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Abstract

We propose a new calibration method for survival models based on the Kol-
mogorov–Smirnov (KS) metric. Existing approaches—including conformal pre-
diction, D-calibration, and Kaplan–Meier (KM)-based methods—often rely on
heuristic binning or additional nonparametric estimators, which undermine their
adaptability to continuous-time settings and complex model outputs. To address
these limitations, we introduce a streamlined KS metric-based post-processing
framework (KSP) that calibrates survival predictions without relying on discretiza-
tion or KM estimation. This design enhances flexibility and broad applicability.
We conduct extensive experiments on diverse real-world datasets using a variety
of survival models. Empirical results demonstrate that our method consistently
improves calibration performance over existing methods while maintaining high
predictive accuracy. We also provide a theoretical analysis of the KS metric and
discuss extensions to in-processing settings.

1 Introduction

Calibration plays a vital role in ensuring reliable risk estimation for decision-making in survival
analysis. Since poor calibration can misrepresent failure risk, leading to suboptimal or misguided
decisions, it is especially critical in high-stakes areas such as healthcare and infrastructure systems.
Recently, deep neural networks (DNNs) have significantly improved predictive performance in
survival analysis (Wiegrebe et al., 2024), as evidenced by models such as DeepSurv (Kim et al.,
2019), Transformer-based architectures (Hu et al., 2021), and SurvTrace (Wang and Sun, 2022). These
models are typically evaluated using the concordance index (C-index; Harrell Jr et al., 1996), which
measures a model’s ability to correctly rank individuals. Although DNNs improve discrimination,
they often suffer from over-confidence, a widely recognized issue in classification (Guo et al., 2017;
Kumar et al., 2018; Mukhoti et al., 2020), which results in poor calibration. Nevertheless, survival
calibration remains underdeveloped and is further complicated by censoring and time-dependent
risks.

One notable contribution to survival calibration is D-calibration (Distributional calibration; Haider
et al., 2020), which compares the predicted probability with the observed failure proportion within
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predefined intervals. Building on this idea, X-cal (eXplicit calibration; Goldstein et al., 2020)
incorporates D-calibration directly into model training. However, it relies on binning, which may
underestimate calibration error (Kumar et al., 2019) and often substantially reduces discrimination
performance (Qi et al., 2024a; Park et al., 2025). To reduce such trade-offs, recent studies (Avati et al.,
2020; Fuhlert et al., 2022; Qi et al., 2024a,b; Lee et al., 2024) have aimed to improve calibration
while maintaining predictive performance. Some leverage conformal inference (Qi et al., 2024a,b) or
outcome-aware sampling (Lee et al., 2024), but their reliance on fixed sampling schemes or predefined
percentiles may limit adaptability.

A promising direction for addressing these limits comes from classical statistical tools. The Kol-
mogorov–Smirnov (KS) metric has long been used to assess discrepancies between empirical and
estimated distributions (Fernández and Gretton, 2019), and has also been employed as a calibration
metric in classification (Gupta et al., 2021; Arrieta-Ibarra et al., 2022), offering a nonparametric,
distribution-level evaluation of calibration error. Although the KS metric has also been applied in
survival analysis (Rao, 1998; Fleming et al., 1980; Schumacher, 1984; Wu, 2018; Ansin, 2015; Cox
and Snell, 1968), such studies have predominantly focused on testing, with limited attention given to
its role in assessing or improving calibration error. A recent study (Park et al., 2025) introduced a KS
metric for survival models, using the maximum deviation between predicted and empirical survival
functions as a calibration measure. Building on this insight, we propose an efficient post-processing
method that leverages the KS metric to improve calibration without compromising predictive accuracy.
Our approach avoids binning, surrogate losses, and quantile estimation, providing a bin-free, global
measure of calibration error.

Our main contributions are as follows:

1. We introduce a simple and scalable post-processing method for calibrating survival models,
eliminating the need for surrogate losses, sampling, and quantile estimation.

2. We provide theoretical and algorithmic insights into the KS metric, including its connection
to calibration in survival analysis.

3. We conduct extensive empirical evaluations across diverse real-world datasets and models,
showing that the method improves calibration without sacrificing predictive performance.

The remainder of this paper reviews the background and motivation for calibration, examines
the theoretical properties of the KS metric, and presents the post-processing method along with
experimental results. All proofs of the theorem and proposition are deferred to Appendices A and C.

2 Related work

Evaluation In medical research, the calibration of survival models is often assessed graphically using
calibration curves, where perfect calibration aligns with the 45-degree line representing equality
between observed and predicted probabilities (Alonzo, 2009; Crowson et al., 2016). Goodness-of-fit
can be evaluated using a Hosmer–Lemeshow-type test (Hosmer and Lemeshow, 1980). For DNN-
based survival models, 1-calibration, which evaluates predicted survival probabilities at a specific time
point, is commonly used (Yan et al., 2022; Li et al., 2023; Xia et al., 2023), though it does not capture
calibration across the full survival distribution. To address this, D-calibration was introduced to assess
calibration over the entire distribution (Haider et al., 2020). However, its reliance on fixed bins may
underestimate calibration error (Kumar et al., 2019). Yanagisawa (2023) uses KM-calibration as an
evaluation metric.

In-processing Calibration has also been incorporated into the model training process (Goldstein
et al., 2020; Chapfuwa et al., 2020; Avati et al., 2020; Lee et al., 2024; Park et al., 2025). X-cal
(Goldstein et al., 2020) introduces a bin-based D-calibration penalty term, while S-cal (Park et al.,
2025) replaces it with a random-interval-based term. Chapfuwa et al. (2020) integrates KM estimates
directly into training. These methods enhance marginal calibration, but often at the cost of reduced
discrimination performance. A notable exception is the contrastive learning-based method by Lee
et al. (2024), which aims to enhance discrimination without sacrificing calibration.

Post-processing To balance calibration and discrimination, post-processing approaches have been
proposed primarily using conformal prediction techniques (Candès et al., 2023; Qi et al., 2024a,b;
Gui et al., 2024; Qin et al., 2025; Davidov et al., 2025). The CSD method (Qi et al., 2024a) refines
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survival probabilities via KM-based percentile adjustments, ensuring marginal calibration across
models. It offers a model-agnostic, post-hoc calibration framework. Qi et al. (2024b) further extends
this to calibrate conditional distributions for censored data.

3 Discrimination and calibration in survival analysis

We consider right-censored survival data, where the non-negative failure time T is subject to censoring.
Let C be the censoring time, and define the observed time as Y = min (T,C) and the censoring
indicator as δ = I (T ≤ C), where I (A) denotes the indicator function, taking the value 1 when
A is true and 0 otherwise. Each observation consists of (Y, δ,z), where z is a vector of covariates.
Assuming independent censoring given covariates, T ⊥⊥ C | z, the full dataset is denoted by
{(Yi, δi, zi)}Ni=1 for a sample size of N . Let F (t | z) = P (T ≤ t | z) denote the conditional
cumulative distribution function (CDF). The corresponding survival function S, hazard function λ,
and cumulative hazard function Λ are as follows:

λ (t | z) = lim
∆↓0

P (t ≤ T < t+∆ | T ≥ t, z)

∆
and S (t | z) = P (T > t | z) = 1− F (t | z) ,

with the relationship S (t | z) = exp {−Λ (t | z)}, where Λ (t | z) =
∫ t

0
λ (s | z) ds.

3.1 Discrimination

The C-index is a standard discrimination metric in survival analysis, assessing how well the model
ranks individuals by risk. Harrell’s C-index (Harrell Jr et al., 1996) is defined as

C-index =

∑
i<j δiI (Yi < Yj) I (Mi < Mj)∑

i<j δiI (Yi < Yj)

where Mi denotes the predicted mean or a related quantity. The C-index ranges from 0 to 1, with
higher values indicating better discrimination. In our case, we use the predicted mean as Mi.

3.2 Calibration and metrics

Calibration in survival analysis refers to the agreement between the estimated survival distributions
and actual event occurrences. While discrimination is important, calibration must also be considered to
assess the uncertainty in predicted survival probabilities. A well-calibrated model should accurately
estimate the probability of an event occurring by a given time. One fundamental approach to
assessing calibration relies on the estimated CDF of event times. Specifically, if T ∼ F , then
F (T ) ∼ Unif [0, 1]; that is, the CDF evaluated at the true event time follows a uniform distribution
over the interval [0, 1]. This probabilistic property forms the basis of several calibration metrics,
including D-calibration and KM-calibration.

3.2.1 D-calibration

Haider et al. (2020) introduced D-calibration, a measure designed to evaluate calibration under
censoring by leveraging the distributional properties of the estimated CDF. For uncensored data, the
CDF values satisfy F (T | z) ∼ Unif [0, 1]. In the presence of right censoring (i.e., T > C), the
distribution becomes F (T | z) ∼ Unif [F (C | z) , 1]. Combining both cases, the following equality
holds:

EY,δ,z [δI (F (Y | z) ∈ I) + (1− δ)P (F (T | z) ∈ I)] = |I| (1)
Here, I = [a, b] ⊆ [0, 1] is a subinterval. The term P (F (T | z) ∈ I) is computed as
P (F (T | z) ∈ I) = b−F (Y |z)

1−F (Y |z) I (F (Y | z) ∈ I)+ b−a
1−F (Y |z) I (F (Y | z) < a). Based on this, D-cal

is defined as the sum of bin-wise squared differences:

D-cal =
∑
I∈I

(
EY,δ,z

[
δI
(
F̂θ (Y | z) ∈ I

)
+ (1− δ)P

(
F̂θ (T | z) ∈ I

)]
− |I|

)2
where I = {I1, . . . , IB} is a set of B (> 0) disjoint intervals partitioning [0, 1], and F̂θ denotes the
estimated CDF with model parameters θ. D-cal measures the discrepancy between the observed
proportion of estimated CDF values falling into each bin and the corresponding predicted probability.
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3.2.2 KM-calibration

While D-calibration evaluates calibration in the probability space by assessing the uniformity of the
estimated CDF values, an alternative approach focuses on the time domain. Specifically, Yanagisawa
(2023) and Qi et al. (2024a) proposed calibration metrics based on the KM estimator. One such

metric is defined as KM-cal = 1
tmax

∫ tmax

0

(
SKM (t)− Ez

[
Ŝθ (t | z)

])2
dt, where SKM (t) is the

KM estimator and Ŝθ (t | z) = 1 − F̂θ (t | z) is the model-based survival function. This metric
assumes that the KM estimator is well-calibrated and measures the squared discrepancy between the
empirical and predicted survival probabilities over time.

4 Motivation for new algorithm

Several recent algorithms leverage D-calibration and KM-calibration metrics, including X-cal (Gold-
stein et al., 2020), SFM (Survival Function Matching; Chapfuwa et al., 2020), CSD (Conformalized
Survival Distributions; Qi et al., 2024a), and CSD-iPOT (individual survival Probability at Observed
Time; Qi et al., 2024b). X-cal and SFM incorporate empirical variants of D-cal and KM-cal as penalty
terms during model training. For example, X-cal replaces the discontinuous indicator I (x ∈ [a, b])
with a smooth surrogate ζγ (x; [a, b]) =

1
1+exp(−γ(x−a)(b−x)) (for γ > 0), which enables gradient-

based optimization. In contrast, CSD and CSD-iPOT adjust estimated survival distributions using
conformal inference over quantile levels. These approaches are effective in reducing calibration error
while maintaining predictive accuracy, but they have some limitations.

X-cal Binning-based methods, such as those underlying D-cal and X-cal, may underestimate cal-
ibration error (Kumar et al., 2019), a limitation that extends to the survival setting. Additionally,
penalty-based calibration can lead to degradation in discriminative performance, as observed in Qi
et al. (2024a); Park et al. (2025).

SFM This method involves computing Ez[Ŝθ (t | z)], which can be computationally intensive.
Moreover, when the model’s estimated survival function is already better calibrated than the KM
estimator, the KM-based correction may not further reduce calibration error.

CSD and CSD-iPOT CSD relies on the KM estimator for handling censored observations, whereas
CSD-iPOT avoids KM-based estimation. However, both methods involve sampling procedures, which
can introduce additional variance, especially in the tail regions, and may result in non-monotonic
quantiles (i.e., quantile crossing).

These limitations motivate a calibration approach that (i) avoids discretization and binning, (ii)
preserves discriminative performance (e.g., C-index), (iii) does not require computationally expensive
sampling, and (iv) remains stable in tail regions.

The KS metric is a classical tool for quantifying discrepancies between empirical and target distri-
butions. In the calibration context, it has been applied to classification tasks (Gupta et al., 2021;
Arrieta-Ibarra et al., 2022) as a nonparametric, bin-free measure of calibration error. Among existing
tools, Cox–Snell residuals (Cox and Snell, 1968) can be used to evaluate calibration error. How-
ever, they rely on the cumulative hazard function and are less practical than CDF-based approaches.
Therefore, we focus on an alternative form of calibration error. Previous work of Park et al. (2025)
proposed using the KS metric as a calibration measure in survival analysis. We refer to this metric as
KS-cal and build upon it by introducing a post-processing algorithm that improves calibration while
preserving predictive accuracy.

Let Ui = F̂θ (Yi | zi). The KS-cal is defined as

KS-cal = sup
x∈[0,1]

∣∣F̃ (x)− x
∣∣, where F̃ (x) =

1

N

N∑
i=1

I (Ui ≤ x)

{
δi + (1− δi)

x− Ui

1− Ui

}
. (2)

For finite samples, we approximate KS-cal using the evaluation points qj = F̂θ (yj | zj) as KS-cal =
max1≤j≤N Dj , where Dj = max{Dj,u, Dj,l} with Dj,u = |F̃ (qj) − qj | and Dj,l = |F̃ (qj) −
δj/N − qj |. The term Dj,l accounts for the left-limit behavior of F̃ at uncensored points.

We observe that F̃ (x) exhibits jumps at uncensored points while increasing linearly over censored
points. Figure 1 illustrates this behavior, showing how Dj is computed at uncensored observations
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Figure 1: Examples of F̃ (x). The solid blue line represents F̃ (x), and the dashed line shows the
identity line y = x. The left panel indicates how Dj is computed at uncensored observations. The
middle and right panels illustrate uncalibrated and calibrated models, respectively, with respect to
KS-cal. Red arrows indicate points of evaluation on KS-cal.

and contrasting uncalibrated and calibrated models in terms of KS-cal. This metric offers a bin-
free assessment of calibration error and is conceptually related to D-calibration (Haider et al.,
2020), although key differences in how calibration is measured remain. D-cal evaluates deviations
within fixed bins, whereas KS-cal captures the maximum discrepancy at data-adaptive points where
miscalibration is most evident, as determined by F̂θ. In the following section, we formalize the
theoretical properties of the KS-cal, including consistency and convergence behavior.

4.1 Property of KS-cal

We now analyze the theoretical behavior of KS-cal. We begin with the simplified setting without
covariates, i.e., Ui = F̂θ (Yi), where calibration corresponds to F̂θ = F , with F denoting the true
CDF of T . The following result has been established in the previous work of Park et al. (2025).
Proposition 4.1. Assume the Regularity Conditions in Appendix A. Then calibration holds
if and only if

sup
x∈[0,1]

|F̃ (x)− x| = op (1) as N → ∞.

We now extend this result to the setting with covariates, i.e., Ui = F̂θ (Yi | zi). Following Goldstein
et al. (2020), calibration with covariates is defined as:

EY,δEz

[
I
(
F̂θ (Y | z) ≤ x

){
δ + (1− δ)

x− F̂θ (Y | z)
1− F̂θ (Y | z)

}]
= x, ∀x ∈ [0, 1]. (3)

Then, we have the following theorem.
Theorem 4.1. Assume the Regularity Conditions in Appendix A. Then calibration (with/without
covariates) holds if and only if

sup
x∈[0,1]

|F̃ (x)− x| = op (1) as N → ∞.

This result implies that F̃ converges to the CDF of Unif [0, 1] when the model is calibrated, where the
theorem has two folds (with/without covariates). Therefore, we can establish KS-cal as a theoretically
grounded, bin-free metric for evaluating calibration in survival models. Moreover, under the regularity
conditions in Appendix A, the convergence of F̃ (and thus KS-cal) occurs at the rate of Op(N

−1/2)
up to logN.

Remark. Based on Eqn. (3), an alternative calibration metric termed S-cal (Summation-based
Calibration) has been proposed (Qi et al., 2024a,b; Park et al., 2025). This metric captures cumulative
deviations from ideal calibration and is defined as:

S-cal = Es

(EY,δ,z

[
I
(
F̂θ (Y | z) ≤ s

){
δ + (1− δ)

s− F̂θ (Y | z)
1− F̂θ (Y | z)

}]
− s

)2

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S-cal, D-cal, and KS-cal are all variants of D-calibration, derived from the same foundational
definition, but they emphasize different aspects of calibration behavior. We include all three in our
evaluation to provide a comprehensive view of model calibration.

5 Calibration method based on KS-cal

In this work, we propose a post-hoc calibration method based on the KS-cal introduced in Section 4.
We also briefly describe how the KS-cal can be incorporated as a penalty term during model training.

5.1 Post-processing

We propose KS-cal based post-processing (KSP), similar to Platt scaling (Platt, 1999) in classification
tasks. We simply transform the original F̂θ into a modified F̂ ∗

θ ⊆ [0, 1] that minimizes the KS-cal.
The procedure is summarized in the following algorithm.

Algorithm. KSP

1: Input: Estimated CDFs F̂θ, strictly monotone increasing link function G : [0, 1] → (−∞,∞)
2: Initialize parameters a (> 0), b, α (> 0)

3: Sort F̂θ for computational efficiency
4: while KS-cal not improved do
5: Compute transformed CDF: F̂ ∗

θ =
{
G−1

(
a ·G(F̂θ) + b

)}α

6: Compute KS-cal on validation set: max
1≤j≤N

D∗
j , where D∗

j denotes Dj evaluated using F̂ ∗
θ

7: Update (a, b, α) via gradient descent (ADAM) to minimize the KS-cal
8: end while
9: Apply final calibrated transformation to the test set using optimized (a, b, α)

10: Output: Calibrated CDF F̂ ∗
θ

The function G can be any link function satisfying the two predefined conditions described in the
Input, such as the logit function, inverse hyperbolic tangent function, or an inverse CDF. Although a
DNN-based transformation is feasible, it is challenging to preserve the ordering of the transformed
CDFs consistent with the original ones. In this work, we adopt the logit function as G.

The three hyperparameters a, b, and α control different aspects of the CDF transformation: a
influences the tails, b shifts the distribution relative to the target x, and α controls nonlinearity. Their
effects are visualized and discussed in the Appendix I. As long as a > 0 and α > 0, the transformation
preserves the ordering of CDF values, thereby maintaining the time-dependent C-index (Antolini et al.,
2005), consistent with Qi et al. (2024b). Specifically, if F̂θ(t | z1) > F̂θ(t | z2), then the transformed
CDF also satisfies F̂ ∗

θ (t | z1) > F̂ ∗
θ (t | z2). While the CDF ordering is preserved, the ordering of

expected survival times may not be, as the transformation can nonlinearly distort the survival curve.
This is particularly relevant when survival curves intersect. In such cases, monotonicity is maintained
at each time point, but the area under the curve may change, which in turn affects the expected value.
In practice, such changes are typically small, and overall concordance may even improve. We also
formalize the conditions under which the mean ordering is preserved. In particular, if the original
survival curves do not cross (preserving the order across all times), the transformation preserves the
ordering of expected survival times. Theoretically, these are summarized as:

Proposition 5.1. Let E [T ∗ | z] =
∫∞
0

S∗ (t | z) dt denote the expected survival time under the KSP,
where S∗ (t | z) = 1 − F ∗ (t | z). If the original survival curves S (t | z1) and S (t | z2) do not
cross, then the ordering of expected survival times is preserved under the KSP:

E [T | z1] > E [T | z2] ⇐⇒ E [T ∗ | z1] > E [T ∗ | z2] .

The proof is provided in Appendix C. The non-crossing condition holds for some standard models,
including the Cox proportional hazards (PH) model (Cox, 1972) and the Weibull Accelerated Failure
Time (AFT) model (Stute, 1993). By Proposition 5.1, the C-index is preserved since we use the
predicted mean of survival time for the C-index.
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Compared to prior methods such as CSD (Qi et al., 2024a) and CSD-iPOT (Qi et al., 2024b), KSP
provides better computational efficiency. CSD requires O (N · |P| ·R) operations, and CSD-iPOT
requires O (N ·R), where N and |P| are the sample size and the number of quantiles, respec-
tively, and R is the number of samples used for censored data. In contrast, KSP requires only
O (B ·N +N logN), which simplifies to O (B ·N) in practice, where B is the number of optimiza-
tion iterations. The N logN term accounts for the initial sorting of CDF values, and each iteration
involves linear-time operations. Although the number of iterations may increase when the initial
calibration error is large, the overall overhead remains modest and can be controlled through the
learning rate. This scalability makes KSP particularly suitable for large datasets.

5.2 In-processing

KSP is introduced as a post-processing method to reduce calibration errors while preserving predictive
accuracy. Alternatively, the KS-cal defined in (2) can be incorporated directly into training as a
penalty term: Pk (θ) =

∑k
j=1

(
D(N−j+1)

)2
, where the subscript denotes the order statistic. Unlike

the original KS-cal, which considers only the maximum deviation, this variant aggregates the top-k
largest deviations. Using the squared form improves gradient stability, making it more suitable for
optimization. Since the deviations are evaluated only at observed points, the indicator function in
F̃ (x) naturally disappears when the CDF values are pre-sorted. In contrast, methods like X-cal
require a surrogate function to approximate the indicator for gradient-based learning. We refer
to this variant as KS-cal(k). While our primary focus is on post-processing, we also explore this
in-processing approach in Appendix J. Although the penalty function is not convex, we observe that
training remains stable and converges well in practice. However, using excessively small batch sizes
can lead to large approximation errors; thus, we recommend employing relatively large batch sizes
for reliable performance.

6 Experiment

We first compare post-processing methods, including CSD (Qi et al., 2024a), CSD-iPOT (Qi et al.,
2024b), and KSP, across various models and datasets. We also evaluate in-processing approaches such
as X-cal (Goldstein et al., 2020) and SFM (Chapfuwa et al., 2020). While SFM originally combines a
calibration penalty with a discriminative loss, we use only the calibration component for consistency.
For all in-processing methods, we tune the regularization parameter over {1, 10, 100, 1000}. Exper-
iments are conducted with an Intel Xeon Silver 6226R CPU and an NVIDIA GeForce RTX 3090
GPU.

6.1 Experimental setup

Baselines We consider six baseline models: DeepSurv-based Cox PH model (Katzman et al., 2018),
Multi-task Logistic Regression (MTLR; Yu et al., 2011), a parametric model (Goldstein et al., 2020),
Survival CRPS (Avati et al., 2020), DeepHit (Lee et al., 2018), and the Weibull AFT model (Stute,
1993). As a reference, we include the KM estimator fitted on the training set and evaluated on the
test set, following Qi et al. (2024a,b). The KM estimator serves as an empirical lower bound for
calibration error (see Appendix B in Qi et al. (2024a)). Further details on the baseline models are
provided in Appendix B.

Datasets We evaluate all methods on ten benchmark datasets: WHAS, METABRIC, GBSG, NACD,
NB-SEQ, SUPPORT, MIMIC-III, SEER-liver, SEER-stomach, and SEER-lung. These are grouped
by sample size into three categories: Small (WHAS, METABRIC, GBSG, NACD), Medium (NB-
SEQ, SUPPORT, MIMIC-III), and Large (SEER-liver, SEER-stomach, SEER-lung). Details on the
datasets and preprocessing steps are provided in Appendix D. Each dataset is randomly split into
training, validation, and test sets in a 3:1:1 ratio, with balanced censoring rates. All experiments are
repeated 30 times with different random seeds. For CSD and CSD-iPOT, we use the validation set as
the conformal set to enable a fair comparison with KSP.

Evaluation metrics For predictive accuracy, we report the (time-independent) C-index (Harrell Jr
et al., 1996) rather than the time-dependent variant, as the latter may favor our method and CSD-
iPOT (Qi et al., 2024b), potentially inflating their discrimination performance. For calibration, we
evaluate five metrics: S-cal(20), D-cal(20), KS-cal, KM-cal, and the Integrated Brier Score (IBS;
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Table 1: Summary of pairwise comparisons between post-processing methods. The table shows the
number of cases where KSP outperforms its counterpart, is outperformed, or yields a tie. Numbers in
parentheses indicate statistically significant differences based on a one-sided t-test at the 0.05 level.

Method C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

KSP 20 (12) 46 (45) 46 (43) 47 (45) 47 (35) 44 (25)
Non-calibrated 18 (1) 13 (7) 14 (6) 13 (5) 13 (10) 16 (1)

Ties 22 1 0 0 0 0

KSP 13 (2) 36 (29) 48 (45) 51 (42) 37 (32) 42 (25)
CSD 34 (2) 24 (19) 12 (10) 9 (8) 23 (19) 18 (10)
Ties 13 0 0 0 0 0

KSP 21 (0) 32 (21) 46 (39) 44 (29) 45 (36) 38 (9)
CSD-iPOT 25 (1) 28 (19) 14 (13) 16 (11) 15 (10) 22 (10)

Ties 14 0 0 0 0 0

Figure 2: Boxplots of metric values (left) and inference runtime by sample size (right), aggregated
across all datasets and models.

Graf et al., 1999). S-cal(20) is computed over 20 equally spaced points s ∈ {0.05, 0.10, ..., 1.00},
while D-cal(20) uses 20 equal-width bins. The results based on a 10-bin evaluation are provided in
Appendix H. KS-cal is a bin-free metric. KM-cal and IBS assess 1-calibration and offer complemen-
tary perspectives. Each model is thus evaluated using one discrimination metric and five calibration
metrics. For CSD and CSD-iPOT, we follow the original setup by using P = {0.1, 0.2, ..., 0.9} for
quantile adjustment and set R = 1000 to sample censored observations.

6.2 Experimental results

Comparison with post-processing methods We conduct 6× 10 = 60 experiments across models
and datasets. For each setting, we perform pairwise comparisons among the non-calibrated baseline,
CSD, CSD-iPOT, and KSP, counting how often each method outperforms the others. As summarized
in Table 1, KSP outperforms the alternatives in approximately 70% of cases. Compared to the
non-calibrated baseline, KSP consistently achieves better calibration and significantly improves
the C-index in 10 cases, especially for the parametric model and CRPS. Against CSD, KSP shows
better calibration, while CSD slightly leads in the C-index due to its guaranty of preserving the
time-independent C-index. Compared to CSD-iPOT, KSP offers a similar C-index with clearly better
calibration.

KSP’s improvements are more evident in D-cal(20) and KS-cal, although it still performs competi-
tively in S-cal(20), which tends to favor CSD and CSD-iPOT due to their quantile-based structure. A
similar pattern appears in discretized models like MTLR and DeepHit, where KSP shows slightly
weaker calibration, possibly due to structural mismatch. Nonetheless, KSP outperforms in KM-cal
and IBS, confirming its overall calibration strength. Figure 3 further illustrates that CSD and CSD-
iPOT often exhibit calibration mismatches near the left tail due to boundary interpolation, which
D-cal(20) and KS-cal capture effectively. Full results are presented in the Appendix F.
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KSP also offers efficiency advantages. As shown in Figure 2, runtime increases with sample size for
all methods, but the growth is slower for KSP. This is because CSD and CSD-iPOT require additional
bootstrap sampling for the monotonicity of quantiles, while KSP depends only on the number of
optimization steps. The complete runtime summary is provided in Appendix K. Figure 2 also presents
the distribution of each metric across all experiments, with the median values in the boxplots serving
as a key point of comparison. All methods show comparable C-index values, confirming that post-
processing can improve calibration without compromising discrimination. KSP consistently achieves
the best performance in S-cal(20), D-cal(20), and KS-cal. Although CSD records the lowest median
KM-cal, KSP surpasses it more frequently in pairwise comparisons, indicating greater robustness.
KSP shares a similar property with CSD-iPOT in preserving time-dependent discrimination, as
reflected in their comparable performance on KM-cal and IBS.

Calibration plot Figure 3 shows calibration plots for MTLR and CRPS on the MIMIC-III dataset.
Although all three post-processing methods achieve similar quantitative scores, CSD and CSD-iPOT
exhibit slight mismatches near the left tail, likely due to boundary interpolation in their quantile
adjustments. In contrast, KSP reduces the maximum deviation, resulting in more uniform calibration
across the entire range. This pattern aligns with the D-cal(20) and KS-cal results in Table 1, where
KSP outperforms other methods by better capturing localized discrepancies. Full results are provided
in the Appendix G.

Figure 3: Calibration plot comparison among KSP, CSD, and CSD-iPOT for MTLR and CRPS on
the MIMIC-III dataset.

Comparison with in-processing methods We report comparisons with in-processing methods (SFM
and X-cal) for CRPS on the MIMIC-III dataset, which illustrate typical trade-off patterns. As λ
increases, both in-processing methods reduce calibration error but degrade the C-index. SFM, which
penalizes KM-calibration, lowers KM-cal and IBS but performs worse on D-calibration. X-cal
improves D-calibration but incurs a greater C-index loss and increases KM-cal and IBS, particularly
at λ = 1000. In contrast, KSP achieves a better trade-off with stable performance across metrics and
no need for tuning. While in-processing may be helpful when calibration is the sole priority, KSP
offers a more practical and balanced solution when both discrimination and calibration are important.
Figure 4 summarizes these results, showing the mean and standard error across multiple λ values.

Figure 4: Comparison of KSP and in-processing methods (SFM, X-cal) on the MIMIC-III dataset
with CRPS. Points show means and standard errors across λ ∈ {0, 1, 10, 100, 1000} for in-processing
methods. Dashed lines indicate KM-level calibration errors.

Ablation study We conduct an ablation study to assess the effects of various design choices in the
KSP optimization procedure. Specifically, we investigate (1) the choice of link function G, (2) the
role of hyperparameters a, b, and α, and (3) alternative loss formulations beyond the default maxj D

∗
j ,
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Table 2: Ablation results on the MIMIC-III dataset using DeepSurv, showing the effect of including
hyperparameters a, b, and α in the KSP.

Hyperparameter setting C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS
Non-calibrated 0.95839 0.036649 0.064547 0.250907 0.104279 0.276509

b 0.95826 0.011849 0.041974 0.183154 0.077582 0.230868
a, b 0.95826 0.005908 0.025273 0.127957 0.076690 0.213331

a, b, α 0.95826 0.003305 0.007044 0.091109 0.071617 0.203039

as detailed in the Appendix I. In the main text, we present partial results for (2) on the MIMIC-III
dataset using DeepSurv, summarized in Table 2, with full results deferred to the Appendix I. We find
that using b alone substantially improves calibration, reducing D-cal(20) and KS-cal by 35% and 27%,
respectively, without degrading the C-index. Introducing a and α yields further gains, especially in
D-cal(20), by enabling scale adjustment and smoothing. While the magnitude of improvement may
vary across datasets and models, all three hyperparameters contribute positively to the KSP procedure.
Note that “Non-calibrated” in Table 2 refers to the default setting with a = 1, b = 0, α = 1, that is,
when KSP is not applied.

7 Conclusion

Our work highlights the effectiveness of KS-cal as a calibration metric and introduces KSP as
a practical post-processing method for improving the reliability of survival models. Beyond its
empirical and computational advantages, KSP offers a theoretically grounded framework and avoids
the limitations of bin-based or sampling-dependent approaches. While KSP shows clear advantages,
it tends to be less effective in datasets with heavy ties or severe skewness; however, it is more
robust when calibration errors are large and in capturing local discrepancies, such as tails. As an
important direction for future research, we aim to extend KSP toward conditional calibration, enabling
personalized and subgroup-level reliability assessments. Such developments are particularly valuable
for high-stakes domains where accurate uncertainty quantification is critical.
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properly respected?

Answer: [Yes]

Justification: We used publicly available code assets under the MIT License:

• https://github.com/rajesh-lab/X-CAL
• https://github.com/shi-ang/CSD
• https://github.com/shi-ang/MakeSurvivalCalibratedAgain

All licenses and attributions have been properly acknowledged, and relevant papers are cited
in the Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: We will open new assets after the paper is accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: Not applicable.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We did not use the LLM for the core parts of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

Broader impacts

Improving survival calibration has broader impacts on clinical decision-making, fairness, resource
allocation, and policy development. By producing accurate risk estimates, it supports more reliable
and balanced decisions across medical and public health domains.

Code availability

The source code for reproducing our experiments is available at: https://github.com/
wjdgh4325/KS-cal

A Proofs of Proposition 4.1 and Theorem 4.1

We denote F̂θ = Fθ̂ for notational clarity.

Regularity Conditions

1. With or without covariates, F−1

θ̂
(x) exists due to the required properties of Fθ̂, such as

left-continuity, the existence of a right-hand limit, and monotonicity. For simplicity, we omit
the dependence on z in the notation when covariates are present.

2. For the case without covariates, when non-calibration holds,
• there exists an x∗ ∈ (0, 1) such that

η =
∣∣∣F (F−1

θ̂
(x∗)

)
− x∗

∣∣∣ ≥ ∫ x∗

0

∣∣∣F (F−1

θ̂
(s)
)
− s
∣∣∣ dG(F−1

θ̂
(s)
)
,

• and for the above x∗,
∫ x∗

0

dG
(
F−1

θ̂
(s)
)
< 1

where F denotes the true CDF of the failure time, and G denotes the CDF of the censoring
time.

Proof of Sufficient Condition in Proposition 4.1

For the proof, we let F̃ (x) = 1
N

∑N
i=1 F̃i (x) where F̃i (x) = I (Ui ≤ x)

{
δi + (1− δi)

x−Ui

1−Ui

}
for

0 ≤ x ≤ 1, Ui = Fθ̂ (Yi). By Eqn. (8) in Lemma A.2, we have E
[
F̃i (x)

]
= x, E

[
F̃i (x)

2
]
=

x− (1− x)
∫ x

0
x−s
1−sdG

(
F−1 (s)

)
≤ 2 and 0 ≤ F̃i ≤ 1. Then, by the Bernstein inequality (Van der

Vaart, 2000) stating that for an independent random variable Xi such that E [Xi] = 0, |Xi| ≤ M ,

P

(
N∑
i=1

Xi > ϵ

)
≤ exp

(
− ϵ2∑N

i=1 E [X2
i ] +Mϵ/3

)
.

For any 0 < ϵ < 1/2, we have a set S of points between [0, 1] such that {0, ϵ, 2ϵ, [1/ϵ]ϵ, 1}. It implies
∀t ∈ [0, 1], ∃k ∈ B s.t. |t− k| ≤ ϵ. This implies that{

sup
x∈S

|F̃ (x)− x| ≤ ϵ

}
⊂

{
sup

x∈[0,1]

|F̃ (x)− x| ≤ 2ϵ

}
.

Then,

P

(
sup

x∈[0,1]

|F̃ (x)− x| > 2ϵ

)
≤ P

(
sup
x∈S

|F̃ (x)− x| > ϵ

)
≤
∑
x∈S

P
(
|F̃ (x)− x| > ϵ

)
.
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By the Bernstein inequality, P
(
N |F̃ (x)− x| > ϵ

)
≤ 2 exp(−ϵ2/(2N+ϵ/3)), due to the symmetry

of the absolute value and the expectation of the square is less than 2. This implies

P
(
|F̃ (x)− x| > ϵ

)
≤ 2 exp

(
−N2ϵ2/(2N +Nϵ/3)

)
≤ 2 exp

(
−Nϵ2/3

)
.

Finally, we have

P

(
sup

x∈[0,1]

|F̃ (x)− x| > 2ϵ

)
≤ 4

ϵ
exp

(
−Nϵ2

3

)
→ 0 (4)

as N → ∞.

Proof of Necessary Condition in Proposition 4.1

Assuming the regularity conditions, the fact that non-calibration implies that

F̃ (x) =
1

N

N∑
i=1

I (Ui ≤ x)

{
δi + (1− δi)

x− Ui

1− Ui

}
has the deviation cη > 0 from some x∗ is sufficient for the proof. By Lemmas A.2-A.3 and the
Regularity Conditions imply that when the non-calibration holds, supx∈[0,1] |F̃ (x) − x| ≥ cη/2
with probability approaching 1 as N → ∞. This completes the proof.

Proof of Theorem 4.1

For simplicity, we let

zx
i (Ui, δi) = I (Ui ≤ x)

{
δi + (1− δi)

x− Ui

1− Ui

}
.

Lemma A.1 and the definition of calibration such as E [zx
i (Ui, δi)] = x imply

sup
x∈[0,1]

|F̃ (x)− x| → 0

in probability as N → ∞. Furthermore, when non-calibration holds such as
supx∈[0,1] |E[F̃ (x)] − x| > δ, we have P

(
supx∈[0,1] |F̃ (x)− x| > δ/2

)
→ 1 as N → ∞.

This implies that calibration holds if P
(
supx∈[0,1] |F̃ (x)− x| > δ/2

)
→ 0 as N → ∞. It is by

contraposition.

Lemma A.1. Assuming that the Regularity Conditions hold, we have that for any 0 < ϵ < 1/2

P

(
sup

x∈[0,1]

∣∣∣∣∣ 1N
N∑
i=1

[zx
i (Ui, δi)− E [zx

i (Ui, δi)]]

∣∣∣∣∣ > ϵ

)

goes to 0 as N → ∞ where zx
i (Ui, δi) = I (Ui ≤ x)

{
δi + (1− δi)

x−Ui

1−Ui

}
and Ui = Fθ̂ (Yi | zi) .

Note that we have |zx
i (Ui, δi)| ≤ 1 and (zx

i (Ui, δi)− E[zx
i (Ui, δi])

2 ≤ 2. Then, by the Bernstein
inequality (Van der Vaart, 2000) stating that for an independent random variable Xi such that
E [Xi] = 0, |Xi| ≤ M,

P

(
N∑
i=1

Xi > ϵ

)
≤ exp

(
− ϵ2∑N

i=1 E [X2
i ] +Mϵ/3

)
.
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For any 0 < ϵ < 1/2, we have a set S of points between [0, 1] such that {0, ϵ, 2ϵ, [1/ϵ]ϵ, 1}. It implies
∀t ∈ [0, 1], ∃k ∈ S s.t. |t− k| ≤ ϵ. This implies that{

sup
x∈S

∣∣∣∣∣ 1N
N∑
i=1

[zx
i (Ui, δi)− E [zx

i (Ui, δi)]]

∣∣∣∣∣ ≤ ϵ

}

⊂

{
sup

x∈[0,1]

∣∣∣∣∣ 1N
N∑
i=1

[zx
i (Ui, δi)− E [zx

i (Ui, δi)]]

∣∣∣∣∣ ≤ 2ϵ

}
.

Then,

P

(
sup

x∈[0,1]

∣∣∣∣∣ 1N
N∑
i=1

[zx
i (Ui, δi)− E [zx

i (Ui, δi)]]

∣∣∣∣∣ > 2ϵ

)

≤ P

(
sup
x∈S

∣∣∣∣∣ 1N
N∑
i=1

[zx
i (Ui, δi)− E [zx

i (Ui, δi)]]

∣∣∣∣∣ > ϵ

)

≤
∑
x∈S

P

(∣∣∣∣∣ 1N
N∑
i=1

[zx
i (Ui, δi)− E [zx

i (Ui, δi)]]

∣∣∣∣∣ > ϵ

)
.

By the symmetric applications of Bernstein inequality,

P

(
N

∣∣∣∣∣ 1N
N∑
i=1

[zx
i (Ui, δi)− E [zx

i (Ui, δi)]]

∣∣∣∣∣ > ϵ

)
≤ 2 exp

(
−ϵ2/(2N + ϵ/3)

)
,

which implies

P

(∣∣∣∣∣ 1N
N∑
i=1

[zx
i (Ui, δi)− E [zx

i (Ui, δi)]]

∣∣∣∣∣ > ϵ

)
≤ 2 exp

(
−N2ϵ2/(2N +Nϵ/3)

)
.

This is due to the fact that the square-expectation is less than 2. Finally, we have

P

(
sup
x

∣∣∣∣∣ 1N
N∑
i=1

[zx
i (Ui, δi)− E [zx

i (Ui, δi)]]

∣∣∣∣∣ > 2ϵ

)
≪ 4

ϵ
exp

(
−Nϵ2

3

)
→ 0 (5)

as N → ∞.

Remark. If we let ϵ ≡ ϵN = MN logN√
N

for any diverging sequence MN , then the probability in the

right term of Eqn. (5) approaches 0 as N → ∞. This ensures the convergence rate of Op(1/
√
N) up

to logN .

Lemmas for the proof of Proposition 4.1

Lemma A.2. Under the Regularity Conditions and Fθ̂ = F , we have

E
[
F̃i(x)

]
= x

and E
[
F̃i(x)

2
]

= x− (1− x)

∫ x

0

x− s

1− s
dG
(
F−1(s)

)
.

Proof. Regularity Conditions and calibration of Fθ̂ imply that

F
(
F−1

θ̂
(s)
)
= s.

1. Proof of E
[
F̃i (x)

]
= x
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Let T ∼ F , C ∼ G and Zx (U, δ) = I (U ≤ x)

{
δ + (1− δ)

x− U

1− U

}
.

Then F̃i (x)
def
= Zx (Ui, δi). We have

P (U ≤ x, δ = 1) = P
(
min

(
Fθ̂(T ), Fθ̂(C)

)
≤ x, T ≤ C

)
= P

(
Fθ̂(T ) ≤ x, T ≤ C

)
= P

(
T ≤ F−1

θ̂
(x), T ≤ C

)
=

∫ F−1

θ̂
(x)

0

P (s ≤ C) dF (s)

=

∫ F−1

θ̂
(x)

0

[1−G(s)] dF (s)

=

∫ x

0

[
1−G

(
F−1

θ̂
(s)
)]

dF
(
F−1

θ̂
(s)
)
. (6)

Similarly,

P (U ≤ x, δ = 0) = P
(
min

(
Fθ̂(T ), Fθ̂(C)

)
≤ x, T > C

)
= P

(
Fθ̂(C) ≤ x, T > C

)
= P

(
C ≤ F−1

θ̂
(x), T > C

)
=

∫ F−1

θ̂
(x)

0

P (T > s) dG(s)

=

∫ F−1

θ̂
(x)

0

[1− F (s)] dG(s)

=

∫ x

0

[
1− F

(
F−1

θ̂
(s)
)]

dG
(
F−1

θ̂
(s)
)
. (7)

By combining (6) and (7), and using integration by parts with respect to dG(·),

E [Zx(U, δ)] =

∫ x

0

[
1−G

(
F−1

θ̂
(s)
)]

dF
(
F−1

θ̂
(s)
)

+

∫ x

0

[
1− F

(
F−1

θ̂
(s)
)] x− s

1− s
dG
(
F−1

θ̂
(s)
)

= F
(
F−1

θ̂
(x)
)
−G

(
F−1

θ̂
(x)
)
F
(
F−1

θ̂
(x)
)

+

∫ x

0

F
(
F−1

θ̂
(s)
)
dG
(
F−1

θ̂
(s)
)

+

∫ x

0

[
1− F

(
F−1

θ̂
(s)
)] x− s

1− s
dG
(
F−1

θ̂
(s)
)

= F
(
F−1

θ̂
(x)
)
+

∫ x

0

{
− F

(
F−1

θ̂
(x)
)
+ F

(
F−1

θ̂
(s)
)

+
[
1− F

(
F−1

θ̂
(s)
)] x− s

1− s

}
dG
(
F−1

θ̂
(s)
)

= x

2. Proof of E
[
F̃i(x)

2
]
= x− (1− x)

∫ x

0

x− s

1− s
dG
(
F−1(s)

)
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E
[
Zx(U, δ)2

]
= E

[{
δ + (1− δ)× x− U

1− U

}2

I (U ≤ x)

]

= E

[{
δ + (1− δ)×

(
x− U

1− U

)2
}
I (U ≤ x)

]

=

∫ x

0

[
1−G

(
F−1

θ̂
(s)
)]

dF
(
F−1

θ̂
(s)
)

+

∫ x

0

[
1− F

(
F−1

θ̂
(s)
)]

×
(
x− s

1− s

)2

dG
(
F−1

θ̂
(s)
)

= F
(
F−1

θ̂
(x)
)
− F

(
F−1

θ̂
(x)
)
G
(
F−1

θ̂
(x)
)
+

∫ x

0

F
(
F−1

θ̂
(s)
)
dG
(
F−1

θ̂
(s)
)

+

∫ x

0

(
x− s

1− s

)2 [
1− F

(
F−1

θ̂
(s)
)]

dG
(
F−1

θ̂
(s)
)
.

It implies that
E
[
Zx(U, δ)2

]
= x− xG

(
F−1(x)

)
+

∫ x

0

sdG
(
F−1(s)

)
+

∫ x

0

(1− s)
(x− s)2

(1− s)2
dG
(
F−1(s)

)
= x+

∫ x

0

[
−x+ s+

(x− s)2

1− s

]
dG
(
F−1(s)

)
= x− (1− x)

∫ x

0

x− s

1− s
dG
(
F−1(s)

)
. (8)

Lemma A.3. Under the non-calibration assumption such as the Regularity Conditions, we have that
for some c > 0 and x ∈ [0, 1],

|E[Zx (U, δ)]− x| ≥ cη

Proof. We use the notations from the proof of Lemma A.1 such as Zx (U, δ), and denote that
E [Zx (U, δ)] ≡ EU,δ|z [Z

x (U, δ)] . Using the proof in Lemma A.2, we have

E [Zx (U, δ)] = F
(
F−1

θ̂
(x)
)
+

∫ x

0

{
− F

(
F−1

θ̂
(x)
)
+ F

(
F−1

θ̂
(s)
)

+
[
1− F

(
F−1

θ̂
(s)
)] x− s

1− s

}
dG
(
F−1

θ̂
(s)
)
. (9)

Furthermore, the right term of Eqn. (9) is∫ x

0

{
− F

(
F−1

θ̂
(x)
)
+ F

(
F−1

θ̂
(s)
)(

1− x− s

1− s

)
+

x− s

1− s

}
dG
(
F−1

θ̂
(s)
)

=

∫ x

0

[
−
{
F
(
F−1

θ̂
(x)
)
− x
}
+
{
F
(
F−1

θ̂
(s)
)
− s
} 1− x

1− s

−x+ s
1− x

1− s
+

x− s

1− s

]
dG
(
F−1

θ̂
(s)
)

=

∫ x

0

[
−
{
F
(
F−1

θ̂
(x)
)
− x
}
+

{
F
(
F−1

θ̂
(s)
)
− s

}
1− x

1− s

]
dG
(
F−1

θ̂
(s)
)

= −
∫ x

0

{
F
(
F−1

θ̂
(x)
)
− x
}
dG
(
F−1

θ̂
(s)
)
+

∫ x

0

{
F
(
F−1

θ̂
(s)
)
− s
} 1− x

1− s
dG
(
F−1

θ̂
(s)
)
.
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By the Regularity Condition 2, we can pick x∗ for x such that
∣∣∣F (F−1

θ̂
(x∗)

)
− x∗

∣∣∣ = η > 0.

∣∣∣E[Zx∗
(U, δ)]− x∗

∣∣∣
=

∣∣∣∣F (F−1

θ̂
(x∗)

)
− x∗ −

{
F
(
F−1

θ̂
(x∗)

)
− x∗

}∫ x∗

0

dG
(
F−1

θ̂
(s)
)

+

∫ x∗

0

{
F
(
F−1

θ̂
(s)
)
− s
} 1− x∗

1− s
dG
(
F−1

θ̂
(s)
) ∣∣∣∣

=

∣∣∣∣ {F (F−1

θ̂
(x∗)

)
− x∗

}(
1−

∫ x∗

0

dG
(
F−1

θ̂
(s)
))

+

∫ x∗

0

{
F
(
F−1

θ̂
(s)
)
− s
} 1− x∗

1− s
dG
(
F−1

θ̂
(s)
) ∣∣∣∣

≥
∣∣∣∣∣∣∣∣F (F−1

θ̂
(x∗)

)
− x∗

∣∣∣∣ ·
(
1−

∫ x∗

0

dG
(
F−1

θ̂
(s)
))

−
∣∣∣∣ ∫ x∗

0

{
F
(
F−1

θ̂
(s)
)
− s
} 1− x∗

1− s
dG
(
F−1

θ̂
(s)
) ∣∣∣∣∣∣∣∣

by the triangle inequality. Note that∣∣∣∣ ∫ x∗

0

{
F
(
F−1

θ̂
(s)
)
− s
} 1− x∗

1− s
dG
(
F−1

θ̂
(s)
) ∣∣∣∣

≤
∫ x∗

0

∣∣∣∣F (F−1

θ̂
(s)
)
− s

∣∣∣∣1− x∗

1− s
dG
(
F−1

θ̂
(s)
)

≤
∫ x∗

0

∣∣∣∣F (F−1

θ̂
(s)
)
− s

∣∣∣∣dG(F−1

θ̂
(s)
)

≤
∣∣∣∣F (F−1

θ̂
(x∗)

)
− x∗

∣∣∣∣ = η.

Therefore, we can let
∣∣∣∣ ∫ x∗

0

{
F
(
F−1

θ̂
(s)
)
− s
} 1− x∗

1− s
dG
(
F−1

θ̂
(s)
) ∣∣∣∣ = c′η for some c′ ∈ (0, 1).

Finally, we have∣∣∣E[Zx∗
(U, δ)]− x∗

∣∣∣ ≥ ∣∣∣∣η
(
1−

∫ x∗

0

dG
(
F−1

θ̂
(s)
))

− c′η

∣∣∣∣ = cη

where c =

∣∣∣∣1− ∫ x∗

0

dG
(
F−1

θ̂
(s)
)
− c′

∣∣∣∣. Furthermore, c ∈ (0, 1) by Regularity Condition 2. This

completes the proof.

Lemma A.4. Under the Regularity Conditions, we have

P

(
sup

x∈[0,1]

∣∣∣F̃ (x)− x
∣∣∣ ≥ cη/2

)
goes to 1 as N → ∞.

Proof. By Eqn. (4), replacing x with the E[F̃ (x)], we have that for any δ > 0,

P

(
sup

s∈[0,1]

∣∣∣F̃ (s)− E[F̃ (s)]
∣∣∣ < δ

)
→ 1
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as N → ∞. Lemma A.3 implies
∣∣∣E[F̃ (x∗)]− x∗

∣∣∣ ≥ cη for x∗ in the Regularity Conditions.

Consequently, the probability of
∣∣∣F̃ (x∗)− x∗

∣∣∣ ≥ cη/2 goes to 1 as N → ∞. It suffices for the
proof.

B Likelihood function

B.1 DeepSurv

The classical Cox PH model (Cox, 1972), λ (t | z) = λ0 (t) exp (β
⊺z), assumes linearity for the

effect of the variables z. Here, we can adopt a DNN to estimate the effects of variables beyond
linearity. The hazard function is then modeled as λ (t | z) = λ0 (t) exp {g (z;θ)} where g is a
nonlinear function of z obtained through the DNN. The original Cox PH model optimizes the
logarithm of the partial likelihood which is given by

N∑
i=1

δi

β⊺zi − log
∑
j∈Ri

exp (β⊺zj)


where Ri = {j : Yj ≥ Yi} is a risk set and β is the vector of regression coefficients. Maximizing this
partial likelihood or minimizing the negative log-partial likelihood yields the estimated coefficients
β̂. If we adopt DeepSurv (Katzman et al., 2018), the negative log-partial likelihood is changed to
−
∑N

i=1 δi

[
g (zi;θ)− log

∑
j∈Ri

exp {g (zj ;θ)}
]

for the loss function. In DeepSurv, we only use
the estimated g (zi;θ) to calculate the C-index since the baseline hazard function λ0 (t) is equivalent
for all subjects if the time t is the same. But to get F̂θ, we need to estimate λ0 (t). Rather than
estimating itself, we estimate the cumulative baseline hazard function Λ0 (t) using the Breslow
estimator, denoted by Λ̂0 (t) (Lin, 2007). Then, by using the relationship between the distribution
function and the cumulative hazard function, we have

F̂θ (t | z) = 1− exp
[
−Λ̂0 (t) exp{g(z; θ̂)}

]
It is known that Λ̂0 (t) is consistent for Λ0 (t). However, F̂θ includes the effect of z, which tells
us F̂θ is not consistent for F , even when Λ̂0(t) is consistent. Therefore, we need to consider the
calibration. Instead, the calibration error we observed is lower than that of other models.

B.2 MTLR

MTLR (Yu et al., 2011) models the probability of failure using a logistic function. Let (t1, t2, . . . , tB)
be the previously determined time points, (y1, y2, . . . , yB) be the survival status according to
(t1, t2, . . . , tB), and (s1, s2, . . . , sN ) be the actual survival times of the subjects. The probabil-
ity of failure after the l-th time point is modeled as (1 + exp (−θ⊺

l z))
−1

. When the survival time is
observed over the l-th point, the survival time is vectorized into (0, 0, . . . , 0︸ ︷︷ ︸

# of l points

, 1, 1, . . . , 1) when δ = 1,

and (0, 0, . . . , 0︸ ︷︷ ︸
# of l points

) when δ = 0. For the uncensored case, we obtain the probability of observing the

status (y1 (si) , y2 (si) , . . . , yB (si)) as

fθ (si | zi) = Pθ (Y = (y1, y2, . . . , yB) | zi) =
exp

{∑B
k=1 yk (si) (θ

⊺
kzi)

}
∑B

k=0 exp
{∑B

j=k+1 (θ
⊺
kzi)

}
where θ = (θ1,θ2, . . . ,θB)

⊺.

For the censored case, we only know that the failure would be observed after the censoring time si
that we have observed. Thus, if we denote tl as the closest time point following si, the likelihood of a
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censored subject is given by

Sθ (si | zi) = Pθ (Ti ≥ tl | zi) =

∑B
k=l exp

{∑B
j=k+1

(
θ⊺
j zi

)}
∑B

k=0 exp
{∑B

j=k+1

(
θ⊺
j zi

)} .
By combining these, the negative log-likelihood for the loss function is defined as

ℓ (θ) = −
N∑
i=1

[δi log fθ (si | zi) + (1− δi) logSθ (si | zi)] .

Here, fθ, Sθ are the conventional notations, not the true probability density function and survival
function of failure time. For more details, refer to Yu et al. (2011). For calibration error, F̂θ would be
obtained, which is accomplished by

F̂θ (t | z) =

∑l
k=0 exp

{∑B
j=k+1 θ̂

⊺
j z
}

∑B
k=0 exp

{∑B
j=k+1 θ̂

⊺
j z
} (10)

where t ∈ [tl, tl+1). We use B = 20 for all experiments, except for SEER-stomach and SEER-lung,
where B = 10 is used.

B.3 Parametric model

We use the parametric model proposed by Goldstein et al. (2020), referred to as LognormalNN.
We parametrize the location and scale parameters (µ, σ) of the lognormal distribution. Let f
and S be the probability density function and survival function of the lognormal distribution,
respectively, with parameters estimated by DNN. The negative log-likelihood is as ℓ (θ) =

−
∑N

i=1 [δi log fθ (yi | zi) + (1− δi) logSθ (yi | zi)] where θ = (µ, σ)
⊺ and yi is an observed

time of subject i. Then, we calculate the distribution function with two parameters at the given
observed time.

B.4 CRPS

Continuous Ranked Probability Score (CRPS; Avati et al., 2020) aims to minimize∫ y

0

{
F̂θ (t | z)

}2

dt+ δ

∫ ∞

y

{
1− F̂θ (t | z)

}2

dt

where y is an observed time and δ is a censoring indicator. See Appendix B in Avati et al. (2020) for
a lognormal distribution. Since there is a closed form for the loss, we use the lognormal distribution
for F̂θ.

B.5 DeepHit

DeepHit (Lee et al., 2018) is a discrete time survival model that estimates the probability mass
function P (T = t | z) over discrete time intervals. Let Tmax denote the maximum time point. Given
z, the model outputs a probability vector p̂ = (p̂1, . . . , p̂Tmax

) with
∑Tmax

t=1 p̂t = 1 using the softmax
function. The model is trained to minimize the negative log-likelihood. For an uncensored sample
with event time t, the loss is − log p̂t, and for a censored sample with censoring time t, the loss is
− log

∑Tmax

s=t+1 p̂s, corresponding to the estimated survival probability Ŝ (t | z). We adopt DeepHit
in the single-event setting and train it using only the log-likelihood loss, without the ranking loss
originally proposed in Lee et al. (2018). Similar to MTLR, DeepHit depends on the number of bins,
and we use a different number of bins depending on the dataset.

B.6 Weibull AFT model

The Weibull AFT model (Stute, 1993) assumes the following regression form:

log T = β⊺z + σϵ
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where ϵ follows a standard Gumbel distribution. Under this formulation, T follows a Weibull
distribution with a scale parameter exp (β⊺z) and a shape parameter 1/σ. The survival function is
given by:

S (t | z) = exp
(
−{t exp (−β⊺z)}1/σ

)
.

The likelihood function is defined similarly to the parametric model.

C Proof for Proposition 5.1

In this section, we demonstrate that if survival curves do not cross, the KSP preserves the ordering
of mean survival times. Furthermore, we show that this property holds for both DeepSurv and the
Weibull AFT model after applying KSP.

First, recall that for two individuals with variables zi and zj , if

F (s | zi) < F (s | zj) for s ≥ 0,

then the CDFs after the KSP also satisfy F ∗ (s | zi) < F ∗ (s | zj) due to the monotonicity of the
transformation.

For a non-negative random variable T , it is known that its expectation can be written as

E [T ] =

∫ ∞

0

{1− F (s)} ds.

Applying this identity to both the original and the transformed CDFs, we obtain

E [T | zi] =

∫ ∞

0

[1− F (s | zi)] ds >

∫ ∞

0

[1− F (s | zj)] ds = E [T | zj ]

⇐⇒ E [T ∗ | zi] > E [T ∗ | zj ] .

where T ∗ ∼ F ∗. Thus, the ordering of the mean survival times is preserved; consequently, the
C-index based on the mean survival time remains unchanged after KSP.

DeepSurv Under the PH assumption, the ordering of mean survival times is preserved. The model
assumes that

Ti < Tj

⇐⇒ exp{g (zi;θ)} > exp{g (zj ;θ)}

⇐⇒ exp

[
−
∫ t

0

λ0 (s) exp{g (zi;θ)}ds
]
< exp

[
−
∫ t

0

λ0 (s) exp{g (zj ;θ)}ds
]
, ∀t ≥ 0

⇐⇒ E [T | zi] < E [T | zj ]

⇐⇒ E [T ∗ | zi] < E [T ∗ | zj ]

where g (z;θ) is the log-risk function. Hence, the C-index derived from the risk scores is preserved
under KSP.

Weibull AFT The Weibull AFT model defines the survival function as

S (t | z) = exp
(
−{t exp (−β⊺z)}1/σ

)
.

And,

Ti < Tj

⇐⇒ exp (β⊺zi) < exp (β⊺zj)

⇐⇒ S (t | zi) < S (t | zj) , ∀ t ≥ 0

⇐⇒ E [T | zi] < E [T | zj ]

⇐⇒ E [T ∗ | zi] < E [T ∗ | zj ]

Therefore, the expected survival times maintain their original ordering.
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Table 3: Summary of the ten real-world datasets.
Group Dataset # Samples (Train / Validation / Test) % Censored # Covariates

Small

WHAS 982 / 328 / 328 58% 6
METABRIC 1,142 / 381 / 381 42% 9

GBSG 1,340 / 446 / 446 43% 7
NACD 1,436 / 480 / 480 36% 51

Medium
NB-SEQ 2,873 / 958 / 958 31% 24

SUPPORT 5,325 / 1,774 / 1,774 32% 14
MIMIC-III 5,353 / 1,785 / 1,785 0% 15

Large
SEER-liver 16,575 / 5,525 / 5,526 22% 15

SEER-stomach 20,615 / 6,872 / 6,872 27% 15
SEER-lung 125,254 / 41,751 / 41,752 16% 15

D Data generation and description

We first summarize the ten datasets used in this study. Then, we describe each dataset in detail, along
with the corresponding pre-processing steps.

D.1 Details for WHAS, METABRIC, GBSG, and SUPPORT

The DeepSurv package (Katzman et al., 2018) in Python includes four pre-processed real-world
datasets: the Worcester Heart Attack Study (WHAS), Molecular Taxonomy of Breast Cancer Interna-
tional Consortium (METABRIC), German Breast Cancer Study Group (GBSG), and the Study to
Understand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT). To ensure consis-
tency across experiments, we combined the training and test sets provided by the package and re-split
the data into training, validation, and test sets in a 3:1:1 ratio. No additional data pre-processing was
performed.

D.2 Details for NACD

The Northern Alberta Cancer Dataset (NACD) (Qi et al., 2024a) includes patients diagnosed
with various cancers, such as lung, colorectal, head and neck, esophageal, stomach, and other
types of cancer. The event of interest in this dataset is failure time. We obtain the dataset from
http://pssp.srv.ualberta.ca under the “Public Predictors" section. It consists of 2,396 patients with 51
features. For our experiments, we split the dataset into training, validation, and test sets (1,436 / 480 /
480), ensuring that the censoring rate remains balanced at 36%.

D.3 Details for NB-SEQ

NB-SEQ consists of neuroblastoma data and other supervised penalty learning benchmarks specif-
ically designed for censored regression in the context of supervised penalty function learning for
change-point detection. The dataset includes various summary statistics, as well as the minimum and
maximum values of λ, achieving high performance, where λ is a hyper-parameter for the penalty
function. The primary response variable (considered a failure time) is the maximum value of the
estimated λ. It is important to note that the maximum value of λ is not directly observed in some cases;
we only have information that the value exceeds a certain threshold, indicating that the true value
is censored. We analyze 4,789 sequence data points with 24 variables. The list of the 24 variables
used in the NB-SEQ dataset is provided in Table 4. All the variables are continuous variables. The
censoring rate is 31%. The dataset is partitioned into sizes 2,873, 958, and 958 subsets.

D.4 Details for MIMIC-III

MIMIC-III consists of de-identified health-related information from patients admitted to the Beth
Israel Deaconess Medical Center (BIDMC) in Boston, Massachusetts, USA, with a primary focus on
intensive care unit (ICU) admissions. Following the pre-processing steps introduced in Harutyunyan
et al. (2019), provided by https://github.com/YerevaNN/mimic3-benchmarks. This dataset involves
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Table 4: Twenty four variables in NB-SEQ

quartile.25. / quartile.50 / quartile.75 / quartile.100 / mean / sd / bases / data /
log.1.quartile.25 / log.1.quartile.50 / log.1.quartile.75 / log.1.quartile.100 /

log.1.mean / log.1.sd / log.1.bases / log.1.data / log.quartile.100 / log. mean /
log.sd / log.bases / log.data / log.log.quartile.100 / log.log.bases / log.log.data

multiple instances of length-of-stay data, with each subject having repeated measures at different
time points. After excluding ICU transfers and patients under 18, the training and test sets consist of
2,925,434 and 525,912 instances, respectively. Recognizing that using the provided data directly is
not suitable due to the correlation among data points for a single subject, we undertake additional
steps. First, we exclude variables with excessively high missing rates. Next, we create one instance
per subject by defining survival time as the duration between enrollment and discharge, which has
no censoring. The dataset includes a list of 15 variables, as shown in Table 5. For variables that
are repeatedly measured, we transform them into a single representative value, such as the mean
for continuous variables and the mode for categorical variables. Finally, we exclude subjects whose
variables are still missing, even after applying imputation, resulting in a dataset with 8,873 instances
that combines the training set with the test set. We partition the entire dataset into training, validation,
and test sets, with sizes of 5,353, 1,785, and 1,785, respectively.

Table 5: Fifteen selected variables in MIMIC-III.

Name Type

Diastolic blood pressure Continuous
Glascow coma scale eye opening Categorical
Glascow coma scale motor response Categorical
Glascow coma scale total Continuous
Glascow coma scale verbal response Categorical
Glucose Continuous
Heart Rate Continuous
Height Continuous
Mean blood pressure Continuous
Oxygen saturation Continuous
Respiratory rate Continuous
Systolic blood pressure Continuous
Temperature Continuous
Weight Continuous
pH Continuous

D.5 Details for SEER-liver, SEER-stomach, and SEER-lung

The Surveillance, Epidemiology, and End Results (SEER) Program dataset (National Cancer Institute,
DCCPS, Surveillance Research Program, 2015) is a large-scale, population-based cancer registry
that covers approximately 49% of the U.S. population (Qi et al., 2024a). It contains comprehensive
information on cancer incidence, patient demographics, treatments, and survival outcomes. In this
study, we utilize three distinct subsets from the SEER database—SEER-liver, SEER-stomach, and
SEER-lung—which respectively include patients diagnosed with liver, stomach, and lung cancers.
The objective is to model the time from cancer diagnosis to a failure event, specifically death, with
time measured in months. For our analysis, we selected a subset of clinically relevant variables: Sex,
Race, Summary stage, Malignant behavior, Record number, Total tumor size, and Age at diagnosis.
Variables with high missing rates or a large number of categories were excluded, and patients without
recorded follow-up (due to immediate death) were removed. Additionally, we applied filtering criteria
to exclude patients with extreme or implausible values. Specifically, we retained only patients with a
record number less than or equal to 8, a total tumor size less than or equal to 13, and a survival time
greater than or equal to 10 months. The dataset can be downloaded from https://seer.cancer.gov/.
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E Comparison of post-processing methods: Figure

In this section, we present the results across real datasets using figures. The error bars represent 95%
confidence intervals.

Figure 5: Comparison of post-processing methods for the WHAS dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all calibration metrics. The dashed
line indicates the calibration error of the KM estimator.
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Figure 6: Comparison of post-processing methods for the METABRIC dataset. Higher C-index
values indicate better discrimination, while lower values are preferred for all calibration metrics. The
dashed line indicates the calibration error of the KM estimator.
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Figure 7: Comparison of post-processing methods for the GBSG dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all calibration metrics. The dashed
line indicates the calibration error of the KM estimator.
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Figure 8: Comparison of post-processing methods for the NACD dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all calibration metrics. The dashed
line indicates the calibration error of the KM estimator.
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Figure 9: Comparison of post-processing methods for the NB-SEQ dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all calibration metrics. The dashed
line indicates the calibration error of the KM estimator.
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Figure 10: Comparison of post-processing methods for the SUPPORT dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all calibration metrics. The dashed
line indicates the calibration error of the KM estimator.
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Figure 11: Comparison of post-processing methods for the MIMIC-III dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all calibration metrics. The dashed
line indicates the calibration error of the KM estimator.
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Figure 12: Comparison of post-processing methods for the SEER-liver dataset. Higher C-index
values indicate better discrimination, while lower values are preferred for all calibration metrics. The
dashed line indicates the calibration error of the KM estimator.
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Figure 13: Comparison of post-processing methods for the SEER-stomach dataset. Higher C-index
values indicate better discrimination, while lower values are preferred for all calibration metrics. The
dashed line indicates the calibration error of the KM estimator.
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Figure 14: Comparison of post-processing methods for the SEER-lung dataset. Higher C-index
values indicate better discrimination, while lower values are preferred for all calibration metrics. The
dashed line indicates the calibration error of the KM estimator.
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F Comparison of post-processing methods: Table

In this section, we present the results in tabular form, in contrast to Appendix E, where the same
results are visualized as figures. Similar to Table 1 in the main text, we summarize the num-
ber of cases in which each post-processing method outperforms the others for each model. We
implemented X-cal (Goldstein et al., 2020 in the main paper), CSD (Qi et al., 2024a), and CSD-
iPOT (Qi et al., 2024b) with reference to publicly available code repositories under the MIT Li-
cense: https://github.com/rajesh-lab/X-CAL, https://github.com/shi-ang/CSD, and
https://github.com/shi-ang/MakeSurvivalCalibratedAgain.

Table 6: Summary of pairwise comparisons between post-processing methods for DeepSurv. The
table shows the number of cases where KSP outperforms its counterpart, is outperformed, or yields a
tie. Numbers in parentheses indicate statistically significant differences based on a one-sided t-test at
the 0.05 level.

Model Method C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

DeepSurv

KSP 0 (0) 6 (5) 6 (5) 7 (6) 4 (1) 6 (1)
Non-calibrated 1 (0) 3 (1) 4 (0) 3 (1) 6 (5) 4 (0)

Ties 9 1 0 0 0 0

KSP 0 (0) 9 (9) 10 (10) 10 (10) 10 (9) 10 (5)
CSD 6 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Ties 4 0 0 0 0 0

KSP 1 (0) 6 (4) 10 (8) 8 (5) 7 (5) 7 (1)
CSD-iPOT 5 (0) 4 (0) 0 (0) 2 (0) 3 (1) 3 (0)

Ties 4 0 0 0 0 0

Table 7: Summary of pairwise comparisons between post-processing methods for MTLR. The table
shows the number of cases where KSP outperforms its counterpart, is outperformed, or yields a tie.
Numbers in parentheses indicate statistically significant differences based on a one-sided t-test at the
0.05 level.

Model Method C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

MTLR

KSP 3 (0) 6 (6) 7 (5) 6 (5) 9 (6) 7 (2)
Non-calibrated 6 (1) 4 (3) 3 (2) 4 (2) 1 (1) 3 (0)

Ties 1 0 0 0 0 0

KSP 4 (0) 4 (1) 6 (6) 7 (4) 3 (3) 3 (1)
CSD 6 (1) 6 (6) 4 (3) 3 (3) 7 (6) 7 (4)
Ties 0 0 0 0 0 0

KSP 4 (0) 5 (2) 8 (8) 6 (4) 7 (6) 6 (0)
CSD-iPOT 6 (0) 5 (5) 2 (2) 4 (2) 3 (2) 4 (2)

Ties 0 0 0 0 0 0
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Table 8: Summary of pairwise comparisons between post-processing methods for Parametric model.
The table shows the number of cases where KSP outperforms its counterpart, is outperformed, or
yields a tie. Numbers in parentheses indicate statistically significant differences based on a one-sided
t-test at the 0.05 level.

Model Method C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

Parametric

KSP 8 (7) 10 (10) 10 (10) 10 (10) 8 (6) 8 (5)
Non-calibrated 1 (0) 0 (0) 0 (0) 0 (0) 2 (1) 2 (0)

Ties 1 0 0 0 0 0

KSP 3 (0) 8 (7) 10 (10) 10 (9) 9 (6) 10 (4)
CSD 5 (0) 2 (1) 0 (0) 0 (0) 1 (1) 0 (0)
Ties 2 0 0 0 0 0

KSP 6 (0) 5 (2) 9 (7) 9 (5) 7 (5) 8 (2)
CSD-iPOT 2 (0) 5 (3) 1 (1) 1 (1) 3 (2) 2 (0)

Ties 2 0 0 0 0 0

Table 9: Summary of pairwise comparisons between post-processing methods for CRPS. The table
shows the number of cases where KSP outperforms its counterpart, is outperformed, or yields a tie.
Numbers in parentheses indicate statistically significant differences based on a one-sided t-test at the
0.05 level.

Model Method C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

CRPS

KSP 7 (5) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10)
Non-calibrated 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Ties 1 0 0 0 0 0

KSP 5 (2) 8 (8) 6 (5) 8 (8) 10 (10) 10 (10)
CSD 4 (0) 2 (2) 4 (4) 2 (2) 0 (0) 0 (0)
Ties 1 0 0 0 0 0

KSP 5 (0) 7 (6) 5 (3) 7 (5) 6 (6) 5 (4)
CSD-iPOT 3 (0) 3 (3) 5 (4) 3 (3) 4 (3) 5 (4)

Ties 2 0 0 0 0 0

Table 10: Summary of pairwise comparisons between post-processing methods for DeepHit. The
table shows the number of cases where KSP outperforms its counterpart, is outperformed, or yields a
tie. Numbers in parentheses indicate statistically significant differences based on a one-sided t-test at
the 0.05 level.

Model Method C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

DeepHit

KSP 2 (0) 4 (4) 3 (3) 4 (4) 7 (4) 6 (0)
Non-calibrated 8 (0) 6 (3) 7 (4) 6 (2) 3 (2) 4 (1)

Ties 0 0 0 0 0 0

KSP 1 (0) 4 (3) 8 (6) 8 (6) 3 (2) 4 (0)
CSD 9 (1) 6 (5) 2 (1) 2 (1) 7 (6) 6 (4)
Ties 0 0 0 0 0 0

KSP 5 (0) 3 (2) 8 (7) 7 (3) 8 (5) 6 (0)
CSD-iPOT 5 (1) 7 (4) 2 (2) 3 (2) 2 (2) 4 (2)

Ties 0 0 0 0 0 0
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Table 11: Summary of pairwise comparisons between post-processing methods for Weibull AFT
model. The table shows the number of cases where KSP outperforms its counterpart, is outperformed,
or yields a tie. Numbers in parentheses indicate statistically significant differences based on a
one-sided t-test at the 0.05 level.

Model Method C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

AFT

KSP 0 (0) 10 (10) 10 (10) 10 (10) 9 (8) 7 (7)
Non-calibrated 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 3 (0)

Ties 10 0 0 0 0 0

KSP 0 (0) 3 (1) 8 (8) 8 (5) 2 (2) 5 (5)
CSD 4 (0) 7 (5) 2 (2) 2 (2) 8 (6) 5 (2)
Ties 6 0 0 0 0 0

KSP 0 (0) 6 (5) 6 (6) 7 (7) 10 (9) 6 (2)
CSD-iPOT 4 (0) 4 (4) 4 (4) 3 (3) 0 (0) 4 (2)

Ties 6 0 0 0 0 0

Table 12: Comparison of post-processing methods for the WHAS dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all other calibration metrics.

Model Method C-index↑ S-cal(20)↓ D-cal(20)↓ KS-cal↓ KM-cal↓ IBS↓

DeepSurv

Non-calibrated 0.83934 0.000184 0.001324 0.029978 0.000664 0.111616
KSP 0.83934 0.000189 0.001483 0.031463 0.000526 0.111655
CSD 0.83934 0.016320 0.010881 0.191019 0.010207 0.129705

CSD-iPOT 0.83934 0.000163 0.001513 0.031388 0.000563 0.112224

MTLR

Non-calibrated 0.81940 0.004684 0.009308 0.131427 0.008072 0.140125
KSP 0.81956 0.000766 0.004767 0.055003 0.007428 0.140783
CSD 0.81935 0.000540 0.002696 0.045507 0.001938 0.130369

CSD-iPOT 0.81955 0.001610 0.003647 0.069353 0.006033 0.136362

Parametric

Non-calibrated 0.80364 0.000858 0.002488 0.055345 0.003171 0.116109
KSP 0.84049 0.000379 0.001994 0.039706 0.003100 0.116749
CSD 0.83970 0.031220 0.019276 0.258418 0.028841 0.150842

CSD-iPOT 0.84078 0.000439 0.002074 0.042612 0.002768 0.116346

CRPS

Non-calibrated 0.79922 0.052393 0.146602 0.377683 0.105859 0.289911
KSP 0.78974 0.001444 0.018794 0.081137 0.003376 0.144378
CSD 0.80142 0.036708 0.030670 0.280881 0.043592 0.191666

CSD-iPOT 0.79730 0.007258 0.017252 0.142694 0.016375 0.170867

DeepHit

Non-calibrated 0.84397 0.001856 0.004547 0.163803 0.003720 0.109808
KSP 0.84328 0.000604 0.003602 0.051873 0.004851 0.113300
CSD 0.84364 0.000963 0.003509 0.057144 0.002235 0.110331

CSD-iPOT 0.84319 0.000875 0.002621 0.052076 0.003261 0.109295

AFT

Non-calibrated 0.81692 0.159936 0.115956 0.672936 0.218693 0.384233
KSP 0.81692 0.000211 0.001899 0.034510 0.012560 0.142276
CSD 0.81693 0.000800 0.003983 0.057077 0.002907 0.177157

CSD-iPOT 0.81693 0.000744 0.002625 0.051983 0.012709 0.140417
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Table 13: Comparison of post-processing methods for the METABRIC dataset. Higher C-index
values indicate better discrimination, while lower values are preferred for all other calibration metrics.

Model Method C-index↑ S-cal(20)↓ D-cal(20)↓ KS-cal↓ KM-cal↓ IBS↓

DeepSurv

Non-calibrated 0.64572 0.000074 0.001168 0.024570 0.000129 0.162487
KSP 0.64572 0.000138 0.001300 0.028909 0.000192 0.162597
CSD 0.64585 0.000554 0.002511 0.045971 0.000882 0.164027

CSD-iPOT 0.64573 0.000132 0.001810 0.030531 0.000244 0.162564

MTLR

Non-calibrated 0.62866 0.000991 0.002344 0.050756 0.002398 0.164533
KSP 0.62912 0.000517 0.001843 0.046266 0.001261 0.163358
CSD 0.62873 0.000520 0.002336 0.046683 0.001120 0.163325

CSD-iPOT 0.62880 0.000532 0.002220 0.046963 0.001767 0.163472

Parametric

Non-calibrated 0.60856 0.012025 0.007692 0.169293 0.011532 0.178490
KSP 0.62147 0.000501 0.001772 0.044165 0.003312 0.169834
CSD 0.62146 0.001267 0.003573 0.063101 0.003366 0.170954

CSD-iPOT 0.61973 0.000617 0.002269 0.049259 0.002470 0.169168

CRPS

Non-calibrated 0.59211 0.085305 0.186298 0.457565 0.208641 0.387240
KSP 0.60051 0.000786 0.003384 0.057540 0.004217 0.175699
CSD 0.59756 0.008325 0.009216 0.131548 0.019657 0.222708

CSD-iPOT 0.59810 0.002275 0.004011 0.085995 0.013559 0.185530

DeepHit

Non-calibrated 0.63846 0.000539 0.001943 0.044299 0.001352 0.162515
KSP 0.63823 0.000541 0.001957 0.048270 0.001197 0.162350
CSD 0.63793 0.000566 0.002485 0.049948 0.001040 0.162360

CSD-iPOT 0.63746 0.000518 0.002548 0.049504 0.001268 0.162362

AFT

Non-calibrated 0.62854 0.170157 0.157761 0.699554 0.150305 0.323121
KSP 0.62854 0.000696 0.003680 0.055747 0.019585 0.195871
CSD 0.62854 0.000492 0.002619 0.047241 0.001815 0.176144

CSD-iPOT 0.62854 0.001917 0.004316 0.085610 0.033533 0.203033

Table 14: Comparison of post-processing methods for the GBSG dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all other calibration metrics.

Model Method C-index↑ S-cal(20)↓ D-cal(20)↓ KS-cal↓ KM-cal↓ IBS↓

DeepSurv

Non-calibrated 0.67055 0.000153 0.001249 0.031010 0.000037 0.177364
KSP 0.67055 0.000131 0.001108 0.027683 0.000246 0.177451
CSD 0.67055 0.001139 0.002872 0.064236 0.001849 0.180139

CSD-iPOT 0.67055 0.000137 0.001822 0.029647 0.000152 0.177440

MTLR

Non-calibrated 0.66518 0.015595 0.047053 0.305066 0.027289 0.212137
KSP 0.66422 0.008840 0.046362 0.161603 0.015227 0.206787
CSD 0.66511 0.000277 0.002028 0.038923 0.000476 0.184225

CSD-iPOT 0.66508 0.002382 0.008590 0.112182 0.002627 0.186904

Parametric

Non-calibrated 0.64735 0.004308 0.003882 0.097194 0.006469 0.189363
KSP 0.65704 0.000404 0.001651 0.040159 0.000619 0.182844
CSD 0.65748 0.000673 0.002655 0.046418 0.001565 0.184507

CSD-iPOT 0.65686 0.000528 0.002326 0.042402 0.000863 0.183205

CRPS

Non-calibrated 0.59357 0.060048 0.128590 0.389503 0.103073 0.299431
KSP 0.60163 0.000383 0.001487 0.041330 0.000531 0.194706
CSD 0.60237 0.004895 0.006940 0.109091 0.007319 0.227361

CSD-iPOT 0.60250 0.000579 0.002102 0.046562 0.001127 0.195382

DeepHit

Non-calibrated 0.66395 0.013217 0.042233 0.286991 0.022726 0.207548
KSP 0.66380 0.009500 0.047356 0.167647 0.016446 0.208659
CSD 0.66390 0.000286 0.002090 0.038490 0.000545 0.184770

CSD-iPOT 0.66401 0.002268 0.008670 0.110511 0.002322 0.186840

AFT

Non-calibrated 0.66068 0.162642 0.139443 0.694223 0.178947 0.372955
KSP 0.66068 0.000388 0.001406 0.039076 0.001558 0.185855
CSD 0.66068 0.000316 0.001880 0.039659 0.000557 0.201437

CSD-iPOT 0.66068 0.000733 0.002273 0.051802 0.005238 0.186443
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Table 15: Comparison of post-processing methods for the NACD dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all other calibration metrics.

Model Method C-index↑ S-cal(20)↓ D-cal(20)↓ KS-cal↓ KM-cal↓ IBS↓

DeepSurv

Non-calibrated 0.74482 0.002403 0.003013 0.069770 0.002771 0.148203
KSP 0.74482 0.003181 0.003339 0.071627 0.002512 0.148069
CSD 0.74483 0.006150 0.006106 0.109203 0.002737 0.150490

CSD-iPOT 0.74481 0.002585 0.003708 0.069948 0.002100 0.148205

MTLR

Non-calibrated 0.75232 0.002727 0.004358 0.078424 0.008610 0.158760
KSP 0.75232 0.000394 0.002154 0.040311 0.003399 0.151300
CSD 0.75155 0.000434 0.002150 0.043359 0.002094 0.150096

CSD-iPOT 0.75168 0.000470 0.002770 0.043038 0.004965 0.153054

Parametric

Non-calibrated 0.73739 0.002980 0.007046 0.091661 0.000875 0.151496
KSP 0.73811 0.000413 0.001920 0.040499 0.002716 0.149560
CSD 0.73877 0.001803 0.003523 0.070777 0.000750 0.149815

CSD-iPOT 0.73868 0.000715 0.003684 0.056430 0.000980 0.149651

CRPS

Non-calibrated 0.71759 0.043051 0.063536 0.301582 0.089002 0.250414
KSP 0.73131 0.000485 0.001559 0.041403 0.006499 0.156702
CSD 0.72759 0.009327 0.009646 0.142307 0.025258 0.187515

CSD-iPOT 0.72959 0.001852 0.003063 0.071834 0.013876 0.164684

DeepHit

Non-calibrated 0.73923 0.001121 0.003564 0.059614 0.003978 0.156312
KSP 0.73889 0.000408 0.001647 0.039227 0.003167 0.152809
CSD 0.73909 0.000612 0.002525 0.051245 0.002205 0.150479

CSD-iPOT 0.73895 0.000484 0.002530 0.043515 0.003355 0.154051

AFT

Non-calibrated 0.75251 0.163167 0.126591 0.658877 0.080887 0.248429
KSP 0.75251 0.000341 0.001746 0.038208 0.006366 0.149097
CSD 0.75251 0.000373 0.002111 0.040763 0.005790 0.173913

CSD-iPOT 0.75251 0.000640 0.002636 0.048710 0.009616 0.151260

Table 16: Comparison of post-processing methods for the NB-SEQ dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all other calibration metrics.

Model Method C-index↑ S-cal(20)↓ D-cal(20)↓ KS-cal↓ KM-cal↓ IBS↓

DeepSurv

Non-calibrated 0.74406 0.000353 0.001233 0.036594 0.000117 0.048694
KSP 0.74406 0.000124 0.001029 0.024159 0.000114 0.048526
CSD 0.74406 0.000817 0.004176 0.058940 0.000592 0.049299

CSD-iPOT 0.74406 0.000244 0.004492 0.053483 0.000413 0.048943

MTLR

Non-calibrated 0.67586 0.000151 0.000985 0.026283 0.000248 0.056395
KSP 0.67598 0.000201 0.000969 0.028721 0.000229 0.056408
CSD 0.67564 0.000592 0.005005 0.058357 0.000697 0.057094

CSD-iPOT 0.67570 0.000283 0.005322 0.055453 0.000551 0.056798

Parametric

Non-calibrated 0.71868 0.020123 0.054895 0.217614 0.039669 0.088938
KSP 0.71868 0.000194 0.000847 0.028462 0.011985 0.057502
CSD 0.71868 0.010833 0.008192 0.155574 0.012509 0.066510

CSD-iPOT 0.71868 0.001833 0.005667 0.082260 0.018628 0.059964

CRPS

Non-calibrated 0.74602 0.049548 0.082799 0.399175 0.075753 0.130153
KSP 0.74602 0.000289 0.001012 0.033242 0.001293 0.049608
CSD 0.74602 0.002066 0.004542 0.079292 0.013118 0.071306

CSD-iPOT 0.74602 0.005656 0.009961 0.140358 0.013339 0.059066

DeepHit

Non-calibrated 0.74238 0.000169 0.000836 0.027303 0.000137 0.047711
KSP 0.74243 0.000196 0.000896 0.028329 0.000125 0.047706
CSD 0.74267 0.000534 0.004087 0.061122 0.000552 0.048342

CSD-iPOT 0.74273 0.000275 0.004866 0.057137 0.000414 0.048151

AFT

Non-calibrated 0.45964 0.195759 0.279953 0.750892 0.177522 0.249208
KSP 0.45964 0.001428 0.005948 0.068017 0.040891 0.134525
CSD 0.45964 0.001277 0.006713 0.069315 0.001830 0.071353

CSD-iPOT 0.45964 0.001775 0.005227 0.080487 0.048066 0.128660
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Table 17: Comparison of post-processing methods for the SUPPORT dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all other calibration metrics.

Model Method C-index↑ S-cal(20)↓ D-cal(20)↓ KS-cal↓ KM-cal↓ IBS↓

DeepSurv

Non-calibrated 0.61233 0.000055 0.000474 0.019310 0.000017 0.191039
KSP 0.61233 0.000057 0.000475 0.018416 0.000057 0.191034
CSD 0.61233 0.000336 0.001659 0.036604 0.000435 0.191591

CSD-iPOT 0.61233 0.000057 0.001501 0.027010 0.000129 0.191146

MTLR

Non-calibrated 0.57371 0.000834 0.003760 0.061424 0.012056 0.220228
KSP 0.57312 0.000490 0.002672 0.040363 0.007750 0.215751
CSD 0.57336 0.000163 0.002190 0.031640 0.000372 0.208278

CSD-iPOT 0.57380 0.000389 0.003534 0.039351 0.007746 0.215638

Parametric

Non-calibrated 0.59260 0.002252 0.003988 0.084550 0.005979 0.198560
KSP 0.60439 0.000243 0.001349 0.034436 0.000275 0.193467
CSD 0.60485 0.000440 0.001883 0.037064 0.004318 0.197069

CSD-iPOT 0.60386 0.000182 0.001047 0.025885 0.001020 0.193504

CRPS

Non-calibrated 0.55840 0.141252 0.434019 0.658101 0.401180 0.615518
KSP 0.57109 0.015244 0.209804 0.248033 0.011795 0.224882
CSD 0.57160 0.007093 0.017108 0.127136 0.023034 0.256595

CSD-iPOT 0.57113 0.025275 0.101719 0.380558 0.003503 0.216977

DeepHit

Non-calibrated 0.60214 0.000890 0.003056 0.057871 0.010317 0.206596
KSP 0.60133 0.000356 0.001975 0.035817 0.007007 0.203254
CSD 0.60162 0.000192 0.002228 0.033087 0.001072 0.196510

CSD-iPOT 0.60138 0.000334 0.003204 0.035553 0.007413 0.202907

AFT

Non-calibrated 0.56930 0.150578 0.101386 0.641556 0.056436 0.268950
KSP 0.56930 0.000226 0.001612 0.032202 0.000245 0.207191
CSD 0.56930 0.000175 0.003102 0.041830 0.000897 0.214866

CSD-iPOT 0.56930 0.000210 0.000876 0.029300 0.001178 0.208210

Table 18: Comparison of post-processing methods for the MIMIC-III dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all other calibration metrics.

Model Method C-index↑ S-cal(20)↓ D-cal(20)↓ KS-cal↓ KM-cal↓ IBS↓

DeepSurv

Non-calibrated 0.95839 0.036649 0.064547 0.250907 0.104279 0.276509
KSP 0.95826 0.003305 0.007044 0.091109 0.071617 0.203039
CSD 0.95842 0.002873 0.022981 0.113186 0.082850 0.222409

CSD-iPOT 0.95842 0.003150 0.016172 0.099244 0.069556 0.200904

MTLR

Non-calibrated 0.94494 0.015402 0.035474 0.232722 0.000410 0.014391
KSP 0.94218 0.003581 0.004200 0.084666 0.000405 0.012505
CSD 0.94423 0.004565 0.007386 0.091212 0.000573 0.013220

CSD-iPOT 0.94230 0.003792 0.005829 0.084427 0.000439 0.012597

Parametric

Non-calibrated 0.96204 0.042814 0.113358 0.339424 0.000130 0.012483
KSP 0.96204 0.019627 0.020349 0.170588 0.000163 0.006789
CSD 0.96204 0.020498 0.031328 0.243077 0.000174 0.010146

CSD-iPOT 0.96204 0.019147 0.029920 0.173745 0.000178 0.006854

CRPS

Non-calibrated 0.95342 0.214466 0.258780 0.759872 0.020505 0.072193
KSP 0.95339 0.013238 0.012086 0.149600 0.000378 0.012503
CSD 0.95398 0.001911 0.013170 0.111758 0.009601 0.052380

CSD-iPOT 0.95339 0.013594 0.017937 0.153465 0.000357 0.012327

DeepHit

Non-calibrated 0.96406 0.013780 0.012673 0.157457 0.000064 0.005148
KSP 0.96425 0.021969 0.024353 0.174115 0.000084 0.005210
CSD 0.96437 0.021553 0.038450 0.181557 0.000085 0.005288

CSD-iPOT 0.96423 0.021580 0.037331 0.179908 0.000091 0.005276

AFT

Non-calibrated 0.88037 0.224182 0.416392 0.821818 0.019950 0.057193
KSP 0.88037 0.005902 0.019573 0.125796 0.000679 0.021909
CSD 0.88037 0.000424 0.009171 0.050827 0.002049 0.035906

CSD-iPOT 0.88037 0.000573 0.003317 0.046279 0.000941 0.020705
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Table 19: Comparison of post-processing methods for the SEER-liver dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all other calibration metrics.

Model Method C-index↑ S-cal(20)↓ D-cal(20)↓ KS-cal↓ KM-cal↓ IBS↓

DeepSurv

Non-calibrated 0.63374 0.000070 0.000569 0.022519 0.000013 0.137621
KSP 0.63374 0.000030 0.000178 0.012719 0.000051 0.137654
CSD 0.63406 0.000201 0.005539 0.053343 0.000521 0.138246

CSD-iPOT 0.63406 0.000131 0.004846 0.049048 0.000371 0.138145

MTLR

Non-calibrated 0.63083 0.000188 0.000557 0.036149 0.002314 0.142314
KSP 0.63077 0.000373 0.000820 0.039137 0.002094 0.142062
CSD 0.63087 0.000169 0.005012 0.052282 0.000762 0.140381

CSD-iPOT 0.63088 0.000156 0.004599 0.046668 0.002966 0.142248

Parametric

Non-calibrated 0.62927 0.001078 0.005251 0.056526 0.001723 0.137791
KSP 0.63209 0.000167 0.000810 0.023572 0.000895 0.137527
CSD 0.63227 0.000144 0.003663 0.039992 0.001917 0.138099

CSD-iPOT 0.63208 0.000143 0.003052 0.034825 0.001836 0.138225

CRPS

Non-calibrated 0.60369 0.165436 0.455876 0.659311 0.277786 0.434392
KSP 0.60940 0.001002 0.008353 0.056664 0.000493 0.147257
CSD 0.60585 0.001337 0.003582 0.063189 0.014840 0.176125

CSD-iPOT 0.60835 0.000326 0.002620 0.037597 0.001070 0.145338

DeepHit

Non-calibrated 0.63377 0.000210 0.000613 0.036041 0.002363 0.142056
KSP 0.63366 0.000438 0.000832 0.039767 0.002216 0.141942
CSD 0.63383 0.000173 0.004892 0.053137 0.000805 0.140133

CSD-iPOT 0.63364 0.000167 0.004800 0.047828 0.002833 0.141958

AFT

Non-calibrated 0.62661 0.002288 0.008219 0.081952 0.003858 0.141641
KSP 0.62661 0.000460 0.002309 0.036500 0.003495 0.142036
CSD 0.62691 0.000119 0.003200 0.039183 0.002418 0.140872

CSD-iPOT 0.62691 0.000120 0.001753 0.026187 0.003806 0.141918

Table 20: Comparison of post-processing methods for the SEER-stomach dataset. Higher C-index
values indicate better discrimination, while lower values are preferred for all other calibration metrics.

Model Method C-index↑ S-cal(20)↓ D-cal(20)↓ KS-cal↓ KM-cal↓ IBS↓

DeepSurv

Non-calibrated 0.70116 0.000180 0.000908 0.027420 0.000017 0.138086
KSP 0.70116 0.000020 0.000190 0.010721 0.000096 0.137950
CSD 0.70134 0.000790 0.005599 0.052845 0.000740 0.139080

CSD-iPOT 0.70134 0.000120 0.004336 0.044332 0.000230 0.138501

MTLR

Non-calibrated 0.69538 0.000247 0.000548 0.036700 0.002508 0.147517
KSP 0.69529 0.000480 0.000860 0.040512 0.002250 0.147458
CSD 0.69543 0.000195 0.004382 0.050593 0.000739 0.145290

CSD-iPOT 0.69532 0.000161 0.004533 0.048057 0.002610 0.147009

Parametric

Non-calibrated 0.69706 0.000673 0.003591 0.046981 0.001048 0.137726
KSP 0.70141 0.000161 0.000725 0.023063 0.001019 0.137680
CSD 0.70097 0.000867 0.003156 0.046788 0.001731 0.138664

CSD-iPOT 0.70094 0.000110 0.001523 0.031439 0.001431 0.138318

CRPS

Non-calibrated 0.67345 0.146871 0.398096 0.615755 0.271412 0.440772
KSP 0.67678 0.002785 0.018437 0.087667 0.003845 0.161579
CSD 0.67524 0.005308 0.007148 0.109374 0.016138 0.176342

CSD-iPOT 0.67611 0.000700 0.004436 0.063063 0.001403 0.159007

DeepHit

Non-calibrated 0.70345 0.000286 0.000591 0.036736 0.002516 0.144300
KSP 0.70331 0.000479 0.000787 0.041623 0.002041 0.144021
CSD 0.70349 0.000207 0.004104 0.048694 0.000907 0.142015

CSD-iPOT 0.70327 0.000151 0.004071 0.046705 0.002762 0.143716

AFT

Non-calibrated 0.68993 0.001444 0.005714 0.064478 0.001918 0.144443
KSP 0.68993 0.000211 0.001181 0.025636 0.002197 0.144783
CSD 0.69010 0.000216 0.003218 0.036171 0.002119 0.144571

CSD-iPOT 0.69010 0.000098 0.001515 0.028447 0.002509 0.145438
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Table 21: Comparison of post-processing methods for the SEER-lung dataset. Higher C-index values
indicate better discrimination, while lower values are preferred for all other calibration metrics.

Model Method C-index↑ S-cal(20)↓ D-cal(20)↓ KS-cal↓ KM-cal↓ IBS↓

DeepSurv

Non-calibrated 0.68068 0.000254 0.001268 0.032123 0.000012 0.106781
KSP 0.68068 0.000032 0.000129 0.011249 0.000162 0.106655
CSD 0.68087 0.000211 0.006196 0.056819 0.000573 0.107374

CSD-iPOT 0.68087 0.000139 0.005479 0.050332 0.000455 0.107197

MTLR

Non-calibrated 0.67676 0.000083 0.000531 0.044664 0.000273 0.109589
KSP 0.67671 0.000307 0.000624 0.044878 0.000338 0.109683
CSD 0.67695 0.000127 0.004891 0.051604 0.000394 0.109700

CSD-iPOT 0.67699 0.000119 0.004575 0.044352 0.000584 0.110014

Parametric

Non-calibrated 0.67932 0.000732 0.004613 0.051627 0.000897 0.106561
KSP 0.68106 0.000243 0.001297 0.026156 0.000780 0.106744
CSD 0.68114 0.000179 0.004534 0.047126 0.001264 0.107087

CSD-iPOT 0.68096 0.000095 0.002838 0.044666 0.001082 0.107186

CRPS

Non-calibrated 0.65632 0.192684 0.499422 0.692678 0.287116 0.419652
KSP 0.66622 0.000913 0.013576 0.061543 0.001476 0.117411
CSD 0.65819 0.001192 0.004206 0.069645 0.014257 0.148662

CSD-iPOT 0.66566 0.000407 0.004188 0.052539 0.000993 0.114890

DeepHit

Non-calibrated 0.68155 0.000093 0.000546 0.044664 0.000268 0.108290
KSP 0.68151 0.000305 0.000648 0.044670 0.000327 0.108375
CSD 0.68214 0.000127 0.004850 0.051287 0.000388 0.108417

CSD-iPOT 0.68218 0.000118 0.004547 0.043773 0.000590 0.108751

AFT

Non-calibrated 0.67360 0.002282 0.007794 0.077526 0.001585 0.111226
KSP 0.67360 0.000331 0.001690 0.029455 0.001573 0.111337
CSD 0.67378 0.000136 0.005106 0.047482 0.001409 0.111230

CSD-iPOT 0.67378 0.000080 0.002245 0.041804 0.001808 0.111826
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G Calibration plot

In this section, we present calibration plots across datasets and models.

Figure 15: Calibration plot across six models for the WHAS dataset. Each model is evaluated under
four calibration methods: Non-calibrated, KSP, CSD, and CSD-iPOT. A calibration slope close to 1
indicates better agreement between predicted and observed probabilities.

Figure 16: Calibration plot across six models for the METABRIC dataset. Each model is evaluated
under four calibration methods: Non-calibrated, KSP, CSD, and CSD-iPOT. A calibration slope close
to 1 indicates better agreement between predicted and observed probabilities.
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Figure 17: Calibration plot across six models for the GBSG dataset. Each model is evaluated under
four calibration methods: Non-calibrated, KSP, CSD, and CSD-iPOT. A calibration slope close to 1
indicates better agreement between predicted and observed probabilities.

Figure 18: Calibration plot across six models for the NACD dataset. Each model is evaluated under
four calibration methods: Non-calibrated, KSP, CSD, and CSD-iPOT. A calibration slope close to 1
indicates better agreement between predicted and observed probabilities.
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Figure 19: Calibration plot across six models for the NB-SEQ dataset. Each model is evaluated under
four calibration methods: Non-calibrated, KSP, CSD, and CSD-iPOT. A calibration slope close to 1
indicates better agreement between predicted and observed probabilities.

Figure 20: Calibration plot across six models for the SUPPORT dataset. Each model is evaluated
under four calibration methods: Non-calibrated, KSP, CSD, and CSD-iPOT. A calibration slope close
to 1 indicates better agreement between predicted and observed probabilities.
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Figure 21: Calibration plot across six models for the MIMIC-III dataset. Each model is evaluated
under four calibration methods: Non-calibrated, KSP, CSD, and CSD-iPOT. A calibration slope close
to 1 indicates better agreement between predicted and observed probabilities.

Figure 22: Calibration plot across six models for the SEER-liver dataset. Each model is evaluated
under four calibration methods: Non-calibrated, KSP, CSD, and CSD-iPOT. A calibration slope close
to 1 indicates better agreement between predicted and observed probabilities.

52



Figure 23: Calibration plot across six models for the SEER-stomach dataset. Each model is evaluated
under four calibration settings: Non-calibrated, KSP, CSD, and CSD-iPOT. A calibration slope close
to 1 indicates better agreement between predicted and observed probabilities.

Figure 24: Calibration plot across six models for the SEER-lung dataset. Each model is evaluated
under four calibration settings: Non-calibrated, KSP, CSD, and CSD-iPOT. A calibration slope close
to 1 indicates better agreement between predicted and observed probabilities.
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H Evaluation of calibration errors with 10-bin

In this section, we compare the performance of S-cal and D-cal using evaluations with 10 bins. To
determine bin locations, we consider two strategies: uniformly spaced bins and a scheme that allocates
denser bins in the tails. The results are reported in a format similar to Table 1 in the main manuscript.
For uniformly spaced bins, we use knot points at {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, while for
tail-focused bins, we use {0.05, 0.10, 0.20, 0.40, 0.50, 0.60, 0.80, 0.90, 0.95}. We denote the former
case as S-cal(10)1, D-cal(10)1, and the latter case as S-cal(10)2, D-cal(10)2.

When comparing non-calibrated baselines, KSP consistently outperforms them, regardless of the
metric. For CSD, evaluations with S-cal(10)1 and D-cal(10)1 slightly favor CSD over KSP, whereas
CSD-iPOT outperforms when evaluated using the same metrics. This is natural, since these methods
adjust quantile levels exactly at the knot points of S-cal(10)1 and D-cal(10)1. However, when
calibration errors are measured with denser bins in the tails, KSP again outperforms all methods,
consistent with the results from S-cal(20), D-cal(20), and KS-cal. From this perspective, metrics
that depend on the choice of intervals are neither consistent nor fair, highlighting the advantage of
bin-free metrics for robust comparison.

Table 22: Summary of pairwise comparisons between post-processing methods. The table shows the
number of cases where KSP outperforms its counterpart, is outperformed, or yields a tie. Numbers in
parentheses indicate statistically significant differences based on a one-sided t-test at the 0.05 level.

Method S-cal(10)1 D-cal(10)1 S-cal(10)2 D-cal(10)2 S-cal(20) D-cal(20) KS-cal

KSP 48 (45) 46 (43) 47 (44) 45 (42) 46 (45) 46 (43) 47 (45)
Non-calibrated 12 (8) 14 (11) 13 (7) 15 (9) 13 (7) 14 (6) 13 (5)

Ties 1 0 0 0 1 0 0

KSP 36 (28) 32 (29) 37 (28) 41 (37) 36 (29) 48 (45) 51 (42)
CSD 24 (19) 28 (26) 23 (15) 19 (17) 24 (19) 12 (10) 9 (8)
Ties 0 0 0 0 0 0 0

KSP 26 (14) 25 (14) 36 (20) 44 (33) 32 (21) 46 (39) 44 (29)
CSD-iPOT 34 (23) 35 (27) 24 (13) 16 (15) 28 (19) 14 (13) 16 (11)

Ties 0 0 0 0 0 0 0

I Ablation study on KSP

In this section, we present an ablation study to investigate the effectiveness of KSP. For simplicity, we
conduct experiments using the MIMIC-III dataset with three models: DeepSurv, MTLR, and CRPS.
This dataset is characterized by a relatively high calibration error, making it a suitable benchmark for
evaluating post-processing methods.

I.1 Ablation study 1: link function

We evaluate KSP using various link functions, including the logit, inverse hyperbolic tangent (atanh),
three inverse CDFs with range (−∞,∞)—probit, inverse Cauchy, and inverse Laplace—and the
complementary loglog (cloglog) function. Since atanh has a domain of (−1, 1), we rescale the CDFs
using 2F̂θ − 1 for compatibility.

Table 23 summarizes the performance across DeepSurv, MTLR, and CRPS. While the logit function
does not always yield the best score for every metric, it consistently delivers near-optimal performance
across both discrimination and calibration. Atanh and probit show reasonable performance but are
prone to numerical instability. The inverse Cauchy and inverse Laplace functions exhibit good
performance on some metrics; however, they inherently assume specific parametric forms, making
them less suitable for general-purpose use. Cloglog, intended to emphasize tail behavior, results
in moderate performance. Considering both empirical stability and robustness, we adopt the logit
function as the default link function in KSP.
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Table 23: Comparison of different link functions G used in KSP for DeepSurv, MTLR, and CRPS on
the MIMIC-III dataset. Bold values indicate the best performance within each model.

Model G C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

DeepSurv

logit 0.95826 0.003305 0.007044 0.091109 0.071617 0.203039
atanh 0.94989 0.003882 0.022601 0.099237 0.071447 0.201032
probit 0.93952 0.005747 0.046071 0.120879 0.076192 0.203363

inverse Cauchy 0.95803 0.003273 0.009515 0.096415 0.069989 0.200894
inverse Laplace 0.95804 0.004483 0.014649 0.111702 0.074329 0.208606

cloglog 0.95797 0.004379 0.014051 0.109403 0.074808 0.209548

MTLR

logit 0.94089 0.003552 0.004132 0.084090 0.000409 0.012512
atanh 0.94086 0.003632 0.004106 0.084987 0.000408 0.012503
probit 0.94155 0.004588 0.011219 0.109099 0.000405 0.012455

inverse Cauchy 0.94150 0.004397 0.009183 0.103863 0.000417 0.012737
inverse Laplace 0.94112 0.003970 0.006271 0.095429 0.000397 0.012535

cloglog 0.94090 0.003831 0.005342 0.091252 0.000409 0.012462

CRPS

logit 0.95339 0.013238 0.012086 0.149600 0.000378 0.012503
atanh 0.95339 0.013067 0.011765 0.149861 0.000381 0.012514
probit 0.95339 0.012670 0.012858 0.145194 0.000379 0.012507

inverse Cauchy 0.95341 0.015722 0.027449 0.184878 0.000755 0.012856
inverse Laplace 0.95339 0.013383 0.012086 0.158158 0.000399 0.012402

cloglog 0.95339 0.013458 0.013700 0.149499 0.000377 0.012588

I.2 Ablation study 2: impact of using top-k deviations

The proposed KSP in the main text minimizes the KS-cal, which corresponds to the maximum
deviation between the predicted and empirical CDFs. In this ablation study, we evaluate an alternative
formulation that minimizes the sum of the k largest deviations instead of just the maximum alone. We
report the performance of KSP under different values of k to examine whether aggregating multiple
top deviations yields improved calibration or stability.

As shown in Table 24, increasing k leads to marginal improvements in calibration metrics; however,
the gains are minimal. Notably, for MTLR, larger k values result in a decline in the C-index and
a rise in calibration errors. These findings indicate that minimizing only the maximum deviation
(k = 1) is sufficient to ensure effective calibration without sacrificing predictive performance.

Table 24: Ablation study on the choice of top-k deviations in the KSP. We report results for k ∈
{1, 5, 10, 50, 100} across three models (DeepSurv, MTLR, CRPS) on MIMIC-III. The case k = 1
corresponds to the original KSP formulation using only the maximum deviation.

Model Top k C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

DeepSurv

1 0.95826 0.003305 0.007044 0.091109 0.071617 0.203039
5 0.95826 0.003313 0.007051 0.090815 0.071621 0.203101

10 0.95826 0.003252 0.006966 0.090368 0.071437 0.202842
50 0.95826 0.003233 0.007143 0.090056 0.071202 0.202644

100 0.95826 0.003217 0.007276 0.089720 0.071107 0.202672

MTLR

1 0.94089 0.003552 0.004132 0.084090 0.000409 0.012512
5 0.94086 0.003703 0.004485 0.084696 0.000410 0.012518

10 0.94082 0.003764 0.004679 0.085963 0.000411 0.012511
50 0.94074 0.003840 0.005624 0.085756 0.000415 0.012516

100 0.94078 0.003854 0.005538 0.085496 0.000416 0.012523

CRPS

1 0.95339 0.013238 0.012086 0.149600 0.000378 0.012503
5 0.95339 0.013079 0.012191 0.148102 0.000373 0.012438

10 0.95339 0.013475 0.012308 0.150593 0.000378 0.012480
50 0.95339 0.013189 0.012114 0.150729 0.000372 0.012440

100 0.95339 0.012869 0.012076 0.148483 0.000370 0.012400
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I.3 Ablation study 3: Form of the deviation

Originally, the KSP was defined using the absolute value of deviations in Step 4. We also experiment
with an alternative formulation using the squared error. Since the quadratic form penalizes large devi-
ations more heavily than the absolute value, it may potentially lead to better calibration. Additionally,
we report the optimization time in seconds (mean and standard deviation) to compare computational
efficiency.

As shown in Table 25, although the squared objective slightly emphasizes larger deviations, the
absolute form achieves nearly identical performance in both discrimination and calibration. More
importantly, it is more efficient in training time.

Table 25: Effect of using squared vs. absolute deviation in KSP optimization. Time is reported in
seconds (mean and standard deviation).

Model Form C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS Time

DeepSurv Absolute 0.95826 0.003305 0.007044 0.091109 0.071617 0.203039 3.0163 (0.4331)
Squared 0.95826 0.003318 0.007094 0.090898 0.071853 0.203535 3.4383 (0.6512)

MTLR Absolute 0.94089 0.003552 0.004132 0.084090 0.000409 0.012512 3.0810 (0.8526)
Squared 0.94216 0.003563 0.004232 0.084132 0.000407 0.012502 4.1825 (0.6761)

CRPS Absolute 0.95339 0.013238 0.012086 0.149600 0.000378 0.012503 3.4411 (0.8088)
Squared 0.95339 0.013238 0.012086 0.149600 0.000378 0.012503 6.6034 (1.8035)
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I.4 Ablation study 4: hyperparameters

To assess the contribution of each hyperparameter used in KSP—namely a, b, and α—we conduct an
ablation study by selectively choosing each component. This results in a total of 7 configurations,
and the performance of each setting is reported to evaluate the individual and joint effects of the
hyperparameters.

As shown in Table 26, using all three hyperparameters a, b, and α yields consistently strong perfor-
mance across models. While the relative importance of each parameter may vary depending on the
model, all three appear to contribute comparably to the overall calibration and discrimination quality.

Table 26: Ablation study on the three hyperparameters a, b, and α used in KSP. Each row shows the
performance when a subset of these hyperparameters is used.

Model Hyperparameter C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

DeepSurv

Non-calibrated 0.95839 0.036649 0.064547 0.250907 0.104279 0.276509
a 0.95826 0.032545 0.050528 0.231501 0.102629 0.269723
b 0.95826 0.011849 0.041974 0.183154 0.077582 0.230868
α 0.95827 0.004572 0.016652 0.114728 0.074552 0.214151
a, b 0.95826 0.005908 0.025273 0.127957 0.076690 0.213331
a, α 0.95826 0.004852 0.017134 0.113908 0.075403 0.210912
b, α 0.95826 0.004119 0.011969 0.105770 0.073772 0.207425
a, b, α 0.95826 0.003305 0.007044 0.091109 0.071617 0.203039

MTLR

Non-calibrated 0.94494 0.015402 0.035474 0.232722 0.000410 0.014391
a 0.94212 0.002954 0.010749 0.092681 0.000403 0.012762
b 0.94075 0.016474 0.037806 0.209210 0.000380 0.013446
α 0.94077 0.017945 0.041025 0.216149 0.000415 0.013717
a, b 0.94168 0.004578 0.011120 0.106987 0.000403 0.012481
a, α 0.94164 0.004438 0.010614 0.105226 0.000406 0.012481
b, α 0.94175 0.011401 0.029399 0.184595 0.000346 0.012655
a, b, α 0.94089 0.003552 0.004132 0.084090 0.000409 0.012512

CRPS

Non-calibrated 0.95342 0.214466 0.258780 0.759872 0.020505 0.072193
a 0.95342 0.083571 0.942654 0.499678 0.194741 0.236811
b 0.95341 0.029452 0.065234 0.278981 0.000986 0.014843
α 0.95342 0.048102 0.153166 0.357446 0.002043 0.021537
a, b 0.95339 0.013067 0.012301 0.151768 0.000396 0.012490
a, α 0.95340 0.043578 0.125829 0.340774 0.000908 0.017905
b, α 0.95340 0.022179 0.043438 0.242998 0.000822 0.013355
a, b, α 0.95339 0.013238 0.012086 0.149600 0.000378 0.012503

On the next page, Figure 25 illustrates how each hyperparameter affects F̃ (x).
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(a) Effect of varying a with fixed b = 0, α = 1

(b) Effect of varying b with fixed a = 1, α = 1

(c) Effect of varying α with fixed a = 1, b = 0

Figure 25: Visualization of how each hyperparameter (a, b, α) influences F̃ (x). The leftmost plot in
each row is the baseline: a = 1, b = 0, α = 1.
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J Adaptability of KS-cal to in-processing procedures

As discussed in the main paper, the original KS-cal can be adapted for in-processing by reformulating
it as a penalty term:

KS-cal(k) =
k∑

j=1

(
D(N−j+1)

)2
Here, k determines how many of the largest deviations are penalized, controlling the trade-off
between discrimination and calibration. Using only the maximum deviation (k = 1) can be unstable,
as the evaluation point qj varies during training with changes in F̂θ. To reduce this instability, we
aggregate the top-k deviations. The squared form improves gradient behavior and allows for smoother
optimization.

We evaluate k ∈ {1, 5, 10} on the MIMIC-III dataset using DeepSurv, MTLR, and CRPS, and
compare the results to X-cal with 20 bins, denoted as X-cal(20). To assess each method’s ability
to manage the trade-off between calibration and discrimination, we plot calibration error against
the C-index for various values of λ and compute the area under the resulting curve. A smaller area
indicates a better trade-off.

As shown in Figure 26, increasing λ generally reduces calibration error but also lowers the C-index.
Larger values of k tend to yield more favorable trade-offs. While S-cal(20), D-cal(20), and KS-cal
show consistent decreases with increasing λ, KM-cal and IBS do not, particularly for models other
than DeepSurv.

Although KS-cal(10) clearly outperforms X-cal(20) in terms of area, the comparison may be mislead-
ing, as it includes points with low C-index values that are rarely acceptable in practice. Moreover,
computing the full curve requires densely sampling λ, which incurs a high computational cost. Thus,
we turn to selecting a single optimal λ per method.
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Figure 26: Trade-off between C-index and calibration errors on the MIMIC-III dataset using DeepSurv,
MTLR, and CRPS. The legend indicates the area under the curve for each method, with the percentage
decrease relative to X-cal shown in parentheses.
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Figure 27: Trade-off between C-index and calibration error across different values of λ. The optimal
point minimizes the Euclidean distance to (1, 0).

Table 27: Example of finding optimal λ.
λ C-index S-cal(20) D-cal(20) KS-cal CE 1− C-index (scaled) CE (scaled) Distance Optimal
0 0.95839 0.036661 0.064546 0.250918 0.054722 0.6135 1.0000 1.1732 X

0.5 0.95749 0.010718 0.017268 0.151156 0.016945 0.6268 0.2021 0.6586 O
1 0.95483 0.006342 0.014011 0.132187 0.012609 0.6660 0.1105 0.6751 X
2 0.94375 0.004108 0.010805 0.113729 0.009282 0.8294 0.0403 0.8304 X
3 0.93218 0.003108 0.009007 0.100064 0.007376 1.0000 0.0000 1 X

J.1 Selection of the regularization parameter

The core challenge in in-processing methods is choosing a regularization parameter λ that balances
calibration and discrimination. While prior work often prioritizes one over the other (Karandikar
et al., 2021), our approach seeks to balance both by minimizing the Euclidean distance to the ideal
point (1, 0) in the C-index–calibration error space:

Distance =

√
(1− C-index)2 + (calibration error)2

We use S-cal(20), D-cal(20), and KS-cal to compute calibration error and exclude KM-cal and IBS
due to their non-monotonic behavior with respect to λ. Since each metric shows different sensitivity
to λ (Figure 26), we average the three and denote this composite as CE. We use the squared KS-cal
in this average to account for its magnitude.

To ensure both components contribute equally to the distance, we apply the following min-max
normalization:

1− C-index =⇒ 1− C-index
1−minλ (C-index)

CE =⇒ CE −minλ (CE)
maxλ (CE)−minλ (CE)

This normalization brings both metrics to the same scale before computing the distance. An example
of the scaled values and computed distances is shown in Table 27.

Using this criterion, we compare the best-performing configurations of KS-cal(k), X-cal(20), and
KSP. The results are summarized in Table 28. In-processing methods can sometimes yield lower
calibration error than post-processing approaches, but this often comes at the cost of a reduced
C-index. They may be appropriate when calibration is prioritized over predictive accuracy, despite
a higher computational cost. Addressing this trade-off remains an important direction for future
research.
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Table 28: Comparison of in-processing methods with their optimal λ values and KSP on the MIMIC-
III dataset using DeepSurv, MTLR, and CRPS.

Model Method C-index S-cal(20) D-cal(20) KS-cal KM-cal IBS

DeepSurv

KS-cal(1) 0.93170 0.003199 0.010169 0.110807 0.018586 0.103577
KS-cal(5) 0.92872 0.003000 0.009330 0.101107 0.010723 0.077831

KS-cal(10) 0.93218 0.003108 0.009007 0.100064 0.009279 0.072327
X-cal(20) 0.93422 0.003895 0.007950 0.117502 0.020680 0.104861

KSP 0.95826 0.003305 0.007044 0.091109 0.071617 0.203039

MTLR

KS-cal(1) 0.88891 0.002555 0.007000 0.083445 0.000590 0.018006
KS-cal(5) 0.90702 0.003735 0.009094 0.098823 0.000527 0.016721

KS-cal(10) 0.90546 0.003365 0.008331 0.094365 0.000539 0.016840
X-cal(20) 0.89491 0.002862 0.006477 0.096721 0.000586 0.018059

KSP 0.94218 0.003581 0.004200 0.084666 0.000405 0.012505

CRPS

KS-cal(1) 0.91555 0.068442 0.062303 0.349527 0.021180 0.088294
KS-cal(5) 0.93445 0.013617 0.016511 0.168024 0.012609 0.072749

KS-cal(10) 0.93854 0.005743 0.008530 0.118517 0.009256 0.060236
X-cal(20) 0.92507 0.051386 0.028927 0.335169 0.014853 0.072469

KSP 0.95339 0.013238 0.012086 0.149600 0.000378 0.012503

K Additional information on experiment

Table 29 reports the post-processing time (in seconds) for KSP, CSD, and CSD-iPOT across all
real datasets. Table 30 summarizes the hyperparameter settings used for training. All models were
optimized using the ADAM optimizer with early stopping (patience = 200).

Table 29: Post-processing time (in seconds) based on KSP, CSD, and CSD-iPOT across datasets,
reported as Mean (SD).

Dataset Model KSP CSD CSD-iPOT Dataset Model KSP CSD CSD-iPOT

WHAS

DeepSurv 0.7678 (0.3811) 1.7969 (1.6016) 0.2228 (0.0076)

SUPPORT

DeepSurv 0.7058 (0.2725) 4.2659 (0.9457) 1.8757 (0.0417)
MTLR 0.7283 (0.6594) 0.7995 (0.6289) 0.2590 (0.0137) MTLR 1.5205 (0.6209) 3.2952 (0.4357) 2.0184 (0.0528)

Parametric 2.2840 (1.0490) 0.5261 (0.3060) 0.2533 (0.0130) Parametric 2.6104 (0.7900) 4.7179 (1.0102) 1.7611 (0.0585)
CRPS 0.9598 (0.5243) 0.4331 (0.0076) 0.2282 (0.0069) CRPS 1.4559 (0.9106) 2.8087 (0.0428) 1.7310 (0.0464)

DeepHit 0.4653 (0.3115) 0.4900 (0.0101) 0.2544 (0.0075) DeepHit 1.5589 (0.6242) 3.1376 (0.3221) 1.7854 (0.0279)
AFT 1.0208 (0.1975) 15.5978 (1.2419) 0.2419 (0.0116) AFT 0.7861 (0.2624) 30.0743 (2.5449) 1.6943 (0.0723)

METABRIC

DeepSurv 0.7950 (0.3403) 0.6054 (0.2809) 0.2940 (0.0110)

MIMIC-III

DeepSurv 3.0368 (0.4841) 2.4220 (0.4372) 1.6408 (0.0412)
MTLR 1.1833 (0.5774) 0.6906 (0.2434) 0.2993 (0.0167) MTLR 3.0571 (0.8218) 42.1341 (2.9090) 1.7573 (0.0561)

Parametric 1.1773 (0.7385) 1.1316 (1.3924) 0.2933 (0.0114) Parametric 1.6159 (0.5322) 34.6717 (2.7579) 1.7789 (0.0668)
CRPS 0.8682 (0.4417) 1.1776 (1.1617) 0.2889 (0.0105) CRPS 3.0967 (0.7620) 11.5253 (15.4780) 1.7573 (0.0517)

DeepHit 1.0289 (0.5412) 0.5619 (0.1199) 0.2982 (0.0133) DeepHit 0.9375 (0.4121) 9.6657 (7.2375) 1.7658 (0.0623)
AFT 1.4309 (0.2378) 14.3036 (1.3326) 0.2627 (0.0090) AFT 3.9551 (0.6115) 72.0553 (1.4179) 1.7570 (0.0672)

GBSG

DeepSurv 0.9000 (0.4123) 1.9335 (1.1640) 0.3427 (0.0125)

SEER-liver

DeepSurv 1.2076 (0.3057) 10.9716 (0.1832) 7.8048 (0.1496)
MTLR 1.5787 (0.7238) 0.6346 (0.0108) 0.3503 (0.0126) MTLR 0.3937 (0.1692) 12.7019 (0.1489) 9.5496 (0.0995)

Parametric 1.0653 (0.5401) 0.6255 (0.0138) 0.3475 (0.0155) Parametric 3.0441 (0.5889) 10.7083 (0.1670) 7.5654 (0.1371)
CRPS 1.2178 (0.5923) 2.0031 (1.9268) 0.3455 (0.0192) CRPS 3.4469 (0.7613) 10.7443 (0.1496) 7.4120 (0.1100)

DeepHit 1.4526 (0.6882) 0.6363 (0.0272) 0.3456 (0.0043) DeepHit 0.3226 (0.1697) 12.7441 (0.1791) 9.6160 (0.1950)
AFT 1.1944 (0.1961) 16.0761 (0.8339) 0.3262 (0.0213) AFT 3.2206 (0.8557) 22.6053 (2.7416) 7.0594 (0.1624)

NACD

DeepSurv 1.4460 (0.6432) 2.6621 (1.2473) 0.3734 (0.0099)

SEER-stomach

DeepSurv 1.0196 (0.2596) 17.1235 (2.0229) 10.8288 (0.1893)
MTLR 1.5000 (0.6986) 0.7431 (0.1895) 0.3765 (0.0042) MTLR 0.4129 (0.3515) 17.8684 (0.2084) 13.8391 (1.6858)

Parametric 0.9123 (0.4075) 0.6825 (0.0500) 0.3766 (0.0111) Parametric 3.1469 (0.8141) 15.0044 (1.2413) 10.5314 (0.3136)
CRPS 1.4590 (0.5881) 0.6606 (0.0220) 0.3743 (0.0136) CRPS 3.6969 (0.8608) 14.7305 (0.9472) 10.1087 (0.1355)

DeepHit 0.9239 (0.5399) 1.0276 (0.7442) 0.3801 (0.0099) DeepHit 0.4406 (0.3845) 17.8186 (0.2356) 13.6322 (0.3151)
AFT 0.8895 (0.2228) 9.0016 (1.1539) 0.3283 (0.0104) AFT 2.8866 (0.6546) 38.4584 (4.0847) 9.5965 (0.1246)

NB-SEQ

DeepSurv 0.6386 (0.2721) 1.4287 (0.0315) 0.8005 (0.0187)

SEER-lung

DeepSurv 2.5802 (0.5329) 209.7240 (4.3867) 194.2884 (4.3613)
MTLR 0.6330 (0.2507) 1.5685 (0.4306) 0.8268 (0.0279) MTLR 0.7715 (0.1797) 274.7291 (3.9333) 199.1179 (21.5456)

Parametric 1.5743 (0.4695) 2.1082 (0.5367) 0.8223 (0.0384) Parametric 6.4046 (1.6300) 243.2266 (32.0076) 194.5959 (26.4842)
CRPS 2.1784 (0.4662) 19.0665 (3.1521) 0.8214 (0.0388) CRPS 6.3627 (1.6321) 200.5405 (2.4764) 174.5297 (2.2676)

DeepHit 0.7653 (0.3243) 1.4631 (0.0579) 0.8161 (0.0157) DeepHit 0.3815 (0.2236) 270.7449 (27.0538) 207.6804 (12.4522)
AFT 2.5767 (0.3960) 17.5392 (2.2009) 0.7266 (0.0251) AFT 7.3328 (1.5618) 384.4848 (10.3814) 175.9503 (2.5391)
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Table 30: Set-ups used in experiments.
Dataset Model Batch size Learning rate Maximum epoch Dropout rate Hidden layer Number of bins

WHAS

DeepSurv 64 1e-4 1000 0.1 24/12/12 -
MTLR 64 1e-3 2000 - - 20

Parametric 64 1e-3 1000 0.1 24/12/12 -
CRPS 128 1e-3 1000 0.1 24/12/12 -

DeepHit 64 1e-3 2000 0.1 24/12/12 40
AFT 64 1e-1 1000 - - -

METABRIC

DeepSurv 128 1e-4 1000 0.3 36/18/18 -
MTLR 64 1e-3 2000 - - 20

Parametric 128 1e-3 1000 0.3 36/18/18 -
CRPS 256 1e-3 1000 0.3 36/18/18 -

DeepHit 128 1e-3 2000 0.3 36/18/18 40
AFT 128 1e-1 1000 - - -

GBSG

DeepSurv 128 1e-4 1000 0.3 28/14/14 -
MTLR 128 1e-3 2000 - - 20

Parametric 128 1e-3 1000 0.3 28/14/14 -
CRPS 256 1e-3 1000 0.3 28/14/14 -

DeepHit 128 1e-3 2000 0.3 28/14/14 40
AFT 128 1e-1 1000 - - -

NACD

DeepSurv 128 1e-4 1000 0.1 51/51/51 -
MTLR 128 1e-3 2000 - - 20

Parametric 128 1e-3 1000 0.1 51/51/51 -
CRPS 256 1e-3 1000 0.1 51/51/51 -

DeepHit 128 1e-3 2000 0.1 51/51/51 40
AFT 128 1e-1 1000 - - -

NB-SEQ

DeepSurv 256 1e-4 1000 0.3 96/48/48 -
MTLR 128 1e-3 2000 - - 20

Parametric 256 1e-3 1000 0.3 96/48/48 -
CRPS 512 1e-3 1000 0.3 96/48/48 -

DeepHit 256 1e-3 2000 0.3 96/48/48 40
AFT 256 1e-1 1000 - - -

SUPPORT

DeepSurv 512 1e-4 1000 0.3 56/28/28 -
MTLR 512 1e-3 2000 - - 20

Parametric 512 1e-3 1000 0.3 56/28/28 -
CRPS 1024 1e-2 1000 0.3 56/28/28 -

DeepHit 512 1e-3 2000 0.3 56/28/28 40
AFT 512 1e-1 1000 - - -

MIMIC-III

DeepSurv 512 1e-4 1000 0.1 60/30/30 -
MTLR 512 1e-3 2000 - - 20

Parametric 512 1e-3 1000 0.1 60/30/30 -
CRPS 1024 1e-3 1000 0.1 60/30/30 -

DeepHit 512 1e-3 1000 0.1 60/30/30 100
AFT 512 1e-1 1000 - - -

SEER-liver

DeepSurv 1000 1e-4 1000 0.1 60/30/30 -
MTLR 1000 1e-2 2000 - - 20

Parametric 1000 1e-3 1000 0.1 60/30/30 -
CRPS 2000 1e-3 1000 0.1 60/30/30 -

DeepHit 1000 1e-3 2000 0.1 60/30/30 20
AFT 1000 1e-1 1000 - - -

SEER-stomach

DeepSurv 1000 1e-4 1000 0.1 60/30/30 -
MTLR 1000 1e-3 2000 - - 10

Parametric 1000 1e-3 1000 0.1 60/30/30 -
CRPS 2000 1e-3 1000 0.1 60/30/30 -

DeepHit 1000 1e-3 2000 0.1 60/30/30 10
AFT 1000 1e-1 1000 - - -

SEER-lung

DeepSurv 5000 1e-4 1000 0.1 60/30/30 -
MTLR 5000 1e-3 2000 - - 10

Parametric 5000 1e-3 1000 0.1 60/30/30 -
CRPS 10000 1e-3 1000 0.1 60/30/30 -

DeepHit 5000 1e-3 2000 0.1 60/30/30 10
AFT 5000 1e-1 1000 - - -
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