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Abstract
This paper investigates causal effect identification
in latent variable Linear Non-Gaussian Acyclic
Models (lvLiNGAM) using higher-order cumu-
lants, addressing two prominent setups that are
challenging in the presence of latent confound-
ing: (1) a single proxy variable that may causally
influence the treatment and (2) underspecified in-
strumental variable cases where fewer instruments
exist than treatments. We prove that causal effects
are identifiable with a single proxy or instrument
and provide corresponding estimation methods.
Experimental results demonstrate the accuracy
and robustness of our approaches compared to
existing methods, advancing the theoretical and
practical understanding of causal inference in lin-
ear systems with latent confounders.

1. Introduction
Predicting the impact of an unseen intervention in a sys-
tem is a crucial challenge in many fields, such as medicine
(Sanchez et al., 2022; Michoel & Zhang, 2023), policy evalu-
ation (Athey & Imbens, 2017), fair decision-making (Kilber-
tus et al., 2017), and finance (de Prado, 2023). Randomized
experiments/interventional studies are the gold standard for
addressing this challenge but are often infeasible due to a
variety of reasons, such as ethical concerns or prohibitively
high costs. Thus, when merely observational data is avail-
able, additional assumptions on the underlying causal sys-
tem are needed to compensate for the lack of interventional
data. The field of causal inference seeks to formalize such
assumptions. One notable approach in causal inference is
modeling causal relationships through structural causal mod-
els (SCM) (Pearl, 2009). In this framework, a random vector
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is associated with a directed acyclic graph (DAG). Each vec-
tor component is associated with a node in the graph and
is a function of the random variables corresponding to its
parents in the graph and some exogenous noise.

In general, latent confounders, i.e., unobserved variables
affecting the treatment and the outcome of interest, often
render the causal effect non-identifiable from the observa-
tional distribution (Shpitser & Pearl, 2006). However, in
some cases and under further assumptions on the causal
mechanisms, the causal effect may still be identifiable from
observational data (Barber et al., 2022).

Linear models are among the most well-studied mechanisms
and serve as a foundational abstraction in many scientific
disciplines because they offer simple qualitative interpreta-
tions and can be learned with moderate sample sizes (Pe’er
& Hacohen, 2011, Principle 1). When the exogenous noises
in a linear SCM are Gaussian, the entire distributional in-
formation is contained in the variables’ covariance matrix.
Consequently, the higher-order cumulants of the distribution
are uninformative (Marcinkiewicz, 1939, Thm. 2). As a re-
sult, the causal structure and other causal quantities are often
not identifiable from mere observational data. For instance,
in the context of causal structure learning, this means the
causal graph is identifiable only up to an equivalence class
(e.g., Drton, 2018, §10). This motivated the widespread use
of the linear non-Gaussian acyclic model (LiNGAM).

The seminal work of Shimizu et al. (2006) showed that in
the setting of LiNGAM, the true underlying causal graph
is uniquely identifiable when all the variables are observed.
Since then, a rich literature on this topic has emerged, fo-
cusing mainly on the identification and the estimation of
the causal graph; see, e.g., Adams et al. (2021); Shimizu
(2022); Yang et al. (2022); Wang et al. (2023); Wang &
Drton (2023) for recent results that allow for the presence
of hidden variables.

Within the LiNGAM literature, causal effect identification
has received less attention; a complete characterization of
the identifiable causal effects was provided only recently
by Tramontano et al. (2024b). The drawback of this char-
acterization is that it is based on solving an overcomplete
independent component analysis (OICA) problem, known
to be non-separable (Eriksson & Koivunen, 2004). Hence,
the approach of Tramontano et al. (2024b) does not translate
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into a consistent estimation method for identifiable causal
effects (Tramontano et al., 2024b, §5.3).

Recent works (Kivva et al., 2023; Shuai et al., 2023) have ex-
ploited non-Gaussianity by utilizing higher-order moments
to derive estimation formulas for causal effects in specific
causal graphs, avoiding reliance on the challenging OICA
problem. A notable scenario involves the use of a proxy
variable for the latent confounder (Tchetgen et al., 2024). In
LiNGAM, causal effects are identifiable from higher-order
moments if every latent confounder has a corresponding
proxy variable, and no proxy directly influences either the
treatment or the outcome (Kivva et al., 2023). However, the
method in Kivva et al. (2023) fails to produce consistent
estimates when these assumptions are violated. Another
important setup arises when an instrumental variable affects
the outcome solely through the treatment (Angrist & Pis-
chke, 2009, §4). For linear models, two-stage least squares
(TSLS) regression can estimate causal effects when there
is at least one valid instrument per treatment (Angrist &
Pischke, 2009, §3.2). However, TSLS is based only on the
covariance matrix, and in cases where the number of in-
struments is fewer than the number of treatments—referred
to as underspecified instrumental variables—causal effects
are not identifiable from the covariance matrix alone. This
underspecification is often encountered in biological appli-
cations (Ailer et al., 2023; 2024).

This paper advances the field by providing identifiability
results for causal effects using higher-order cumulants in
two challenging setups: (1) a single proxy variable that
may causally influence the treatment and (2) underspecified
instrumental variables.

1.1. Contribution

Our first main contributions are identifiability results for the
causal effects of interest in the aforementioned setups.

1. In the proxy variable setup (Section 3.1), unlike previ-
ous work, our proposed method allows a causal edge
from the proxy to the treatment. Additionally, it re-
covers the causal effect for any l latent confounders
using a single proxy variable, in contrast to Kivva et al.
(2023, Alg. 1), which requires one proxy variable per
latent confounder. Furthermore, we prove that for the
proxy variable graph in Fig. 3, identification from the
second and third-order cumulants alone is not possible.

2. In the underspecified instrumental variable setup (Sec-
tion 3.2), we demonstrate that the causal effects of mul-
tiple treatments can be identified using only a single
instrumental variable. This relaxes the requirement in
the existing literature on linear instrumental variables,
which traditionally assumes the number of instruments
to be greater than or equal to the number of treatments.

Our second main contribution consists of practical methods
to estimate identifiable causal effects in both considered
setups. The methods build on the identifiability results and
process finite-sample estimates of higher-order cumulants
(Section 4). Our experiments show that the proposed ap-
proach provides consistent estimators in causal graphs, for
which previous methods in the literature fail (Section 6).

2. Problem Definition
2.1. Notation

A directed graph is a pair G = (V, E) where V = [p] :=
{1, . . . , p} is the set of nodes and E ⊆ {(i, j) | i, j ∈
V, i ̸= j} is the set of edges. We denote a pair (i, j) ∈ E
as i→ j.

A (directed) path from node i to node j in G is a sequence of
nodes π = (i1 = i, . . . , ik+1 = j) such that is → is+1 ∈
E for s ∈ {1, . . . , k}. A cycle in G is a path from a node
i to itself. A Directed Acyclic Graph (DAG) is a directed
graph without cycles. If i→ j ∈ E, we say that i is a parent
of j, and j is a child of i. If there is a path from i to j in G,
we say that i is an ancestor of j and j is a descendant of i.
The sets of parents, children, ancestors, and descendants of
a given node i are denoted by pa(i), ch(i), an(i), and de(i),
respectively. In our work, we distinguish between observed
and latent variables by partitioning the nodes into two sets
V = O ∪ L, of respective sizes po and pl. We write tensors
in boldface. The entry (i1, . . . , ik) of a tensor T is denoted
by ti1,...,ik .

Cumulants are alternative representations of moments of a
distribution that are particularly useful when dealing with
linear SCM (Robeva & Seby, 2021). Here, we formalize the
definition and discuss their basic properties.
Definition 2.1. The k-th cumulant tensor of a random vec-
tor N = [N1, . . . , Np] is the k-way tensor in Rp×···×p ≡
(Rp)k whose entry in position (i1, . . . , ik) is the cumulant

c(k)(N)i1,...,ik :=∑
(A1,...,AL)

(−1)L−1(L− 1)!E
[ ∏
j∈A1

Nj

]
· · ·E

[ ∏
j∈AL

Nj

]
,

where the sum is taken over all partitions (A1, . . . , AL) of
the multiset {i1, . . . , ik}.

Cumulant tensors are symmetric, i.e.,

c(k)(N)i1,...,ik = σ(c(k)(N))i1,...,ik

:= c(k)(N)σ(i1),...,σ(ik) ∀σ ∈ Sk,

where Sk is the symmetric group on [k]. We write Symk(p)
for the subspace of symmetric tensors in (Rp)k.
Lemma 2.2 (Comon & Jutten, 2010, §5). If the entries of
N = [N1, . . . , Np] are jointly independent, then c(k)(N) is

2



Causal Effect Identification in lvLiNGAM from Higher-Order Cumulants

diagonal, i.e., c(k)(N)i1,...,ik is equal to 0 unless i1 = i2 =
· · · = ik = i, for some i ∈ [p].

We write Diagk(p) for the space of order k diagonal tensors.

Lemma 2.3 (Comon & Jutten, 2010, §5). Let N =
[N1, . . . , Np] be any p-variate random vector, and A ∈
Rs×p for any s ∈ N, then

c(k)(A ·N)i1,...,ik =∑
1≤j1,...,jk≤p

c(k)(N)j1,...,jkaj1,i1 · · ·ajk,ik .

In terms of the entire k-th cumulant tensor, this amounts to

C(k)(A ·N) = C(k)(N) •k A (1)

where •k is the Tucker product between C(k)(N) and A.

2.2. Model

Let G = (V, E) be a fixed DAG on p nodes. On a fixed
probability space, let V = [V0, . . . , Vp] be a random vector
taking values in Rp and satisfying the following SCM:

V = AV +N = BN, (2)

where aj,i = 0 if i→ j /∈ E, matrix B := (I−A)−1, and
the entries of the exogenous noise vector N are assumed to
be jointly independent and non-Gaussian. V is partitioned
into [Vo,Vl], where Vo is observed of dimension po, while
Vl is latent and of dimension pl. We can rewrite (2) as[

Vo

Vl

]
=

[
Ao,o Ao,l

Al,o Al,l

] [
Vo

Vl

]
+

[
No

Nl

]
,

which implies that the observed random vector satisfies

Vo = B′N =
[
Bo Bl

] [No

Nl

]
, (3)

where B′ := [(I−A)−1]O,V is known as the mixing ma-
trix. This model for Vo is known as the latent variable
LiNGAM (lvLiNGAM).

Salehkaleybar et al. (2020, §3) showed that the two parts of
the matrix B′ can be expressed as follows:

Bo = (I−A′)−1, Bl = (I−A′)−1Ao,l(I−Al,l)
−1,

with A′ = Ao,o + Ao,l(I − Al,l)
−1Al,o. The matrix

B′ = (b′
i,j) contains information on the interventional dis-

tributions of Vo. In particular,1

b′
i,j =

∂E(Vi | do(Vj))
∂Vj

,

1See Pearl (2009, §3) for the definition of do intervention.

i.e., b′
i,j is the average total causal effect of j on i.

Hoyer et al. (2008) showed that for any lvLiNGAM model,
an associated canonical model exists, in which, in the cor-
responding graph, all the latent nodes have at least two
children and have no parents. We refer to the graph corre-
sponding to a canonical model as a canonical graph. The
original and the associated canonical model are observa-
tionally and causally equivalent (Hoyer et al., 2008, §3).
Subsequently, without loss of generality, we will assume
our model is canonical in this sense.

In canonical models, Al,o = Al,l = 0, and in particular

Bo = (I−Ao,o)
−1, Bl = (I−Ao,o)

−1Ao,l. (4)

For every canonical G, let RG
A be the set of all p × p real

matrices A such that ai,j = 0 if j → i /∈ G. Let RG ⊂
Rp0×p be the set of all matrices B′ = [Bo,Bl] that can
be obtained from a matrix A ∈ RG

A according to (4). Let
NGp be the set of p dimensional, non-degenerate, jointly
independent non-Gaussian random vectors, and letM(G)
be the set of all po dimensional random vectors that can be
expressed according to (3) with B′ ∈ RG . Moreover, we
define M(k)(G) ⊆ Symk(po) to be the set of symmetric
k-th tensors that can be obtained as k-cumulant tensor for
distributions inM(G), i.e.,

M(k)(G) :={C(k)(Vo) | Vo ∈M(G)} =
{D(k) •k B′ | D(k) ∈ Diagk(p),B′ ∈ RG},

where the set-equality is due to Lemma 2.3. Using the
second equality, we can define the following polynomial
parameterization forM(k)(G):

Φ
(k)
G : RG ×Diagk(p) −→M(k)(G)

(B′,D(k)) 7→ D(k) •k B′.
(5)

This map expresses the tensor of observed cumulants in
terms of the tensor of exogenous cumulants and the mixing
matrix. Finally, we defineM(≤k)(G) :=M(2)(G)× · · · ×
M(k)(G), and similarly Diag(≤k)(p) and Φ

(≤k)
G .

2.3. Identifiability

In this work, we are interested in identifying specific en-
tries of the mixing matrix from finitely many cumulants
of the observational distribution. We formalize the prob-
lem as follows. We say that the causal effect from j to
i is generically identifiable from the first k cumulants of
the distribution if there is a Lebesgue measure zero subset
SGk of RG × Diag(≤k)(p) such that for all (B′,D(≤k)) ∈
(RG ×D(≤k)) \ SGk , we have b′

i,j = b̃′
i,j for every other

mixing matrix B̃′ ∈ RG that can define the same cumu-
lants up to order k, that is, whenever Φ(≤k)

G (B̃′, D̃(≤k)) =

Φ
(≤k)
G (B′,D(≤k)) for some D̃(≤k) ∈ Diag(≤k)(p).
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For the remainder of the text, whenever we use the term
generic, it is implied that the result holds outside the Lesbe-
gue measure zero subset of the parameter space SGk .
Remark 2.4 (The scaling matrix). Equation (4) implies that
as long as we are focused on identifying the causal effect
between observed variables alone, the scaling of the latent
columns does not make a difference. Hence, without loss of
generality, we assume subsequently that all mixing matrices
are scaled so that the first non-zero entry in each column
is equal to 1. In other words, ai,l = 1 if i is the first child
of l in a given causal order, where i and l are observed and
latent variables, respectively.

3. Main Results
This section presents our main identifiability results. Sec-
tion 3.1 treats the case of a proxy variable. Section 3.2 de-
tails our findings for underspecified instrumental variables
case.

Before presenting our results, we review two key results
from Schkoda et al. (2024) pertaining to the causal graph Gl
depicted in Fig. 1, which includes two observed variables,
V1 and V2, along with l latent variables L1, . . . , Ll. They
will be used to establish our identifiability results.

L1
. . . Ll

V1 V2

Figure 1. The causal graph Gl with l latent confounders.

Theorem 3.1 (Schkoda et al., 2024, Thm. 4). Consider the
causal graph Gl with two observed variables and l latent
variables depicted in Fig. 1. There is a polynomial of degree
l+ 1 with coefficients expressed in terms of the first k(l) :=
(l+2)+⌈(−3+

√
8l + 17)/2⌉ cumulants of the distributions

where the roots of the polynomial are b2,1,b2,L1
, . . . ,b2,Ll

.
We refer to this polynomial as pV,l(b) (see Remark B.1 in
the appendix for a definition of the polynomial).

The above theorem implies that in the causal graph Gl, one
can identify the causal effect of interest, b2,1, up to a set
of size l + 1 using the first k(l) cumulants of the distribu-
tion. In Section 3.1 (and Section 3.2), we demonstrate how
incorporating a proxy (or instrumental) variable can refine
this result, enabling unique identification of the causal ef-
fect. This approach involves deriving additional polynomial
equations among the cumulants of the observed distribution,
for which the true causal effect is a solution.

Example 3.2 (Polynomial for the graph in Fig. 1). For
the special case l = 1, the polynomial equation described
in Theorem 3.1 is defined as follows with the coefficients

expressed in terms of first k(l = 1) = 4:

b2 · (c(V)1,1,1,2c(V)1,1,2 − c(V)1,1,2,2c(V)1,1,1)

+ b · (c(V)1,2,2,2c(V)1,1,1 − c(V)1,1,1,2c(V)1,2,2)

− (c(V)1,2,2,2c(V)1,1,2 + c(V)1,1,2,2c(V)1,2,2) = 0.
(6)

Lemma 3.3 (Schkoda et al., 2024, Lemma 5). Con-
sider the causal graph Gl from Fig. 1. For ev-
ery integer k ≥ 2, the exogenous cumulant vector
[ck(N)1,...,1, c

k(N)L1,...,L1 , . . . , c
k(N)Ll,...,Ll

] is a solu-
tion of the following linear system

1 1 · · · 1
b2,1 b2,L1 · · · b2,Ll

...
...

. . .
...

bk−1
2,1 bk−1

2,L1
· · · bk−1

2,Ll



ck(N)1,...,1
ck(N)L1,...,L1

...
ck(N)Ll,...,Ll



=


ck(Vo)1,...,1
ck(Vo)1,...,1,2

...
ck(Vo)1,2...,2

 .
(7)

The solution is, generically, unique if k ≥ l + 1.

Let b be the vector [b2,1,b2,L1 , · · · ,b2,Ll
]. We rewrite the

system in (7) as

M(b, k) · ck = ck(1,2)(Vo). (8)

The above lemma implies that after using Theorem 3.1 to
recover [b21,b2L1

, . . . ,b2Ll
] up to a permutation, it is pos-

sible to estimate some cumulants corresponding to the ex-
ogenous noises of V1 and the l latent variables up to the
same permutation.

3.1. Proxy Variable

In this section, we first provide the identifiability result for
a causal graph with a single proxy variable and l latent
variables where there is no edge from the proxy variable to
the treatment. Then, we extend our result to the case where
there is an edge from the proxy to the treatment.

3.1.1. NO EDGE FROM PROXY TO TREATMENT

L1
. . . Ll

Z

T Y

Figure 2. The causal graph with a single proxy variable Z and l
latent confounders L1, · · · , Ll where there is no edge from the
proxy to the treatment.

4



Causal Effect Identification in lvLiNGAM from Higher-Order Cumulants

Theorem 3.4. In the lvLiNGAM for the causal graph in
Fig. 2, with the proxy variable Z and l latent confounders
L1, . . . , Ll, the causal effect from T to Y is generically
identifiable from the first k(l) cumulants of the observational
distribution.

Proof. Considering the pairs [Z, T ], [Z, Y ], and [T, Y ] as
pair [V1, V2] in Theorem 3.1, we obtain the vectors

bZT = [0,bT,L1 , . . . ,bT,Ll
],

bZY = [0,bY,L1
, . . . ,bY,Ll

],

bTY = [bY,T ,bY,L1
/bT,L1

, . . . ,bY,Ll
/bT,Ll

],

(9)

up to some permutations (notice that the ratios in the last
equation are a consequence of the choice of the scaling we
discussed in Remark 2.4). Next, we recover the vector

[cl+1(N)1,...,1, c
l+1(N)L1,...,L1

, . . . , cl+1(N)Ll,...,Ll
] (10)

using Lemma 3.3 twice (up to some permutations) with the
vector bZT , and then with bZY by solving the linear system
in (7). Since the cumulants of different exogenous noises
are generically distinct, we can match the entries in bZT to
their corresponding entries in bZY using the two recovered
exogenous cumulant vectors. This allows us to construct a
new vector

br :=
[
bY,L1

/bT,L1
, . . . ,bY,Ll

/bT,Ll

]
. (11)

Finally, bY,T is the only entry in bTY that does not equal
any entry of br.

3.1.2. WITH AN EDGE FROM PROXY TO TREATMENT

L1
. . . Ll

Z

T Y

Figure 3. The causal graph with a single proxy variable Z and l
latent confounders L1, · · · , Ll where there is an edge from the
proxy to the treatment.

Theorem 3.5. In the lvLiNGAM for the causal graph in
Fig. 3, the causal effect from T to Y is generically iden-
tifiable from the first k(l) cumulants of the observational
distribution.

Proof. Let b be either equal to [bT,Z ,bY,Z ] or to
[bT,Li ,bY,Li ] for some i ∈ [l]. Then, the triple

Vb := [Z, T − b1Z, Y − b2Z] (12)

follows a lvLiNGAM model compatible with the graph in
Fig. 2 with the causal effect from T−b1Z to Y −b2Z being

the same as in the original model (see Lemma B.2). Hence,
once we have one of these pairs, we can use Theorem 3.4 to
recover the causal effects between T and Y .

To obtain the pairs, we apply Theorem 3.1 to [Z, T ] and
[Z, Y ], finding

bT = [bT,Z ,bT,L1
, . . . ,bT,Ll

],

bY = [bY,Z ,bY,L1 , . . . ,bY,Ll
]

(13)

up to some permutations of their entries. Moreover, using
Lemma 3.3, we can align the pairs of solutions as we did in
the proof of Theorem 3.4. In this manner, we obtain

b1 = [bT,Z ,bY,Z ], . . . ,b
l+1 = [bT,Ll

,bY,Ll
]. (14)

Any bi allows us to identify the correct causal effect.

The above result shows that estimating the first k(l) cumu-
lants of the distribution is sufficient to identify the causal
effect. However, since estimating higher-order cumulants is
statistically more challenging, it is important to understand
whether the same result can be obtained with lower-order
cumulants. The next result shows that this is not possible
for the case l = 1.
Theorem 3.6. Consider the causal graph depicted in Fig. 3
with l = 1. Then, the causal effect from T to Y is not
identifiable from the first k(l) − 1 = 3 cumulants of the
observational distribution.

Proof. Garcia et al. (2010, Prop. 3, 4) prove that, once a
polynomial parametrization for a statistical model is known,
the generic identifiability of any parameter can be verified
through a Gröbner basis computation. We leveraged this
fact as follows: we parameterize the modelM(≤3)(G) us-
ing (5) and compute the vanishing ideal for the modified
parametrization

Φ̃
(≤k)
G : RG ×Diag≤k(p) −→ R×M(≤k)(G)

(B′,D(2),D(3)) 7→ [bY,T ,D
(2) •2 B′,D(3) •3 B′].

Specifically, computing the reduced Gröbner basis for an
elimination term order (see Definition A.3), we find that
bY,T is determined merely as a root of a degree two polyno-
mial.2 Since bY,T is unconstrained in RG , it is not generi-
cally identifiable (Garcia et al., 2010, Prop. 3).

3.2. Underspecified Instrumental Variable

We now prove that in lvLiNGAM models, one valid in-
strument suffices to estimate the causal effects of multiple
treatments.

2The computations were done using the computer
algebra software Macaulay 2 (Grayson & Stillman,
2023). The code to replicate the computation can be
found at https://github.com/danieletramontano/CEId-from-
Moments/blob/main/Macaulay2/NonGaussianIdentifiability.m2.
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I

T 1

T 2

Y

L1

L2

Figure 4. An example of a causal graph for the underspecified
instrumental variable model.

In a causal graph G, we say that I is a valid instrument for
the treatments T 1, . . . , T k on Y if

I ∈ pa(T i) ∀ i ∈ [n],

an(I) ∩ an(T i) ∩ L = ∅ ∀ i ∈ [n],

I ⊥G\T Y,

where⊥denotes d-separation (Pearl, 2009, §1.2), and G\T is
the graph obtained by removing the edges T i → Y from G
for all i ∈ [n] (Ailer et al., 2023, Eq. 1). Fig. 4 illustrates an
example with two treatments and one instrumental variable.

Theorem 3.7. In the lvLiNGAM for the causal graph in
Fig. 4, with instrumental variable I , treatments T 1, . . . , T k,
and outcome Y , the causal effect from T i to Y is generically
identifiable from the first k(l) cumulants of the observational
distribution, where l := maxi∈[n] | an(T i) ∩ an(Y ) \ I|.

The proof of the above result can be found in Appendix B.
In the next example, we outline the identification strategy
for the graph in Fig. 4.

Example 3.8 (Identification equations for the graph in
Fig. 4). First, compute bT i,I = c2T i,I/c

2
I,I and bY,I =

c2Y,I/c
2
I,I . Then, consider the vector

VI := [T 1 − bT 1,II, T2 − bT2,II, Y − bY,II].

The vector of causal effects [bY,T 1 ,bY,T2
] is the unique

solution to the following polynomial system:

b2
Y,T 1

(
c(VI)1,1,1,3c(V

I)1,1,3 − c(VI)1,1,3,3c(V
I)1,1,1

)
+bY,T 1

(
c(VI)1,3,3,3c(V

I)1,1,1 − c(VI)1,1,1,3c(V
I)1,3,3

)
−
(
c(VI)1,3,3,3c(V

I)1,1,3 + c(VI)1,1,3,3c(V
I)1,3,3

)
= 0,

b2
Y,T2

(
c(VI)2,2,2,3c(V

I)2,2,3 − c(VI)2,2,3,3c(V
I)2,2,2

)
+bY,T2

(
c(VI)2,3,3,3c(V

I)2,2,2 − c(VI)2,2,2,3c(V
I)2,3,3

)
−
(
c(VI)2,3,3,3c(V

I)2,2,3 + c(VI)2,2,3,3c(V
I)2,3,3

)
= 0,

bY,I − bT 1,IbY,T 1 − bT2,IbY,T2 = 0,

where the first two equations are instances of (6), and the
last equation can be derived by directly applying Lemma A.8
to the graph in Fig. 4.

Remark 3.9 (Multiple instruments). For simplicity of nota-
tion, we stated the theorem in the most challenging context
of a single instrumental variable. However, the result read-
ily extends to cases with multiple valid instruments I , as
long as each treatment is associated with at least one valid
instrument. See Remark B.5 in the appendix for details on
adapting the identification strategy to multiple instruments.

4. Estimation
In this section, we explain how to develop estimation tech-
niques based on the identifiability results from the previous
section. We assume access to an i.i.d sample Vn ∈ Rn×po

drawn from the distribution of a random vector Vo ∈M(G)
for a fixed graph G. All algorithms will process unbiased
estimates of the corresponding population cumulants, i.e.,
k-statistics (McCullagh, 1987, §4.2).

Algorithm 1 Proxy Variable (Fig. 2)
INPUT: Data Vn = [Zn, Tn, Yn], bound on the number of
latent variables l.

1: bZT
n ← roots of p[Zn,Tn],l−1(b) = 0 {(9)}

2: bZT
n,0 ← [0,bZT

n ]

3: bZY
n ← roots of p[Zn,Yn],l−1(b) = 0 {(9)}

4: bZY
n,0 ← [0,bZY

n ]

5: bTY
n ← roots of p[Tn,Yn],l(b) = 0 {(9)}

6: cl+1
Tn
← solution to the linear system

M(bZT
n,0 , l + 1) · cl+1 = cl+1

(1,2)([Zn, Tn]) {(8)}
7: cl+1

Yn
← solution to the linear system

M(bZY
n,0 , l + 1) · cl+1 = cl+1

(1,2)([Zn, Yn]) {(8)}
8: σn ← argminσ∈Sl+1

(||cl+1
Tn
− σ(cl+1

Yn
)||22)

9: br
n ← bZT

n,0/σn(b
ZY
n,0 ) {Under the convention 0/0 = 0.}

10: ηn ← argminη∈Sl+1
(||br

n − η(bTY
n )||22)

11: RETURN: bTY
n [ηn(1)]

Algorithm 1 outlines the estimation procedure for the causal
effect for the graph in Fig. 2. This algorithm replaces the
steps in the proof of Theorem 3.4 with their respective finite-
sample versions. Specifically, lines 1 to 5 correspond to (9),
where the l − 1 in lines 1 and 3 results from the fact that,
without an edge from Z to T , one of the roots of p[Zn,Tn],l

is known to be zero (Schkoda et al., 2024, Thm. 3). Lines
6 and 7 correspond to (10), and lines 7 and 8 correspond to
(11). In particular, in line 8, we determine the permutation
σ ∈ Sl+1 that minimizes the ℓ2 distance between cl+1

Tn
and

σ(cl+1
Yn

). This step is necessary because, due to estimation
error, we cannot perfectly align the entries of cl+1

Tn
and cl+1

Yn
.

Similarly, in line 9, we identify the permutation η(cl+1
Yn

) that
minimizes the ℓ2 distance between br

n and η(bTY
n ). Finally,

we return the entry of bTY
n corresponding to the zero in br

n.

The algorithms for the other graphs can be found in Ap-
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pendix C. Furthermore, in Algorithm 4, we propose an
optimization technique that improves the finite-sample per-
formance for the graph in Fig. 3 with a single latent variable
(as shown in the right panel of Fig. 6).

5. Related Work
There is a substantial body of work on causal effect iden-
tification in linear SCMs, with several graphical criteria
developed for identification in a fixed causal graph. For
Gaussian models, Drton et al. (2011); Kumor et al. (2020);
Barber et al. (2022) provided conditions under which causal
effects can be identified solely from the covariance matrix.
In the non-Gaussian case, analogous results have been es-
tablished by Tramontano et al. (2024a;b), with criteria that
are both sound and complete but which require access to the
full observational distribution.

Results for the identification of the mixing matrix (i.e., with-
out assuming knowledge of the causal graph) are provided
in Salehkaleybar et al. (2020); Yang et al. (2022); Adams
et al. (2021) and in Cai et al. (2023); Schkoda et al. (2024);
Chen et al. (2024); Li et al. (2025). The former results are
based on solving an OICA problem (hence, are not equipped
with consistent estimation methods), and the latter results,
similar to our approach, rely on explicit cumulant/moment
equations. Notably, both Cai et al. (2023) and Chen et al.
(2024) assume specific structural conditions—namely, a
One-Latent-Component structure and a homologous surro-
gate, respectively—which do not apply to the graphs con-
sidered in Sections 3.1 and 3.2.

In the context of proximal causal inference, Kuroki & Pearl
(2014) explored two scenarios for determining causal ef-
fects: (1) discrete finite variables Z and L: It was shown
that the causal effect can be identified if P(Z|L) is known
(e.g., from external studies) or an additional proxy variable
(W ) is available and certain conditions on the conditional
probabilities of P(Y |T, L) and P(Z,W |T ) are satisfied. (2)
Linear SCMs: They proved that the causal effect of T on Y
is identifiable using two proxy variables.

Following their work, Miao et al. (2018) studied a scenario
involving two proxy variables, Z and W . Unlike the pre-
vious results, they allow Z and W to be parent nodes for
T and Y , respectively. They found that the causal effect
can be identified for discrete finite variables if the matrix
P(W |Z, T = t) is invertible. They also provided analo-
gous (nonparametric) conditions for continuous variables.
Shi et al. (2020) extended these results, employing a less
stringent set of assumptions while still necessitating two
proxy variables to identify the causal effect. Later Shuai
et al. (2023) considered the setting with one proxy variable
and proved that the causal effect is identifiable under the
assumption that only the treatment is non-Gaussian, with

the other variables being jointly Gaussian. Cui et al. (2024)
proposed an alternative proximal identification procedure
to that of Miao et al. (2018), again under the availability of
two proxy variables. For lvLiNGAMs, Kivva et al. (2023)
gave an explicit moment-based formula for the causal effect
when there is no edge from the proxy to the treatment. For
a general introduction to proximal causal inference, see also
Tchetgen et al. (2024).

Instrumental variables were first introduced in Wright (1928,
App. B) and have since become a fundamental identifica-
tion strategy in both the social sciences (Cunningham, 2021,
§7.1) and epidemiology (Didelez & Sheehan, 2007). In
linear models, the standard TSLS equations (Angrist & Pis-
chke, 2009, §3.2) have a unique solution only with at least
one instrument per treatment. For cases with fewer instru-
ments, Ailer et al. (2023) proposed estimating the causal
effect using the minimum norm solution to the TSLS equa-
tions, which is always unique but may introduce arbitrary
bias. In contrast, Pfister & Peters (2022) showed that, un-
der additional sparsity assumptions, causal effects can be
identified by adding an ℓ0 penalty to the TSLS equations.
For lvLiNGAMs, Silva & Shimizu (2017); Xie et al. (2022)
explored the testable implications of instrumental variables.

6. Experimental Results3

This section presents experimental results on synthetic and
experimental data for the graphs studied in Section 3.

As performance metric, we use the relative absolute error

err(b̂Y,T ,b
∗
Y,T ) :=

∣∣∣(b̂Y,T − b∗
Y,T

)
/b∗

Y,T

∣∣∣ ,
where b∗

Y,T is the true value of causal effect and b̂Y,T is
its estimate. We report the median value of the relative
estimation error over 100 random simulations; the filled
area on our plots shows the interquartile range of the relative
error distribution. Details on the experimental setup and
experiments are provided in Appendix D.

6.1. Proxy Variable

L1

T Y

Z

G1

L1
L2

T Y

Z

G2

L1

T Y

Z

G3

Figure 5. The causal graphs considered in the experiments.

We begin with experimental results for the proxy variable
settings with the causal graphs illustrated in Fig. 5. We

3The code to replicate the experiments can be found at
https://github.com/danieletramontano/CEId-from-Moments.
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Figure 6. Relative error vs sample size for the graphs in Fig. 5.

compare our method (which we call Cumulant) with the
Cross-Moment (Kivva et al., 2023, Alg. 1), GRICA (Tra-
montano et al., 2024b, §3.5), and ReLVLiNGAM (Schkoda
et al., 2024) algorithms.

As can be seen in Fig. 6 (left), for the graph G1, the Cross-
Moment algorithm outperforms all other methods. This is
expected since it provides a consistent estimate of the causal
effect using third-order cumulants if there is no edge from
the proxy variable to the treatment. Although the Cumulant
method is also consistent, it uses fourth-order cumulants
that are more challenging to estimate.

For the graphs G2 and G3, which include either multiple
latent variables or a causal edge from Z to T , our pro-
posed method significantly outperforms other approaches
(see Fig. 6, middle and right). Additionally, an experiment
involving both multiple latent variables and a causal edge
from Z to T is presented in Fig. 10 in the appendix. For
the graph G3, we also provided the result for the Cumu-
lant method with the minimization technique given in Ap-
pendix C.1.1, which improves the performance of the Cu-
mulant method since it reduces the dependency on using the
fourth-order cumulants. Notably, for these graphs, neither
the Cross-Moment nor the GRICA algorithm provides a
consistent estimator of the true causal effect. This can also
be seen from the experiments, as the relative error does not
decay as the sample size increases. Furthermore, while the
ReLVLiNGAM algorithm produces consistent estimators
for the causal effect in graphs G1 and G3, it performs poorly
compared to our method. This results from ReLVLiNGAM
performing causal discovery and causal effect estimation
simultaneously, increasing its complexity.

Figure 7. Relative error vs sample size for the graph in Fig. 4.

6.2. Underspecified Instrumental Variable

In this part, we provide the experimental results for the un-
derspecified instrumental variable graph depicted in Fig. 4.
We compare our method (Cumulant) with the projection on
instrument space proposed in Ailer et al. (2023, §3.1) (Min
Norm), the GRICA, and the ReLViNGAM algorithm. Fig. 7
shows (

err(b̂Y,T 1 ,b∗
Y,T 1) + err(b̂Y,T2

,b∗
Y,T2

)
)
/2

against sample size. As can be seen, our method is the only
one that consistently estimates the causal effects for the two
treatments having access to only one instrument.
Remark 6.1 (Small Sample Performance). From Figs. 6
and 7, one can observe that for small sample sizes, the

8
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GRICA method proposed in Tramontano et al. (2024b) ex-
hibits superior performance.

One possible explanation is that cumulant-based methods
rely on unbiased estimators of high-order cumulants (typi-
cally of order 4 or higher), also known as k-statistics. While
these estimators are unbiased, they tend to exhibit high vari-
ance when the sample size is small.

In contrast, GRICA solves an optimization problem involv-
ing the ℓ1-norm of the observed data, which generally has
lower sample variance. As a result, GRICA may achieve
lower mean-squared error in small-sample regimes due to
this variance reduction. However, because the GRICA so-
lution is not asymptotically unbiased, it does not yield a
consistent estimator, unlike our proposed method, which
retains consistency in the asymptotic limit.

6.3. Experiments on Real Data

To assess the practical efficacy of our method, we conduct
experiments on the dataset analyzed in Card & Krueger
(1993), which contains information on fast-food restaurants
in New Jersey and Pennsylvania in 1992. The dataset in-
cludes variables such as minimum wage, product prices,
store hours, and other relevant features. The original study
aimed to estimate the effect of an increase in New Jersey’s
minimum wage—from $4.25 to $5.05 per hour—on employ-
ment rates. Importantly, the data were collected both before
and after the wage increase in New Jersey, while the mini-
mum wage in Pennsylvania remained constant throughout
this period.

For our experiments, we adopt the preprocessing procedure
from Kivva et al. (2023). Specifically, we regress the proxy,
treatment, and outcome variables on the observed covari-
ates (e.g., product prices, store hours) and then apply our
methods on the residuals of these regressions. Assuming
that the preprocessed data conform to the causal structures
encoded by the graphs G1 and G2, we estimate the causal
effect to be 2.68 and 2.71, respectively. Prior approaches,
such as the cross-moment method (Kivva et al., 2023) and
the Difference-in-Differences method, also yield a point
estimate of 2.68. In contrast, assuming G3 as the true graph
yields an estimated causal effect of 8.26. Although this still
indicates a positive impact of the treatment on the outcome,
consistent with prior findings, the magnitude deviates sig-
nificantly from estimates reported in the literature. A more
detailed uncertainty assessment in future work could help
clarify the source of this discrepancy.

7. Conclusion
We studied causal effect identification and estimation using
higher-order cumulants in lvLiNGAM models. We pre-
sented novel closed-form solutions for estimating causal

effects in the context of proxy variables and underspecified
instrumental variable graphs, which cannot be handled with
existing methods. Experimental results demonstrate the
accuracy and practical utility of our proposed methods.
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A. Notions of Non-Linear Algebra
In this section, we give the basic definitions of non-linear algebra we will need for the proofs; we refer the interested reader
to Garcia et al. (2010); Cox et al. (2015); Michałek & Sturmfels (2021) for more details.
Definition A.1. For every natural number n, we denote the ring of polynomials in n variables x1, . . . , xn by R[x1, . . . , xn].
Let S be a, possibly infinite, subset of R[x1, . . . , xn]. The affine variety associated to it is defined as V(S) = {x ∈ Rn |
f(x) = 0, ∀f ∈ S}. The vanishing ideal associated to a variety V is I(V) = {f ∈ R[x1, . . . , xn] | f(x) = 0 ∀x ∈ V}.
The coordinate ring of V is defined as R[V] = R[x1, . . . , xn]/I(V).
Definition A.2. A term order ≺ on the polynomial ring R[x] is a total ordering on the monomials in R[x] that is compatible
with multiplication and such that 1 is the smallest monomial; that is, 1 = x0 ⪯ xu for all u ∈ Nn and if xu ⪯ xv, then
xw · xu ⪯ xw · xv. Since ≺ is a total ordering, every polynomial g ∈ R[x] has a well-defined largest monomial. Let in≺(g)
be the largest monomial in g. For an ideal I ⊆ R[x], let in≺(I) = {in≺(g) : g ∈ I}; this is called the initial ideal of I .

Among the most important term orders is the lexicographic term order, which can be defined for any permutation of the
variables. In the lexicographic term order, we declare xu ≺ xv if and only if the left-most nonzero entry of v−u is positive.

Elimination orders are a generalization of the lexicographic order. These are obtained by splitting the variables into a
partition A ∪B. In the elimination order, xu ≺ xv if xv has a larger degree in the A variables than xu. If xv and xu have
the same degree in the A variables, then some other term order is used to break ties.
Definition A.3. A finite subset G ⊆ I is called a Gröbner basis for I with respect to the term order ≺ if

in≺(I) = {in≺(g) : g ∈ G}.

The Gröbner basis is called reduced if the coefficient of in≺(g) in g is 1 for all g, each in≺(g) is a minimal generator of
in≺(I), and no terms besides the initial terms of G belong to in≺(I).
Lemma A.4 (Okamoto, 1973, Lemma). Let f(x1, . . . , xn) be a polynomial in real variables x1, . . . , xn, which is not
identically zero. The set of zeros of the polynomial is a Lebesgue measure zero subset of Rn.
Lemma A.5. Let RG

A and RG defines as in Section 2.2. Then we have RG ∼ RG
A ∼ R|e|, where with the symbol ∼, we

denote an isomorphism of affine varieties, see, e.g., Cox et al. (2015, Def. 6, §5) for a definition. Moreover R[G], R[GA],
and R[ai,j | j → i ∈ G] are isomorphic as rings.

Proof. The isomorphism RG
A ∼ R|e| comes directly from its definition. Indeed it is easy to see that RG

A is an |e|-dimensional
linear subspace of Rp×p = (ai,j)i,j∈p×p, defined by the linear equations ai,i = 1, and ai,j = 0, ∀i, j ∈ V such that
j → i /∈ G.

To prove the isomorphism RG ∼ RG
A, we need to prove that there is a polynomial bijective map between the two spaces. From

(4), and using [Bo]i,j = [(Ao,o)
−1]i,j = (−1)i+j det([Ao,o]\j,\i), where we used that det(Ao,o) = 1. It is clear that RG is

the image of polynomial map of RG
A. Let us call this polynomial map ψ and assume ψ(A) = ψ(Ã). Then from the definition

of ψ we have (I −Ao,o)
−1 = (I − Ão,o)

−1 that implies Ao,o = Ão,o. Moreover, (I −Ao,o)
−1Ao,l = (I − Ão,o)

−1Ão,l

that implies Ao,l = Ão,l and so A = Ã.

The isomorphisms between the rings come from Cox et al. (2015, §5, Thm. 9).

Corollary A.6. Let f ∈ R[G] be a non-zero polynomial. Then the subset of RG on which f vanishes is a Lebesgue measure
0 subset of RG .

Proof. Thanks to the isomorphism in Lemma A.5, we can apply Lemma A.4 to RG .

Definition A.7. Let π ∈ P(j, i). The path monomial associated to it is defined as

aπ = ai1,i2 · · · · · aik,ik+1
∈ R[GA].

Lemma A.8. Let A defined as in (2). We have

B = (I −A)−1 =

∞∑
i=0

Ai = I +A+A2 + · · ·+Ap,

bi,j =
∑

P∈P(i,j)

aP .

12
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In particular bi,j = 0 ∈ R[GA] if and only if P ∈ P(i, j) = ∅.

B. Additional Proofs
Remark B.1. The polynomial pVo,l(b) mentioned in Theorem 3.1, can be obtained as the determinant of an l + 2× l + 2
minor the following matrix containing the first row

1 b · · · bl+2

cl+2(Vo)1,...,1 cl+2(Vo)1,...,1,2 · · · cl+2(Vo)1,2,...,2

cl+3(Vo)1,1,...,1 cl+3(Vo)1,1,...,1,2 · · · cl+3(Vo)1,1,2,...,2
cl+3(Vo)2,1,...,1 cl+3(Vo)2,1,...,1,2 · · · cl+3(Vo)2,1,2,...,2

...
...

. . .
...

ck(l)(Vo)1,...,1,1,1,...,1,1 ck(l)(Vo)1,...,1,1,1,...,1,2 · · · ck(l)(Vo)1,...,1,1,2,...,2,2
...

...
. . .

...
ck(l)(Vo)2,...,2,1,1,...,1,1 ck(l)(Vo)2,...,2,1,1,...,1,2 · · · ck(l)(Vo)2,...,2,1,2,...,2,2



.

The proof of this fact can be found in Schkoda et al. (2024, Thm. 4).

Lemma B.2. Let Vo = [Z, T, Y ] be a vector generated from a lvLiNGAM model compatible with the graph in Fig. 3, and
let b be either equal to [bT,Z ,bY,Z ] or to [bT,Li

,bY,Li
] for some i ∈ [l]. Then, the triple

Vb := [Z, T − b1Z, Y − b2Z]

follows a lvLiNGAM model compatible with the graph in Fig. 2 with the causal effect from T − b1Z to Y − b2Z being the
same as in the original model.

Proof. From (3), we know that

Vo =

 1 1 · · · 1 0 0
bT,Z bT,L1

· · · bT,Ll
1 0

bY,Z bY,L1 · · · bY,Ll
bY,T 1




NZ

NL1

...
NLl

NT

NY


.

From simple linear algebra manipulation, it follows that

Vb =

 1 0 0
−b1 1 0
−b2 0 1

Vo =

 1 1 · · · 1 0 0
−b1 + bT,Z −b1 + bT,L1

· · · −b1 + bT,Ll
1 0

−b2 + bY,Z −b2 + bY,L1
· · · −b2 + bY,Ll

bY,T 1




NZ

NL1

...
NLl

NT

NY


.

By setting b to be either equal to [bT,Z ,bY,Z ] or to [bT,Li ,bY,Li ], we set one of the first l+1 columns of the mixing matrix
corresponding to Vb to [1, 0, 0], hence removing the edge from Z to T .

13
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Lemma B.3. Let Vo = [Z, T, Y ] be a vector generated from a lvLiNGAM model compatible with the graph in Fig. 3 with
one latent variable, and let qc2(Vo)(b) be the following univariate polynomial

qc2(Vo)(b) :=
c2(Vo)T,Y − b · c2(Vo)Z,Y

c2(Vo)T,T − b · c2(Vo)Z,T
. (15)

Then, we have qc2(Vo)(bT,L1
) = bY,T .

Proof. Direct computation, applying Lemma 2.2 and Lemma A.8.

Lemma B.4. Let Vo = [I, T 1, . . . , T k, Y ] be a vector generated from a lvLiNGAM model compatible with an instrumental
variable graph. Consider now the variables

T I,i = T i − bT i,II, Y I = Y − bY,II,

obtained by regressing out I from T i and Y , respectively.

Each one of the pairs [T I,i, Y I ] can be represented by a lvLiNGAM model with two observed variables and at most l latent
confounders, with the causal effect from T I,i to Y I being the same as in the original distribution.

Proof. From (3), we know that

 IT i

Y

 =

 1 0 · · · 0 0 0
bT,I bT,L1

· · · bT,Ll
1 0

bY,I bY,L1
· · · bY,Ll

bY,T 1




NI

NL1

...
NLl

NT

NY


.

From simple linear algebra manipulation, it follows that

[
T I,i

Y I

]
=

[
−bT i,I 1 0
−bY,I 0 1

] IT i

Y

 =

[
0 −bT i,I + bT,L1

· · · −bT i,I + bT,Ll
1 0

0 −bY,I + bY,L1
· · · −bY,I + bY,Ll

bY,T 1

]


NI

NL1

...
NLl

NT

NY



=

[
−bT i,I + bT,L1

· · · −bT i,I + bT,Ll
1 0

−bY,I + bY,L1
· · · −bY,I + bY,Ll

bY,T 1

]

NL1

...
NLl

NT

NY

 .

Which is indeed compatible with the graph in Fig. 1.

Theorem. Let GIV be an instrumental variable graph, with instrument I , treatments T 1, . . . , T k, and outcome Y , and
let l := maxi∈[n] | an(T i) ∩ an(Y ) \ I|. Then, the causal effect from T i to Y is generically identifiable from the first k(l)
cumulants of the distribution.

Proof of Theorem 3.7. Since an(I) ∩ an(T i) ∩ L = an(I) ∩ an(Y ) ∩ L = ∅, we can identify bT i,I and bY,I from the
covariance matrix through backdoor adjustment (Pearl et al. (2016, §3.3), Henckel et al. (2022, Prop. 1)). From Ailer et al.
(2023, § 3.1), we know that the causal effects of interest satisfy the following equation:

rI(b) := bY,I −
∑
i

bT i,IbY,T i = 0 ∈ R[G], (16)

14
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where b = [bY,T 1 , . . . ,bY,Tk ]. Consider now the variables

T I,i = T i − bT i,II, Y I = Y − bY,II, (17)

obtained by regressing out I from T i and Y , respectively.

Each one of the pairs [T I,i, Y I ] can be represented by a lvLiNGAM model with two observed variables and at most l latent
confounders, with the causal effect from T I,i to Y I being the same as in the original distribution (Lemma B.4).

Using Theorem 3.1, we know that the vector

bi := [bY,T i ,bY,L1
, . . . ,bY,Ll

] (18)

can be obtained as roots of a degree l + 1 polynomial constructed using cumulants up to order k(l) of the observational
distribution (up to some permutations).

Consider the polynomial rI(b1, . . . , bn) ∈ R[b1, . . . , bn] defined in (16). For every choice of b ∈ b1 × · · · × bn, rI(b)
defines a different polynomial in R[G]. We have already seen, that for b = [bY,T 1 , . . . ,bY,Tk ] this defines the zero
polynomial. To conclude, it is only left to show that

rI(b) ̸= 0 ∈ R[G] ∀b ∈ b1 × · · · × bn \ {[bY,T 1 , . . . ,bY,Tk ]}, (19)

the result will follow by applying Lemma A.4.

Let us rewrite the entries of bi as bY,T i + ci(bY,Li − bY,T i) for some ci ∈ {0, 1}. This way, we can write rI(b) as

bI,Y −
∑
i

bI,T i(bY,T i + cji(bY,Lji
− bY,T i)) = −

∑
i

cjibI,T i(bY,Lji
− bY,T i),

using Lemmas A.5 and A.8 we can rewrite it as

∑
i

cji

 ∑
πi∈P(I,T i)

aπi

 ∑
πji

∈P(Y,Lji
)

aπji −
∑

πY,i∈P(T i,Y )

aπY,Ti

 ∈ R[GA].

Notice that every summand in the above equation is a monomial of degree at least two. If cji = 1 for some i, then the degree
two term aI,T iaT i,Y appears only once as a summand. This implies that the last equation defines a non-zero polynomial in
RG

A, which concludes the proof.

Remark B.5 (Multiple Instruments). For simplicity, we stated and proved the theorem for the case of a single instrumental
variable. However, the result naturally extends to scenarios with multiple valid instruments I , provided that each treatment
has at least one valid instrument.

To adapt the proof, (19) should be replaced with

T I,i = T i −
∑
j∈Ii

bT i,IjIj , Y I = Y −
∑
j∈[s]

bY,IjIj , (20)

where Ii is the set of valid instruments for the treatment T i.

Additionally, the variety VI := V(rI1(b), . . . , rIs(b)) should be used in place of the single polynomial rI(b) in (19).

C. Estimation
C.1. Proxy Variable with an Edge from Proxy to Treatment

Algorithm 2 outlines the estimation procedure for causal effect estimation corresponding to the graph in Fig. 3. This
algorithm replaces the steps in the proof of Theorem 3.5 with their respective finite-sample versions.

Specifically, lines 1 and 3 correspond to (13). Lines 3 to 5 align with (14), where the minimization step in line 5 is equivalent
to that in line 8 of Algorithm 1 and is further described in Section 4. The for loop spanning lines 7 to 17 corresponds to
applying Algorithm 1 for all possible choices of b in (12).
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Algorithm 2 Proxy Variable with an Edge from Proxy to Treatment (Fig. 3)
INPUT: Data Vn = [Zn, Tn, Yn], bound on the number of latent variables l.

1: bT
n ← roots of p[Zn,Tn],l(b) = 0 {(13)}

2: bY
n ← roots of p[Zn,Yn],l(b) = 0 {(13)}

3: cl+1
Tn
← solution to the linear system M(bZT

n , l + 1) · cl+1 = cl+1
(1,2)([Zn, Tn]) {(8)}

4: cl+1
Yn
← solution to the linear system M(bZY

n , l + 1) · cl+1 = cl+1
(1,2)([Zn, Yn]) {(8)}

5: σn ← argminσ∈Sl+1
(||cl+1

Tn
− σ(cl+1

Yn
)||22)

6: rmin ←∞
7: for all i in [l + 1] do
8: b̂T,Z ← bZT

n [i]

9: b̂Y,Z ← bZY
n [σ(i)]

10: V̂n ← [Zn, Tn − b̂T,ZZn, Yn − b̂Y,ZZn] {(12)}
11: b̂Y,T ← Algorithm 1(V̂n, l) {Lemma B.2}
12: r ← |b̂Y,Z − b̂Y,T ∗ b̂T,Z |
13: if r < rmin then
14: rmin ← r
15: bn

Y,T ← b̂Y,T

16: end if
17: end for
18: RETURN: bn

Y,T

At the population level, any choice of b results in the correct causal effect. However, in practice, we observed that using the
sample version of [bT,Z ,bY,Z ] yields better performance. Among the pairs in (14), [bT,Z ,bY,Z ] is the only one satisfying
the equation b[2]− bY,T · b[1] = 0 (Lemma A.8). Therefore, we select the estimate derived from the pair that minimizes
the sample version of this equation. This explains the steps outlined in lines 13 to 18.

C.1.1. PROXY VARIABLE WITH AN EDGE FROM PROXY TO TREATMENT WITH ONE LATENT VARIABLE

In this section we present two specialized estimation procedures for the causal effect in Fig. 2 with one latent variable.

First, Algorithm 3 is a simplified version of Algorithm 2, tailored for the case with a single latent confounder. The key
distinction between the two procedures lies in how the candidate value for the causal effect is computed: Algorithm 3
utilizes Lemma B.3 (lines 10–11 of Algorithm 3), whereas Algorithm 2 relies on Lemma B.2 (line 11 of Algorithm 2).

Next, we introduce an optimization technique that leverages cumulants up to degree three. While Theorem 3.6 establishes
that the causal effect is not identifiable using second- and third-order cumulants alone, we observe that this procedure often
achieves better finite-sample performance when initialized with a reliable starting point, compared to directly applying
Algorithm 3.

Let Vo = [Z, T, Y ] be a vector generated from a lvLiNGAM model compatible with the graph in Fig. 3 with one latent
variable. The following objective function is used:

hVo,b̂Y T
(b) :=

(
b− c2(Vo)T,Y − g(b)c2(Vo)Z,Y

c2(Vo)T,T − g(b)c2(Vo)Z,T

)2

+
(
b− b̂Y T

)2

, (21)

where

g(b) =
c
(3)
1,3,3(V

b
o )c

(3)
2,2,3(V

b
o )

c
(3)
1,1,3(V

b
o )c

(3)
2,3,3(V

b
o )
, Vb

o := [Z, T, Y − bT ]

Using Lemma 2.3, it can be shown that, if c(3)(L1)1,1,1 ̸= 0, then g(bY,T ) = bT,L1
. As a result, Lemma B.3 guarantees

that bY,T minimizes the first term in (21). The second term in (21) serves as a regularization term to ensure the solution
remains close to the initial estimate.
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Algorithm 3 Proxy Variable with an Edge from Proxy to Treatment with one Latent (Fig. 3)
INPUT: Data Vn = [Zn, Tn, Yn].

1: bT
n ← roots of p[Zn,Tn],1(b) = 0 {(13)}

2: bY
n ← roots of p[Zn,Yn],1(b) = 0 {(13)}

3: c2Tn
← solution to the linear system M(bZT

n , 2) · c2 = c2(1,2)([Zn, Tn]) {(8)}
4: c2Yn

← solution to the linear system M(bZY
n , 2) · c2 = c2(1,2)([Zn, Yn]) {(8)}

5: σn ← argminσ∈S2
(||c2Tn

− σ(c2Yn
)||22)

6: b1
T,Z ← bZT

n [1]

7: b1
Y,Z ← bZY

n [σ(1)]

8: b2
T,Z ← bZT

n [2]

9: b2
Y,Z ← bZY

n [σ(2)]

10: b1
Y,T ← qc2(Vn)(b

2
T,Z) {(15), Lemma B.3}

11: b2
Y,T ← qc2(Vn)(b

1
T,Z) {(15), Lemma B.3}

12: r1 ← |b1
Y,Z − b1

Y,T · b1
T,Z |

13: r2 ← |b2
Y,Z − b2

Y,T · b2
T,Z |

14: if r1 < r2 then
15: RETURN: b1

Y,T

16: end if
17: RETURN: b2

Y,T

Algorithm 4 Proxy Variable with an Edge from Proxy to Treatment with one Latent with Optimization (Fig. 3)
INPUT: Data Vn = [Zn, Tn, Yn].

1: b̂Y,T ← Algorithm 3(Vn)
2: bn

Y,T ← argminb∈R hVn,b̂Y T
(b){(21)}

3: RETURN: bn
Y,T

In practice, we solve the optimization problem using the Python implementation of the BFGS algorithm (Nocedal & Wright,
2006, §6.1) provided in Jones et al. (2001–). The finite-sample version of this optimization process is detailed in Algorithm 4.
Remark C.1. If c(3)(L1)1,1,1 is zero, higher-order cumulants can be used to construct g(b). The existence of such a
polynomial is guaranteed as long as L1 is non-Gaussian; see, for example, Kivva et al. (2023, Thm. 1).

C.2. Underspecified Instrumental Variable

Algorithm 5 outlines the estimation procedure for causal effect estimation corresponding to the graph in Fig. 8 with one
instrumental variable. This algorithm replaces the steps in the proof of Theorem 3.7 with their respective finite-sample
versions.

Specifically, lines 1 to 9 involve computing the covariance matrix and performing the regression adjustments required to
derive the finite-sample versions of the vectors described in (17).

The for loop in lines 11 to 17 evaluates the finite-sample approximation of the polynomial rI(b) defined in (16). As the
estimate of the causal effect, the algorithm selects the projection over the line defined by the equation rI(b) = 0 of the tuple
bn that minimizes rI(bn).

Algorithm 6 is an extension of Algorithm 5 that accommodates the presence of multiple instruments together. It implements
adaptations described in Remark B.5.

D. Details on the Experimental Setting and Additional Experiments
All the experiments in this subsection are done on the synthetic data generated according to the specific causal structure
established for it. To generate synthetic data, we specify all exogenous noises from the same family of distributions (with
parameters sampled according to Table 1) and select all non-zero entries within the matrix A through uniform sampling
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I1

I2

X1

X2

T 1

T 2

T 3 Y

L1

L2

L2

Figure 8. An example of a causal graph for the underspecified instrumental variable model.

Algorithm 5 Underspecified Instrumental Variables (Fig. 8)
INPUT: Data Vn = [In, T

1
n . . . , T

k
n , Yn, X

1, . . . , Xe], the causal graph G, bound on the number of latent variables l.

1: Σn ← c(2)(Vn) {Sample covariance matrix}
2: ad(I, Y )← an(I) ∩ an(Y ) ∩ O {Valid adjustment set}
3: bY,I,n ← (Σn)Y,I|ad(I,Y )/(Σn)I,I|ad(I,Y ) {Regression adjustment (Henckel et al., 2022, Prop. 1)}
4: Y I

n ← Yn − bY,I,nIn {(17)}
5: for all i ∈ [k] do
6: ad(I, T i)← an(I) ∩ an(T i) ∩ O
7: bT i,I,n ← (Σn)T i,I|ad(I,T i)/(Σn)I,I|ad(I,Y )

8: T I,i
n ← T i

n − bT i,I,nIn
9: bi

n ← roots of p[T I,i
n ,Y I

n ],l(b) = 0 {(18)}
10: end for
11: rmin ←∞
12: for all bn ∈ b1

n × · · · × bk
n do

13: rb ← |rI(bn)| {(19)}
14: if rb < rmin then
15: rmin ← rb
16: bn

Y,T 1,...,Tk ← argmin
b : rI(b)=0

||b− bn||22
17: end if
18: end for
19: RETURN: bn

Y,T 1,...,Tk

from [−0.9,−0.5] ∪ [0.5, 0.9].

In the figures, we plot the median relative error over 100 independent experiments; the filled area on our plots shows the
interquartile range.
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Algorithm 6 Underspecified Instrumental Variables with Multiple Instruments (Fig. 8)
INPUT: Data Vn = [I1n, . . . , I

s
n, T

1
n . . . , T

k
n , Yn, X

1, . . . , Xe], the causal graph G, bound on the number of latent variables l.

1: Σn ← c(2)(Vn) {Sample covariance matrix}
2: for all j ∈ [s] do
3: ad(Ij , Y )← an(Ij) ∩ an(Y ) ∩ O {Valid adjustment set}
4: bY,Ij ,n ← (Σn)Y,Ij |ad(Ij ,Y )/(Σn)I,Ij |ad(Ij ,Y ) {Regression adjustment (Henckel et al., 2022, Prop. 1)}
5: end for
6: Y I

n ← Yn −
∑

j∈[s] bY,Ij ,nI
j
n {(20)}

7: for all i ∈ [k] do
8: T I,i

n ← T i
n

9: for all j ∈ [s] do
10: if Ij is a valid instrument for Tk in G then
11: ad(Ij , T i)← an(Ij) ∩ an(T i) ∩ O
12: bT i,Ij ,n ← (Σn)T i,Ij |ad(Ij ,T i)/(Σn)I,Ij |ad(Ij ,T i)

13: T I,i
n ← T i

n − bT i,Ij ,nI
j
n {(20)}

14: end if
15: end for
16: bi

n ← roots of p[T I,i
n ,Y I

n ],l(b) = 0 {(18)}
17: end for
18: dmin ←∞
19: for all bn ∈ b1

n × · · · × bk
n do

20: db ← min
b∈VI

||b− bn||22 {(19)}
21: if db < dmin then
22: dmin ← db
23: bn

Y,T 1,...,Tk ← argmin
b∈VI

||b− bn||22
24: end if
25: end for
26: RETURN: bn

Y,T 1,...,Tk

Table 1. Summary of the experimental setups.

Figure Causal Graph Distribution Parameters of Interest

Family shape scale

6 (left) G1 in Fig. 5 Gamma U(0.1, 1) U(0.1, 0.5) T → Y

6 (middle) G2 in Fig. 5 Gamma U(0.1, 1) U(0.1, 0.5) T → Y

6 (right) G3 in Fig. 5 Gamma U(0.1, 1) U(0.1, 0.5) T → Y

10 (left) Fig. 9 Gamma U(0.1, 1) U(0.1, 0.5) T → Y

7 Fig. 4 Gamma U(0.1, 1) U(0.1, 0.5) T1 → Y, T2 → Y

Family alpha beta

11 (left) G1 in Fig. 5 Beta U(1.5, 2) U(2, 10) T → Y

11 (middle) G2 in Fig. 5 Beta U(1.5, 2) U(2, 10) T → Y

11 (right) G3 in Fig. 5 Beta U(1.5, 2) U(2, 10) T → Y

10 (right) Fig. 9 Beta U(1.5, 2) U(2, 10) T → Y

12 Fig. 4 Beta U(1.5, 2) U(2, 10) T1 → Y, T2 → Y
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Figure 9. Proxy variable graph with an edge from proxy to treatment and two latent confounders.

Figure 10. Relative error vs sample size for the graphs in Fig. 5.

Figure 11. Relative error vs sample size for the graphs in Fig. 5.
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Figure 12. Relative error vs sample size for the graph in Fig. 4.
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