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ABSTRACT

On-policy Reinforcement Learning (RL) offers desirable features such as stable
learning, fewer policy updates, and the ability to evaluate a policy’s return dur-
ing training. While recent efforts have focused on off-policy methods, achieving
significant advancements, Proximal Policy Optimization (PPO) remains the go-to
algorithm for on-policy RL due to its apparent simplicity and effectiveness. How-
ever, despite its apparent simplicity, PPO is highly sensitive to hyperparameters
and depends on subtle and poorly documented tweaks that can make or break its
success–hindering its applicability in complex problems. In this paper, we revisit
on-policy deep RL with a focus on improving PPO, by introducing principled
solutions that enhance its performance while eliminating the need for extensive
hyperparameter tuning and implementation-level optimizations. Our effort leads
to PPO+, a methodical adaptation of the PPO algorithm that adheres closer to
its theoretical foundations. PPO+ sets a new state-of-the-art for on-policy RL on
MuJoCo control problems while maintaining a straightforward trick-free imple-
mentation. Beyond just performance, our findings offer a fresh perspective on
on-policy RL that could reignite interest in these approaches.

1 INTRODUCTION

A fundamental distinction in Reinforcement Learning (RL) lies between on-policy and off-policy
methods (Sutton and Barto, 2018). On-policy methods, such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017b) and Trust-Region Policy Optimization (TRPO) (Schulman et al., 2015),
directly optimize the expected reward under the current policy’s state-action distribution, improving
the policy while actively interacting with the environment. This leads to stable learning and safer
exploration since the policy stays close to the data distribution it learns from, though at the cost of
potentially reduced sample-efficiency. In contrast, off-policy methods optimize the expected reward
under a different distribution—often using an exploration or behavior policy. By leveraging data
generated from different policies, off-policy methods can reuse past experiences, boosting sample-
efficiency. This flexibility supports more aggressive exploration, making off-policy methods more
suitable when data collection is expensive or restricted.

Recent advancements in off-policy approaches, such as Soft Actor-Critic (SAC) (Haarnoja et al.,
2018) and Twin Delayed Deep Deterministic Policy Gradients (TD3) (Fujimoto et al., 2018), have
significantly improved continuous control on complex tasks. However, on-policy algorithms have
not kept pace in terms of asymptotic performance and sample-efficiency. While PPO remains a dom-
inant choice in on-policy RL, delivering impressive results across a range of applications (Berner
et al., 2019; Andrychowicz et al., 2020b; Mirhoseini et al., 2021; Rudin et al., 2022), it is hindered
by the complexity of its inherent mechanisms, including trust-region optimization, multiple loss
functions, and various implementation-specific optimizations, making it highly sensitive to hyper-
parameter tuning (Andrychowicz et al., 2020a; Huang et al., 2022).

Moreover, common practices in the use of PPO have crucial shortcomings. For example, despite
the empirically demonstrated success of maximum entropy RL (Haarnoja et al., 2018; Bhatt et al.,
2024) and theoretical works suggesting it can enhance the convergence of policy gradient methods
(Mei et al., 2020; Cen et al., 2024), its application for on-policy deep RL remains underexplored.
Additionally, common on-policy algorithms that utilize the policy gradient theorem frequently over-
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look the discount factor in the state distribution. This omission is technically incorrect and can result
in degenerate learning behaviors in certain environments (Thomas, 2014; Nota and Thomas, 2019).

These challenges, combined with the inherent complexity of current on-policy deep RL methods,
motivate us to pursue simpler and more sample-efficient alternatives. In this paper, we intro-
duce PPO+, a principled enhancement of the PPO algorithm that introduce targeted solutions to
tackle PPO’s drawbacks while eliminating the need of extensive hyperparameter tuning and subtle
implementation-level optimizations. More concretely, we propose and demonstrate that leveraging
off-policy data can significantly improve critic learning while preserving the on-policy formulation
of the policy gradient. Additionally, we integrate recent advances in critic learning, such as those
proposed by Bhatt et al. (2024), to further enhance performance. Furthermore, we reformulate the
PPO optimization problem under the maximum entropy RL perspective for enhanced exploration.
Finally, we address a key limitation of biased policy gradient estimates caused by improper dis-
counting, which can adversely impact the performance of policy-gradient methods.

We show that PPO+ achieves state-of-the-art performance among on-policy methods for continuous
control while maintaining a simple and trick-free implementation and being closely aligned with the
theoretical foundations of on-policy RL.

2 BACKGROUND

2.1 ON-POLICY REINFORCEMENT LEARNING

Reinforcement Learning (RL) (Sutton and Barto, 2018) deals with the problem of an agent inter-
acting with an environment to learn a policy that maximizes its return. Mathematically, an RL
problem can be formulated as a Markov Decision Process (MDP) (Puterman, 1990), which is a tu-
ple ⟨S,A, P,R, µ0, γ⟩, where S ∈ Rm is a continuous set of states and A ∈ Rd is a continuous set
of actions. P : S × A → ∆S is the transition probability function1, where P (s′|s, a) denotes the
probability of transitioning to state s′ after taking action a in state s. R : S × A→ R is the reward
function, where r(s, a) is the immediate reward received by the agent for taking action a in state
s. µ0 ∈ ∆S is the initial state distribution. γ ∈ [0, 1) is the discount factor, which determines the
importance of future rewards compared to immediate rewards.

In on-policy RL, the agent’s goal is to learn a stochastic policy π : S → ∆A, that maximizes
its expected discounted return J(π) = 1

1−γEs∼dπ
γ ,a∼π [r(s, a)], where we denote dπγ (s) ≜ (1 −

γ)
∑∞

t=0 γ
tP (st = s) the discounted state visitation density of the state s under the policy π. This

is in contrast to off-policy RL where the objective of the agent is to maximize the policy return
under a different behaviour policy β(a|s) ̸= π(a|s) making the objective to maximize Jβ(π) =
1

1−γEs∼ρβ
γ ,a∼π [r(s, a)].

2.2 MAXIMUM ENTROPY REINFORCEMENT LEARNING

Traditional RL algorithms focus solely on maximizing the expected reward. However, this can lead
to overly deterministic policies that may not be robust to unforeseen changes in the environment.
Maximum entropy RL (Ziebart, 2010; Haarnoja et al., 2018) address this issue by incorporating an
entropy bonus into the objective function. The entropy of a policy π is a measure of its diversity
or randomness and is defined as H(π(.|s)) = −

∑
a π(a|s) log π(a|s). By adding the entropy to

the original reward, the agent is incentivized explicitly to explore while not sacrificing on the policy
return. This is achieved by introducing a temperature parameter α and reformulating the objective
function as

J(π) = Eπ

[ ∞∑
t=0

γt (r(st, at) + αH(π(.|st)))

]
. (1)

The temperature α controls the trade-off between maximizing reward and entropy. A larger α leads
to a greater emphasis on exploration and mode diversity in the policy. In practice, we observe that it
considerably improves exploration and hence learning speed over state-of-art methods that optimize
the conventional RL objective function (Schulman et al., 2017a).

1∆X denotes the set of probability measures over a set X .
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2.3 TRUST REGION METHODS

Initially introduced by Schulman et al. (2015), trust region deep RL methods are on-policy algo-
rithms that optimize a surrogate objective by maximizing a lower bound on the policy return. Trust
Region Policy Optimization (TRPO) constrains the policy update by limiting the KL divergence be-
tween the new policy π′ and the old policy π, ensuring updates remain within a ”trusted region” for
stable learning. However, TRPO’s approach originally relied on a heuristic to enforce this constraint.

In Achiam et al. (2017), the authors formalized this heuristic by bounding the difference between
the returns of two policies, π′ and π, as follows

J(π′)− J(π) ≥ 1

1− γ
Es∼dπ,a∼π′ [Aπ(s, a)]− 2γϵπ

′

1− γ

√
1

2
Es∼dπ [DKL(π′∥π)[s]], (2)

where ϵπ
′ .
= maxs |Ea∼π′ [Aπ(s, a)]|.

By squaring the penalty term and applying the importance sampling trick to replace the expectation
over a ∼ π′ with a ∼ π, this optimization problem can be rewritten as

maximizeπ′Es∼dπ,a∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]
(3)

subject to Es∼dπ [DKL(π
′∥π)[s]] ≤ δ. (4)

TRPO solves this optimization problem by approximating the KL divergence constraint using a
second-order method involving the Fisher information matrix, which requires a conjugate gradient
method for optimization. While this guarantees updates stay within a trusted region, making the
learning process stable, it also makes the algorithm computationally expensive due to the need for
calculating the Fisher information matrix and solving the constrained optimization.

To address this complexity, Schulman et al. (2017b) propose Proximal Policy Optimization (PPO),
which simplifies the enforcement of the trust region by introducing a clipping mechanism. Instead of
explicitly constraining the KL divergence, PPO limits the probability ratio between the new and old
policies, ensuring updates remain moderate. This approach is simpler to implement and significantly
reduces computational overhead while retaining stable learning performance.

2.4 ACTOR-CRITIC METHODS

Actor-critic methods are a class of RL algorithms consisting of an actor and a critic.
The critic estimates policy performance, represented by the long-term action-value func-
tion Qπ(s, a) ≜ Es′∼dπ

γ ,a
′∼π(s′) [r(s, a) | s0 = s, a0 = a] or the value function V π(s) ≜

Ea∼π(s) [Q
π(s, a) | s0 = s]. The actor updates its parameters to maximize the policy return accord-

ing to the critic, enabling more efficient learning than methods relying on Monte-Carlo estimates.

Actor-critic algorithms improve a parametric model of the critic and policy Sutton et al. (1999), typ-
ically implemented using neural networks, via gradient ascent. Temporal Difference (TD) learning,
as described by Sutton (1988); Sutton and Barto (2018), provides an iterative method to estimate the
action-value function Qπ for policy π. The TD error is defined as

δt = rt+1 + γQ̂π(st+1, at+1)− Q̂π(st, at),

where rt+1 is the reward after transition, γ is the discount factor, and st, at and st+1, at+1 are the
current and next state-action pairs, respectively. The TD error δt serves as a learning signal for
updating the action-value function, a key component of many RL algorithms, including Q-learning
where at+1 = argmaxa Q̂

∗(s, a) and SARSA where at+1 ∼ π(s). The action-value function Qπ is
updated to minimize the TD error, allowing updates based on the difference between the estimated
values of the next and current state-action pairs.

Traditionally, the critic Q̂π can be on-policy if data comes exclusively from policy π, i.e., SARSA
algorithm (Sutton and Barto, 2018). Alternatively, we can use previously collected data as in DDPG,
TD3 or SAC Haarnoja et al. (2018); Fujimoto et al. (2018), in which case Q̂π is trained off-policy.

3
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3 ON THE LIMITATIONS OF PROXIMAL POLICY OPTIMIZATION

While Proximal Policy Optimization (PPO) (Schulman et al., 2017b) is a popular choice in RL due
to its simplicity and stability compared to earlier methods like TRPO (Schulman et al., 2015), it still
suffers from significant limitations under certain conditions.
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Figure 1: Sensitivity of PPO to re-
ward normalization (NO NORM), full-
batch updates (FULL BATCH) and the
GAE-λ (LAMBDA={0.8,0.7}).

Figure 1 shows empirical evidence of these limitations.
For starters, normalization of rewards or advantage func-
tions plays a critical role in stabilizing PPO’s learning
process. Without it, PPO often fails to learn effective poli-
cies, especially in environments where rewards have dif-
ferent magnitudes like Hopper or Walker2d. Moreover,
we show that PPO performs poorly when using full-batch
updates instead of mini-batches which is counterintuitive
for an on-policy method. For our experiments, we per-
form the same number of updates to the PPO objective
while using the full batch instead of the minibatch up-
dates. This should in theory improve the performance
of PPO as the critic and the estimated surrogate objec-
tive should be a better estimate of their respective ground
truth. However, surprisingly the learning of PPO seems to
collapse when this is done. We believe this deterioration
happens because of the additional exploration encouraged
by the noisier gradients due to minibatching.

Finally, PPO exhibits performance degradation when the
GAE-λ is set to low values compared to its standard 0.95,
essentially reducing the advantage estimate to a Monte-
Carlo estimate. As we decrease the λ value, the estimated
advantages become much less accurate, hindering learn-
ing any useful policy. This sensitivity shows how PPO
works only in regimes of high λ, which makes us question
the quality of the value estimates obtained by the critic.

Despite its widespread use (Berner et al., 2019;
Andrychowicz et al., 2020b; Mirhoseini et al., 2021;
Rudin et al., 2022), PPO’s sensitivity to the GAE-λ, nor-
malization, and minibatching, point to serious shortcom-
ings of the algorithm. These limitations hint that further improvements are possible with the hope
of improving the performance of deep on-policy methods.

4 ENHANCING PROXIMAL POLICY OPTIMIZATION: PPO+

The current landscape of deep on-policy RL methods highlights several fundamental issues, moti-
vating a closer examination of how well existing approaches align with their theoretical foundations.
In this section, we present and analyze three key methodological innovations for deep on-policy RL,
which culminate in the development of our novel algorithm, PPO+ (Algorithm 1). Our aim with this
new algorithm is to establish a more principled framework that rigorously adheres to the theoretical
formulation of on-policy RL.

4.1 PROPERLY DISCOUNTING THE POLICY GRADIENT

The surrogate on-policy objective in (Equation (4)), describes the change in the discounted policy
return in relation to the accumulated advantage over the discounted occupancy measure dπγ . Despite
this, the majority of policy gradient methods bypass the use of the discounted state distribution when
computing the policy gradient, opting to average the gradients across states instead. However, this
practice results in a biased gradient estimator as it does not optimize the discounted objective.

Research has shown that this averaged gradient does not embody the gradient of any function (Nota
and Thomas, 2019). As a result, there is no guarantee that algorithms following this direction will

4
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Algorithm 1 One Step of PPO+

Require: Current actor parameters ϕ, critic parameters θ1, θ2, critic replay buffer B
1: γt = 1 ▷ Initialize discount for proper discounting
2: D ← ∅ ▷ Reset the actor replay buffer
3: for Ne episodes do
4: s0 ∼ µ0(s) ▷ Sample the initial state
5: for each environment step do
6: at ∼ πϕ(at|st) ▷ Sample action from the policy
7: st+1 ∼ p(st+1|st, at) ▷ Sample transition from the environment
8: D ← D ∪ {st, at, γt} ▷ Update the actor replay buffer
9: B ← B ∪ {st, at, rt, st+1} ▷ Update the critic replay buffer

10: γt ← γt × γ, st = st+1 ▷ Update state and discount factor
11: end for
12: γt ← 1
13: end for
14: for Nu update steps do
15: B ← {s, a, r, s′} ∼ U(B) ▷ Sample a batch of off-policy transitions
16: yi(s, a) = r + γ(Qθi(s

′, a′)− log πϕ(a
′|s′)), a′ ∼ πϕ(.|s′) ▷ Compute critic targets

17: ∇θi
1

|B|
∑

(s,a,r,s′)∈B (Qθi(s, a)− yi(s, a))
2 for i = 1, 2 ▷ Update the critic networks

18: end for
19: V̂i(s) = Ea∼π

[
Q̂π

θi
(s, a)

]
,∀s ∈ D, for i = 1, 2 ▷ Compute value function estimates

20: Âπ(s, a) = 1
2

∑
i∈1,2 Q̂

π
θi
(s, a)− V̂i(s),∀s, a ∈ D ▷ Compute advantage function estimates

21: ϕ = argmaxϕ′
∑

(st,at,γt)∈D γt min
(

πϕ′ (at|st)
πϕ(at|st) Â

π(st, at), clip
(
ϵ, Âπ(st, at)

))
22:
23: return ϕ, θ1, θ2 ▷ Optimized parameters

converge to a ’reasonable’ optimum. In fact, it is possible to construct a counterexample where
the fixed point is globally pessimal for both the discounted and undiscounted objectives (Nota and
Thomas, 2019). Despite these shortcomings, this estimator remains the most widely used for esti-
mating the policy gradient, primarily due to its proven effectiveness in practical applications (Schul-
man et al., 2017b; Haarnoja et al., 2018; Fujimoto et al., 2018). Hence, to adhere to the theory of
RL, and to make sure to optimize for a valid objective, we use the discounted state distribution dπγ
for our policy gradient.

4.2 OFF-POLICY CRITIC LEARNING

Temporal-Difference (TD) learning, as outlined by Sutton and Barto (2018), offers a methodology
for learning the value function using only system transitions, as expressed in Equation (2.4). This
algorithm is a cornerstone in the field of RL, with extensive research dedicated to understanding its
properties. It is well known that when TD is applied to a tabular value function representation, it
converges to the true value function (Dayan, 1992; Jaakkola et al., 1993). Conversely, on-policy TD
learning approaches using linear function approximation have been proven to converge to a fixed
point in the vicinity of the projection of the true value function (Tsitsiklis and Van Roy, 1996).

However, divergence may occur with standard TD learning when states are sampled off-policy and
linear function approximation is used (Baird, 1995). This issue has prompted the creation of several
alternative algorithms specifically engineered to guarantee convergence under off-policy sampling
(Kolter, 2011; Diddigi et al., 2019). In light of the lack of convergence guarantees for simple off-
policy TD learning, the desirable properties of on-policy TD learning have inspired the development
of deep RL on-policy methods that learn a critic Qπ using exclusively the data generated by π,
forgoing the use of a replay buffer to store previous transitions (Schulman et al., 2015; 2017b).

Despite the known limitations of TD with off-policy data, there has been notable success in using
off-policy data to train critics in both online algorithms (Lillicrap, 2015; Haarnoja et al., 2018; Fu-
jimoto et al., 2018) and most of the offline RL approaches (Wu et al., 2019; Kumar et al., 2019;
Fujimoto and Gu, 2021). Surprisingly, this strategy has not yet been explored for on-policy al-
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Figure 2: Evolution of the undiscounted policy return on the MuJoCo-v5 tasks. We use 10 random
seeds for every algorithm and show the standard deviation.

gorithms. We hypothesize that leveraging off-policy data to improve critic approximation could
enhance the accuracy of on-policy gradient estimates, potentially leading to better performance.

Indeed, when looking closer, one of the primary factors contributing to this non-convergence is state
aliasing, a phenomenon that occurs in off-policy approximation when the function approximator
perceives different states as identical, leading to information loss and potential divergence in learning
(Sutton et al., 2016). Theoretically, the bias introduced by off-policy approximation diminishes with
larger regressors (Sutton et al., 2016). This is attributed to the ability of larger regressors to capture
more nuances in the state representation, thereby reducing the likelihood of state aliasing. However,
it is crucial to note that while larger regressors can mitigate bias, they may concurrently increase the
variance of the estimates. By using this insight, we choose to integrate off-policy data into our critic
learning scheme by keeping track of past transitions via a replay buffer.

4.3 MAXIMUM ENTROPY FOR ON-POLICY REINFORCEMENT LEARNING

Maximum entropy RL augments the classic training objective with an additional term that encour-
ages exploration and has proven successful in off-policy scenarios. However, surprisingly, it remains
largely unexplored in on-policy RL. As no theoretical or technical limitations prevent us from using
the maximum entropy formulation, we use it in PPO+ following the SAC update of the critic and
the actor (Haarnoja et al., 2018).

5 EXPERIMENTAL VALIDATION

We empirically evaluate PPO+ against PPO on the MuJoCo benchmark for continuous control
(Todorov et al., 2012). Inspired by Bhatt et al. (2024), we use an ensemble of two critics, with
an update-to-data ratio of 1:1 and without target networks. Our critics are trained independently
(i.e., the TD target is not the minimum of two as in Haarnoja et al. (2018); Fujimoto et al. (2018))
and only used to improve the quality of the estimate by averaging them. Since optimizing for the
discounted objective increases the sensitivity of undiscounted performance to the choice of discount
factor, we present results for two variants: PPO+ (γ = 0.995), where the policy is updated every
5000 steps, and PPO+ (γ = 0.99), which uses a more typical discount factor of γ = 0.99 and
updates the actor every 2000 environment interactions. We report all the hyperparameters for our
experiments are in Appendix A. For a detailed description of the differences in the implementation
of PPO+ and PPO, we refer the reader to Table 2 in the Appendix B.
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Figure 3: Evolution of the policy return on the MuJoCo-v5 tasks for various design choices. We use
10 random seeds for every algorithm. For all plots we use PPO+ (γ = 0.995). PPO+ (ON-POLICY)
restricts the critics to using only on-policy data. PPO+ (NO DISCOUNT) foregoes discount-
ing the surrogate objective. PPO+ (NO ENTROPY) removes the entropy bonus from the critics.
PPO+ (MIN) uses the minimum of two critics as a target, as in TD3 (Fujimoto et al., 2018).

As shown in Figure 2, PPO+ (γ = 0.995) matches PPO’s performance on two tasks and surpasses it
on the remaining four, showing a notable performance gap in higher-dimensional tasks like Ant-v5
and Humanoid-v5. We believe the gap grows with the dimensionality of the problem because the
advantage estimates of PPO are closer to those of REINFORCE with a baseline due to the high
λ = 0.95 used. While PPO seems to work fine for low-dimensional tasks, estimating advantages
from Monte-Carlo returns seems to work less as the dimensionality of the task and the bootstrapping
inherent to TD-learning seem to outperform it clearly.

Indeed, TD-learning is more sample-efficient than REINFORCE in high-dimensional problems due
to its use of bootstrapping, allowing for updates from partial rollouts rather than full trajectories.
This helps reduce variance in gradient estimates, which is crucial for limited samples. Addition-
ally, TD-learning supports ”trajectory stitching”, where updates integrate information from different
parts of trajectories, combining insights from multiple paths. REINFORCE, by contrast, relies on
full trajectories, making it less efficient and higher variance, especially in the case of high dimen-
sional problems. Furthermore, as demonstrated earlier in Figure 1, simply removing one code-level
optimization (e.g., reward normalization) allows PPO+ to significantly outperform PPO across all
tasks. Importantly, PPO+ achieves this without relying on any code-level optimizations.

5.1 ON THE IMPACT OF PPO+ ENHANCEMENTS

In Figure 3, we present an ablation study for PPO+ examining our three key design choices: (1)
the application of the true discounted policy gradient; (2) the use of off-policy data for training the
critic; and (3) the use of the maximum entropy objective. Our results demonstrate that restricting
the critic’s training to on-policy data significantly degrades performance, even impeding learning in
tasks such as Humanoid-v5. Overall, we find that training the critic on larger datasets, even with off-
policy data, is generally advantageous compared to limiting the training to a smaller pool of freshly
generated data. This is in contrast to the common practice of restricting training the critic to on-
policy data for on-policy gradient methods. Interestingly, while the use of off-policy data is already
well explored in deep off-policy actor-critic methods like Lillicrap (2015); Haarnoja et al. (2018);
Fujimoto et al. (2018), it is not clear whether this choice majorly benefit the actor or the critic. This
work suggests that at least the critic has a great benefit from the use of off-policy data, showing that
deep neural networks can overcome the state aliasing inherent to off-policy TD learning.
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Figure 4: Left: Evolution of the bias difference across various LQR tasks, using the bias from the
”On-policy” configuration as the reference. Middle: Evolution of the ratio of test error relative to
the ”On-policy” configuration. Right: Distribution of the cosine similarity between the estimated
gradients and the true policy gradient across different configurations. Top: 2-dimensional LQR;
Bottom: 33-dimensional LQR.

Regarding the discounted policy gradient, we observe that applying a discount has little to no effect
on certain tasks like Walker2d-v5 and Ant-v5, leads to performance improvements on some others
like Swimmer-v5, Humanoid-v5, and has a significant impact in HalfCheetah-v5. We believe this
is because HalfCheetah-v5 resembles the synthetic task formulated in (Nota and Thomas, 2019),
where the averaged policy gradient results in a degenerate local optimum. Our results are in contrast
to the ones of Che et al. (2023b) concerning the γt method, demonstrating that discounting the
policy gradient result in consistently improved performance. We believe this finding is due to the
improvements in the estimation of the surrogate objective via improvements the critic (and hence
implicitly the policy gradient).

As for using the maximum entropy objective, we find that it improves our performance consis-
tently across all tasks. We posit that PPO achieve good performance without entropy bonus as the
poor quality of its critic, and hence the surrogate objective, result in unintentional additional explo-
ration. Using the minimum of two critics seems to be detrimental for performance, we believe this
is because it inhibits exploration in most tasks, with the exception of Humanoid-v5 which seems to
benefit from the extra conservatism.

In summary, our results suggest that (1) the discounting of the gradient contributes to better learning;
(2) off-policy TD learning in on-policy RL consistently enhances performance; (3) the entropy bonus
provides clear benefit to PPO+ as opposed to PPO which is indifferent to the entropy bonus (albeit
slightly different one), as reported in Andrychowicz et al. (2020a).

5.2 ON THE BENEFIT OF PPO+ ENHANCEMENTS

To further justify the results in Figure 3, we consider LQR environments. For each seed, we train an
agent and plot every 2000 interactions using a separately generated on-policy dataset. We consider
different critic configurations, namely on-policy critics, off-policy critics, two critics trained inde-
pendently, and training critics with the minimum target, as introduced by (Fujimoto et al., 2018) and
later adopted by SAC (Haarnoja et al., 2018) and follow-up works (Bhatt et al., 2024).

The left and middle plots illustrate the effects of various critic configurations on the approximation
error using separate on-policy data. We observe that training with off-policy data does not intro-
duce additional bias compared to using only on-policy data. However, the middle plot reveals that
off-policy data reduces approximation error in high-dimensional tasks. The use of the minimum pre-
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diction of two critics as a target does not significantly affect the approximation error but it degrades
the quality of the policy gradient, as shown in the right plot. Moreover, the right plot demonstrates
that not discounting the gradient deteriorates the correlation between the estimated gradient and the
true discounted policy gradient. The cosine similarity between the gradients of two independently
trained off-policy critics drops from 0.86 and 0.09, respectively, to a near-orthogonal value of 0.02.

In conclusion, these findings reinforce the observations in Figure 3 that discounting the gradient
plays a crucial role, using off-policy data improves policy gradient estimation, and using two sepa-
rate critics enhances the policy gradient’s quality compared to using the minimum of two critics.

6 RELATED WORKS

Numerous studies underscore the sensitivity of current deep on-policy methods to hyperparameters
and implementation details (Huang et al., 2022; Andrychowicz et al., 2020a), urging the community
to simplify and close the gap between theory and practical implementation.

Ilyas et al. (2018) observe that the behavior of deep PG algorithms differs greatly from its motivating
frameworks. Specifically, learned value estimators frequently fail to fit the true value function, and
there is a poor correlation between gradient estimates and the ‘true’ gradient. In Nota and Thomas
(2019), the authors demonstrate that the undiscounted policy gradient does not correspond to the
gradient of any objective function. They also identify instances where this empirical gradient can
be suboptimal for both discounted and undiscounted policy return. (Thomas, 2014) introduce the
γt method used to discount the gradient in our work, (Che et al., 2023b) refine this method by
creating an estimator with lower variance. Aside a few exceptions (Tosatto et al., 2020; 2022a;b; Che
et al., 2023a), proper discounting remains uncommon in the deep RL literature. Several works have
explored training critics using off-policy data (Degris et al., 2012; Haarnoja et al., 2018; Fujimoto
et al., 2018), with Bhatt et al. (2024) being one of the first to streamline the critic learning process
by eliminating the need for target networks, which were initially popularized by Mnih (2013).

Entropy regularization plays a pivotal role in numerous deep RL algorithms (Haarnoja et al., 2018;
Bhatt et al., 2024). In fact, the entropy of the policy acts as a regularizer shaping the objective
landscape (Ahmed et al., 2019). The prevalent strategy regularizes the policy evaluation phase by
supplementing the standard RL task objective with an entropy term. This method guides policies
towards regions of higher expected trajectory entropy, a scheme often referred to as maximum en-
tropy RL (Ziebart, 2010; Haarnoja et al., 2018), which is recognized for enhancing the exploration
capabilities and robustness of policies by fostering stochasticity. Recent studies on policy gradient
methods have highlighted the efficacy of maximum entropy RL in speeding up convergence (Mei
et al., 2020; Ahmed et al., 2019; Cen et al., 2024).

7 DISCUSSION AND CONCLUSION

In this work, we introduced PPO+, a methodical enhancement of the Proximal Policy Optimization
(PPO) algorithm. PPO+ rigorously adheres to the theoretical foundations of on-policy Reinforce-
ment Learning (RL) while maintaining a simple, trick-free implementation. PPO+ introduces three
key improvements over PPO, namely training the critic using off-policy data while maintaining the
on-policy policy gradient formulation, using the true discounted policy gradient, and employing
maximum entropy exploration. Moreover, by focusing on the quality of the critic approximation,
and consequently the surrogate objective estimator, PPO+ avoids complex critic learning schemes
and implementation-level optimizations. In practice, PPO+ eliminates the use intricate critic learn-
ing schemes used in common practices and obtains state-of-the-art performance for deep on-policy
RL methods in MuJoCo locomotion problems. Thank to its simplicity and rigorous formulation, we
believe that PPO+ offers an accessible and solid ground for future research on on-policy deep RL.
Limitations. Despite its strengths, PPO+ does not match the performance of its off-policy coun-
terparts, e.g., SAC (Haarnoja et al., 2018) or TD3 (Fujimoto et al., 2018). Nevertheless, we hope
that the simplicity of PPO+ and the insights provided in our work will inspire further interest in
on-policy methods. Potential directions for improvement include better strategies for correcting the
off-policy distribution to improve critic learning, which could potentially be integrated into actor
updates. Other directions may focus on improving critic learning itself, such as exploring validation
criteria (Kallel et al., 2024) or improving the neuroplasticity of the critic (Nikishin et al., 2022).
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A HYPERPARAMETERS

Parameter PPO+(γ = 0.995) PPO+(γ = 0.99)

optimizer Adam Adam
learning rate 3 · 10−4 3 · 10−4

discount (γ) 0.995 0.99
replay buffer size 5 · 104 2 · 104
number of critics 2 2
LayerNorm True True
number of hidden layers (all networks) 2 2
number of hidden units per layer 256 256
number of samples per minibatch 256 256
temperature 0.05 0.02
nonlinearity TanH TanH
actor update interval 5000 steps 2000 steps

Table 1: Hyperparameters for PPO+.

B DIFFERENCES BETWEEN PPO AND PPO+ IMPLEMENTATIONS

Attribute PPO PPO+
GAE-λ critic ✓ -

Reward normalization ✓ -
Advantage normalization ✓ -
Learning rate scheduler ✓ -

Separate backbone* - ✓
Discounted policy gradient - ✓

Full batch actor updates - ✓
Uses off-policy data - ✓

Maximum entropy objective - ✓

Table 2: *: In the original PPO implementation, both the actor and critic share a common backbone.
However, this design necessitates careful hand-tuning of the losses propagated to the shared back-
bone from the actor and critic heads. In contrast, PPO+employs a separate critic network, which not
only eliminates the need for manual loss balancing but also enables significantly more frequent critic
updates (on the order of thousands) compared to PPO’s standard 10 updates. This increased update
frequency improves the critic’s performance by allowing for better convergence, while avoiding the
risk of overfitting the surrogate objective often encountered in PPO with frequent policy updates.
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