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ABSTRACT

We consider synchronous data-parallel neural network training with fixed large
batch sizes. While the large batch size provides a high degree of parallelism, it
likely degrades the generalization performance due to the low gradient noise scale.
We propose a two-phase adaptive learning rate adjustment framework that tackles
the poor generalization issue in large-batch training. Our empirical study shows
that the number of training epochs before decaying the learning rate strongly af-
fects the final accuracy. The framework performs extra epochs using the large
learning rate even after the loss is flattened. After sufficient training under the
noisy condition, the framework decays the learning rate based on the observed
loss landscape at run-time. Our experimental results demonstrate that the pro-
posed heuristics and algorithm enable to use an extremely large batch size while
maintaining the model accuracy. For CIFAR-10 classification with ResNet20,
our method achieves 92.66% accuracy using 8, 192 batch size, which is close to
92.83% achieved using 128 batch size, at a negligible extra computational cost.

1 INTRODUCTION

Synchronous Stochastic Gradient Descent (SGD) with data parallelism is the most popular paral-
lelization strategy for neural network training. In data parallel training, the degree of parallelism is
limited by the number of samples in each mini-batch. Thus, increasing the batch size is an intuitive
solution to improve the scalability. However, many researchers have theoretically and empirically
shown that the large batch size can degrade generalization performance (Keskar et al. (2016); You
et al. (2017); Goyal et al. (2017); Li et al. (2019); Lewkowycz et al. (2020)). The large batch size
reduces the variance of stochastic gradients, and it results in making the model rapidly converge
to a local minimum. Such a fast convergence under a low noise condition is known to harm the
generalization performance in non-convex optimization problems.

Researchers have put much effort into improving the generalization performance of large-batch
training. There are offline learning rate scaling methods such as ‘linear scaling rule’ (Goyal et al.
(2017)) and ‘root scaling rule’ (Hoffer et al. (2017)). Layer-wise Adaptive Rate Scaling (LARS)
is the most popular online learning rate adjustment method (You et al. (2017)). AdaScale SGD
(Johnson et al. (2020)) adaptively adjusts the learning rate based on estimated gradient variance at
run-time. Recently, cosine annealing (Loshchilov & Hutter (2016)) has been highlighted based on
its empirical successes. There are also several optimizers that tackle the generalization performance
issue, such as Sharpness-Aware Minimization (SAM) (Foret et al. (2020)), SmoothOut (Wen et al.
(2018)), and EXTRAP-SGD (Lin et al. (2020)). While all these works tackle the poor generalization
issue from different angles, the impact of learning rate decay is largely overlooked.

In this work, we focus on how to decay the learning rate for accurate large-batch training of neural
networks. Specifically, we address the following two questions:

• When should the learning rate be decayed?
• How much should the learning rate be decayed?

By answering these, one can better understand the impact of learning rate decay on the generalization
performance and design learning rate schedules that achieve the small-batch accuracy together with
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the large-batch scalability. The most conventional learning rate adjustment strategy is to decay the
learning rate by a small constant factor once the training loss is flattened. It is also common to
employ a deterministic schedule such that the learning rate is reduced after 50% and 75% of the
pre-defined epoch budget (He et al. (2016); Goyal et al. (2017); Lin et al. (2018; 2020)). Such naive
decay schedules can significantly harm the generalization performance.

We propose a two-phase learning rate adjustment framework for large-batch neural network training.
Our framework is built upon critical heuristics regarding the impact of the learning rate on the
generalization performance. The first phase begins with a large learning rate that encourages the
model to explore parameter space rather than quickly falling into a minimum. We find that the
length of the training under such a noisy condition strongly affects the generalization performance.
Based on our observations and analysis, we present a simple but effective heuristic about how to
determine the length of training before decaying the learning rate. The proposed heuristic is verified
by analyzing how the margin distribution of neural networks evolves during the training. After the
model is trained enough under the noisy condition, in the second phase, our framework enforces the
convergence by adaptively decaying the learning rate based on the observed geometric information
of parameter space. Our empirical study demonstrates that the Hessian-aware learning rate decay
enables the model to converge to a flatter minimum that can better generalize to unknown data.

We evaluate the performance of the proposed learning rate adjustment framework using popular
benchmark datasets such as CIFAR-10, CIFAR-100, SVHN, and ImageNet. Our experimental re-
sults demonstrate that our heuristics and adaptive decay algorithm allow to use an extremely large
batch size without a significant loss in validation accuracy. We also show that the validation accuracy
can be further improved by harmonizing our framework with other large-batch training techniques.
For example, when our framework is used together with LARS, the large-batch (8, 192) training of
ResNet-20 (He et al. (2016)) on CIFAR-10 achieves 92.66±0.2% validation accuracy that is almost
the same as the small-batch (128) training accuracy 92.83± 0.1%.

Our contributions can be summarized as follows.

1. We propose a two-phase learning rate adjustment framework for accurate large-batch train-
ing. The framework is independently applicable to many optimization algorithms and
learning rate scaling methods.

2. Our empirical study demonstrates that the generalization performance of large-batch train-
ing can be remarkably improved by the appropriate learning rate adjustment. We provide a
margin distribution analysis to verify our heuristics.

3. We present comprehensive experimental results across several benchmark datasets and neu-
ral networks. We compare the proposed framework to the popular large-batch training
methods such as linear scaling rule and LARS.

2 BACKGROUND

2.1 SYNCHRONOUS SGD WITH DATA PARALLELISM

In this work, we consider minimization problems of the form

min
w∈Rd

[
F (w) :=

1

N

N∑
i=1

f(w, ξi)

]
, (1)

where w ∈ Rd represents the model parameters, N is the number of training samples, ξi is the
ith training sample, and f is a non-convex loss function. Mini-batch Stochastic Gradient Descent
(SGD) iteratively adjusts the model parameters using the gradients computed from a random subset
of the training samples (called mini-batch) until the stop condition is satisfied.

Synchronous SGD with data parallelism is the most popular parallelization strategy for mini-batch
SGD. GivenN training samples, eachm random samples (a mini-batch) are evenly distributed to all
P workers and processed in parallel. Since the workload is partitioned on the data dimension, this
parallelization strategy is called data parallelism. Each worker is assigned with m

P training samples
and calculates the gradient of loss function f with respect to the model parameters w using the
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assigned samples. Then, the local gradient sums are aggregated across all the workers using inter-
process communications. Since each worker computes a fixed number of local gradient sums from
each mini-batch, the communication cost is independent of m. Given a fixed N , the larger the m,
the fewer the communications per epoch. Thus, the scaling efficiency is improved as m increases.
This property motivates researchers to employ large batch sizes for data-parallel training.

2.2 PREVIOUS LARGE-BATCH TRAINING METHODS

Recently, it has been empirically showed that the batch size can be increased to a certain problem-
specific threshold without an accuracy drop (Goyal et al. (2017)). Given the best-tuned batch size
B0 and learning rate µ0, they proposed to use a proportionally increased learning rate for large-batch
training such that µ = µ0

B
B0

. This technique is called ‘linear scaling ruleq. In (Smith et al. (2017)),
the authors analyzed the gradient noise scale g in momentum SGD as follows.

g ≈ µN

m(1− κ)
, (2)

where κ is the momentum factor. Given a fixed batch size m, the smaller the learning rate µ, the
lower the noise scale. This analysis explains why the linear scaling rule practically works well.
AdaScale is an adaptive learning rate scaling method (Johnson et al. (2020)), which scales the learn-
ing rate at run-time based on the estimated gradient variance. While it achieves good validation
accuracy, it still assumes the conventional hand-tuned learning rate decay schedules. You et al. pro-
posed Layer-wise Adaptive Rate Scaling (LARS) that adjusts the learning rate in a layer-wise way
(You et al. (2017)). Several large-scale scientific applications used LARS to scale up their deep
learning solutions (Mathuriya et al. (2018); Kurth et al. (2018)). LARS effectively improves the
generalization performance of large-batch training by having one extra hyper-parameter (confidence
coefficient) and a moderate extra computational cost.

Sharpness-Aware Miminization (SAM) is an optimizer that effectively improves the generalization
performance by minimizing a surrogate loss (Foret et al. (2020)). Note that SAM is a general opti-
mizer that is not specifically designed for large-batch training. While it successfully improves the
generalization performance, the gradients are calculated twice per iteration having a non-negligible
extra computational cost.

Some researchers proposed algorithms that generate inherent noise to improve the generalization
performance. SmoothOut (Wen et al. (2018)) perturbs the model parameters using uniform noise
every iteration. Such noisy gradients help the model head towards a local minimum that achieves
better generalization performance. EXTRAP-SGD (Lin et al. (2020)) is based on a similar principle.

3 TWO-PHASE LARGE-BATCH TRAINING

We propose an adaptive learning rate adjustment framework for large-batch neural network training.
The framework consists of two phases: exploration and convergence phases. Algorithm 1 shows the
framework applied to mini-batch SGD.

3.1 EXPLORATION PHASE

A Close Look at Training Progress – When training neural networks, it is common to decay the
learning rate when the training loss is flattened. The flattened loss implies that the training cannot
be further progressed using the current learning rate due to the high noise scale. However, we find
that such loss-based learning rate schedules can significantly harm the generalization performance
especially in large-batch training.

To better understand the training progress, we analyze how margin distribution is improved during
training. The margin is a distance of the decision boundary to each training data point, which
represents the network’s generalization performance. We use a margin approximation technique
proposed in (Jiang et al. (2018)). The detailed settings are provided in Appendix. Figure 1 a) and
b) show the comparison between CIFAR-10 loss curve and margin curve using a batch size of 128
and 8, 192, respectively. Figure 1 c) and d) show the comparison between CIFAR-100 loss curve
and margin curve using a batch size of 128 and 8, 192, respectively. The learning rate is fixed to the
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Algorithm 1: Two-phase adaptive LR adjustment framework applied to mini-batch SGD.
Input: µ0: initial LR, w0: initial model, β: LR decay factor, E: total epoch budget,

D: training dataset
1 µ← µ0 ;
2 Begin the training in exploration phase. ;
3 for e = 1 to E do
4 we = Mini-batch SGD (we−1, D);
5 if exploration phase then
6 if phase switching condition is met then
7 h′max ← maximum Hessian Eigenvalue(we);
8 f ′(we)← average training loss obtained in epoch e;
9 Switch to convergence phase.;

10 else if convergence phase then
11 hmax ← maximum Hessian Eigenvalue(we);
12 f(we)← average training loss obtained in epoch e;
13 if h′max > 0 then
14 if h′max < hmax and f ′(we) < f(we) then
15 µ = βµ;
16 h′max = 0;

17 else
18 h′max = hmax;
19 f ′(we) = f(we);

initial value for the whole training. The vertical bars on the loss curves indicate the epoch in which
a plateau is detected (no improvement for 10 epochs). When using a large batch size, the loss is
flattened first while the margin is still being increased. In contrast, when using a small batch size,
the margin is sharply increased in the early epochs and then the loss is flattened later.

This observation provides a key insight about the training progress. In large-batch training, the
training loss plateau does not indicate a sufficient training progress in terms of the generalization
performance. Although the training loss is not effectively reduced after the plateau, the underlying
margin distance can be further increased. Table 1 shows a CIFAR-10 validation accuracy comparison
across different learning rate decay schedules. The later the first learning rate decay step, the higher
the final accuracy. This result is well aligned with our margin distribution analysis.

Extra Epochs After Loss Plateau – It is not practical to calculate the margin at run-time due to
the expensive computational cost. Instead, based on our analysis, we propose a simple but effective
heuristic about the learning rate decay in large-batch training as follows.

• (Phase switching condition): If a loss plateau is detected, train the model for α extra epochs
before decaying the learning rate.

We call the epochs before the first learning rate decay step exploration phase. The conventional loss-
based decay schedules have a relatively short exploration phase, and it can degrade the generalization
performance. The above heuristic suggests increasing the length of exploration phase so that the
model has sufficient time to not only fit to the training data but also improve the underlying margin
distribution. Given this general heuristic, one can easily determine α depending on the allowed
epoch budget. In our experiments, when a loss plateau is detected in x epochs, we set α to x/3.
We found such a simple heuristic considerably improved the final validation accuracy across many
representative benchmark datasets. The effectiveness of this heuristic will be verified in Section 4.

3.2 CONVERGENCE PHASE

Given the model that has been sufficiently trained under a noisy condition in exploration phase, our
focus now is on making the model rapidly converge to a minimum by adjusting the degree of noise.
We call these epochs convergence phase.
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a) CIFAR-10 small-batch b) CIFAR-10 large-batch c) CIFAR-100 small-batch d) CIFAR-100 large-batch
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Figure 1: The comparisons of margin distribution and loss curves. CIFAR-10 (ResNet20): a) and b)
show the curves for batch size 128 and 8,192. CIFAR-100 (WRN28-10): c) and d) show the curves
for batch size 128, and 8,192. The left axis is margin and right axis is loss. The dotted vertical lines
indicate the epoch in which the loss plateaus (no improvement for 10 epochs).

Table 1: CIFAR-10 classification performance comparison. The epoch budget is fixed to 300.
model batch size Before decay After 1st decay After 2nd decay accuracy

ResNet-20 8192

100 100 100 87.72± 0.2%
150 75 75 90.23± 0.1%
200 50 50 91.43± 0.1%
250 25 25 91.40± 0.1%

Learning Rate for Convergence – Given a loss function F (w, x), the loss surface nearby a local
minimum w∗ can be approximated using a quadratic approximation as follows.

F (w, x) ≈ F (w∗, x) + 1

2
(w − w∗)>H∗(w − w∗), (3)

where x is the input data sample and H∗ is the mean of positive-definite Hessian at the minimum.
Note that the first-order derivative is supposed to be zero at the minimum, and thus Equation 3 only
has the second-order derivative term. By plugging in the gradient of Equation 3 into the gradient
descent equation, wt+1 = wt − ηt∇F (wt), we can derive the following condition for convergence
(Seong et al. (2018)).

wt+1 ≈ wt − ηtH∗(wt − w∗) (4)
wt+1 − w∗ ≈ (I− ηtH∗)(wt − w∗), (5)

where ηt is the learning rate at iteration t. So, the convergence can be guaranteed if the learning rate
is sufficiently small as below.

|1− ηthmax| < 1 (6)

0 < hmax <
2

ηt
, (7)

where hmax is the maximum Eigenvalue of the Hessian. This analysis shows that the model can
converge to a certain stationary point if the learning rate is smaller than 2

hmax
. That is, the sharper

the loss landscape, the smaller the learning rate should be to guarantee the convergence. Motivated
by this observation, we design a Hessian-aware learning rate adjustment strategy as follows.

Hessian-Aware Adaptive Learning Rate Decay – Algorithm 1 adjusts the learning rate by jointly
considering the training loss and the Hessian information. Once the training proceeds to the con-
vergence phase, the algorithm calculates the largest Hessian Eigenvalue hmax at the end of every
epoch. Then, it compares hmax to that of the previous epoch h

′

max to estimate the loss landscape.
If h

′

max < hmax and f
′
(w) < f(w), the learning rate is multiplied by a positive constant β smaller

than 1. The algorithm resets h
′

max to 0 at line 16 after decaying the learning rate so that the learning
rate is not decayed in two consecutive epochs. This setting enables to fairly compare the Hessian
Eigenvalues obtained using the same learning rate only. It also stabilizes the training loss by enforc-
ing the model to be trained using the same learning rate for at least two epochs.

In convergence phase, Algorithm 1 focuses on the situation in which the training loss and the prin-
cipal Hessian Eigenvalue increase together. Figure 2 presents simplified illustrations of such a case.
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Figure 2: Simplified example illustrations of two possible cases in which the training loss increases
together with the principal Hessian Eigenvalue: a) The model jumps to the opposite side in the same
valley or b) the model jumps out of the current valley and moves to another sharper valley.

The curve is the loss function f(w) and the black dot is the model with a single parameter w. First,
if the learning rate is large, the model can jumps to the opposite side in the same valley (Figure 2.a).
If the opposite side is sharper, the larger principal Hessian Eigenvalue will be observed. Second,
the model can even jump out of the current valley and move to another sharper valley (Figure 2.a).
In both cases, as shown in Equation 7, the smaller learning rate can encourage the model to rapidly
move toward the minimum. Although the loss increases, if the Hessian Eigenvalue is not increased,
we consider that the model is moving toward a flatter region and thus do not adjust the learning rate.

The proposed adaptive learning rate adjustment algorithm is also motivated by the inexact line search
algorithms such as backtracking line search (Armijo (1966)). Backtracking line search algorithm
iteratively finds the learning rate for every parameter update, that is small enough to effectively
reduce the loss (Nocedal & Wright (2006)). The algorithm begins with a large initial learning rate
and repeatedly reduces it until Armijo-Goldstein’s condition (Armijo (1966)) is satisfied. However,
such iterative full gradient computations can be even more expensive than multiple SGD epochs
making it impractical. Instead, our algorithm adjusts the learning rate only when it detects the
condition where the loss landscape has been sharper and the training is not further progressed.

Hessian Approximation – Computing the Hessian of neural networks is considered as infeasible
due to the large dimensions. So, it is essential to efficiently approximate the Hessian during training
in order to find good learning rates without significantly increasing the training time. We approxi-
mate the principal Hessian Eigenvalue hmax in multiple steps as follows.

• Obtain the Hessian information from the largest output-side layer.

• The principal Hessian Eigenvalue is directly approximated using power iteration method.

• Stochastic approximation of Hessian Eigenvalue using one large mini-batch.

First, we calculate the principal Hessian Eigenvalue only at the largest output-side layer instead of
the whole model parameters. This can be considered as a diagonal approximation of Hessian with
respect to the largest right-bottom corner diagonal block. It has been observed that, for Convolu-
tional Neural Networks, the output layer converges first and then all the other layers converge from
the bottom up (Raghu et al. (2017)). Likely, Recurrent Neural Networks are also known to converge
from the bottom up (Morcos et al. (2018)). Thus, by adjusting the learning rate based on the Hessian
information at the largest output-side layer, the noise scale can be reduced after most of the other
layers have been sufficiently trained.

Second, we use the power-iteration method to directly approximate the largest Hessian Eigenvalue
without computing Hessian (LeCun et al. (1992)). The Hessian-vector product can be approximated
using finite difference method as follows.

Hv ≈ ∇F (W + αv) +∇F (W )

α
, (8)

whereW is the model parameters, v is a random vector, and α is a small constant. Given any random
vector v that is not orthogonal to the principal Eigenvector of H , the power iteration method makes
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v converge to the principal Eigenvector.

v ← Hv

‖v‖
(9)

By applying Equation 8 to 9, the following power iteration-based Hessian Eigenvalue approximation
method can be derived.

v ← ∇F (W + αv) +∇F (W )

α‖v‖
(10)

Third, we approximate the Hessian Eigenvalue using only a single large mini-batch. In the large-
batch training, each mini-batch is likely large enough to represent the whole dataset. Thus, hmax
can be accurately approximated from only one large mini-batch instead of the total dataset. For in-
stance, in our CIFAR-10 classification experiments, we found that the principal Hessian Eigenvalue
approximated from a single mini-batch of size 8, 192 was almost the same as the full approximation.

In summary, our framework approximates the principal Hessian Eigenvalue hmax at the largest
output-side layer using a single large mini-batch based on the power-iteration method.

4 EXPERIMENTS

Experimental Settings – We use TensorFlow 2.4.0 and Horovod 0.19.0 for our experiments. We run
all the experiments on a distributed-memory cluster that consists of 4 compute nodes each of which
has 2 NVIDIA v100 GPUs. Due to the limited compute resources, we split each large mini-batch
to multiple sub-batches and process them sequentially. The model parameters are updated using
the gradients averaged across all the sub-batches. This approach allows to run large-batch training
exploiting the limited memory space while not affecting the model accuracy.

Hyper-Parameter Settings – For all the benchmark datasets, we borrow the hyper-parameter set-
tings from the reference works and further tune the learning rate. For CIFAR-10 and CIFAR-100,
we use the settings reported in (Lin et al. (2020)). We use the ImageNet settings reported in (Goyal
et al. (2017)). We tune all the hyper-parameters from the scratch for SVHN. The detailed settings
are found in Appendix. We use momentum SGD with a momentum factor of 0.9, and the gradual
learning rate warmup (Goyal et al. (2017)) is applied to the first 10 epochs. The loss is considered
as flattened if it is not reduced for 5% of the epoch budget.

4.1 CLASSIFICATION PERFORMANCE COMPARISON

We compare the classification performance across five different configurations.

1. small-batch: The best-tuned small batch size and learning rate.
2. large-batch: The large-batch training based on linear scaling rule (Goyal et al. (2017)).
3. LARS: Layer-wise Adaptive Rate Scaling (You et al. (2017)).
4. two-phase: The proposed two-phase framework.
5. two-phase + LARS: The proposed two-phase framework together with LARS.

Table 2, 3, 4, and 5 show the accuracy comparisons for CIFAR-10, CIFAR-100, SVHN, and Im-
ageNet, respectively. The full learning curves can be found in Appendix. In the decay epochs
column, adaptive(k) means that the learning rate is decayed after k epochs. Once the first loss
plateau is detected in α epochs, we switch the phase to convergence phase after α/3 extra epochs.
All the reported results are the average accuracy across 5 separate runs. In all the experiments, the
proposed two-phase framework shows a significantly improved validation accuracy compared to the
popular linear scaling rule-based large-batch training (large-batch). These results demonstrate that
the proposed heuristics and the adaptive learning rate decay algorithm effectively improve the gen-
eralization performance in large-batch training. In addition, the accuracy is further improved when
our framework is applied to LARS. That is, our learning rate adjustment improves the generalization
performance independently of the layer-wise learning rate scaling method.

In many previous works, ResNet50 is trained on ImageNet for 90 epochs. However, we observed
a non-negligible amount of accuracy improvement when the epoch budget was increased to 100.
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Table 2: CIFAR-10 classification comparison (ResNet20 training for 300 epochs).
Settings Batch size LR LR decay policy Decay epochs LARS coefficient Validation acc.

small-batch 128 0.1 step-wise (β = 0.1) 150 / 225 - 92.83± 0.1%
large-batch

8, 192

6.4 step-wise (β = 0.1) 150 / 225 - 90.40± 0.2%
LARS 3.5 step-wise (β = 0.1) 150 / 225 0.01 92.10± 0.1%

two-phase 3.8 adaptive (β = 0.5) adaptive (141± 13) - 92.48± 0.2%
two-phase + LARS 3.5 adaptive (β = 0.5) adaptive (153± 9) 0.01 92.66± 0.1%

Table 3: CIFAR-100 classification comparison (WideResNet28-10 training for 250 epochs).
Settings Batch size LR LR decay policy Decay epochs LARS coefficient Validation acc.

small-batch 128 0.1 step-wise (β = 0.1) 125 / 185 - 81.09± 0.1%
large-batch

8, 192

6.4 step-wise (β = 0.1) 125 / 185 - 76.89± 0.2%
LARS 6 step-wise (β = 0.1) 125 / 185 0.01 78.88± 0.2%

two-phase 3 adaptive (β = 0.5) adaptive (153± 15) - 78.90± 0.2%
two-phase + LARS 6 adaptive (β = 0.5) adaptive (141± 19) 0.01 80.34± 0.2%

Table 4: SVHN classification comparison (WideResNet16-8 training for 160 epochs).
Settings Batch size LR LR decay policy Decay epochs LARS coefficient Validation acc.

small-batch 256 0.01 step-wise (β = 0.1) 80 / 120 - 98.55± 0.1%
large-batch

4, 096

0.32 step-wise (β = 0.1) 80 / 120 - 98.11± 0.2%
LARS 0.32 step-wise (β = 0.1) 80 / 120 0.001 98.32± 0.1%

two-phase 0.32 adaptive (β = 0.5) adaptive (90± 13) - 98.29± 0.1%
two-phase + LARS 0.32 adaptive (β = 0.5) adaptive (93± 19) 0.001 98.48± 0.2%

Table 5: ImageNet classification comparison (ResNet50 training for 100 epochs).
Settings Batch size LR LR decay policy Decay epochs LARS coefficient Validation acc.

small-batch 256 0.1 step-wise (β = 0.1) 30 / 60 / 80 - 76.79± 0.2%
large-batch

16, 384

6.4 step-wise (β = 0.1) 30 / 60 / 80 - 74.91± 0.2%
LARS 32 step-wise (β = 0.1) 30 / 60 / 80 0.001 76.15± 0.2%

two-phase 6.4 adaptive (β = 0.5) adaptive (42± 4) - 76.17± 0.1%
two-phase + LARS 32 adaptive (β = 0.5) adaptive (39± 3) 0.001 76.67± 0.2%

Within 90 epochs, our algorithm does not sufficiently detect the decay conditions to reduce the
learning rate. When we increase the epoch budget to 100, the algorithm decays the learning rate
once or twice more, and it results in improving the accuracy from 75.98% to 76.17%. This obser-
vation gives us an interesting insight into finding the proper epoch budget for accurate large-batch
training. We suggest finding the proper epoch budget that allows the model to sufficiently improve
the underlying margin distribution.

Impact of Two-Phase Adjustment on Hessian – Figure 3 shows the principal Hessian Eigenvalue
comparisons between large-batch and two-phase. The Eigenvalues are collected from a) CIFAR-10
training and b) ImageNet training that correspond to Table 2 and 5, respectively. The learning rate
for large-batch is decayed after 50% and 75% of the epoch budget by a factor of 10, following the
reference works (Lin et al. (2020); Goyal et al. (2017)). We see that the longer exploration phase
and the adaptive decay in convergence phase effectively suppress the magnitude of the principal
Hessian Eigenvalues. It is known that the narrow Hessian Eigenvalue spectrum represents better
generalization performance Keskar et al. (2016).

4.2 SENSITIVITY ON HYPER-PARAMETERS

Length of Exploration Phase – We compare the accuracy across different lengths of exploration
phase. This experiment verifies the effectiveness of the heuristic discussed in Section 3.1. Table 6
shows the experimental results. The extra epoch column shows the number of epochs after a loss
plateau is detected. Note that, we fix the epoch budget to 300 and 250 for CIFAR-10 and CIFAR-
100, respectively. Thus, if exploration phase is increased too much, it may harm the final accuracy
due to the insufficient training epochs under the low noise condition.

When the length of exploration phase is increased by 20%, the accuracy is slightly lower than
30% and 40% settings. This implies that the underlying margin has not been sufficiently improved
before decaying the learning rate. As expected, 50% setting slightly drops the accuracy due to the
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Figure 3: A principle Hessian Eigenvalue comparison between large-batch and two-phase.

Table 6: CIFAR-10 / CIFAR-100 classification results with different lengths of exploration phase.
Extra epochs Batch size LR CIFAR-10 CIFAR-100

20%

8, 192
CIFAR-10: 3.5

92.03± 0.2% 78.45± 0.1%
30% 92.66± 0.1% 80.34± 0.2%
40%

CIFAR-100: 6
92.54± 0.2% 80.29± 0.2%

50% 92.03± 0.2% 78.84± 0.3%
50% (increased epoch budget) 92.86± 0.1% 80.56± 0.1%

Table 7: CIFAR-10 / CIFAR-100 classification results with different β settings.
Decay factor Batch size LR CIFAR-10 CIFAR-100
β = 0.3

8, 192
CIFAR-10: 3.5

92.31± 0.1% 79.71± 0.1%
β = 0.4 92.63± 0.1% 80.03± 0.1%
β = 0.5

CIFAR-100: 6
92.66± 0.1% 80.34± 0.2%

β = 0.6 92.18± 0.1% 79.64± 0.1%
β = 0.7 91.46± 0.1% 77.23± 0.2%

insufficient training under the low noise condition. When the epoch budget is increased by 10%, as
shown on the bottom row, the loss is well minimized and it achieves remarkably higher accuracy.

Decay Factor β – In Algorithm 1, the learning rate is decayed by a factor of β to enforce the
convergence. Table 7 shows the CIFAR-10 and CIFAR-100 accuracy across different β settings.
We fix the total number of epochs to 300 and 250 for CIFAR-10 and CIFAR-100, respectively. We
see that β around 0.5 generally works well achieving a higher accuracy than the other β settings.
Depending on the allowed epoch budget, however, a large β value, such as β ≥ 0.6, can potentially
achieve better accuracy while increasing the total training time.

Extra Computational Cost – The Hessian approximation causes an extra computational cost at
the end of every epoch. While the extra computational cost depends on the model architecture, we
found that the proposed algorithm generally increases the epoch time by 3% ∼ 5%. For instance,
estimating the hmax at the largest output-side layer of ResNet20 takes 0.15 ± 0.1 seconds while
the average epoch time is 5.7 ± 0.5 seconds. When measuring the timings, we run 8 processes
on four machines each of which has 2 NVIDIA v100 GPUs. The local batch size is 1024 and the
power iteration method loops over the same batch 10 times. The timings are averaged across 100
epochs. Overall, the proposed Hessian approximation method does not cause an expensive extra
computational cost while effectively obtaining the second order information.

5 CONCLUSION

Considering ever-increasing size of available data and models in this Big Data era, effective scaling
of deep learning solutions is critical to tackle large-scale real-world problems. We believe accurate
large-batch training techniques can provide researchers with unprecedented opportunities to solve
large-scale problems. This paper provides practical insights to deep learning users regarding how
to schedule the learning rate to achieve the scalability of the large-batch training together with the
high accuracy of the small-batch training. The framework is readily applicable to any deep learning
solutions independently of the optimization algorithms, model architectures, and hyper-parameter
settings. Harmonizing the proposed framework with other generalization-focused optimization tech-
niques can be a promising future work.
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6 CODE OF ETHICS

Our work does not deliver potentially harmful insights or conflicts of interests. We also do not find
any potential inappropriate application or privacy/security issues. The datasets we used in our study
are all public benchmark datasets, and our source code will be opened once the paper is accepted.

7 REPRODUCIBILITY STATEMENT

The software versions, implementation details, hyper-parameter settings can be found in the first two
paragraphs of Section 4. The data preprocessing details can be found in Appendix A.2. The details
about margin distribution approximation method we used is explained in Appendix A.1. The entire
source code used in our experiments will be published as an open source once the paper is accepted.
We believe one can exactly reproduce our experimental results following the provided descriptions.
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A APPENDIX

A.1 MARGIN DISTRIBUTION ANALYSIS

We analyze how the margin distribution evolves during training to better understand the impact of
the length of exploration phase on the generalization performance. The decision boundary between
two classes i and j is defined as follows.

df,x,(i,j) := min
δ
‖δ‖2 s.t. fi(x+ δ) = fj(x+ δ) (11)

Because the above ‘exact’ distance for a deep neural network is intractable, we employ an approxi-
mation technique proposed in (Jiang et al. (2018)).

df,x,(i,j) =
fi(x)− fj(x)

‖∇fi(x)−∇fj(x)‖2
, (12)

where fi(x) is the output of the network logit i given the model parameters x, and ∇fi(x) is the
gradients with respect to the model parameters of logit i. We use the normalized margin d̂f,x,(i,j)
that is df,x,(i,j) divided by the square root of total variation of the input x. Similarly to the reference
work (Jiang et al. (2018)), we ignore the margins smaller than the first quartile and larger than the
third quartile. We collect the margins across all training samples and compare the accumulated
margin to the training loss curve. The margin curves are shown in Figure 1.

A.2 DATA AUGMENTATIONS AND DETAILED SETTINGS

To enable reproduction, we summarize the detailed settings including data preprocessing and aug-
mentation settings.

CIFAR-10 / CIFAR-100 – For each training image, all individual pixels are subtracted by the mean
values and divided by the standard deviation values. We mostly follow the hyper-parameter settings
used in (Lin et al. (2018; 2020)). The CIFAR-10 training is performed for 300 epochs. The CIFAR-
100 training is performed for 250 epochs.

SVHN – SVHN consists of 73K training samples, 26K validation samples, and 531K extra training
samples. We use both sets of training samples when training the model and use the validation sam-
ples for evaluating the trained model. Likely to CIFAR datasets, each training image is normalized
using the pixel-wise statistics. The training is performed for 160 epochs following the settings in
(Zagoruyko & Komodakis (2016)). The drop out factor is set to 0.5.

ImageNet – We adopt several data preprocessing methods used in (He et al. (2019)). First, each
training sample is normalized in a channel-wise way. Each image is resized to 256 × 384 pixels
keeping the original aspect ratio, and 224× 224 image is randomly cropped from the resized image.
The cropped image is horizontally flipped with a probability of 0.5. The brightness is randomly
adjusted using a maximum delta value of 32/255. Then, the image color is randomly adjusted in
HSV color space using the maximum delta value of 0.1. The saturation is also augmented between
0.6 and 1.4. Finally, the contrast is also augmented between 0.6 and 1.4. We slightly modify
ResNet50 model such that the last batch normalization gamma parameters are initialized to 0 in all
the residual blocks. The bias parameters at the last fully-connected layer are regularized like all the
other weight parameters.

The learning rate decay schedule for small-batch, large-batch, and LARS follows the hand-tuned
setting used in Goyal et al. (2017). Although many previous works train ResNet50 for 90 epochs
only, we observed that the accuracy was still improved after 90 epochs. So, we perform the training
for 100 epochs in total.

A.3 LEARNING CURVES

Here, we show the full training loss curves and the validation curves. To clearly show the perfor-
mance of two-phase, we show the learning curves without using LARS.
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Figure 4: CIFAR-10 (ResNet20) learning curves comparison. The hyper-parameters are shown in
Table 2.
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Figure 5: CIFAR-100 (WideResNet28-10) learning curves comparison. The hyper-parameters are
shown in Table 3.
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Figure 6: SVHN (WideResNet16-8) learning curves comparison. The hyper-parameters are shown
in Table 4.
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Figure 7: ImageNet (ResNet50) learning curves comparison. The hyper-parameters are shown in
Table 5.
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