 J. Herskovits, A. Leontiev, G. Dias, and G. Santos. Contact shape optimization: a bilevel pro-
585 gramming approach. *Structural and Multidisciplinary Optimization*, 20(3):214–221, Nov 2000. ISSN
586 1615-1488.

587 Matthew W. Hoffman and Zoubin Ghahramani. Output-space predictive entropy search for flexible
588 global optimization. In *NIPS Workshop on Bayesian Optimization*, 2015.

589 Carl Hvarfner, Frank Hutter, and Luigi Nardi. Joint entropy search for maximally-informed bayesian
590 optimization. In *Proceedings of the 36th International Conference on Neural Information Pro-*
591 *cessing Systems*, Red Hook, NY, USA, 2022. Curran Associates Inc.

593 M. Ishikura and M. Karasuyama. Pareto-frontier entropy search with variational lower bound
594 maximization. In *Proceedings of the 42th International Conference on Machine Learning*, 2025.

594 Md Monjurul Islam, Hemant Kumar Singh, and Tapabrata Ray. Efficient global optimization for
 595 solving computationally expensive bilevel optimization problems. In *2018 IEEE Congress on*
 596 *Evolutionary Computation (CEC)*, pp. 1–8, 2018.

597

598 Emmanuel Kieffer, Grégoire Danoy, Pascal Bouvry, and Anass Nagih. Bayesian optimization ap-
 599 proach of general bi-level problems. In *Proceedings of the Genetic and Evolutionary Computation*
 600 *Conference Companion*, GECCO ’17, pp. 1614–1621, New York, NY, USA, 2017. Association
 601 for Computing Machinery.

602 Johannes Kirschner, Mojmir Mutný, Nicole Hiller, Rasmus Ischebeck, and Andreas Krause. Adaptive
 603 and safe bayesian optimization in high dimensions via one-dimensional subspaces. In *Proceedings*
 604 *of the 36th International Conference on Machine Learning (ICML)*, volume 97, pp. 3429–3438.
 605 PMLR, 2019.

606

607 Mohit Malu, Gautam Dasarathy, and Andreas Spanias. Bayesian optimization in high-dimensional
 608 spaces: A brief survey. In *2021 12th International Conference on Information, Intelligence,*
 609 *Systems & Applications (IISA)*, pp. 1–8, 2021.

610

611 Victor Picheny, Tobias Wagner, and David Ginsbourger. A benchmark of kriging-based infill criteria
 612 for noisy optimization. *Structural and multidisciplinary optimization*, 48(3):607–626, 2013.

613

614 Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
 615 bounds of mutual information. In *Proceedings of the 36th International Conference on Machine*
 616 *Learning*, volume 97, pp. 5171–5180. PMLR, 2019.

617

618 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In *Advances in*
 619 *Neural Information Processing Systems 20*, pp. 1177–1184. Curran Associates, Inc., 2008.

620

621 Maria Laura Santoni, Elena Raponi, Renato De Leone, and Carola Doerr. Comparison of high-
 622 dimensional bayesian optimization algorithms on bbob. *ACM Transactions on Evolutionary*
 623 *Learning*, 4(3), July 2024.

624

625 Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. Test problem construction for single-objective
 626 bilevel optimization. *Evolutionary Computation*, 22(3):439–477, 2014.

627

628 Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: From classical
 629 to evolutionary approaches and applications, 2020.

630

631 N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit
 632 setting: No regret and experimental design. In *Proceedings of the 27th International Conference*
 633 *on International Conference on Machine Learning*, pp. 1015–1022. Omnipress, 2010.

634

635 Varun Suryan, Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. Handling inverse optimal control
 636 problems using evolutionary bilevel optimization. In *2016 IEEE Congress on Evolutionary*
 637 *Computation (CEC)*, pp. 1893–1900, 2016.

638

639 Shinya Suzuki, Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and Masayuki Karasuyama.
 640 Multi-objective Bayesian optimization using Pareto-frontier entropy. In *Proceedings of the 37th*
 641 *International Conference on Machine Learning*, volume 119, pp. 9279–9288. PMLR, 2020.

642

643 Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga, Ichiro Takeuchi,
 644 and Masayuki Karasuyama. A generalized framework of multi-fidelity max-value entropy search
 645 through joint entropy. *Neural Computation*, 34(10):2145–2203, 2022a.

646

647 Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and Masayuki Karasuyama. Sequential and
 648 parallel constrained max-value entropy search via information lower bound. In *Proceedings of*
 649 *the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine*
 650 *Learning Research*, pp. 20960–20986. PMLR, 2022b.

651

652 Shion Takeno, Yu Inatsu, Masayuki Karasuyama, and Ichiro Takeuchi. Posterior sampling-based
 653 bayesian optimization with tighter bayesian regret bounds. In *Proceedings of the 41st International*
 654 *Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

648 Ben Tu, Axel Gandy, Nikolas Kantas, and Behrang Shafei. Joint entropy search for multi-objective
 649 Bayesian optimization. *Advances in Neural Information Processing Systems*, 35:9922–9938, 2022.
 650

651 Bing Wang, Hemant Kumar Singh, and Tapabrata Ray. Comparing expected improvement and
 652 kriging believer for expensive bilevel optimization. In *2021 IEEE Congress on Evolutionary
 653 Computation (CEC)*, pp. 1635–1642, 2021.

654 Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In
 655 *Proceedings of the 34th International Conference on Machine Learning*, volume 70, pp. 3627–
 656 3635. PMLR, 2017.

657 Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Freitas. Bayesian
 658 optimization in a billion dimensions via random embeddings. *Journal of Artificial Intelligence
 659 Research*, 55(1):361–387, January 2016.

663 A DERIVATION OF LOWER BOUND

664 A.1 PROOF OF THEOREM 3.1

665 From Bayes theorem,

$$666 p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid f_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))} \leq f^*, \mathcal{D}_t^+) = \frac{p(f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^* \mid y_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathcal{D}_t^+) p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \mathcal{D}_t^+)}{p(f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^* \mid \mathcal{D}_t^+)} \quad (10)$$

667 All the three densities in the right hand side, the analytical representations can be derived as follows.

- 668 • The probability $p(f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^* \mid y_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathcal{D}_t^+)$ is calculated by the density

$$669 f_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))} \mid y_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathcal{D}_t^+ \sim \mathcal{N}(m_1^f, \{s_1^f\}^2),$$

670 for which the mean m_1^f and variance $\{s_1^f\}^2$ can be derived by considering the conditional
 671 density of the joint posterior of $f_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}$, $y_{(\mathbf{x}, \boldsymbol{\theta})}^f$, and $f_{(\mathbf{x}^*, \boldsymbol{\theta}^*)}$ as

$$672 m_1^f = \mu_t^f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \\ 673 + \begin{bmatrix} \text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})), (\mathbf{x}, \boldsymbol{\theta})) \\ \text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})), (\mathbf{x}^*, \boldsymbol{\theta}^*)) \end{bmatrix}^\top \begin{bmatrix} \{\sigma_t^f(\mathbf{x}, \boldsymbol{\theta})\}^2 + \{\sigma_{\text{noise}}^f\}^2 & \text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*)) \\ \text{Cov}_t^f((\mathbf{x}^*, \boldsymbol{\theta}^*), (\mathbf{x}, \boldsymbol{\theta})) & \{\sigma_t^f(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2 \end{bmatrix}^{-1} \begin{bmatrix} y_{(\mathbf{x}, \boldsymbol{\theta})}^f - \mu_t^f(\mathbf{x}, \boldsymbol{\theta}) \\ f_{(\mathbf{x}^*, \boldsymbol{\theta}^*)} - \mu_t^f(\mathbf{x}^*, \boldsymbol{\theta}^*) \end{bmatrix} \\ 674 \{s_1^f\}^2 = \{\sigma_t^f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))\}^2 \\ 675 - \begin{bmatrix} \text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})), (\mathbf{x}, \boldsymbol{\theta})) \\ \text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})), (\mathbf{x}^*, \boldsymbol{\theta}^*)) \end{bmatrix}^\top \begin{bmatrix} \{\sigma_t^f(\mathbf{x}, \boldsymbol{\theta})\}^2 + \{\sigma_{\text{noise}}^f\}^2 & \text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*)) \\ \text{Cov}_t^f((\mathbf{x}^*, \boldsymbol{\theta}^*), (\mathbf{x}, \boldsymbol{\theta})) & \{\sigma_t^f(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2 \end{bmatrix}^{-1} \begin{bmatrix} \text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})), (\mathbf{x}, \boldsymbol{\theta})) \\ \text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})), (\mathbf{x}^*, \boldsymbol{\theta}^*)) \end{bmatrix}.$$

676 Note that $\text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}', \boldsymbol{\theta}'))$ is the posterior covariance between $f(\mathbf{x}, \boldsymbol{\theta})$ and $f(\mathbf{x}', \boldsymbol{\theta}')$,
 677 given \mathcal{D}_t . By using m_1^f and s_1^f , we have

$$678 p(f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^* \mid y_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathcal{D}_t^+) = \begin{cases} \Phi\left(\frac{f^* - m_1^f}{s_1^f}\right) & \text{if } \mathbf{x} \neq \mathbf{x}^*, \\ 679 1 & \text{otherwise,} \end{cases} \quad (11)$$

680 where Φ is the cumulative density function (CDF) of the standard normal distribution.

- 681 • Next, to calculate the denominator $p(f_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))} \leq f^* \mid \mathcal{D}_t^+)$, we consider the density

$$691 f_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))} \mid \mathcal{D}_t^+ \sim \mathcal{N}(m_2^f, \{s_2^f\}^2),$$

702 for which the mean m_2^f and variance $\{s_2^f\}^2$ can be derived by considering the conditional
 703 density of the joint posterior of $f_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}$ and $f_{(\mathbf{x}^*, \boldsymbol{\theta}^*)}$ as
 704

$$705 \quad m_2^f = \mu_t^f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) + \frac{\text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})), (\mathbf{x}^*, \boldsymbol{\theta}^*))}{\{\sigma_t^f(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2} (f(\mathbf{x}^*, \boldsymbol{\theta}^*) - \mu_t^f(\mathbf{x}^*, \boldsymbol{\theta}^*))$$

$$706 \quad \{s_2^f\}^2 = \sigma_t^f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) - \frac{\{\text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})), (\mathbf{x}^*, \boldsymbol{\theta}^*))\}^2}{\{\sigma_t^f(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2}$$

713 Then, we obtain
 714

$$715 \quad p(f_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))} \leq f^* \mid \mathcal{D}_t^+) = \begin{cases} \Phi\left(\frac{f^* - m_2^f}{s_2^f}\right) & \text{if } \mathbf{x} \neq \mathbf{x}^* \\ 1 & \text{otherwise.} \end{cases} \quad (12)$$

720 • The density $p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \mathcal{D}_t^+)$ can also be derived by a similar approach as
 721

$$723 \quad y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \mathcal{D}_t^+ \sim \mathcal{N}(m_3^f, s_3^f),$$

725 where
 726

$$727 \quad m_3^f = \mu_t^f(\mathbf{x}, \boldsymbol{\theta}) + \frac{\text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*))}{\{\sigma_t^f(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2} (f(\mathbf{x}^*, \boldsymbol{\theta}^*) - \mu_t^f(\mathbf{x}^*, \boldsymbol{\theta}^*))$$

$$728 \quad \{s_3^f\}^2 = \{\sigma_t^f(\mathbf{x}, \boldsymbol{\theta})\}^2 + \{\sigma_{\text{noise}}^f\}^2 - \frac{\{\text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*))\}^2}{\{\sigma_t^f(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2}.$$

735 Therefore,
 736

$$737 \quad p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \mathcal{D}_t^+) = \phi\left(\frac{y_{(\mathbf{x}, \boldsymbol{\theta})}^f - m_3^f}{s_3^f}\right) / s_3^f. \quad (13)$$

742 where ϕ is the density function of the standard normal distribution.
 743

744 By substituting (11), (12), and (13) into (10), we obtain (6).
 745

746 A.2 ANALYTICAL REPRESENTATION OF $p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+)$

749 In the case of $p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+)$, almost the same derivation can be applied as (6).
 750 Therefore, we here only show the final result
 751

$$752 \quad p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+) = \begin{cases} \Phi\left(\frac{g^* - m_1^g}{s_1^g}\right) \phi\left(\frac{y_{(\mathbf{x}, \boldsymbol{\theta})}^g - m_3^g}{s_3^g}\right) / \Phi\left(\frac{g^* - m_2^g}{s_2^g}\right) s_3^g & \text{if } \boldsymbol{\theta} \neq \boldsymbol{\theta}^*, \\ \phi\left(\frac{y_{(\mathbf{x}, \boldsymbol{\theta})}^g - m_3^g}{s_3^g}\right) / s_3^g & \text{otherwise,} \end{cases}$$

756 where

$$\begin{aligned}
 757 \quad m_1^g &= \mu_t^g(\mathbf{x}^*, \boldsymbol{\theta}) + \begin{bmatrix} \text{Cov}_t^g((\mathbf{x}^*, \boldsymbol{\theta}), (\mathbf{x}, \boldsymbol{\theta})) \\ \text{Cov}_t^g((\mathbf{x}^*, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*)) \end{bmatrix}^\top \begin{bmatrix} \{\sigma_t^g(\mathbf{x}, \boldsymbol{\theta})\}^2 + \{\sigma_{\text{noise}}^g\}^2 & \text{Cov}_t^g((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*)) \\ \text{Cov}_t^g((\mathbf{x}^*, \boldsymbol{\theta}^*), (\mathbf{x}, \boldsymbol{\theta})) & \{\sigma_t^g(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2 \end{bmatrix}^{-1} \begin{bmatrix} y_{(\mathbf{x}, \boldsymbol{\theta})}^g - \mu_t^g(\mathbf{x}, \boldsymbol{\theta}) \\ g_{(\mathbf{x}^*, \boldsymbol{\theta}^*)} - \mu_t^g(\mathbf{x}^*, \boldsymbol{\theta}^*) \end{bmatrix}, \\
 758 \quad \{s_1^g\}^2 &= \{\sigma_t^g(\mathbf{x}^*, \boldsymbol{\theta})\}^2 \\
 759 \quad &\quad - \begin{bmatrix} \text{Cov}_t^g((\mathbf{x}^*, \boldsymbol{\theta}), (\mathbf{x}, \boldsymbol{\theta})) \\ \text{Cov}_t^g((\mathbf{x}^*, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*)) \end{bmatrix}^\top \begin{bmatrix} \{\sigma_t^g(\mathbf{x}, \boldsymbol{\theta})\}^2 + \{\sigma_{\text{noise}}^g\}^2 & \text{Cov}_t^f((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*)) \\ \text{Cov}_t^g((\mathbf{x}^*, \boldsymbol{\theta}^*), (\mathbf{x}, \boldsymbol{\theta})) & \{\sigma_t^g(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2 \end{bmatrix}^{-1} \begin{bmatrix} \text{Cov}_t^g((\mathbf{x}^*, \boldsymbol{\theta}), (\mathbf{x}, \boldsymbol{\theta})) \\ \text{Cov}_t^g((\mathbf{x}^*, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*)) \end{bmatrix}, \\
 760 \quad m_2^g &= \mu_t^g(\mathbf{x}^*, \boldsymbol{\theta}) + \frac{\text{Cov}_t^g((\mathbf{x}^*, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*))}{\{\sigma_t^g(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2} (g(\mathbf{x}^*, \boldsymbol{\theta}^*) - \mu_t^g(\mathbf{x}^*, \boldsymbol{\theta}^*)) \\
 761 \quad \{s_2^g\}^2 &= \{\sigma_t^g(\mathbf{x}^*, \boldsymbol{\theta})\}^2 - \frac{\{\text{Cov}_t^g((\mathbf{x}^*, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*))\}^2}{\{\sigma_t^g(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2}, \\
 762 \quad m_3^g &= \mu_t^g(\mathbf{x}, \boldsymbol{\theta}) + \frac{\text{Cov}_t^g((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*))}{\{\sigma_t^g(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2} (g(\mathbf{x}^*, \boldsymbol{\theta}^*) - \mu_t^g(\mathbf{x}^*, \boldsymbol{\theta}^*)), \\
 763 \quad \{s_3^g\}^2 &= \{\sigma_t^g(\mathbf{x}, \boldsymbol{\theta})\}^2 + \{\sigma_{\text{noise}}^g\}^2 - \frac{\{\text{Cov}_t^g((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}^*, \boldsymbol{\theta}^*))\}^2}{\{\sigma_t^g(\mathbf{x}^*, \boldsymbol{\theta}^*)\}^2},
 \end{aligned}$$

764 and $\text{Cov}_t^g((\mathbf{x}, \boldsymbol{\theta}), (\mathbf{x}', \boldsymbol{\theta}'))$ is the posterior covariance between $g(\mathbf{x}, \boldsymbol{\theta})$ and $g(\mathbf{x}', \boldsymbol{\theta}')$ given \mathcal{D}_t .

B LOWER BOUND AS INDEPENDENCE APPROXIMATION

B.1 DERIVING BLJES THROUGH INDEPENDENCE APPROXIMATION

765 Here, we show that our variational distribution (4) can be interpreted through a conditional independence approximation of the GPs. In other words, under the assumption of the conditional independence, the lower bound (3) becomes equal to the original MI. In a variational inference, it is common to introduce independence assumptions for making computations tractable. Our truncation based computations can also be interpreted by a similar perspective that has not been revealed in other studies of information-theoretic BO.

766 The variational distribution $q(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)$ is a surrogate for $p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)$. The conditioning of f^*, g^*, \mathbf{x}^* and $\boldsymbol{\theta}^*$ can be represented by the following three conditions:

- 767 C1. When f^* is given, $f(\mathbf{x}', \boldsymbol{\theta}^*(\mathbf{x}')) \leq f^*$ should hold for $\forall \mathbf{x}'$.
- 768 C2. When g^* is given, $g(\mathbf{x}^*, \boldsymbol{\theta}') \leq g^*$ should hold for $\forall \boldsymbol{\theta}'$.
- 769 C3. $f(\mathbf{x}^*, \boldsymbol{\theta}^*) = f^*$ and $g(\mathbf{x}^*, \boldsymbol{\theta}^*) = g^*$

770 The condition C3 can be realized just by adding $(\mathbf{x}^*, \boldsymbol{\theta}^*, f^*, g^*)$ into the training dataset \mathcal{D}_t , i.e., conditioning on \mathcal{D}_t^+ .

771 The posterior distribution over the ‘entire functions’ f and g (not only for given specific input points) with all the above three conditions is represented as

$$772 \quad p(f, g \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t) = p(f \mid \mathcal{D}_t^+) p(g \mid \mathcal{D}_t^+) \times \\
 773 \quad \mathbb{I}(f(\mathbf{x}', \boldsymbol{\theta}^*(\mathbf{x}')) \leq f^* \text{ for } \forall \mathbf{x}') \mathbb{I}(g(\mathbf{x}^*, \boldsymbol{\theta}') \leq g^* \text{ for } \forall \boldsymbol{\theta}') / Z, \quad (14)$$

774 where \mathbb{I} is the indicator function and Z is a normalizing constant. In this density, the term $p(f \mid \mathcal{D}_t^+) p(g \mid \mathcal{D}_t^+)$ generates functions satisfying the condition C3. The two indicator functions only accept functions satisfying the conditions C1 and C2. The predictive distribution $p(f(\mathbf{x}, \boldsymbol{\theta}), g(\mathbf{x}, \boldsymbol{\theta}) \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)$ is obtained by marginalizing the above distribution over all $f(\mathbf{x}', \boldsymbol{\theta}')$ and $g(\mathbf{x}', \boldsymbol{\theta}')$ such that $(\mathbf{x}', \boldsymbol{\theta}') \neq (\mathbf{x}, \boldsymbol{\theta})$. However, this marginalization is obviously computationally intractable.

775 To simplify the marginalization, we introduce the following conditional independence approximation

$$776 \quad p(f \mid \mathcal{D}_t^+) \approx p(f(\mathbf{x}, \boldsymbol{\theta}), f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \mid \mathcal{D}_t^+) p(f' \mid \mathcal{D}_t^+), \quad (15)$$

$$777 \quad p(g \mid \mathcal{D}_t^+) \approx p(g(\mathbf{x}, \boldsymbol{\theta}), g(\mathbf{x}^*, \boldsymbol{\theta}) \mid \mathcal{D}_t^+) p(g' \mid \mathcal{D}_t^+), \quad (16)$$

810 where f' is f in which $(\mathbf{x}, \boldsymbol{\theta})$ and $(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))$ are removed from its input domain, and g' is g in
 811 which $(\mathbf{x}, \boldsymbol{\theta})$ and $(\mathbf{x}^*, \boldsymbol{\theta})$ are removed from its input domain. This approximation means that, for the
 812 joint GP posteriors given \mathcal{D}_t^+ , the posterior covariances between f' and $\{f(\mathbf{x}, \boldsymbol{\theta}), f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))\}$, and
 813 between g' and $\{g(\mathbf{x}, \boldsymbol{\theta}), g(\mathbf{x}^*, \boldsymbol{\theta})\}$ are regarded as 0. By substituting (15) and (16) into (14), we
 814 obtain

$$815 \quad p(f(\mathbf{x}, \boldsymbol{\theta}), f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \mid \mathcal{D}_t^+) p(f' \mid \mathcal{D}_t^+) p(g(\mathbf{x}, \boldsymbol{\theta}), g(\mathbf{x}^*, \boldsymbol{\theta}) \mid \mathcal{D}_t^+) p(g' \mid \mathcal{D}_t^+) \times \quad (17)$$

$$816 \quad \mathbb{I}(f(\mathbf{x}', \boldsymbol{\theta}^*(\mathbf{x}')) \leq f^* \text{ for } \forall \mathbf{x}') \mathbb{I}(g(\mathbf{x}^*, \boldsymbol{\theta}') \leq g^* \text{ for } \forall \boldsymbol{\theta}') / Z.$$

818 To derive the predictive distribution $p(f(\mathbf{x}, \boldsymbol{\theta}), g(\mathbf{x}, \boldsymbol{\theta}) \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)$ under the independence
 819 assumption, we consider the marginalization of the approximate distribution (17) over $\mathcal{X} \times \Theta$ except
 820 for $(\mathbf{x}, \boldsymbol{\theta})$. For f , this marginalization can be seen as the joint marginalization of $f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))$ and
 821 f' , and for g , can be seen as the joint marginalization of $g(\mathbf{x}^*, \boldsymbol{\theta})$ and g' . By combining (17) and the
 822 decomposition of the indicator functions

$$823 \quad \mathbb{I}(f(\mathbf{x}', \boldsymbol{\theta}^*(\mathbf{x}')) \leq f^* \text{ for } \forall \mathbf{x}') = \mathbb{I}(f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*) \mathbb{I}(f'(\mathbf{x}', \boldsymbol{\theta}^*(\mathbf{x}')) \leq f^* \text{ for } \forall \mathbf{x}' \neq \mathbf{x}),$$

$$824 \quad \mathbb{I}(g(\mathbf{x}^*, \boldsymbol{\theta}') \leq g^* \text{ for } \forall \boldsymbol{\theta}') = \mathbb{I}(g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*) \mathbb{I}(g'(\mathbf{x}^*, \boldsymbol{\theta}') \leq g^* \text{ for } \forall \boldsymbol{\theta}' \neq \boldsymbol{\theta}),$$

825 we obtain

$$827 \quad p(f(\mathbf{x}, \boldsymbol{\theta}), g(\mathbf{x}, \boldsymbol{\theta}) \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)$$

$$828 = \underbrace{\int_{f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))} \int_{g(\mathbf{x}^*, \boldsymbol{\theta})} \int_{f'} \int_{g'} p(f, g \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t) \, dg' \, df' \, dg(\mathbf{x}^*, \boldsymbol{\theta}) \, df(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}_{A} \times$$

$$831 \quad \underbrace{\int_{f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))} p(f(\mathbf{x}, \boldsymbol{\theta}), f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \mid \mathcal{D}_t^+) \mathbb{I}(f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*) \, df(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}_{A} \times$$

$$834 \quad \underbrace{\int_{g(\mathbf{x}^*, \boldsymbol{\theta})} p(g(\mathbf{x}, \boldsymbol{\theta}), g(\mathbf{x}^*, \boldsymbol{\theta}) \mid \mathcal{D}_t^+) \mathbb{I}(g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*) \, dg(\mathbf{x}^*, \boldsymbol{\theta})}_{B} \times$$

$$838 \quad \underbrace{\int_{f'} \int_{g'} p(f' \mid \mathcal{D}_t^+) \mathbb{I}(f'(\mathbf{x}', \boldsymbol{\theta}^*(\mathbf{x}')) \leq f^* \text{ for } \forall \mathbf{x}' \neq \mathbf{x}) \, p(g' \mid \mathcal{D}_t^+) \mathbb{I}(g'(\mathbf{x}^*, \boldsymbol{\theta}') \leq g^* \text{ for } \forall \boldsymbol{\theta}' \neq \boldsymbol{\theta}) / Z \, dg' \, df'}_{C}$$

$$841 = p(f(\mathbf{x}, \boldsymbol{\theta}) \mid f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, \mathcal{D}_t^+) p(g(\mathbf{x}, \boldsymbol{\theta}) \mid g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+), \quad (18)$$

843 where $\int_{f'} \, df'$ and $\int_{g'} \, dg'$ are marginalization over the entire input domain of f' and g' . The term
 844 C is the constant factor independent from $f(\mathbf{x}, \boldsymbol{\theta})$ and $g(\mathbf{x}, \boldsymbol{\theta})$. Then, the last line is derived from
 845 the normalizing condition of the density, and the relations $A \propto p(f(\mathbf{x}, \boldsymbol{\theta}) \mid f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, \mathcal{D}_t^+)$
 846 and $B \propto p(g(\mathbf{x}, \boldsymbol{\theta}) \mid g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+)$.

847 Then, by using (18), $p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)$ can be represented as

$$849 \quad p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)$$

$$851 = p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid f(\mathbf{x}, \boldsymbol{\theta})) p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid g(\mathbf{x}, \boldsymbol{\theta})) p(f(\mathbf{x}, \boldsymbol{\theta}), g(\mathbf{x}, \boldsymbol{\theta}) \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)$$

$$853 \approx p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid f(\mathbf{x}, \boldsymbol{\theta})) p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid g(\mathbf{x}, \boldsymbol{\theta})) p(f(\mathbf{x}, \boldsymbol{\theta}) \mid f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, \mathcal{D}_t^+) p(g(\mathbf{x}, \boldsymbol{\theta}) \mid g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+)$$

$$855 = p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, \mathcal{D}_t^+) p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+)$$

$$856 = q(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t).$$

857 This indicates that if the independence assumption (15) and (16) hold (if the posterior is actually
 858 independent), the variational distribution becomes the true distribution, resulting in that the lower
 859 bound (3) becomes equal to the original MI. On the other hand, clarifying the error caused by
 860 this independence assumption for the general dependent case is still future work. However, this
 861 analysis revealed that our variational distribution (3) can be purely derived from the independence
 862 assumption without manually specifying a particular form of a distribution. To our knowledge, no
 863 information-theoretic BO studies have revealed this way of justification for the truncate distribution
 864 approximation.

864
865

B.2 DERIVING SIMPLIFIED BLJES WITHOUT TRUNCATION

866
867
868
869
870
871

One of notable properties of BLJES is to consider the two truncations $f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*$ and $g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*$ as described in the first and the second items in the itemization after (4). Intuitively, these conditions transmit the information that f^* and g^* are the maximum values of the upper- and the lower- problems to the query point $(\mathbf{x}, \boldsymbol{\theta})$. On the other hand, by introducing stronger independence assumptions than (15) and (16), we can derive a simplified variant of BLJES, which we use for empirically evaluating the importance of truncations in Appendix F.8.

872
873

In this simplified variant, instead of (15) and (16), the conditional independence is assumed between $(\mathbf{x}, \boldsymbol{\theta})$ and all the other input points, which results in

874
875
876

$$p(f \mid \mathcal{D}_t^+) \approx p(f(\mathbf{x}, \boldsymbol{\theta}) \mid \mathcal{D}_t^+) p(f' \mid \mathcal{D}_t^+), \quad (19)$$

$$p(g \mid \mathcal{D}_t^+) \approx p(g(\mathbf{x}, \boldsymbol{\theta}) \mid \mathcal{D}_t^+) p(g' \mid \mathcal{D}_t^+), \quad (20)$$

877
878
879
880

where f' and g' are f and g in which only $(\mathbf{x}, \boldsymbol{\theta})$ is removed from the input domain (note that the definitions are slightly different from the case of (15) and (16)). By the almost same derivation in the previous Appendix B.1, we obtain

881
882

$$p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t) \approx p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \mathcal{D}_t^+) p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid \mathcal{D}_t^+).$$

883
884
885

We can define the acquisition function by defining $q(y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)$ as the right hand side of this approximation. As a result, we obtain a simpler lower bound (a lower bound without truncation)

886
887
888
889

$$\text{LB}_{\text{wot}}(\mathbf{x}, \boldsymbol{\theta}) := \mathbb{E}_{\Omega} \left[\log \frac{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \mathcal{D}_t^+)}{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \mathcal{D}_t)} + \log \frac{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid \mathcal{D}_t^+)}{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid \mathcal{D}_t)} \right], \quad (21)$$

890
891
892

for which the same Monte-Carlo approximation as the original BLJES can be applied. By comparing $\text{LB}_{\text{wot}}(\mathbf{x}, \boldsymbol{\theta})$ with (5), we see that the truncation conditions are removed.

893
894

C DETAIL OF GRADIENT COMPUTATIONS

895
896
897

First, we consider the gradient for $\partial \tilde{f}(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) / \partial \mathbf{x}$, which is required to obtain the sample of $\mathbf{x}^*, \boldsymbol{\theta}^*, f^*$, and g^* . For $\tilde{\boldsymbol{\theta}}^*(\mathbf{x}) = \arg \max_{\boldsymbol{\theta}} \tilde{g}(\mathbf{x}, \boldsymbol{\theta})$, the implicit function theorem derives

898
899
900

$$\frac{\partial \tilde{\boldsymbol{\theta}}^*(\mathbf{x})}{\partial \mathbf{x}^\top} = - \left\{ \frac{\partial^2 \tilde{g}(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \mathbf{x}^\top} \Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}^*(\mathbf{x})} \right\}^{-1} \frac{\partial^2 \tilde{g}(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \mathbf{x}^\top} \Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}^*(\mathbf{x})},$$

901
902

from which we can calculate

903
904
905

$$\frac{\partial \tilde{f}(\mathbf{x}, \tilde{\boldsymbol{\theta}}^*(\mathbf{x}))}{\partial \mathbf{x}} = \frac{\partial \tilde{f}(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \Big|_{\boldsymbol{\theta}=\tilde{\boldsymbol{\theta}}^*(\mathbf{x})} + \left\{ \frac{\partial \tilde{\boldsymbol{\theta}}^*(\mathbf{x})}{\partial \mathbf{x}^\top} \right\}^\top \frac{\partial \tilde{f}(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{\theta}=\tilde{\boldsymbol{\theta}}^*(\mathbf{x})}.$$

906
907

Next, we consider the acquisition function maximization. Let

908
909
910

$$\tilde{a}(\mathbf{x}, \boldsymbol{\theta}, \boldsymbol{\theta}') := \log \frac{p(\tilde{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \tilde{f}(\mathbf{x}, \boldsymbol{\theta}') \leq \tilde{f}^*, \tilde{\mathcal{D}}_t^+)}{p(\tilde{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f \mid \mathcal{D}_t)} + \log \frac{p(\tilde{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid \tilde{g}(\tilde{\mathbf{x}}^*, \boldsymbol{\theta}) \leq \tilde{g}^*, \tilde{\mathcal{D}}_t^+)}{p(\tilde{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g \mid \mathcal{D}_t)}$$

911
912
913

be the inside of the expectation of (5) in which $\boldsymbol{\theta}^*(\mathbf{x})$ is replaced with $\boldsymbol{\theta}'$, and variables in Ω is replaced by a sample, denoted with $\tilde{\cdot}$. Note that $\tilde{\mathcal{D}}_t^+ = \mathcal{D}_t \cup (\tilde{\mathbf{x}}^*, \tilde{\boldsymbol{\theta}}^*, \tilde{f}^*, \tilde{g}^*)$. Then, the gradient with respect to \mathbf{x} can be written as

914
915
916
917

$$\frac{\partial \tilde{a}(\mathbf{x}, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}^*(\mathbf{x}))}{\partial \mathbf{x}} = \frac{\partial \tilde{a}(\mathbf{x}, \boldsymbol{\theta}, \boldsymbol{\theta}')}{\partial \mathbf{x}} \Big|_{\boldsymbol{\theta}'=\tilde{\boldsymbol{\theta}}^*(\mathbf{x})} + \left\{ \frac{\partial \tilde{\boldsymbol{\theta}}^*(\mathbf{x})}{\partial \mathbf{x}^\top} \right\}^\top \frac{\partial \tilde{a}(\mathbf{x}, \boldsymbol{\theta}, \boldsymbol{\theta}')}{\partial \boldsymbol{\theta}'} \Big|_{\boldsymbol{\theta}'=\tilde{\boldsymbol{\theta}}^*(\mathbf{x})}$$

The gradient with respect $\boldsymbol{\theta}$ can be obtained through the usual derivative.

918 D LOWER BOUND OF DECOUPLED SETTING
919
920921 The lower bound of the information gain for the upper-level observation is
922
923

$$\begin{aligned}
\text{MI}(y_{(\mathbf{x}, \boldsymbol{\theta})}^f ; f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^* | \mathcal{D}_t) &= \mathbb{E}_{\Omega} \left[\log \frac{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)}{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | \mathcal{D}_t)} \right] \\
&= \mathbb{E}_{f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*} \left[\mathbb{E}_{y_{(\mathbf{x}, \boldsymbol{\theta})}^f | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t} \left[\log \frac{q(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)}{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | \mathcal{D}_t)} \right] \right. \\
&\quad \left. + \text{KL} \left(p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t) \| q(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t) \right) \right] \\
&\geq \mathbb{E}_{\Omega} \left[\log \frac{q(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)}{p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | \mathcal{D}_t)} \right] =: \text{LB}^f(\mathbf{x}, \boldsymbol{\theta}).
\end{aligned}$$

937 By setting the variational distribution as
938
939

$$\begin{aligned}
q(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t) &\coloneqq p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, g(\mathbf{x}^*, \boldsymbol{\theta}) \leq g^*, \mathcal{D}_t^+) \\
&= p(y_{(\mathbf{x}, \boldsymbol{\theta})}^f | f(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) \leq f^*, \mathcal{D}_t^+),
\end{aligned}$$

944 we obtain the lower bound (7).
945
946
947948 E EXTENSION FOR CONSTRAINT PROBLEMS
949
950951 Let
952
953

$$\begin{aligned}
\mathbf{h}_{(\mathbf{x}, \boldsymbol{\theta})}^f &\coloneqq (f(\mathbf{x}, \boldsymbol{\theta}), c_1^U(\mathbf{x}, \boldsymbol{\theta}), \dots, c_N^U(\mathbf{x}, \boldsymbol{\theta}))^\top, \\
\mathbf{h}_{(\mathbf{x}, \boldsymbol{\theta})}^g &\coloneqq (g(\mathbf{x}, \boldsymbol{\theta}), c_1^L(\mathbf{x}, \boldsymbol{\theta}), \dots, c_M^L(\mathbf{x}, \boldsymbol{\theta}))^\top,
\end{aligned}$$

957 be the vectors in which the objective function and the constraint functions are concatenated for the
958 upper- and the lower-level problems, respectively, and
959
960

$$\begin{aligned}
\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f &\coloneqq (y_{(\mathbf{x}, \boldsymbol{\theta})}^f, y_{(\mathbf{x}, \boldsymbol{\theta})}^{c_1^U}, \dots, y_{(\mathbf{x}, \boldsymbol{\theta})}^{c_N^U})^\top, \\
\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g &\coloneqq (y_{(\mathbf{x}, \boldsymbol{\theta})}^g, y_{(\mathbf{x}, \boldsymbol{\theta})}^{c_1^L}, \dots, y_{(\mathbf{x}, \boldsymbol{\theta})}^{c_M^L})^\top,
\end{aligned}$$

966 are the counterparts of noisy observations, where $y_{(\mathbf{x}, \boldsymbol{\theta})}^{c_n^L} \coloneqq c_n^U(\mathbf{x}, \boldsymbol{\theta}) + \epsilon^{c_n^U}$, $\epsilon^{c_n^U} \sim \mathcal{N}(0, \{\sigma_{\text{noise}}^{c_n^L}\}^2)$
967 and $y_{(\mathbf{x}, \boldsymbol{\theta})}^{c_m^U} \coloneqq c_m^L(\mathbf{x}, \boldsymbol{\theta}) + \epsilon^{c_m^U}$, $\epsilon^{c_m^U} \sim \mathcal{N}(0, \{\sigma_{\text{noise}}^{c_m^U}\}^2)$. We observe $(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g)$ at every BO iteration
968 for selected $(\mathbf{x}, \boldsymbol{\theta})$, i.e., $\mathcal{D}_t = \{(\mathbf{x}_i, \boldsymbol{\theta}_i, \mathbf{y}_{\mathbf{x}_i, \boldsymbol{\theta}_i}^f, \mathbf{y}_{\mathbf{x}_i, \boldsymbol{\theta}_i}^g)\}_{i=1}^n$ in the constraint setting. In addition to f and
969 g , the independent GPs are also fitted to c_n^U and c_m^L , for which the posteriors given \mathcal{D}_t are written as
970 $\mathcal{N}(\mu_t^{c_n^U}(\mathbf{x}, \boldsymbol{\theta}), \{\sigma_t^{c_n^U}(\mathbf{x}, \boldsymbol{\theta})\}^2)$ and $\mathcal{N}(\mu_t^{c_m^L}(\mathbf{x}, \boldsymbol{\theta}), \{\sigma_t^{c_m^L}(\mathbf{x}, \boldsymbol{\theta})\}^2)$, respectively.
971

972 E.1 LOWER BOUND
973974 The MI and its lower bound can be derived by the same approach as (3):
975

$$\begin{aligned}
976 \text{MI}(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g ; f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^* | \mathcal{D}_t) &= \mathbb{E}_{\Omega} \left[\log \frac{p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)}{p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | \mathcal{D}_t)} \right] \\
977 &= \mathbb{E}_{f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*} \left[\mathbb{E}_{\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t} \left[\log \frac{q(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)}{p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | \mathcal{D}_t)} \right] \right. \\
978 &\quad \left. + \text{KL} \left(p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t) \| q(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t) \right) \right] \\
979 &\geq \mathbb{E}_{\Omega} \left[\log \frac{q(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t)}{p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | \mathcal{D}_t)} \right] =: \text{LB}_c(\mathbf{x}, \boldsymbol{\theta}),
\end{aligned}$$

980 where here $\mathcal{D}_t^+ := \mathcal{D}_t \cup \{(\mathbf{x}^*, \boldsymbol{\theta}^*, f^*, g^*)\}$.
981982 To define the variational distribution q , we follow the same approach as information-theoretic
983 constraint BO proposed by (Takeno et al., 2022b). Let $\mathcal{A}^f = \{(c_0, \mathbf{c}) | c_0 \geq f^*, \mathbf{c} \geq 0, c_0 \in \mathbb{R}, \mathbf{c} \in \mathbb{R}^N\}$ and $\mathcal{A}^g = \{(c_0, \mathbf{c}) | c_0 \geq g^*, \mathbf{c} \geq 0, c_0 \in \mathbb{R}, \mathbf{c} \in \mathbb{R}^M\}$. When f^* is given, \mathcal{A}^f is the region that
984 $\mathbf{h}_{\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})}^f$ cannot exist for $\forall \mathbf{x}$. When g^* is given, \mathcal{A}^g is the region that $\mathbf{h}_{\mathbf{x}^*, \boldsymbol{\theta}}^g$ cannot exist for $\forall \boldsymbol{\theta}$. Based
985 on the same simplification of the conditioning discussed in section 3.1, we define the variational
986 distribution as
987

$$q(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | f^*, g^*, \mathbf{x}^*, \boldsymbol{\theta}^*, \mathcal{D}_t) := p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | \mathbf{h}_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}^f \in \bar{\mathcal{A}}^f, \mathbf{h}_{(\mathbf{x}^*, \boldsymbol{\theta})}^g \in \bar{\mathcal{A}}^g, \mathcal{D}_t^+),$$

988 where $\bar{\mathcal{A}}^f$ and $\bar{\mathcal{A}}^g$ are the complement sets of \mathcal{A}^f and \mathcal{A}^g , respectively. As a result, we see
989

$$\begin{aligned}
1000 \text{LB}_c(\mathbf{x}, \boldsymbol{\theta}) &= \mathbb{E}_{\Omega} \left[\log \frac{p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | \mathbf{h}_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}^f \in \bar{\mathcal{A}}^f, \mathbf{h}_{(\mathbf{x}^*, \boldsymbol{\theta})}^g \in \bar{\mathcal{A}}^g, \mathcal{D}_t^+)}{p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | \mathcal{D}_t)} \right] \\
1001 &= \mathbb{E}_{\Omega} \left[\log \frac{p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f | \mathbf{h}_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}^f \in \bar{\mathcal{A}}^f, \mathcal{D}_t^+)}{p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f | \mathcal{D}_t)} + \log \frac{p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | \mathbf{h}_{(\mathbf{x}^*, \boldsymbol{\theta})}^g \in \bar{\mathcal{A}}^g, \mathcal{D}_t^+)}{p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^g | \mathcal{D}_t)} \right].
\end{aligned}$$

1007 E.2 ANALYTICAL REPRESENTATION OF VARIATIONAL DISTRIBUTION
10081009 From Bayes theorem,
1010

$$1011 p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f | \mathbf{h}_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}^f \in \bar{\mathcal{A}}^f, \mathcal{D}_t^+) = \frac{p(\mathbf{h}_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}^f \in \bar{\mathcal{A}}^f | \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathcal{D}_t^+) p(\mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f | \mathcal{D}_t^+)}{p(\mathbf{h}_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}^f \in \bar{\mathcal{A}}^f | \mathcal{D}_t^+)}.
\quad (22)$$

1012 The density $p(\mathbf{h}_{(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x}))}^f | \mathbf{y}_{(\mathbf{x}, \boldsymbol{\theta})}^f, \mathcal{D}_t^+)$ is an $(N+1)$ -dimensional independent Gaussian distribution,
1013 for which the first dimension is $\mathcal{N}(m_1^f, \{s_1^f\}^2)$ shown in Appendix A.1 and from the second to the
1014 $(N+1)$ -th dimension is $\mathcal{N}(m_n^c, \{s_n^c\}^2)$ where
1015

$$\begin{aligned}
1016 m_n^c &= \mu_n^c(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) + \frac{\text{Cov}_t^{c_n^U}((\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})), (\mathbf{x}, \boldsymbol{\theta}))}{\{\sigma_t^{c_n^U}(\mathbf{x}, \boldsymbol{\theta})\}^2} (y_{(\mathbf{x}, \boldsymbol{\theta})}^{c_n^U} - \mu_n^c(\mathbf{x}, \boldsymbol{\theta})), \\
1017 \{s_n^c\}^2 &= \sigma_n^c(\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})) - \frac{\{\text{Cov}_t^{c_n^U}((\mathbf{x}, \boldsymbol{\theta}^*(\mathbf{x})), (\mathbf{x}, \boldsymbol{\theta}))\}^2}{\{\sigma_t^{c_n^U}(\mathbf{x}, \boldsymbol{\theta})\}^2}.
\end{aligned}$$

1026 As a result, we can derive

$$\begin{aligned}
 1028 \quad p(\mathbf{h}_{(\mathbf{x}, \theta^*(\mathbf{x}))}^f \in \bar{\mathcal{A}}^f \mid \mathbf{y}_{(\mathbf{x}, \theta)}^f, \mathcal{D}_t^+) &= 1 - (1 - \Phi(\frac{f^* - m_1^f}{s_1^f})) \prod_{n=1}^N (1 - \Phi(\frac{0 - m_n^{c_n^U}}{s_n^{c_n^U}})), \\
 1029 \\
 1031 \quad p(\mathbf{h}_{(\mathbf{x}, \theta^*(\mathbf{x}))}^f \in \bar{\mathcal{A}}^f \mid \mathcal{D}_t^+) &= 1 - (1 - \Phi(\frac{f^* - m_2^f}{s_2^f})) \prod_{n=1}^N (1 - \Phi(\frac{0 - \mu_t^{c_n^U}(\mathbf{x}, \theta^*(\mathbf{x}))}{\sigma_t^{c_n^U}(\mathbf{x}, \theta^*(\mathbf{x}))})), \\
 1032 \\
 1034 \quad p(\mathbf{y}_{(\mathbf{x}, \theta)}^f \mid \mathcal{D}_t^+) &= \phi(\frac{y_{(\mathbf{x}, \theta)}^f - m_3^f}{s_3^f}) \prod_{n=1}^N \phi(\frac{y_{(\mathbf{x}, \theta)}^{c_n^U} - \mu_t^{c_n^U}(\mathbf{x}, \theta)}{\sigma_t^{c_n^U}(\mathbf{x}, \theta)}) / (s_3^f \sigma_t^{c_n^U}(\mathbf{x}, \theta)).
 \end{aligned}$$

1037 Similarly, for the lower-level density, Bayes theorem transforms

$$1038 \quad p(\mathbf{y}_{(\mathbf{x}, \theta)}^g \mid \mathbf{h}_{(\mathbf{x}^*, \theta)}^g \in \bar{\mathcal{A}}^g, \mathcal{D}_t^+) = \frac{p(\mathbf{h}_{(\mathbf{x}^*, \theta)}^g \in \bar{\mathcal{A}}^g \mid \mathbf{y}_{(\mathbf{x}, \theta)}^g, \mathcal{D}_t^+) p(\mathbf{y}_{(\mathbf{x}, \theta)}^g \mid \mathcal{D}_t^+)}{p(\mathbf{h}_{(\mathbf{x}^*, \theta)}^g \in \bar{\mathcal{A}}^g \mid \mathcal{D}_t^+)}$$

1041 Here again, the density of the first dimension of $p(\mathbf{h}_{(\mathbf{x}^*, \theta)}^g \mid \mathbf{y}_{(\mathbf{x}, \theta)}^g, \mathcal{D}_t^+)$ is $\mathcal{N}(m_1^g, \{s_1^g\}^2)$ shown in
1042 Appendix A.1 and from the second to the $(M+1)$ -th dimension is $\mathcal{N}(m_m^{c_m^L}, \{s_m^{c_m^L}\}^2)$ where
1043

$$\begin{aligned}
 1044 \quad m_m^{c_m^L} &= \mu_t^{c_m^L}(\mathbf{x}^*, \theta) + \frac{\text{Cov}_t^{c_m^L}((\mathbf{x}^*, \theta), (\mathbf{x}, \theta))}{\{\sigma_t^{c_m^L}(\mathbf{x}, \theta)\}^2} (y_m^{c_m^L}(\mathbf{x}, \theta) - \mu_t^{c_m^L}(\mathbf{x}, \theta)), \\
 1045 \\
 1048 \quad \{s_m^{c_m^L}\}^2 &= \sigma_t^{c_m^L}(\mathbf{x}^*, \theta) - \frac{\{\text{Cov}_t^{c_m^L}((\mathbf{x}^*, \theta), (\mathbf{x}, \theta))\}^2}{\{\sigma_t^{c_m^L}(\mathbf{x}, \theta)\}^2}.
 \end{aligned}$$

1051 As a result

$$\begin{aligned}
 1052 \quad p(\mathbf{h}_{(\mathbf{x}^*, \theta)}^g \in \bar{\mathcal{A}}^g \mid \mathbf{y}_{(\mathbf{x}, \theta)}^g, \mathcal{D}_t^+) &= 1 - \left(1 - \Phi\left(\frac{g^* - m_1^g}{s_1^g}\right)\right) \prod_{m=1}^M \left(1 - \Phi\left(\frac{0 - m_m^{c_m^L}}{s_m^{c_m^L}}\right)\right) \\
 1053 \\
 1055 \quad p(\mathbf{h}_{(\mathbf{x}^*, \theta)}^g \in \bar{\mathcal{A}}^g \mid \mathcal{D}_t^+) &= 1 - \left(1 - \Phi\left(\frac{g^* - m_2^g}{s_2^g}\right)\right) \prod_{m=1}^M \left(1 - \Phi\left(\frac{0 - \mu_t^{c_m^L}(\mathbf{x}^*, \theta)}{\sigma_t^{c_m^L}(\mathbf{x}^*, \theta)}\right)\right) \\
 1056 \\
 1059 \quad p(\mathbf{y}_{(\mathbf{x}, \theta)}^g \mid \mathcal{D}_t^+) &= \phi\left(\frac{y_{(\mathbf{x}, \theta)}^g - m_3^g}{s_3^g}\right) \prod_{m=1}^M \phi\left(\frac{y_m^{c_m^L} - \mu_t^{c_m^L}(\mathbf{x}, \theta)}{\sigma_t^{c_m^L}(\mathbf{x}, \theta)}\right) / (s_3^g \sigma_t^{c_m^L}(\mathbf{x}, \theta))
 \end{aligned}$$

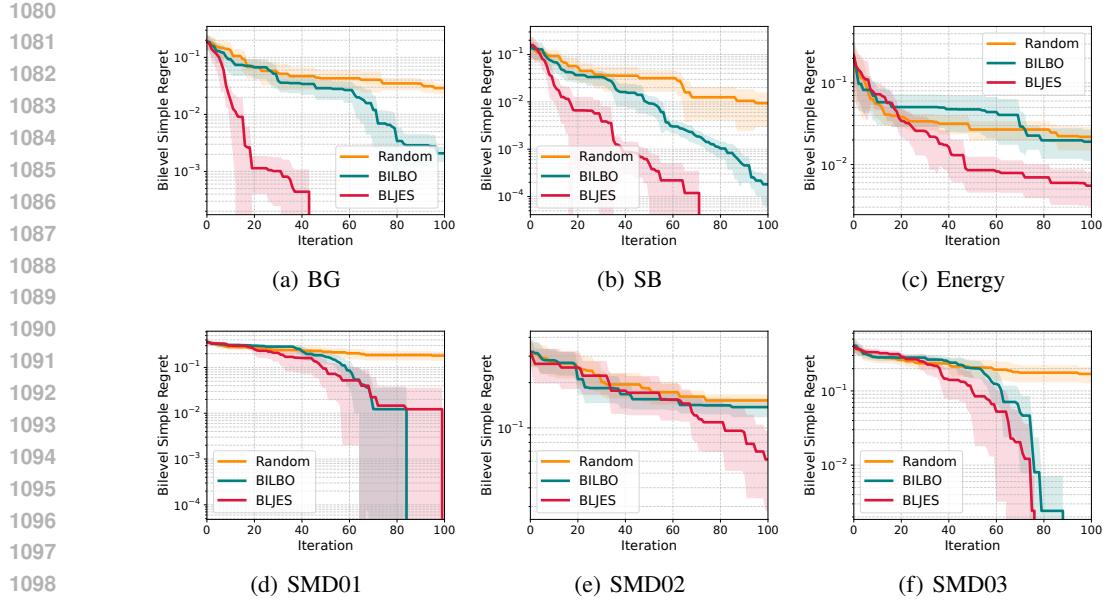
F SUPPLEMENTARY FOR EXPERIMENTS

F.1 OTHER DETAILS OF EXPERIMENTAL SETTINGS

1066 We used the SingleTaskGP model of BoTorch (Balandat et al., 2020) to define the GPs. The output
1067 of each benchmark function are transformed by signed log1p function $\text{sign}(y) \log(1 + |y|)$ except
1068 for BraninHoo and Goldstein-price for which the transformation shown by (Picheny et al., 2013)
1069 was used. For benchmark functions, the input space is scaled to $[0, 1]^{d_{\mathbf{x}} + d_{\theta}}$ from the original input
1070 domain. For the chemical dataset, we re-defined the true objective function values as $f(\mathbf{x}, \theta) = -\log((\max_{\mathbf{x}', \theta'} f_{\text{ori}}(\mathbf{x}', \theta') + 10^{-4}) - f_{\text{ori}}(\mathbf{x}, \theta))$ and $g(\mathbf{x}, \theta) = -\log((\max_{\mathbf{x}', \theta'} g_{\text{ori}}(\mathbf{x}', \theta') + 10^{-4}) - g_{\text{ori}}(\mathbf{x}, \theta))$, where f_{ori} and g_{ori} are original functions in the dataset. This is a log transformation applied
1071 to the difference from the maximum value (instead of 0). We employed this transformation because,
1072 in this dataset, many values are concentrated on the small scale differences around $\max f_{\text{ori}}(\mathbf{x}, \theta)$
1073 and $\max g_{\text{ori}}(\mathbf{x}, \theta)$, respectively.

F.2 LARGER NOISE SETTING

1078 Figure 7 shows results with a stronger noise setting (the noise standard deviation is set as 10^{-1}). We
1079 do not see large difference for the relative performance among compared methods compared with
the small noise setting shown in Fig. 4.

Figure 7: Regret comparison with 10^{-1} noise standard deviation.

F.3 ADDITIONAL RESULTS ON DECOUPLED SETTING

Figure 8 shows regret in decoupled setting for all different length scale settings of the GP prior, which generates true objectives. We obviously see that BLJES was superior or comparable to BILBO.

F.4 ADDITIONAL RESULTS ON EFFECT OF THE NUMBER OF SAMPLINGS

Figure 9 shows results of BLJES for different K . We do not see particularly large differences among different K settings in these benchmarks.

F.5 CONTINUOUS DOMAIN

Figure 10 shows the regret in the case of \mathcal{X} and Θ are the continuous space. We employed gradient based optimizers for both of the bilevel problem defined by sample paths and the acquisition function maximization (gradient of a bilevel problem is discussed in Appendix C). Here, BILBO is not performed because Chew et al. (2025) only discuss the finite domain. We see that BLJES efficiently decreases the regret even in the continuous space. Only in SMD02, BLJES was not efficient compared with the random selection.

F.6 CONSTRAINT PROBLEMS

For empirical evaluation, we employed problems from the bilevel optimization benchmark (Sinha et al., 2014), denoted as SDM09 ($d_{\mathcal{X}} = 2, d_{\Theta} = 2, N = 1, M = 1$), 10 ($d_{\mathcal{X}} = 2, d_{\Theta} = 2, N = 2, M = 1$), 11 ($d_{\mathcal{X}} = 2, d_{\Theta} = 2, N = 1, M = 1$), and 12 ($d_{\mathcal{X}} = 2, d_{\Theta} = 2, N = 3, M = 2$). The number of grid points in each dimension is 10 (10^4 points). The evaluation metric is

$$\min_{i \in [n_0+t]} \max_{h \in \{f, g, c_1^U, \dots, c_N^U, c_1^L, \dots, c_M^L\}} r_h(\mathbf{x}_i, \boldsymbol{\theta}_i)$$

where r_h become r_f and r_g shown in section 5 if $h = f$ or g , and

$$r_c(\mathbf{x}_i, \boldsymbol{\theta}_i) = \max(0, -c(\mathbf{x}_i, \boldsymbol{\theta}_i)) / \max_{\mathbf{x}, \boldsymbol{\theta}} (\max(0, -c(\mathbf{x}, \boldsymbol{\theta}))) , c \in \{c_1^U, \dots, c_N^U, c_1^L, \dots, c_M^L\}$$

if $h \in \{c_1^U, \dots, c_N^U, c_1^L, \dots, c_M^L\}$. The other settings are same as described in the beginning of section 5.

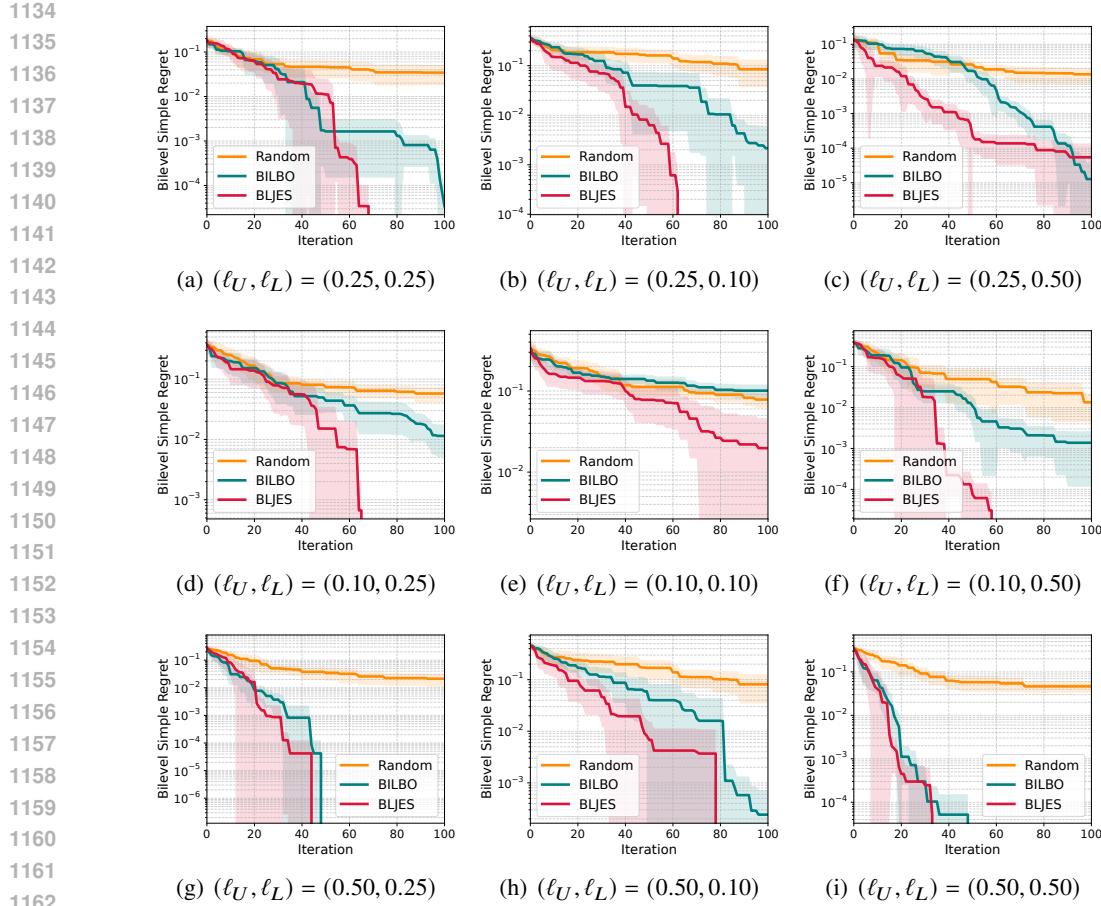


Figure 8: Regret comparison on functions from the GP prior under decoupled setting.

The results are in Fig. 11. For SMD09 and SMD11, BLJES shows faster decrease of the regret. For SMD12, BLJES and BILBO are comparable and both of them are much better than Random. For SMD10, BLJES rapidly decreased the regret, while BLJES also quickly decreased the regret (the difference is in small scale values).

F.7 HIGHER DIMENSIONAL PROBLEMS

By using the GP prior function, we evaluate performance on higher dimensional problems. Figure 12 shows the results on $d_X = d_\Theta = 4$ and $d_X = d_\Theta = 5$. Since creating fine grid points is difficult for these settings, the query setting (continuous domain) is employed here, because of which BILBO is not shown. We see that BLJES shows reasonable performance on the four dimension problems (a)-(d), while performance difference from the random selection becomes unclear on the five dimension problems (a)-(d).

In general, it is widely known that higher dimensional problems (e.g., more than 10 dimension) are difficult for BO (e.g., Santoni et al., 2024). In our bilevel problem, the dimension of the search space is $d_X + d_\Theta$, while the surrogate model is estimated on d_X and d_Θ spaces separately. We conjecture that our results are consistent with the general consensus of the high dimensional performance of BO by considering the additional difficulty caused by the low-level problem optimality constraint. Many studies exist for dealing with high dimensional problems (e.g., reviewer by Malu et al., 2021; González-Duque et al., 2024), but the efficient high dimensional exploration is still an important open problem in the context of BO. Some existing strategies for high dimensional problems are applicable to BLJES. For example, the well-known random projection-based method called REMBO (Wang et al., 2016) is applicable just by preparing two random projections for \mathbf{x} and $\boldsymbol{\theta}$. Another

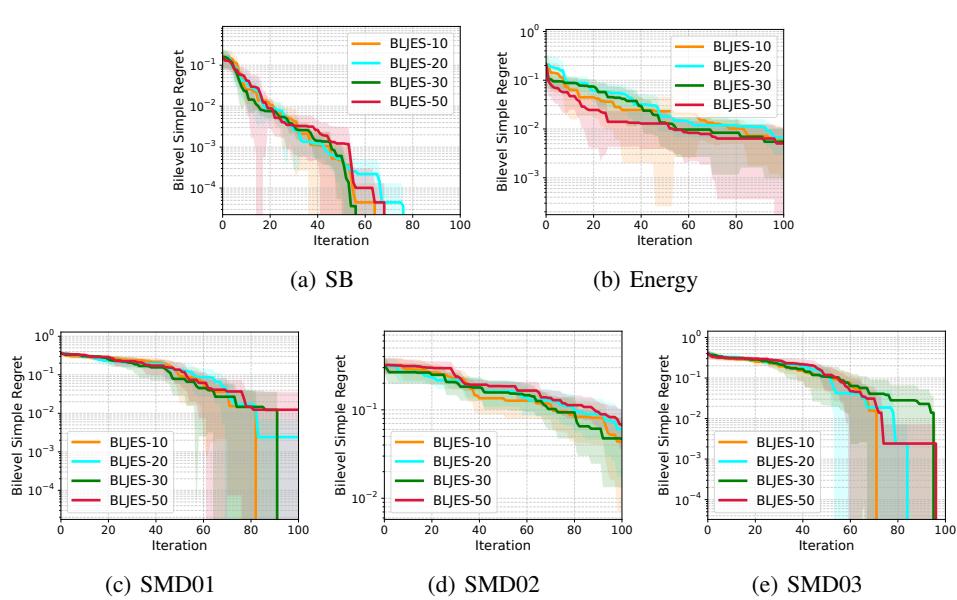


Figure 9: BLJES with different K .

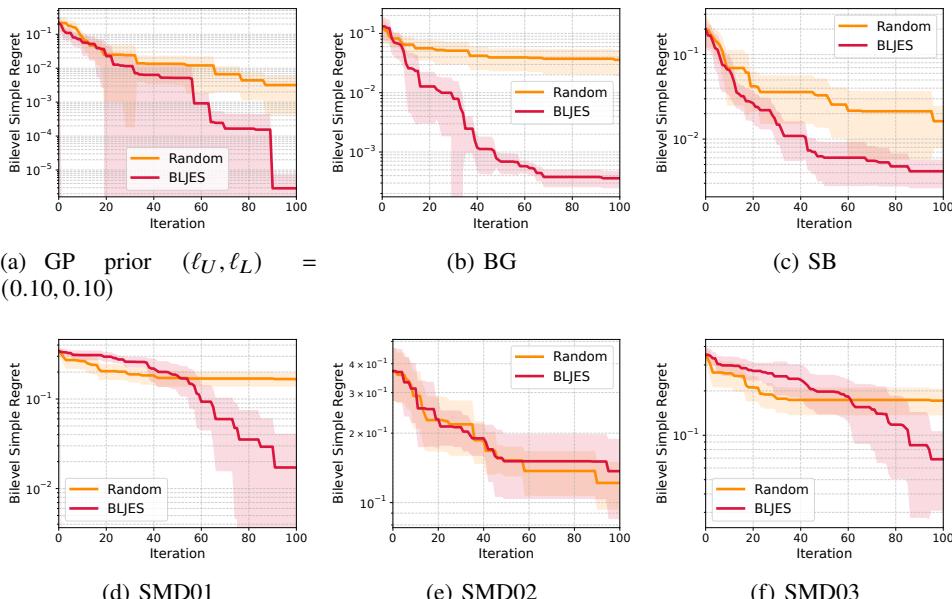


Figure 10: Regret comparison on continuous input domain.

well-known general strategy is LineBO (Kirschner et al., 2019) that explores one-dimensional (or low-dimensional) subspace at each iteration. In the case of BLJES, by defining one-dimensional subspace for each of x and θ , the same procedure as LineBO can be performed. However, detailed investigation for high dimensional setting is out of scope of this paper and it should be an important future direction.

F.8 BLJES WITHOUT TRUNCATION CONDITIONS

From the BLJES criterion (5), we consider a variant that removes the truncation conditions $f(\mathbf{x}, \theta^*(\mathbf{x})) \leq f^*$ and $g(\mathbf{x}^*, \theta) \leq g^*$ as shown in (21). From the viewpoint of the independence

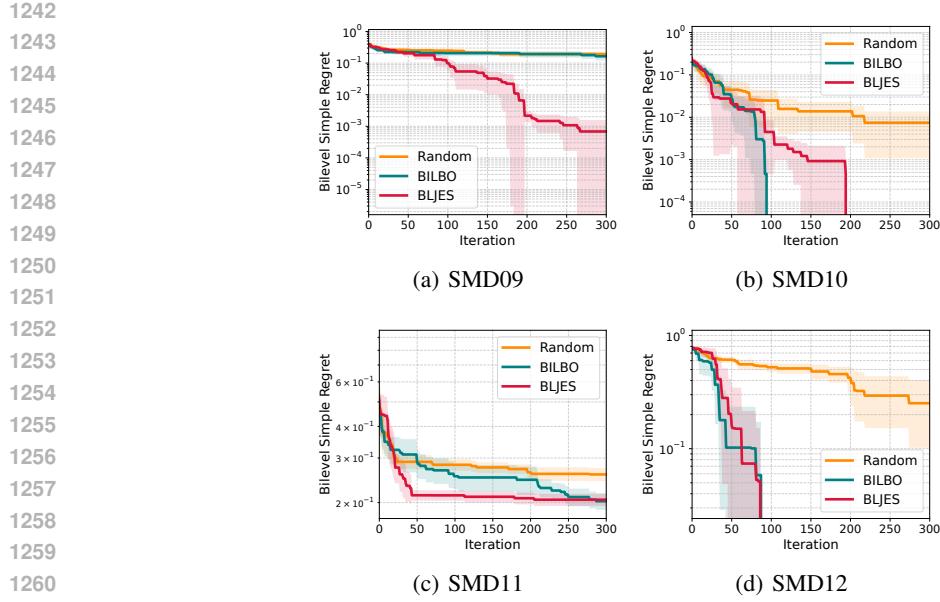


Figure 11: Regret comparison in constraint problems.

approximation, ‘BLJES without truncations’ can be seen as a variational lower bound with a stronger independence assumption as described in Appendix B.2.

The results are shown in Fig. 13. We can clearly see that ‘w/o truncation’ is much worse than ‘w/ truncation’. This indicates that the truncation conditions largely contributes to represent effectiveness of each candidate point, which is consistent with our discussion in Appendix B.

F.9 EFFECT OF RANDOM FOURIER APPROXIMATION

We use RFF for sampling Ω in the BLJES computation as described in section 3.2. In the case of the pool setting (finite domain), the sampling from the original GPs of f and g is also possible as far as the sizes of $|X|$ and $|\Theta|$ are moderate (because direct implementation of the sampling from the GP posterior requires $O(|X|^3)$ and $O(|\Theta|^3)$). Therefore, based on the pool setting that is used in section 5, we here evaluate performance difference between BLJES with the original GP posterior sampling and that with the RFF-based sampling. The results on the BG benchmark are in Fig. 14. We see that the transition of the regret is highly similar, which suggests that RFF did not have large effect on the performance in this dataset.

F.10 COMBINED ERROR BY MC APPROXIMATION AND RANDOM FOURIER FEATURE

We here evaluate the quality of computations to approximate the true lower bound (5). As described in section 3.2, we use the MC approximation for the expectation \mathbb{E}_Ω , and RFF is also used for sampling the optimal solutions and values. The pseudo ground truth of (5) was created by using the sampling from the original GP posteriors of f and g with the number of samplings $K = 10^4$. The mean squared error compared with this pseudo ground truth is shown in Fig. 15 (10 trials). ‘Exact’ indicates the GP posterior, and RFF-1000 and RFF-500 are RFF $D = 1000$ and $D = 500$, respectively. Overall, ‘Exact’ shows lower errors, while the error of RFF decreased for the larger D . When K increases, the error of RFF converges to some non-zero value, which approximately represents the error purely caused by RFF. We see that the error rapidly decreased with the increase of K , which suggests fast convergence of the MC sampling. As a results, we do not see a severe deterioration by the combination of the MC approximation and RFF.

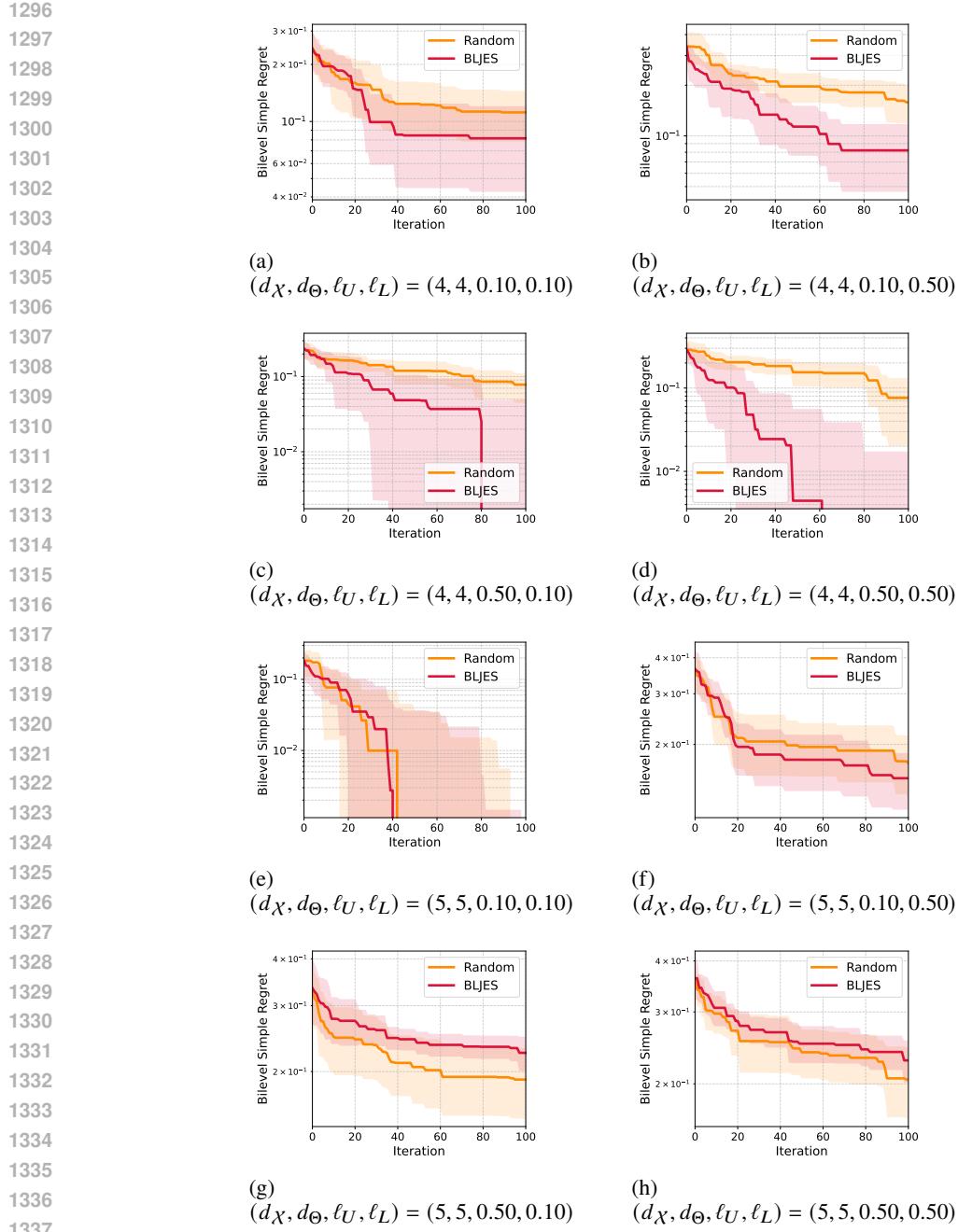


Figure 12: Regret comparison on functions from the GP prior.

G EXISTING STUDIES FOR REGRET ANALYSIS OF INFORMATION-THEORETIC BO

The well-known max-value entropy search (MES) (Wang & Jegelka, 2017) provides the regret bound for the special case in which only one Monte-Carlo (MC) sample is used for its expectation approximation. However, technical problems in their proof were pointed out by (Takeno et al., 2022b). Takeno et al. (2024) provided the regret bound of an acquisition function equivalent to the one sample MES, but it is still for the one sample special case that cannot be applied to the usual MC approximation by multiple samples. In the context of information-theoretic BO for (single-level) multi-objective optimization, Belakaria et al. (2019) discussed a regret bound, but Suzuki et al. (2020) pointed out an obvious significant mistake.

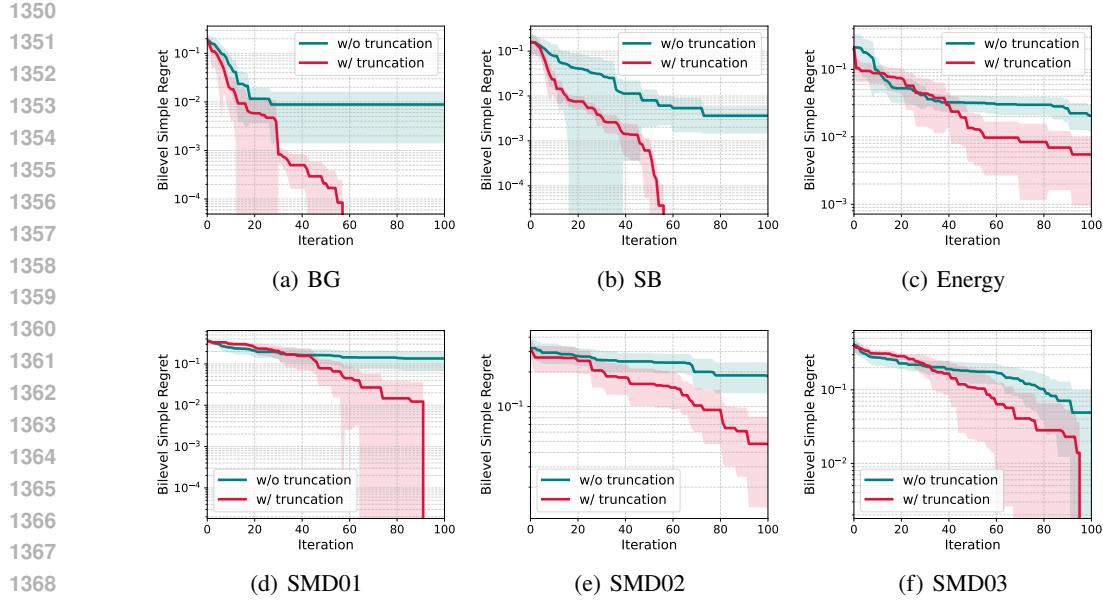


Figure 13: Evaluation of truncation in BLJES on benchmark problems.

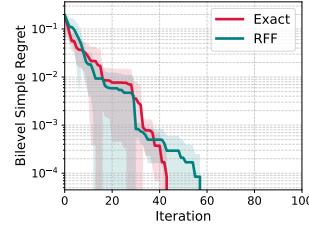


Figure 14: Evaluation of BLJES with the original GP posterior sampling and with RFF-based sampling (BG benchmark).

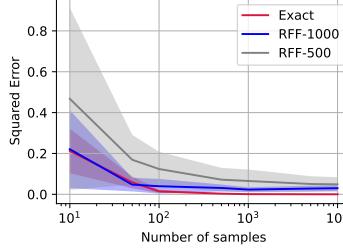


Figure 15: Approximation error of MC sampling and RFF (BG benchmark).

H LLM USAGE

In this manuscript, LLM was only used to polish writing.