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ABSTRACT

A bilevel optimization problem consists of two optimization problems nested as
an upper- and a lower-level problem, in which the optimality of the lower-level
problem defines a constraint for the upper-level problem. This paper considers
Bayesian optimization (BO) for the case that both the upper- and lower-levels
involve expensive black-box functions. Because of its nested structure, bilevel
optimization has a complex problem definition and, compared with other standard
extensions of BO such as multi-objective or constraint settings, it has not been
widely studied. We propose an information-theoretic approach that considers the
information gain of both the upper- and lower-optimal solutions and values. This
enables us to define a unified criterion that measures the benefit for both level
problems, simultaneously. Further, we also show a practical lower bound based
approach to evaluating the information gain. We empirically demonstrate the
effectiveness of our proposed method through several benchmark datasets.

1 INTRODUCTION

The bilevel optimization is a standard formulation for a decision making problem that has a hier-
archical structure. It consists of two optimization problems nested as an upper- and a lower-level
problem, in which the optimality of the lower-level problem defines a constraint for the upper-level
problem. For example, in the computational materials design, a target property should be optimized
under the constraint of the energy minimization. Bilevel optimization techniques is applicable to
hierarchical decision makings in a variety of contexts such as inverse optimal control (Suryan et all,
2016), chemical reaction optimization (Ahbassi_ef all, 2021)), and shape optimization (Herskovifs
af-all, PO00).

We particularly focus on the case both level problems are defined by expensive black-box functions.
Most of BO studies for bilevel optimization consider applying BO only to the upper-level problem
(e.g., Kieffer efall, POT7; Dogan & Prestwich, P073) as pointed out by (Chew efall, P075). On the
other hand, for example, consider the case that the upper- and lower- objective functions are defined
through simulators of a subject of interest. If these simulators consist of expensive computations
(such as quantum-mechanical calculations), in this bilevel optimization, both level problems are
expensive to evaluate. For example, the simulator-based optimization of a physical property of
inorganic crystals under the stability constraint (energy minimization) can be formulated as this class
of problems.

In existing studies in which the lower-level problem is not expensive, typically, under a selected
query for the upper-level problem, repeated queries to the lower-level problem is required, and
further, the gradient of the lower-level problem is often assumed (e.g., Fiefall, P(0174)). I[slam ef all
(P0T8) and Wang_ et all (2021) consider BO in both levels, but repeated queries on lower-level is
still required. These approaches are not fully suitable when both levels are expensive black-boxes
in which the gradient is not available. On the other hand, recently a few methods without those
limitations have also been studied. Ekmekcioglu et al] (2024) combine the Thompson sampling
on the upper-level query and a knowledge gradient-based extension of multi-task BO on the lower-
level, but the theoretical justification for the combination of these two different criteria has not been
revealed. Further, Chew ef all (Z(025) propose the well-known GP upper confidence bound (UCB)
based approach to bilevel BO, called BILBO. Although BILBO has a theoretical regret guarantee,
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in general, the performance of GP-UCB based methods depend on the selection of the balancing
parameter of the exploitation and exploration, because the theoretically recommended value often
does not provide the best performance (Stinivas efall, DOT().

We propose an information-theoretic approach that considers the simultaneous information gain for
both the upper- and lower-optimal solutions and values, which we call bilevel information gain.
This enables us to define a unified criterion that measures the benefit for both level problems
simultaneously, which is not necessarily common in the case of bilevel methods as mentioned in
the previous paragraph. Although the effectiveness of information-theoretic BO has been shown in
several different contexts (e.g., Hennig & Schulei, 20T72; Hernandez-Lobafa ef all, P0T4l; Hoffman
& _(Ghahramani, POTS; Wang & Jegelkd, 20T7; Hernandez-I.obafo ef all, POTY; Hernandez-Tobafd
ef all, POT6; Snznkief all, 2020, Makeno ef all, P0274;H; Hvarfner et all, P027; Mirefall, P027), it has
not been combined with bilevel optimization, to our knowledge. We first define bilevel information
gain by extending the idea of the joint entropy search (Hvarfner ef all, D027; Tn_ef all, P0727).
Unfortunately, the original definition of bilevel information gain is computationally intractable, and
we show that a natural extension of the truncation based approximation, which has been widely
employed in information-theoretic BO (e.g., Wang & Jegelkd, 2017), can be derived. By combining
the truncation based approximation and a variational lower bound (lakenoef all, DO27H), we obtain
our criterion called Bilevel optimization via Lower-bound based Joint Entropy Search (BLJES).
Further, while we mainly consider ‘coupled setting’ in which upper- and lower-level observations
are obtained simultaneously, ‘decoupled setting’, in which a separate observation for each level is
available, is also discussed. For example, in the case that the objective function values are outputs of
some simulators (e.g., physical simulation), if a common simulator provides both level observations
simultaneously, coupled setting is suitable, while if the upper- and the lower-level observations
are from different simulators, decoupled setting can be more appropriate. We further propose an
extension for the case that each level problem has inequality constraints (i.e., each level problem is a
constraint problem).

Our contributions are summarized as follows.

* We show an information-theoretic formulation of bilevel BO, which has never been explored,
to our knowledge. Bilevel information gain is defined to measure the benefit for both level
problems.

* We derive a lower bound based approximation of bilevel information gain. We extend
the standard truncation based approach in the single-level information-theoretic BO to the
bilevel problem.

» We further propose extensions for decoupled setting and constraint problems. We show that
our framework can handle these settings by a natural extension of bilevel information gain.

We demonstrate effectiveness of BLJES through functions generated from Gaussian processes and
several benchmark problems.

2  PRELIMINARIES

Bilevel optimization. Let f: XX® — Rand g : X X® — R denote the upper- and the lower-level
objective functions, respectively, both of which are assumed to be costly black-box functions. The
upper- and the lower-level variables are denoted by & € X and 6 € ©, respectively, where X ¢ R%
and ® ¢ R%_ The bilevel optimization problem is formulated as:

max f(z, 6" (x))

s.t. 0" (x) = argmax g(x, 9), M

0cO

where 6*(x) represents the optimal solution of the lower-level problem for a given upper-level
variable . For simplicity, we assume the lower-level optimum 6*(x) is uniquely determined for
each x (called optimistic setting (Sinha_ef-all, 2020)). The bilevel optimal solution is denoted
by (x*,8%), while the lower-level optimum corresponding to a given x is written as (x, 6" (x)),
noting that 8* = 6*(x*). The upper- and the lower-level optimal values are denoted by f* :=
f(x*,0%) and g* = g(x*, "), respectively. Figure [ shows an illustration. Observations of the
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Figure 1: Example of Bilevel optimization (dy = 1,dg = 1) and its optimal solution. For each
upper-level variable x, the feasible solution is defined by 6*(x) = argmaxgy g(x, ), shown as the
orange line. The optimal solution (x*, 8%) is the maximizer of f on the orange line.

objective functions contain additive Gaussian noise y/_, = f(x,0) + ¢/, e/ ~ N(0,{c . }?),

(x.,0) ° . noise
and }’fx,g) = g(x,0) + €5, € ~ N(0,{c5. }?), where o

. are the noise standard
noise

and o
noise

deviations, respectively. Let D, = {(x;,6;, ytf , y‘ig )}, be the dataset that we have at the ¢-th

iteration of BO, where ylf = y{x. 5, and yio= yfo 6"

where ng is the number of the initial observations.

The number of observed points 7 is t + n,

Gaussian process. The upper- and the lower-level objective functions are each modeled by indepen-
dent Gaussian processes (GPs) with kernel functions k/ ((x, 8), (z’,0’)) and k4((x, 0), (z’,0")),
respectively. Given the dataset 9, the predictive distribution of an objective function 4 € {f, g} at
a point (x, 0) is expressed as:

h(x,0) | Dy ~ N(uf'(x,0), {0} (x,0)}), )
ul(x,0) = K" (K" + (o YD)y,
{o]'(x,0)}* = k" ((x,0), (x,0)) - k" (K" + {c", V)K",

where y" = (y",. ..,yf‘l)T, k" = (K"((x,0), (x1,61)),....k"((x,0), (x,,0,,)))T, and K" € R
is the kernel matrix with an entry k" ((x;, 6;), (x j»87)) at a position (i, j). Here, I € R™" denotes
the identity matrix.

Bayesian optimization. We consider BO for the bilevel optimization problem (). Bayesian
optimization is a method for efficiently optimizing black-box functions with a limited number of
samples. At step 7, GPs are fitted to the dataset 9,, and the next query point is determined as
argmax,, g a;(x, 6), where a;,(x, ) denotes the acquisition function. After sampling the query
point, the newly obtained data are added to the dataset, and the GPs are refitted.

3 BiLeEVEL OrPTIMIZATION VIA LOWER-BOUND BASED JOoINT ENTROPY SEARCH

We consider bilevel BO based on the information gain for the optimal solutions and values (x*, 8%, ™,
and g*) achieved by next observations y{m’ 0) and y?(gm’ o)’ which we call bilevel information gain. Note
that we regard the optimal (x*, 8%, f*, g*) as random variables defined by the predictive distributions
of the objective functions f(x,0) and g(x,0). Our approach combines the concept of entropy
search (Hennig & Schuletd, P017), in particular, joint entropy search (Hvarfner ef all, P077; [Tinef all,
077), and a variational lower bound based approximation of mutual information (MI). We refer to
our proposed method as Bilevel optimization via Lower-bound based Joint Entropy Search (BLJES).
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Figure 2:  Schematic illustration of variables in MI(y{x 0),yfx o) f5e5.x%,0" | Dy). The

predictions at current (x, @) are ){x 0) and y‘fx 0)° depicted as the green distribution in the output

space. At the optimal solution (x*,8%), the objective function values are f* = f(x*,6") and
g* = g(x",0%). The optimal values f* and g* are represented as the blue distribution in the output
space. The optimal solution (x*, 8*), represented as the red distribution in the input space, should
exist on 87 (x), i.e., the optimal point of the lower-level problem. The red and blue stars are ‘samples’
of the optimal solutions (x*, 8*) and values (f*, g*), respectively.

3.1 Lower Bounp oF MUTUAL INFORMATION

Bilevel information gain is represented as the MI between the candidate observations ( y{x o)’ y‘(gx 0))
and the set of the optimal solutions and their upper- and lower-objective values { f*, g*, x*, 0 }:

MI(y{x’g)»yfx’a) 5 f*9g*’x*30* | Dt)’

for which an illustration is shown in Fig. . This criterion naturally allows simultaneous consideration
of both the upper- and the lower-objectives. Since the direct evaluation of this MI is difficult, we

employ a lower bound based approximation. Let Q := {y{xﬁ), yfx’o), f* 8% x*,0%}. Our lower

bound of the MI is derived by a technique that is often used in the context of the variational
approximation (e.g., Poaleefall, POTY):

p(y{xﬂ)’yfxﬂ) | f*’ g*’x*’O*’DI)

f 8 . * * * * _
MI(y(, g ¥ (e g s £787X".0" | D) =Eq |log ol D)
(x,0) 7 (x,0)

Q(y{xﬂ)’yfxﬁ) | f*’ g*’x*’g*’DI)
log

28 X, v ’yg If*,g*,x*,e*,Z) f g
(.8)*(x.6) ' p(y(x,g)’y(x’g) | Dt)

+KL (p(y{x’g)’yfx,g) | f*vg*vx*’a*’-@t) ” Q(y{x,g)’yfx’g) | f*,g*,x*,O*,D,))}

f 8 %k L% g)*
4y Y | f*. g% x",0%, D)
> Eq |log (x.0) 7 (x.6)

T 2 = LB(x,0), 3)
p(y(x’g)s y(x,g) | DI)

where KL is Kullback-Leibler (KL) divergence and q(y{x’g), y(gx 0 | f* g%, x%, 0%, D,) is a varia-
tional distribution (g can be any density function as far as the KL divergence can be defined). The
inequality of the last line can be taken because the KL divergence is non-negative (the equality
holds when p(y{xﬂ),yfx’o) | [ g5 x",0%, D) = q(y{x,a),yfxﬂ) | f*, g% x%,0%,D,)). Similar
lower bounds of the MI have been used in information-theoretic multi-objective and constraint BO
(Ishikura & Karasuyama, P(175; Takeno ef all, DO27R).

The variational distribution ¢ is an approximation of p ( y{x o) y‘(gx 0 | f*, g%, x*, 0%, D,) for which an
exact analytical representation is difficult to know. The difficulty is in the conditioning by the optimal
solutions and values, for which the most widely accepted approach in information-theoretic BO is
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to use truncated distributions (e.g., Wang & Jegelkd, 20T7; Snznkief all, P020; irefall, 2077). For
example, in the case of well-known max-value entropy search (MES), proposed by (Wang & Jegelkd,
2017) for the standard single-level problem max, f(x), the predictive distribution conditioning on
the max-value f;; . = argmax, f(x) is approximated by the truncated normal distribution, i.e.,

PU@) | fine) = p(FX) | F(x) S fine). When f is given, £(x") < fiy. should hold for any x’
(and there should exist at least one x” such that f(x") = f.), while MES simplifies this condition so
that f(x) < f; holds only for the current x. Similar simplifications have been employed by most
of information-theoretic BO algorithms and shown superior performance.

We extend the truncation based approach to our bilevel problem as follows.
GOl Yo | 12870700 = pO5], g3 | /(.00 < f1.5(x".60) < 8°. D),
“)
where D = D, U {(x*,0", f*, g*)} is the dataset augmented by the optimal point (x*, 8, f*, g¥).

The right hand side has the three conditions, each of which can be interpreted as follows.

e When f* is given, f(x’,0"(x’)) < f* should hold for Vx’. However, this condition is
computationally intractable as mentioned for the case of MES. Based on a similar idea of
MES, the condition f(x,8"(x)) < f* is only imposed on the current x.

* When g* is given, g(x*,8’) < g* should hold for ¥0’. We replace it with g(x*,0) < ¢g* in
which the inequality is only imposed on the current 6.

* In the right hand side of (@), D; is replaced D;. This condition can impose that the GPs
satisfy f(x*,0%) = f* and g(x*,0*) = g* by adding (x*, 6%, f*, g*) into the training data.

By substituting (B) into (B) and using the conditional independence of y{x’ 0) and y"("x’ 0) in the right
hand side of (@), we see

Pl gy Vi o) | [(x,67(x)) < f*,8(x",6) < g". D)
f
p(y(x,G)’ y‘(gx’g) I Z)t)
P g | F(x,0°(x) < 5, D)) o POS. g |87, 0) <g", D))
PO leg | D) PO | D)

LB(x,0) = Eq |log

= Eq |log o)

The inside of the expectation (H) can be analytically derived. For both the first and second terms,
the denominators are the predictive distribution of the GPs, whose density can be obtained from
(@). Next, we consider the numerator of the first term of (H). Although the truncation is imposed

on f(x,0"(x)), the distribution is for y{x 0) that has different input point (x, @) from the truncated

point, unlike the case of MES. The follov;/ing theorem shows that the analytical representation can
still be derived even with this difference:

Theorem 3.1. Let (m{,s{ ), (m{,s{ ), and (m{,sg) be the mean and standard deviation of
p(f(x,6*(x)) | y{x’e),l);), p(f(x,0"(x)) | D)), and p(y{xﬂ) | D}), respectively. Then,

of ) ] oo
. . s Ky S N
POl | F 0 @) < o0 =4 L0 L 2
P (x,a)f 3 )/s{ otherwise,
S}

(6)

where ¢ and ® are the probability density function (PDF) and cumulative density function (CDF) of
the standard normal distribution, respectively.

The proof is in Appendix BT. Note that all of {(mfr , slf )}?:1 can be analytically calculated from
the GP posterior of f for which details are also show in Appendix BTl. For the numerator in the
second term of (8) can be reduced to the similar analytical form, which is shown in Appendix B2
As a result, we obtain an analytical form of the inside of the expectation (H). We also show that our
lower bound (B) can be derived through an independence assumption on the posterior, described in
Appendix Bl.
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3.2 COMPUTATIONS

The expectation of (H) is approximated by the Monte-Carlo method by sampling Q :=
{ y{x, o) y‘fx’ 0) /%, g%, x*,0"}. The sample of all the elements of 2 can be obtained through the sample
of the objective functions f and g. We use random Fourier feature (RFF) (Rahimi-& Rechi, P(0X), by
which the GP posterior can be approximated by the Bayesian linear model. For a D-dimensional RFF
vector ¢(x, 8) € R, the linear model w”T ¢(x, ) can be constructed, where w” € RP is a parame-
ter vector and / € {f, g} represents one of objective functions. By sampling w” from the posterior,
approximate sample paths of f and g are obtained, which denoted as f and g, respectively. Then,
the sample of (f*,g*,x*,8*) is obtained through max, f(x,8" (x)) s.t. ?)*(Jf) = argmaxg g(x,0),
which can be seen as a white-box bilevel optimization problem. Since both f and g are represented
by the Bayesian liner model, they are differentiable. Then, the gradient d f (x, 8*(x))/dx can be
obtained through the implicit function theorem (see Appendix O for detail), by which standard gra-

dient based optimization methods can be applied. The samples of y{x 0) and yfx g) can be obtained

by adding the random noise from N (0, {a'[{;isc}z) and N (O, {a’foise}z) to the sampled f(x, @) and
g(x,0), respectively.

Let K be the number of samplings of Q. In a variety of contexts of information-theoretic BO (e.g.,
Wang & Jegelkd, P0T7), the superior performance has been repeatedly shown with small K settings
(e.g., 10). After obtaining K samples of Q, the Monte-Carlo approximation of (H) can be calculated
for any (x,8) (Note that these K samples are reused during the acquisition function optimization
without regenerating for each candidate (x, 8)). Since (B) contains #*(x), the maximization of the
approximate (B) is also bilevel optimization, for which gradient-based methods can also be applied
through the implicit function theorem (details are also in Appendix O).

4 EXTENSIONS

We here describe two extensions of BLJES, which are for decoupled setting and constraint problems.

4.1 DECOUPLED SETTING

We mainly consider the setting in which y{x 0) and y‘fx g) are observed simultaneously, which we call

‘coupled’ setting. On the other hand, only one of y{x’ 9) OF yfxﬂ) can be separately observed in some

scenarios. In this paper, this setting is called ‘decoupled’ setting, inspired by the similar setting in
multi-objective BO (Hernandez-Iobafa ef all, DOTH).

A natural criterion for decoupled setting is information gain obtained by only one of y{x 9) OF yfx 0)’
for which the lower bounds can be derived by the almost same way as (B):

P g | [(x,67(x) < [, D)

MIGY 5 f*8% %%, 6" | D)) > Eq |log : 7
- AL
. PO o | 87, 0) < g, D)
MI(yfx’g) , f*9 g*’x*’o | Z)z) > EQ IOg = (8)

PO{(cq | Do)

The derivation is in Appendix 0. For both the inside of the expectation of (i) and (R), the analytical
calculations shown in section Bl can be used. The expectation is approximated by Monte-Carlo
sampling of Q, which is also same as coupled setting. As a result, the decision making not only for

selecting (x, @), but also selecting the upper- or the lower-observation (i.e., y{x 9) OF yfx 0) ) can be
performed.

4.2  INCORPORATING CONSTRAINT PROBLEMS

In a more general formulation of bilevel optimization, constraints are imposed on both of the upper-
and the lower-level problems. When we have N and M inequality constraints for the upper- and the
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Figure 3: Regret comparison on functions from the GP prior.

lower-level problems, respectively, the bilevel optimization problem is written as
max f(x,0"(x))
xeX
sit.cV(x,0"(x))20,n=1,...,N

6 (x) = argmax{g(x,0) | ck(x,0) >0,m=1,..., M},
6O

where ¢V : Rx*de s R and ¢l : R9%+*de _; R are constraint functions. We assume that ¢V and ¢
are also expensive black-box functions and modeled by the independent GPs.

For constraint BO, Takenaef all (20172h) show an information-theoretic approach based on a lower
bound with a truncated variational distribution. By combining the truncation shown by (Iakenoefall,
2077HR) and our bilevel information gain, we can extend BLJES to the bilevel constraint problem.
In particular, the conditioning on the predictive distributions by the optimal points are required to
extend. For example, if f* is given, the inequality f(x,0*(x)) < f* is imposed only when the
constraints ¢ (x,8*(x)) > 0,n = 1,..., N hold (if the constraints are not satisfied, f(x,8*(x)) is
not truncated). Details are in Appendix B.

5 EXPERIMENTS

We evaluated the performance of BLJES by using sample path functions from the GP prior and
several benchmark functions. For baselines, we employed Random selection and BILBO. The initial
number of observations was set np = 5 random points. The both level observations contain an
additive noise whose mean is 0 and standard deviation is 1073, Each experiment was performed
10 times with different initial points. We used the Gaussian kernel for both the GPs of f and g, in
which the prior mean, the kernel length-scale, the output scale, and the noise variance are optimized
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Figure 4: Regret comparison on benchmark problems.

by the marginal likelihood at every iteration. In BLJES, the number of Mont-Carlo samples was set
as K = 30. We here employed the pool setting (query candidates are finite grid points defined later)
because BILBO is proposed for the finite domain setting.

For the metric at the #-th iteration, we used the following criterion, denoted as bilevel simple regret:

i i,0;), 9
ier[gi)rlt]hé??fcg}rh(x, i) )]

where
rp(xi,6;) =max(0, f* — f(x;,0:)/(f" - r}cl’iglf(x, 0)).
re(xi,0;) = (g(x;,0"(x;) — g(x;,0:))/(g(x;, 0" (x;)) — mging(xha))-

Our metric (H) takes the larger value between r s (x;, 6;), which represents the regret of the upper-
level problem, and rg(x;, 6;), which represents those of the lower-level problem. Since f(x;,6;)
can be larger than f*, the ‘max’ operation is taken to guarantee r ¢ (x;, 6;) > 0, while the numerator
of rg(x;, ;) is non-negative without ‘max’ from the definition of 6*(x;). The denominators of
rr(x;,0;) and rg(x;, 0;) are for absorbing the scale difference of two objectives. In (H), we employed
the best value obtained during the entire search procedure by taking the minimum with respect to
observed points.

We first provide the results on coupled setting for GP sample path functions (section B1l) and
benchmark functions (section BE7). Further, the results on decoupled setting (section B3) and
different K settings (section B4) are also reported. Appendix presents other details of the settings
(Appendix E) and results such as a larger noise setting (Appendix E2), the continuous domain
(Appendix EX), constraint problems (Appendix ), higher dimensional settings (Appendix E1),
comparison with a simplified variant of MLJES (Appendix EX), the effect of RFF approximation
(Appendix EJ), and the combined error of the MC sampling and RFF (Appendix ET0)..
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5.1 SampLE PatH FrRoM GP Prior

We first used the sample path from the GP prior as the true objective functions, i.e., f ~ GP(0, k)
and g ~ GP (0, k), in which k is the Gaussian kernel k((x, 8), (x”,8")) = exp{—(|lx — x’||> + ||0 —
0’|1>)/(2¢€%)}. For the length scale £, we use different values £y € {0.25,0.10,0.50} for f and
{1 € {0.25,0.10,0.50} for g, respectively. The input space is dx = dg = 1 and [0, 1] for each. The
candidate points are a combination of 100 grid points in each dimension (100> points).

The results are shown in Fig. B. Overall, BLJES shows superior performance for a variety of the
length scale functions. Only for (£y, ;) = (0.25,0.50), BILBO decreased the regret to O faster at
about 60 iterations, but BLJES also reached the small value (10~*) around that iterations.

5.2 BEeNcHMARK FuNcTIONS

We here used six benchmark problems. Two functions are created by combining benchmark functions
of single-level optimization. In the first problem, denoted as BG, the upper objective is BraninHoo
(dx = 1) and the lower objective Goldstein-price (dg = 1), which was used in (Chew efall, P0725).
In the second problem, denoted as SB, the upper objective is SixHumpCamel (dx = 1) and the lower
objective BraninHoo (dg = 1), which was used in (Ekmekcioglu et all, 2024)). The third problem,
denoted as Energy, is a simulator based energy market problem (dx = 2 and dg = 2), and the fourth
problem, denoted as Chemical, is about an optimization of simulated mass flow of Methyl Acetate
(dx =1 and dg = 3). Chemical has one constraint function for the upper-level problem. Energy
and Chemical data are introduced by (Chew efall, P079), in which these are regarded as a real-world
dataset (see Chew ef all (Z075) for the detailed definitions). From the fourth to the sixth problems,
denoted as SMDO01, 02, and 03 (dx = 2 and dg = 2), are test problems specifically designed for
bilevel optimization benchmark (Sinha'ef-all, 20T4). The number of grid points in each dimension is
100 for GB and SB (1007 points), and 10 for Energy and SMD (10* points).

The results are shown in Fig. B. BLJES has obviously superior performance in BG, SB, Energy, and
SMDO02. For SMDO1 and SMDO03, similar performance is shown in BLJES and BILBO, both of
which rapidly decrease the regret compared with Random.

5.3 DECOUPLED SETTING

We here evaluate performance on decoupled setting, for which regret comparison is shown in Fig. B.
The objective functions are the same functions used before. We see that MLJES shows smaller regret
values for most of problems except only for SMDO2 in which BILBO shows better performance. The
results indicate that our MI based criterion is effective also for decoupled setting.

5.4 EFrrEcT OF THE NUMBER OF SAMPLINGS

,1 BLJES-10
BLJES-20
—— BLJES-30

We evaluate the effect of the number of samplings K on the perfor- .
= BLJES-50

mance. Figure B shows the regret of BLJES with K = 10, 20, 30, and
50 on the BG benchmark problem. Note that the result of K = 30 is
same as Fig. @ (a). Although K = 50 was slightly better than other
settings in the end of the optimization, we do not see large differ-
ences. Similar tendency has been reported in information-theoretic O ey s
BO studies (Wang & Jegelkd, 2017; Makeno ef all, P0774d). See in

Appendix E4 for the results on other problems. Figure 6: BLIJES with differ-

ent K on the BG benchmark.

Bilevel Simple Regret

6 LIMITATIONS

As we described in section [, the bilevel BO in which both levels are expensive has not been widely
studied, and we still have several limitations. For example, it is widely known that BO has difficulty
for dealing with high dimensional problems, though many studies have considered remedies to
mitigate it (e.g., reviewer by Malu_ef all, PO21; Gonzalez-Duque et al], 2074). Constructing those
high dimensional specific strategies for bilevel BO is one of obviously important directions.
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Figure 5: Regret comparison on benchmark problems under decoupled setting.

Another unresolved theme is the theoretical analysis of the approximation error of MI and the
convergence of the optimization. The major approximation components of our MI estimator are
the lower bound, RFF, and the MC sampling. Providing a theoretical guarantee for the combined
approximation error is a challenging issue, though it is actually a common issue for information-
theoretic BO methods. Particularly for GP-UCB based approaches including BILBO, the regret
bound has been widely studied. On the other hand, for information-theoretic BO in general, the
regret analysis is also still an open problem even for the simplest single-level standard problem
setting (see Appendix [@). Therefore, the regret analysis for information-theoretic BO including
BLIJES is still needed to be addressed.

7 CONCLUSION

We propose an information-theoretic approach to bilevel Bayesian optimization, called Bilevel opti-
mization via Lower-bound based Joint Entropy Search (BLJES). BLJES considers information gain
of optimal points and values of both the upper- and lower- level problems simultaneously, by which
we can define a unified criterion that measures the benefit for both the problems. We derive a lower
bound based approximation of bilevel information gain, which can be seen as a natural extension of
the single level information-theoretic Bayesian optimization. Further, we also propose extensions
for decoupled setting and constraint problems. The effectiveness of BLJES is demonstrated through
sample path functions from Gaussian processes and benchmark functions.

10
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A DerivatioN oF LowErR BounD

A.1 Proor or THEOREM Bl

From Bayes theorem,

PUfx0°() < £ 13, 0 DD, ) | D)
p(F(x,6°(x) < f* 1 D)

All the three densities in the right hand side, the analytical representations can be derived as follows.

P(y{x,(,) | fxo ) < f5D7) = (10)

* The probability p(f(x,0*(x)) < f* | y{xﬁ), Dy) is calculated by the density

et n | Y g DF ~ N(m] 5] 1),

for which the mean m{ and variance {s{ }? can be derived by considering the conditional

density of the joint posterior of f(x g+ (x))s y{x 9> and fix+ ) as

m{ = i (x.6°(x))

[ Cov! ((x.0° (), (5. 0)) | [to] .02+ (07, 1 Cov! ((x0). mo)| [ Vg — il x.0)

* 7C0v{f((x,0*(x)), x*.6%)| | cov/ ((x*,6%), (x,0)) (o] 500 | | S -1 (7,07)
732 = {o] (x.67(x)))?
[ Covf((x,B*(x)), (x,0)) 1" >{0'tf (x,0)}2+{0'f 12 Covf((x,é)),(x*,6’*))-_l

noise

Note that Cov{ ((x,0), (x’,0")) is the posterior covariance between f(x,8) and f(x’,0’),
f

given O;. By using m{ and sy , we have
f . |® (f o]
P(fx.0° @) < [* [ y], 4. D) = o
1 otherwise,

) ifx #x7, an

where @ is the cumulative density function (CDF) of the standard normal distribution.

* Next, to calculate the denominator p(f(x ¢*(x)) < f* | D]), we consider the density

fxo @ | DOF ~ N(m{,{s{ 1),

13

_ | Cov! ((x,67(x)). (x.0))
cov! ((x,0"(x)), (x*,6")| | Cov/ ((x*.6%). (x.6)) (o] .09y | ,cOv,f! ((x.60°(x)). (x*.6") |
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for which the mean m{ and variance {s{ }? can be derived by considering the conditional

density of the joint posterior of f(x g+ (x)) and f(x- ¢+) as
Cov/ ((x.6"(x)). (x*,67)
P 2
{o-,' (x*,0")}

[cov! ((x.6"(x)). ("0}

m} = ul (x,07(x) + (f(x*,0%) — ul (x*,6%))

{sJ ¥ =0/ (x.0"(x)) - .
o] xr.0)

Then, we obtain

o f
(D(f#) ifx #x*

P(fxo ) <71 D)) = 5 (12)
1 otherwise .
* The density p(y‘é; 0) | D;) can also be derived by a similar approach as
Voo | DF ~ N(mi,s]),
where
Cov/ ((x,0), (x*,6) . . .
m} = pul (x,0) + —— S (f(x.0") — ] (x7,67)
{0‘{ (x*,0*)}
[cov! ((x.0).(x".6))
. . ov; ((x,0), (x*, 6" }
{(s] Y ={o/ .0 +{c] V- —.
{a,f (x*,a*)}
Therefore,
f f
Yix.o) ~ M3
Pl 1 DD = 0| 22— 5] (13)
S
3

where ¢ is the density function of the standard normal distribution.

By substituting (I, (I2), and (3) into (M), we obtain (B).

A.2  ANALYTICAL REPRESENTATION OF p(y‘(ngg) | g(x*,0) < g*, Df)

In the case of p(yfx g | 8(x7.0) < g*, D7), almost the same derivation can be applied as (B).
Therefore, we here only show the final result

*_ .8 g —ms 8
o[£35

S s . )Sg if 0 # 6%,
P(Vieg 1 8(x".0) < g". D) = 3 :
o

3

g g
Y0~ g :
7 / 53 otherwise,
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where
= My (x 0) +

{s§ }2 {of(x",0))?

cOv,((x 0),(x,0) | {of (x,0)}* + {5, }? Cov! ((x,0), (x*,6%)] cOv,((x ), (x,0))
Cov¥((x*,0). (x*,0%)) Cov¥ ((x*, 0%, (x,8)) {8 (x*,0))? Cov¥((x*.,0), (x*,6%) "

Covt((x 6), (x*,0%))

Cové ((x*,0). (x.8)) | {af(x O+ (0f, J2 Covf((x.0).(x*.67)| 7 [ ¥% g —f(x.0)
Covg((x ,0), (x*,0%))

Covi ((x*,6%), (x,6)) {of (x*,6))° 800y — 1 (x*.6)]

s = (x",0) +

( (x*’e*) _#f(x*’O*))

{of(x*, 0" )}
g . g2
(551 = (oF (", 0)) - {Cov¥((x*,0), (x*,0"))}
{O't( * 0*)}
g
= i3 e,0) + XTI (o gy a0,

{of (x>0}
[Cov¥ ((x.0). (x*.6"))}
{of (x*, 6’*)}2

and Cov¥ ((x, @), (x’,8")) is the posterior covariance between g(x, #) and g(x’, ') given D;.

(5 = {of (2.0 + {0, ) ~

B LoweR BounD AS INDEPENDENCE APPROXIMATION

B.1 Dgrivin BLJES THROUGH INDEPENDENCE APPROXIMATION

Here, we show that our variational distribution (B) can be interpreted through a conditional in-
dependence approximation of the GPs. In other words, under the assumption of the conditional
independence, the lower bound (B) becomes equal to the original MI. In a variational inference, it is
common to introduce independence assumptions for making computations tractable. Our truncation
based computations can also be interpreted by a similar perspective that has not been revealed in
other studies of information-theoretic BO.

The variational distribution g( y‘(fx’a), y’(”x’g) | f*, g%, x* 6%, D,) is a surrogate for p( y{x’a), y’(”x’g) |
[ g%,x%,0%, D). The conditioning of f*, g%, x* and 6" can be represented by the following three
conditions:

Cl1. When f*is given, f(x’,6"(x")) < f* should hold for Vx’.
C2. When g* is given, g(x*,0") < g* should hold for Vé’.
C3. f(x*,0")= f"and g(x*,0") =g

The condition C3 can be realized just by adding (x*, 8, f*, g*) into the training dataset O, i.e.,
conditioning on D}

The posterior distribution over the ‘entire functions’ f and g (not only for given specific input points)
with all the above three conditions is represented as

p(f.gl f.8"x",0", D) =p(f |1 D)p(g | D) x
I(f(x,0%(x") < f*forVx") I(g(x*,0") < g* forVve’) | Z,

where I is the indicator function and Z is a normalizing constant. In this density, the term p(f |
Dip(g | Df) generates functions satisfying the condition C3. The two indicator functions only
accept functions satisfying the conditions C1 and C2. The predictive distribution p(f(x, ), g(x, ) |
f*,8%,x",0%, D,) is obtained by marginalizing the above distribution over all f(x’,8’) and g(x’,0")
such that (x’,8") # (x, 8). However, this marginalization is obviously computationally intractable.

(14)

To simplify the marginalization, we introduce the following conditional independence approximation
p(f 1 Df) = p(f(x,0), f(x,0"(x) | D7) p(f | D)), (15)
p(g 1 D)~ p(g(x.0),8(x",0) | D)) p(g" | D), (16)
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where f’ is f in which (x,0) and (x,0"(x)) are removed from its input domain, and g’ is g in
which (x, 8) and (x*, ) are removed from its input domain. This approximation means that, for the
joint GP posteriors given D;, the posterior covariances between f” and {f(x, ), f(x,0"(x))}, and
between g’ and {g(x,0), g(x*,0)} are regarded as 0. By substituting (3) and (I8) into (Id), we
obtain

p(f(x,0), f(x,0°(x)) | DN)p(f" | D7) p(g(x.0),8(x",0) | D)p(g" | D) x (17)
I(f(x,0%(x") < f*forVx") I(g(x*,0") < g*forve’) | Z.
To derive the predictive distribution p(f(x,8),g(x,0) | f*,g*,x*, 0%, D,) under the independence
assumption, we consider the marginalization of the approximate distribution (IC2) over X X © except
for (x,0). For f, this marginalization can be seen as the joint marginalization of f(x, 6" (x)) and
f’, and for g, can be seen as the joint marginalization of g(x*, @) and g’. By combining () and the
decomposition of the indicator functions

I/, 6°(x")) < f° for Va') = 10/ (x, 8 (x)) < f*) I(f"(x, 87 (")) < f* for V' # x),
I(g(x*,0") < g"forvVO') =1(g(x*,0) < g*) I(g'(x*,0") < g*" for V@’ + 6),
we obtain
p(f(x.,0),8(x,0)| [ 8", x", 0", D)

:/ / / / P(fg | 7.8 x",0°, Dy) dg/df'dg(x", 0)df (x, 6" (x))
f(x,0%(x)) Jg(x,0) Jf' Jg

) /f< ey P G0 S (2,67 () | DD (x,6°(x)) < 1) (. 6°())

A

/ L P00 0) | DI5(x",0) < g8 0)
g(x*,

B

/f / p(f I DHI(f'(x",0"(x")) < f*forVx" #x) p(g' | DHI(g'(x*,0") < g" for VO’ #0) | Z dg’df’
Sy

c
=p(f(x,0) | f(x,0"(x)) < ", D) p(g(x.0) | g(x",0) < g", D), (13)
where ff’ df’ and fg , dg’ are marginalization over the entire input domain of f’ and g’. The term

C is the constant factor independent from f(x, @) and g(x, @). Then, the last line is derived from
the normalizing condition of the density, and the relations A o p(f(x,0) | f(x,0%(x)) < f*, D;)
and B o p(g(x,0) | g(X*,0) < g*, D).

Then, by using (), p(y{xyg), y‘(ngg) | f*, g, x%, 0%, D,) can be represented as

POl gy Yivg) | /787 %",6%. D)

=p(lpg) | 6, 0)POE o 1 2(x,0) p(f(x,0),2(x,0) | f*.8",%".0",D,)

~ p(y{x,g) | f e, 0)p (v, g | 8. 0)p(f(x,0) | f(x.07°(x)) < [*,.D]) p(g(x.0) | g(x",0) < g". D)
= POy g | F(x.0°(x) < [1.D)) p(55, ) | 8(x",60) < g, DY)

= (3, g Vg | 11872707, D)).

This indicates that if the independence assumption (I§) and (I8) hold (if the posterior is actually
independent), the variational distribution becomes the true distribution, resulting in that the lower
bound (B) becomes equal to the original MI. On the other hand, clarifying the error caused by
this independence assumption for the general dependent case is still future work. However, this
analysis revealed that our variational distribution (B) can be purely derived from the independence
assumption without manually specifying a particular form of a distribution. To our knowledge, no
information-theoretic BO studies have revealed this way of justification for the truncate distribution
approximation.
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B.2 DgrivinG SimpLIFIED BLJES witHOUT TRUNCATION

One of notable properties of BLJES is to consider the two truncations f(x,8"(x)) < f* and
g(x*,0) < g* as described in the first and the second items in the itemization after (H). Intuitively,
these conditions transmit the information that f* and g* are the maximum values of the upper- and the
lower- problems to the query point (x, #). On the other hand, by introducing stronger independence
assumptions than (3) and (I8), we can derive a simplified variant of BLJES, which we use for
empirically evaluating the importance of truncations in Appendix EXR.

In this simplified variant, instead of (I§) and ([A), the conditional independence is assumed between
(x, 0) and all the other input points, which results in

p(f1Df)~p(f(x,0) | D) p(f' | D)), (19)
p(g | D)~ p(g(x,0) | D) p(g’ | DY), (20)

where f’ and g’ are f and g in which only (x, @) is removed from the input domain (note that the
definitions are slightly different from the case of (I§) and (IH)). By the almost same derivation in
the previous Appendix BT, we obtain

p(y{x,n‘))vy[(;x,é)) | f*.8".x7.6". D) ~ P(y{x,a) | D) P (i g | D)

We can define the acquisition function by defining ¢( y{x 0 yfx 0 | f*, g%, x%,0%, D,) as the right
hand side of this approximation. As a result, we obtain a simper lower bound (a lower bound without
truncation)

POl D)) P54 | DY)

LByot(x,0) = Eq |log 3
POl | D) PO | D)

. 2L

for which the same Monte-Carlo approximation as the original BLJES can be applied. By comparing
LByt (x, @) with (B), we see that the truncation conditions are removed.

C DetAIL oF GRADIENT COMPUTATIONS

First, we consider the gradient for 4 f(x,8*(x))/dx, which is required to obtain the sample of
x*,0%, f*,and g*. For 8" (x) = argmaxg g (x, @), the implicit function theorem derives

-1
9%g(x,0)

06" (x) _ | 9%8(x,0)
axT 9000"

0=6"(x) ’

from which we can calculate

Af(x,0°(x))  9f(x,0)
ox B ox

{aé*(x) }T 3 f(x,0)
o) | Ox7 30

0=0"(x) .

Next, we consider the acquisition function maximization. Let

PGl o | (. 0) <D p( , | 3(E.0) <§".D})
a(x,0,0") =log (x.6) 7 +log (x.6) —
P(Vix g | Do) P(Fx 0 | Dr)

be the inside of the expectation of (8) in which 6*(x) is replaced with €', and variables in € is
replaced by a sample, denoted with “”. Note that D} = D, U (¥*, 6, f*, g*). Then, the gradient with
respect to x can be written as

9d(x,0,0 (x))  0d(x,0,0")
ox - ox

{aé*(x)}T 9d(x,0,0")
v | OxT 00’

The gradient with respect @ can be obtained through the usual derivative.

0'=0"(x)
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D Lower BounD oF DECOUPLED SETTING

The lower bound of the information gain for the upper-level observation is

p(y{x,g) | f*, 8%, x", 0", D)
Pl g | D)
q(y{x,g) | f*’g*’x*’a*’Dt)

Pl g | Do)

MI(y{x,g) s f7.85.x7,60" | Dy) =Eq |log

=B oo oo |E )
fr.gt.x.0 y(j; 9) [f*.g*x*.0", D,

+KL (p(y{x,(i) | f*’g*’x*?a*’ﬂt) ” Q(y{x’g) | f*7 g*?x*aa*’Dt))]

q(y{x,g) | f*’ g*’x*’a*’Dl‘)

7 = LB/ (x,0).
p(y(x,ﬂ) | Dt)

> Eq |log

By setting the variational distribution as

Gl | 585570°,D0) = p(yl o) | F(x,0°(x) < f*,8(x",0) < g", D)
=Py g | F(x,6°(x) < £, D),

we obtain the lower bound ([2).

E ExTENSION FOR CONSTRAINT PROBLEMS
Let

Bl = (F(,0),cY (x,0),..., % (x,0)7,

kg = (8(x.0).c{ (x.6).....cy (x.0)",

be the vectors in which the objective function and the constraint functions are concatenated for the
upper- and the lower-level problems, respectively, and

U
N T
y(x 9) (y(x())’y(xe)""’y(xe)) ’

Vv (y<x¢9>’y(x9)""’y(xen)T

L
are the counterparts of noisy observations, where yf; 0 = cV(x,0)+ €, €n ~ N (0, {O'HSLNE} )

and y(x 9 =€ L(x,0)+€ m, €lm ~ N(O, {O'ng;e}z) We observe (yic,e,yx’e) at every BO iteration
for selected (x, ), i.e., D; = {(x;, Oi’yxfﬂf’yxiﬂf)}i=l in the constraint setting. In addition to f and
g, the independent GPs are also fitted to ¢ and c%, for which the posteriors given D, are written as

cY cU cL cL .
N(u," (x,0),{o" (x,0)}?) and N(u,"(x,0), {o-t'"(x,0)}2), respectively.
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E.1 Lower Bounp

The MI and its lower bound can be derived by the same approach as (B):

p(y{x,g)’y((gxyg) | f*’g*’x*’0*92)t)

f g R _
MI(y(x’a),y(x’g) ) f sg , X ,0 |Z)I) _EQ 10g p(yf yg |ﬂt)
(x.60)* (x.,0)

Q(y{x,g)’y‘(gx’g) | f*’ g*’x*’a*’Dt)

:Ef*g*x*t?* Ef g K % gk OF
&, Ve g |78 07D
Vieor Vi 111873000 O POy Yieo | D)

AKL (PO, g0 Y5y | 15875300 D) 140, ¥ | f*,g*,x*,e*,:o,))]

f 8 * % % *
9V Yoo | [58x50°, D)
> Eq log (x,0)°7 (x.,0)

f g = LBC(x’ 0),
p(y(x’a),y(x’g) | Dt)

where here D) = D, U {(x*, 0%, f*,g")}.

To define the variational distribution g, we follow the same approach as information-theoretic
constraint BO proposed by (Takena ef all, 2022F). Let A/ = {(co,¢) | co > f*,c >0,c0 €R,c €
RN} and A2 = {(co,¢) | co = g*,¢ > 0,c0 € R,c € RM}. When f* is given, A/ is the region that
hx,e* (x) Cannot exist for Vx. When g* is given, A is the region that hg o cannot exist for V6. Based
on the same simplification of the conditioning discussed in section B:I] we define the variational
distribution as

A0y Yiew | 18557000 = POy ) Vi) | Ml o) € A 1 ) € A5 D)),
where A/ and A2 are the complement sets of A/ and AL, respectively. As a result, we see

. i
PO oy Ve | Wl gy € AL B, ) € DY)

LB.(x,8) = Eg |log
P(y(x,g),y(x’g) | Z)l)

f f TR ¢ . . .
= Eq |log p(y(x,G) | h(x,a*(x)) e A, Z)t) +log P(y(x’a) | h(x*,a) € A%, D))
) 8

p(y{x"g) | @t) p(y(x’g) | Dt)

E.2 ANALYTICAL REPRESENTATION OF VARIATIONAL DISTRIBUTION

From Bayes theorem,

r f o pU g €AY DR, |D+)
POy | B g ) €D = 7 (22)
’ ’ p(h], 4o € AT | DY)

The density p(h .07 (x) | y (x.0) D) is an (N + 1)-dimensional independent Gaussian distribution,
for which the first dimension is N/ (mlf , {s{ }?) shown in Appendix B and from the second to the
(N + 1)-th dimension is N (mn , {s }2) where

U U " o* 0
mC" =/.ltn (x, 0*(X)) + ((xU (x)) (x ))( (x 0) /’tt (x 0))

{o-tc" (x, 0)}
{COV;‘LJ((x, 0" (x)), (x,a))}2
(e o)

()2 = o7 (x,07 (x)) —
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As a result, we can derive

P, gy € AT 13y D7) = 1= (100 ))]‘[(1—@( “
. e
Py gy €AY |D+)‘1—(1—<1>( ))l_[(l—cb( Cu SAAL2N
" (x,0%(x))
fx mf e
PO, | D) = (20— Y CIERY y VST Vsl o (e.0)).
n=1 O't"(x,a

Similarly, for the lower-level density, Bayes theorem transforms

p(h{y. g € ALY, 4. DP9 | D)

P, € A | D)

o) | y(xyg),Z),*) is N'(m%,{s{}?) shown in
Appendix BT and from the second to the (M + 1)-th dimension is N (mcfl%, {sC'ﬁ }?) where

b o e gy s SO OGO (o o)
{o-f’"(x,@)}
{C<>v,"5'((x*,a),(x,a))}2

foche.0)

p(y(xg) |h(x 0) e*ﬁg’@:—) =

Here again, the density of the first dimension of p(h®

mC

(s} = o (x*, ) —

As a result
M L
_ g —m mEm
Py g € A ¥( g D) = 1= |1 - ))n 5<H ))
m=1
M
= g —mj 0- p'"(x 0)
p(hiy. o €A | D)) =1-[1-@ )) 1_[ Ct—
m=1 o, (x%,6)
g M Cm _ Cm
6 —m y 0 My (x,0) L
P(J’fx,e) | D) =¢ ( . ) )1_[¢ x )cL [(s50,™ (x,8))
1 o, (x,0)

F SUPPLEMENTARY FOR EXPERIMENTS

F.1 OtHER DETAILS OF EXPERIMENTAL SETTINGS

We used the SingleTaskGP model of BoTorch (Balandafefall, P020) to define the GPs. The output
of each benchmark function are transformed by signed loglp function sign(y)log(1 + |y|) except
for BraninHoo and Goldstein-price for which the transformation shown by (Picheny et all, POT3)
was used. For benchmark functions, the input space is scaled to [0, 1]4%*“e from the original input
domain. For the chemical dataset, we re-defined the true objective function values as f(x,0) =
—log((maxy ¢ fori(x',0) +107%) = fori(x,8)) and g(x, 6) = —log((maxy: ¢ gori(x’,6") +107%) —
gori(x, @), where fo;i and g are original functions in the dataset. This is a log transformation applied
to the difference from the maximum value (instead of 0). We employed this transformation because,
in this dataset, many values are concentrated on the small scale differences around max foi(x, 6)
and max gori(x, ), respectively.

F.2 LARGER NOISE SETTING

Figure [ shows results with a stronger noise setting (the noise standard deviation is set as 10~!). We
do not see large difference for the relative performance among compared methods compared with
the small noise setting shown in Fig. 8.
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Figure 7: Regret comparison with 10~! noise standard deviation.

F.3 AbpbitioNAL REsuLTS oN DECOUPLED SETTING

Figure B shows regret in decoupled setting for all different length scale settings of the GP prior, which
generates true objectives. We obviously see that BLJES was superior or comparable to BILBO.

F.4 ApbitioNaL ReEsuLts oN EFFECT OF THE NUMBER OF SAMPLINGS

Figure B shows results of BLJES for different K. We do not see particularly large differences among
different K settings in these benchmarks.

F.5 ContiNuous DomMAIN

Figure M shows the regret in the case of X and © are the continuous space. We employed gradient
based optimizers for both of the bilevel problem defined by sample paths and the acquisition function
maximization (gradient of a bilevel problem is discussed in Appendix 0). Here, BILBO is not
performed because Chew ef all (2025) only discuss the finite domain. We see that BLJES efficiently
decreases the regret even in the continuous space. Only in SMDO02, BLJES was not efficient compared
with the random selection.

F.6 CoNSTRAINT PROBLEMS

For empirical evaluation, we employed problems from the bilevel optimization benchmark (Sinha
efall, 2014), denoted asSDM09 (dx =2,de =2, N=1,M =1),10(dx =2,de =2, N =2, M = 1),
11dx =2,de =2,N=1,M =1),and 12 (dx = 2,de = 2, N = 3, M = 2). The number of grid
points in each dimension is 10 (10* points). The evaluation metric is

~min max rn(x;, 0;)
i€[no+t] he{f ,g,cY,....c¥.ck.....ch}

where rj, become r¢ and r, shown in section 8if 4 = f or g, and

re(xi,0;) = max(0, —c(x;, 6;)) /max(max (0, =c(x,6))), c € (Y, ek ely)
X,
if h. € {Ec%’, .. .,c%,clL, .. .,cILVI}. The other settings are same as described in the beginning of
section .
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Figure 8: Regret comparison on functions from the GP prior under decoupled setting.

The results are in Fig. . For SMD09 and SMD11, BLJES shows faster decrease of the regret. For
SMD12, BLJES and BILBO are comparable and both of them are much better than Random. For
SMD10, BLIJES rapidly decreased the regret, while BLJES also quickly decreased the regret (the
difference is in small scale values).

F.7 HicHER DIMENSIONAL PROBLEMS

By using the GP prior function, we evaluate performance on higher dimensional problems. Figure [
shows the results on dx = de¢ = 4 and dx = dg = 5. Since creating fine grid points is difficult for
these settings, the query setting (continuous domain) is employed here, because of which BILBO is
not shown. We see that BLJES shows reasonable performance on the four dimension problems (a)-
(d), while performance difference from the random selection becomes unclear on the five dimension
problems (a)-(d).

In general, it is widely known that higher dimensional problems (e.g., more than 10 dimension) are
difficult for BO (e.g., Sanfanief all, D074). In our bilevel problem, the dimension of the search space
is dx + de, while the surrogate model is estimated on dx and dg spaces separately. We conjecture
that our results are consistent with the general consensus of the high dimensional performance of
BO by considering the additional difficulty caused by the low-level problem optimality constraint.
Many studies exist for dealing with high dimensional problems (e.g., reviewer by Malnefall, DOT;
Gonzalez-Duque et al], 2074)), but the efficient high dimensional exploration is still an important
open problem in the context of BO. Some existing strategies for high dimensional problems are
applicable to BLJES. For example, the well-known random projection-based method called REMBO
(Wang_ et all, POT8) is applicable just by preparing two random projections for x and 6. Another
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well-known general strategy is LineBO (Kirschner ef all, D0TY) that explores one-dimensional (or
low-dimensional) subspace at each iteration. In the case of BLJES, by defining one-dimensional
subspace for each of x and 6, the same procedure as LineBO can be performed. However, detailed
investigation for high dimensional setting is out of scope of this paper and it should be an important

Figure 10:

future direction.

Regret comparison on continuous input domain.

F.8 BLIJES witHouT TRUNCATION CONDITIONS

From the BLIJES criterion (H), we consider a variant that removes the truncation conditions
f(x,07(x)) < f*and g(x*,0) < g as shown in (EI). From the viewpoint of the independence
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Figure 11: Regret comparison in constraint problems.

approximation, ‘BLJES without truncations’ can be seen as a variational lower bound with a stronger
independence assumption as described in Appendix B

The results are shown in Fig. 3. We can clearly see that ‘w/o truncation’ is much worse than ‘w/
truncation’. This indicates that the truncation conditions largely contributes to represent effectiveness
of each candidate point, which is consistent with our discussion in Appendix Bl.

F.9 ErrecT oF RANDOM FOURIER APPROXIMATION

We use RFF for sampling € in the BLJES computation as described in section BEZ. In the case of
the pool setting (finite domain), the sampling from the original GPs of f and g is also possible as
far as the sizes of |X| and |®| are moderate (because direct implementation of the sampling from
the GP posterior requires O(|X|?) and O(|®|?)). Therefore, based on the pool setting that is used in
section B, we here evaluate performance difference between BLJES with the original GP posterior
sampling and that with the RFF-based sampling. The results on the BG benchmark are in Fig. [4.
We see that the transition of the regret is highly similar, which suggests that RFF did not have large
effect on the performance in this dataset.

F.10 ComBINED ERROR BY MC APPROXIMATION AND RANDOM FOURIER FEATURE

We here evaluate the quality of computations to approximate the true lower bound (H). As described
in section B, we use the MC approximation for the expectation Eq, and RFF is also used for
sampling the optimal solutions and values. The pseudo ground truth of (H) was created by using
the sampling from the original GP posteriors of f and g with the number of samplings K = 10%.
The mean squared error compared with this pseudo ground truth is shown in Fig. 3 (10 trials).
‘Exact’ indicates the GP posterior, and RFF-1000 and RFF-500 are RFF D = 1000 and D = 500,
respectively. Overall, ‘Exact’ shows lower errors, while the error of RFF decreased for the larger
D. When K increases, the error of RFF converges to some non-zero value, which approximately
represents the error purely caused by RFF. We see that the error rapidly decreased with the increase
of K, which suggests fast convergence of the MC sampling. As a results, we do not see a severe
deterioration by the combination of the MC approximation and RFF.
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Figure 12: Regret comparison on functions from the GP prior.

G EXISTING STUDIES FOR REGRET ANALYSIS OF INFORMATION-THEORETIC BO

The well-known max-value entropy search (MES) (Wang & Jegelka, POI7) provides the regret
bound for the special case in which only one Monte-Carlo (MC) sample is used for its expectation
approximation. However, technical problems in their proof were pointed out by (Iakena ef all,
P0O27H). Makenoefall (Z024) provided the regret bound of an acquisition function equivalent to the
one sample MES, but it is still for the one sample special case that cannot be applied to the usual MC
approximation by multiple samples. In the context of information-theoretic BO for (single-level)
multi-objective optimization, Belakaria_ef all (Z0TY) discussed a regret bound, but Suzuki—efall
(P020) pointed out an obvious significant mistake.
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Figure 13: Evaluation of truncation in BLJES on benchmark problems.
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