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Abstract

Integrating functions on discrete domains into neural networks is key to develop-
ing their capability to reason about discrete objects. But, discrete domains are
(I) not naturally amenable to gradient-based optimization, and (II) incompatible
with deep learning architectures that rely on representations in high-dimensional
vector spaces. In this work, we address both difficulties for set functions, which
capture many important discrete problems. First, we develop a framework for
extending set functions onto low-dimensional continuous domains, where many
extensions are naturally defined. Our framework subsumes many well-known
extensions as special cases. Second, to avoid undesirable low-dimensional neural
network bottlenecks, we convert low-dimensional extensions into representations
in high-dimensional spaces, taking inspiration from the success of semidefinite
programs for combinatorial optimization. Empirically, we observe benefits of our
extensions for unsupervised neural combinatorial optimization, in particular with
high-dimensional representations.

1 Introduction

While neural networks are highly effective at solving tasks grounded in basic perception (Chen et al.,
2020; Vaswani et al., 2017), discrete algorithmic and combinatorial tasks such as partitioning graphs,
and finding optimal routes or shortest paths have proven more challenging. This is, in part, due to the
difficulty of integrating discrete operations into neural network architectures (Battaglia et al., 2018;
Bengio et al., 2021; Cappart et al., 2021a). One immediate difficulty with functions on discrete spaces
is that they are not amenable to standard gradient-based training. Another is that discrete functions
are typically expressed in terms of scalar (e.g., Boolean) variables for each item (e.g., node, edge to
be selected), in contrast to the high-dimensional and continuous nature of neural networks’ internal
representations. A natural approach to addressing these challenges is to carefully choose a function
on a continuous domain that extends the discrete function, and can be used as a drop-in replacement.

There are several important desiderata that such an extension should satisfy in order to be suited to
neural network training. First, an extension should be valid, i.e., agree with the discrete function
on discrete points. It should also be amenable to gradient-based optimization, and should avoid
introducing spurious minima. Beyond these requirements, there is one additional critical consideration.
In both machine learning and optimization, it has been observed that high-dimensional representations
can make problems “easier”. For instance, neural networks rely on high-dimensional internal
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representations for representational power and to allow information to flow through gradients, and
performance suffers considerably when undesirable low-dimensional bottlenecks are introduced into
network architectures (Belkin et al., 2019; Veličković & Blundell, 2021). In optimization, lifting
to higher-dimensional spaces can make the problem more well-behaved (Goemans & Williamson,
1995; Shawe-Taylor et al., 2004; Du et al., 2018). Therefore, extending discrete functions to high-
dimensional domains may be critical to the effectiveness of the resulting learning process, yet remains
largely an open problem.

With those considerations in mind, we propose a framework for constructing extensions of discrete
set functions onto high-dimensional continuous spaces. The core idea is to view a continuous point x
in space as an expectation over a distribution (that depends on x) supported on a few carefully chosen
discrete points, to retain tractability. To evaluate the discrete function at x, we compute the expected
value of the set function over this distribution. The method resulting from a principled formalization
of this idea is computationally efficient and addresses the key challenges of building continuous
extensions. Namely, our extensions allow gradient-based optimization and address the dimensionality
concerns, allowing any function on sets to be used as a computation step in a neural network.

First, to enable gradient computations, we present a method based on a linear programming (LP)
relaxation for constructing extensions on continuous domains where exact gradients can be computed
using standard automatic differentiation software (Abadi et al., 2016; Bastien et al., 2012; Paszke
et al., 2019). Our approach allows task-specific considerations (e.g., a cardinalilty constraint) to
be built into the extension design. While our initial LP formulation handles gradients, and is a
natural formulation for explicitly building extensions, it replaces discrete Booleans with scalars in the
unit interval [0, 1], and hence does not yet address potential dimensionality bottlenecks. Second, to
enable higher-dimensional representations, we take inspiration from classical SDP relaxations, such
as the celebrated Goemans-Williamson maximum cut algorithm (Goemans & Williamson, 1995),
which recast low-dimensional problems in high-dimensions. Specifically, our key contribution is to
develop an SDP analog of our original LP formulation, and show how to lift LP-based extensions
into a corresponding high-dimensional SDP-based extensions. Our general procedure for lifting
low-dimensional representations into higher dimensions aligns with the neural algorithmic reasoning
blueprint (Veličković & Blundell, 2021), and suggests that classical techniques such as SDPs may be
effective tools for combining deep learning with algorithmic processes more generally.

2 Problem Setup

Consider a ground set [n] = {1, . . . , n} and an arbitrary function f : 2[n] → R ∪ {∞} defined on
subsets of [n]. For instance, f could determine if a set of nodes or edges in a graph has some structural
property, such as being a path, tree, clique, or independent set (Bello et al., 2016; Cappart et al.,
2021a). Our aim is to build neural networks that use such discrete functions f as an intermediate layer
or loss. In order to produce a model that is trainable using standard auto-differentiation software, we
consider a continuous domain X onto which we would like to extend f , with sets embedded into
X via an injective map e : 2[n] → X . For instance, when X = [0, 1]n we may take e(S) = 1S , the
Boolean vector whose ith entry is 1 if i ∈ S, and 0 otherwise. Our approach is to design an extension

F : X → R

of f and consider the neural network NN2 ◦ F ◦ NN1 (if f is used as a loss, NN2 is simply the
identity). To ensure that the extension is valid and amenable to automatic differentiation, we require
that 1) it agrees with f on all discrete points: F(e(S)) = f(S) for all S ⊆ [n] with f(S) < ∞, and
2) F is continuous.

There is a rich existing literature on extensions of functions on discrete domains, particularly in the
context of discrete optimization (Lovász, 1983; Grötschel et al., 1981; Calinescu et al., 2011; Vondrák,
2008; Bach, 2019; Obozinski & Bach, 2012; Tawarmalani & Sahinidis, 2002). These works provide
promising tools to reach our goal of neural network training. Building on these, our method is the
first to use semi-definite programming (SDP) to combine neural networks with set functions. There
are, however, different considerations in the neural network setting as compared to optimization.
The optimization literature often focuses on a class of set functions and aims to build extensions
with desirable optimization properties, particularly convexity. We do not focus on convexity, aiming
instead to develop a formalism that is as flexible as possible. Doing so maximizes the applicability of
our method, and allows extensions adapted to task-specific desiderata (see Section 3.1).
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Figure 1: SFEs: Fractional points x are reinterpreted as expectations x = ES∼px [1S ] over the
distribution px(S) on sets. A value is assigned at x by exchanging the order of f and the expectation:
F(x)S∼px [f(S)]. Unlike f , the extension F is amenable to gradient-based optimization.

3 Scalar Set Function Extensions

We start by presenting a general framework for extending set functions onto X = [0, 1]n, where a set
S ⊆ [n] is viewed as the Boolean indicator vector e(S) = 1S ∈ {0, 1}n whose ith entry is 1 if i ∈ S
and 0 otherwise. We call extensions onto [0, 1]n scalar since each item i is represented by a single
scalar value—the ith coordinate of x ∈ X . These scalar extensions will become the core building
blocks in developing high-dimensional extensions in Section 4.

A classical approach to extending discrete functions on sets represented as Boolean indicator vectors
1S is by computing the convex-envelope, i.e., the point-wise supremum over linear functions that
lower bound f (Falk & Hoffman, 1976; Bach, 2019). Doing so yields a convex function whose value
at a point x ∈ [0, 1]n is the solution of the following linear program (LP):

F̃(x) = max
z,b∈Rn×R

{x⊤z+ b} subject to 1⊤
S z+ b ≤ f(S) for all S ⊆ [n]. (primal LP)

The set Pf of all feasible solutions (z, b) is known as the (canonical) polyhedron of f (Obozinski
& Bach, 2012) and can be seen to be non-empty by taking the coordinates of z to be sufficiently
small (possibly negative). Variants of this optimization program are frequently encountered in the
theory of matroids and submodular functions (Edmonds, 2003) where Pf is commonly known as the
submodular polyhedron (see Appendix A for an extended discussion). By strong duality, we may
solve the primal LP by instead solving its dual:

F̃(x) = min
{yS≥0}S⊆[n]

∑
S⊆[n]

ySf(S) subject to
∑
S⊆[n]

yS1S = x,
∑
S⊆[n]

yS = 1, for all S ⊆ [n],

(dual LP)

whose optimal value is the same as the primal LP. The dual LP is always feasible (see e.g., the Lovász
extension in Section 3.1). However, F̃ does not necessarily agree with f on discrete points in general,
unless the function is convex-extensible (Murota, 1998).

To address this important missing piece, we relax our goal from solving the dual LP to instead seeking
a feasible solution to the dual LP that is an extension of f . Since the dual LP is defined for a fixed
x, a feasible solution must be a function yS = px(S) of x. If px were to be continuous and a.e.
differentiable in x then the value

∑
S px(S)f(S) attained by the dual LP would also be continuous

and a.e. differentiable in x since gradients flow through the coefficients yS = px(S), while f(S) is
treated as a constant in x. This leads us to the following definition:
Definition (Scalar SFE). A scalar SFE F of f is defined at a point x ∈ [0, 1]n by coefficients px(S)
such that yS = px(S) is a feasible solution to the dual LP. The extension value is given by

F(x) ≜
∑
S⊆[n]

px(S)f(S)
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and we require the following properties to hold for all S ⊆ [n]: 1) px(S) is a continuous function of
x and 2) F(1S) = f(S) for all S ⊆ [n].

Efficient evaluation of F requires that px(S) is supported on a small collection of carefully chosen
sets S. This choice is a key inductive bias of the extension, and Section 3.1 gives many examples
with only O(n) non-zero coefficients. Examples include well-known extensions, such as the Lovász
extension, as well as a number of novel extensions, illustrating the versatility of the SFE framework.

Thanks to the constraint
∑

S yS = 1 in the dual LP, scalar SFEs have a natural probabilistic
interpretation. An SFE is defined by a probability distribution px such that fractional points x can
be written as an expectation ES∼px [1S ] = x over discrete points using px. The extension itself can
be viewed as arising from exchanging f and the expectation operation: F(x) = ES∼px [f(S)]. This
interpretation is summarized in Figure 1.

Scalar SFEs also enjoy the property of not introducing any spurious minima. That is, the minima of
F coincide with the minima of f up to convex combinations. This property is especially important
when training models of the form f ◦ NN1 (i.e., f is a loss function) since F will guide the network
NN1 towards the same solutions as f .

Proposition 1 (Scalar SFEs have no bad minima). If F is a scalar SFE of f then:

1. minx∈X F(x) = minS⊆[n] f(S)

2. argminx∈X F(x) ⊆ Hull
(
argmin1S :S⊆[n] f(S)

)
See Appendix B for proofs.

Obtaining set solutions. Given an architecture F ◦ NN1 and input problem instance G, we often
wish to produce sets as outputs at inference time. To do this, we simply compute x = NN1(G), and
select the set S in suppS{px(S)} with the smallest value f(S). This can be done efficiently if, as is
typically the case, the cardinality of suppS{px(S)} is small.

3.1 Constructing Scalar Set Function Extensions

A key characteristic of scalar SFEs is that there are many potential extensions of any given f . In
this section, we provide examples of scalar SFEs, illustrating the capacity of the SFE framework for
building knowledge about f into the extension. See Appendix C for all proofs and further discussion.

Lovász extension. Re-indexing the coordinates of x so that x1 ≥ x2 . . . ≥ xn, we define px to
be supported on the sets S1 ⊆ S2 ⊆ · · · ⊆ Sn with Si = {1, 2, . . . , i} for i = 1, 2, . . . , n. The
coefficient are defined as ySi

= px(Si) := xi − xi+1 and px(S) = 0 for all other sets. The resulting
Lovász extension—known as the Choquet integral in decision theory (Choquet, 1954; Marichal,
2000)—is a key tool in combinatorial optimization due to a seminal result: the Lovász extension is
convex if and only if f is submodular (Lovász, 1983), implying that submodular minimization can be
solved in polynomial-time (Grötschel et al., 1981).

Bounded cardinality Lovász extension. A collection {Si}ni=1 of subsets of [n] can be encoded in
an n × n matrix S ∈ {0, 1}n×n whose ith column is 1Si

. In this notation, the dual LP constraint∑
S⊆[n] yS1S = x can be written as Sp = x, where the ith coordinate of p defines px(Si). The

bounded cardinality extension generalizes the Lovász extension to focus only on sets of cardinality at
most k ≤ n. Again, re-index x so that x1 ≥ x2 . . . ≥ xn. Use the first k sets S1 ⊆ S2 ⊆ · · · ⊆ Sk,
where Si = {1, 2, . . . , i}, to populate the first k columns of matrix S. We add further n − k sets:
Sk+i = {j+ i | j ∈ Sk} for i = 1, . . . , n− k, to fill the rest of S. Finally, px(Si) can be analytically
calculated from p = S−1x, where S is invertible since it is a Toeplitz banded upper triangular matrix.

Permutations and involutory extensions. We use the same S,p notation. Let S be an elementary
permutation matrix. Then it is involutory, i.e., SS = I, and we may easily determine p = Sx given
S and x. Note that px(Si) = pi must be non-negative since x and S are non-negative entry-wise.
Finally, restricting x to the n-dimensional Simplex guarantees that ∥p∥1 ≤ 1, which ensures px is a
probability distribution (any remaining mass is placed on the empty set). The extension property can
be guaranteed on singleton sets as long as the chosen permutation admits a fixed point at the argmax
of x. Any elementary permutation matrix S with such a fixed point yields a valid SFE.
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Singleton extension. Consider a set function f for which f(S) = ∞ unless S has cardinality one.
To ensure F is finite valued, px must be supported only on the sets Si = {i}, i = 1, . . . , n. Assuming
x is sorted so that x1 ≥ x2 . . . ≥ xn, define px(Si) = xi − xi+1. It is shown in Appendix C that this
defines a scalar SFE, except for the dual LP feasibility. However, when using F as a loss function,
minimization drives x towards the minima minx F(x) which are dual feasible. So dual infeasibility
is benign in this instance and we approach the feasible set from the outside.

Multilinear extension. The multilinear extension, widely used in combinatorial optimization
(Calinescu et al., 2011), is supported on all sets with coefficients px(S) =

∏
i∈S xi

∏
i/∈S(1− xi),

the product distribution. In general, evaluating the multilinear extension exactly requires 2n calls to
f , but for several interesting set functions, e.g., graph cut, set cover, and facility location, it can be
computed efficiently in Õ(n2) time (Iyer et al., 2014).

4 Neural Set Function Extensions

This section builds on the scalar SFE framework—where each item i in the ground set [n] is
represented by a single scalar—to develop extensions that use high-dimensional embeddings to avoid
introducing low-dimensional bottlenecks into neural network architectures. The core motivation that
lifting problems into higher dimensions can make them easier is not unique to deep learning. For
instance, it also underlies kernel methods (Shawe-Taylor et al., 2004) and the lift-and-project method
for integer programming (Lovász & Schrijver, 1991).

Our method takes inspiration from prior successes of semi-definite programming for combinatorial
optimization (Goemans & Williamson, 1995) by extending onto X = Sn+, the set of n× n positive
semi-definite (PSD) matrices. With this domain, each item is represented by a vector, not a scalar.

4.1 Lifting Set Function Extensions to Higher Dimensions

We embed sets into Sn+ via the map e(S) = 1S1
⊤
S . To define extensions on this matrix domain, we

translate the linear programming approach of Section 3 into an analogous SDP formulation:

max
Z⪰0,b∈R

{Tr(X⊤Z) + b} subject to
1

2
Tr((1S1

⊤
T + 1T1

⊤
S )Z) + b ≤ f(S ∩ T ) for S, T ⊆ [n],

(primal SDP)

where we switch from lower case letters to upper case since we are now using matrices. Next,
we show that this choice of primal SDP is a natural analog of the original LP that provides the
right correspondences between vectors and matrices by proving that primal LP feasible solutions
correspond to primal SDP feasible solutions with the same objective value (see Appendix A for a
discussion on the SDP and its dual). To state the result, note that the embedding e(S) = 1S1

⊤
S is a

particular case of the correspondence x ∈ [0, 1]n 7→
√
x
√
x
⊤.

Proposition 2. (Containment of LP in SDP) For any x ∈ [0, 1]n, define X =
√
x
√
x
⊤ with the

square-root taken entry-wise. Then, for any (z, b) ∈ Rn
+×R that is primal LP feasible, the pair (Z, b)

where Z = diag(z), is primal SDP feasible and the objective values agree: Tr(X⊤Z) = z⊤x.

Proposition 2 establishes that the primal SDP feasible set is a spectrahedral lift of the positive primal
LP feasible set, i.e., feasible solutions of the primal LP lead to feasible solutions of the primal SDP.
As with scalar SFEs, to define neural SFEs we consider the dual SDP:

min
{yS,T≥0}

∑
S,T⊆[n]

yS,T f(S ∩ T ) subject to X ⪯
∑

S,T⊆[n]

1

2
yS,T (1S1

⊤
T + 1T1

⊤
S ) and

∑
S,T⊆[n]

yS,T = 1

(dual SDP)

We demonstrate that for suitable X this SDP has feasible solutions via an explicit construction in
Section 4.2. This leads us to define a neural SFE which, as with scalar SFEs, is given by a feasible
solution to the dual SDP that satisfies the extension property whose coefficients are continuous in X:
Definition (Neural SFE). A neural set function extension of f at a point X ∈ Sn+ is defined as

F(X) ≜
∑

S,T⊆[n]

pX(S, T )f(S ∩ T ),
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where yS,T = pX(S, T ) is a feasible solution to the dual SDP and for all S, T ⊆ [n]: 1) pX(S, T ) is
continuous at X and 2) it is valid, i.e., F(1S1

⊤
S ) = f(S) for all S ⊆ [n].

4.2 Constructing Neural Set Function Extensions

We constructed a number of explicit examples of scalar SFEs in Section 3.1. For neural SFEs we
employ a different strategy. Instead of providing individual examples of neural SFEs, we develop a
single recipe for converting any scalar SFE into a corresponding neural SFE. Doing so allows us to
build on the variety of scalar SFEs and provides an additional connection between scalar and neural
SFEs. In Section 5 we show the empirical superiority of neural SFEs over their scalar counterparts.

Our construction is given in the following proposition:
Proposition 3. Let px induce a scalar SFE of f . For X ∈ Sn+, consider a decomposition X =∑n

i=1 λixix
⊤
i and fix

pX(S, T ) =

n∑
i=1

λi pxi
(S)pxi

(T ) for all S, T ⊆ [n].

Then, pX defines a neural SFE F at X.

See Appendix D for proof. The choice of decomposition will give rise to different extensions. Here,
we instantiate our neural extensions using the eigendecomposition of X. Since eigenvectors may not
belong to [0, 1]n we reparameterize by first applying a sigmoid function before computing the scalar
extension distribution px. In practice we found that neural SFEs work just as well even without this
sigmoid function—i.e., allowing scalar SFEs to be evaluated outside of [0, 1]n. The continuity of
the neural SFE F when using the eigendecomposition follows from a variant of the Davis–Kahan
theorem (Yu et al., 2015), which requires the additional assumption that the eigenvalues of x are
distinct. For efficiency, in practice we do not use all n eigenvectors, and use only the k with largest
eigenvalue. This is justified by Figure 3, which shows that in practical applications X often has a
rapidly decaying spectrum.

Evaluating a neural SFE requires an accessible closed-form expression, the precise form of which de-
pends on the underlying scalar SFE. Further, from the definition of Neural SFEs we see that if a scalar
SFE is supported on sets with a property that is closed under intersection (e.g., bounded cardinality),
then the supporting sets of the corresponding neural SFE will also inherit that property. This implies
that the neural counterparts of the Lovász, bounded cardinality Lovász, and singleton/permutation
extensions have the same support as their scalar counterparts. An immediate corollary is that we can
easily compute the neural counterpart of the Lovász extension which has a simple closed form:
Corollary 1. For X ∈ Sn+ consider the eigendecomposition X =

∑n
i=1 λixix

⊤
i . Let pxi be as in the

Lovász extension: pxi(Sij) = σ(xi,j)− σ(xi,j+1), where σ is the sigmoid function, and xi is sorted
so xi,1 ≥ . . . ≥ xi,n and Sij = {1, . . . , j}, with pxi

(S) = 0 for all other sets. Then, the neural
Lovász extension is:

F(X) =
n∑

i,j=1

λipxi
(Sij) ·

(
pxi

(Sij) + 2
∑
ℓ:ℓ>j

pxi
(Siℓ)

)
· f(Sij).

Complexity and obtaining sets as solutions. In general, the neural SFE relies on all pairwise
intersections S ∩ T of the scalar SFE sets, requiring O(m2) evaluations of f when the scalar SFE
is supported on m sets. However, when the scalar SFE is supported on a family of sets that is
closed under intersection—e.g., the Lovász and singleton extensions—the corresponding neural SFE
requires only O(m) function evaluations. Discrete solutions can be obtained efficiently by returning
the best set out of all scalar SFEs pxi

.

5 Experiments

We experiment with SFEs as loss functions in neural network pipelines on discrete objectives arising
in combinatorial and vision tasks. For combinatorial optimization, SFEs network training with a
continuous version of the objective without supervision. For supervised image classification, they
allow us to directly relax the training error instead of optimizing a proxy like cross entropy.
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Maximum Clique
ENZYMES PROTEINS IMDB-Binary MUTAG COLLAB

Straight-through (Bengio et al., 2013) 0.725±0.268 0.722±0.26 0.917±0.253 0.965±0.162 0.856±0.221

Erdős (Karalias & Loukas, 2020) 0.883±0.156 0.905±0.133 0.936±0.175 1.000±0.000 0.852±0.212

REINFORCE (Williams, 1992) 0.751±0.301 0.725±0.285 0.881±0.240 1.000±0.000 0.781±0.316

Lovász scalar SFE 0.723±0.272 0.778±0.270 0.975±0.125 0.977±0.125 0.855±0.225

Lovász neural SFE 0.933±0.148 0.926±0.165 0.961±0.143 1.000±0.000 0.864±0.205

Maximum Independent Set
ENZYMES PROTEINS IMDB-Binary MUTAG COLLAB

Straight-through (Bengio et al., 2013) 0.505±0.244 0.430±0.252 0.701±0.252 0.721±0.257 0.331±0.260

Erdős (Karalias & Loukas, 2020) 0.821±0.124 0.903±0.114 0.515±0.310 0.939±0.069 0.886±0.198

REINFORCE (Williams, 1992) 0.617±0.214 0.579±0.340 0.899±0.275 0.744±0.121 0.053±0.164

Lovász scalar SFE 0.311±0.289 0.462±0.260 0.716±0.269 0.737±0.154 0.302±0.238

Lovász neural SFE 0.775±0.155 0.729±0.205 0.679±0.287 0.854±0.132 0.392±0.253

Table 1: Unsupervised neural combinatorial optimization: Approximation ratios for combinatorial
problems. Values closer to 1 are better (↑). Neural SFEs are competitive with other methods, and
consistently improve over vector SFEs.

5.1 Unsupervised Neural Combinatorial Optimization

We begin by evaluating the suitability of neural SFEs for unsupervised learning of neural solvers
for combinatorial optimization problems on graphs. We use the ENZYMES, PROTEINS, IMDB,
MUTAG, and COLLAB datasets from the TUDatasets benchmark (Morris et al., 2020), using a
60/30/10 split for train/test/val. We test on two problems: finding maximum cliques, and maximum
independent sets. We compare with three neural network based methods. We compare to two common
approaches for backpropogating through discrete functions: the REINFORCE algorithm (Williams,
1992), and the Straight-Through estimator (Bengio et al., 2013). The third is the recently proposed
probabilistic penalty relaxation (Karalias & Loukas, 2020) for combinatorial optimization objectives.
All methods use the same GNN backbone, comprising a single GAT layer (Veličković et al., 2018)
followed by multiple gated graph convolution layers Li et al. (2015).

In all cases, given an input graph G = (V,E) with |V | = n nodes, a GNN produces an embedding
for each node: X ∈ Rn×d. For scalar SFEs d = 1, while for neural SFEs we consider XX⊤ in
order to produce an n × n PSD matrix, which is passed as input to the SFE F. The set function
f used is problem dependent, which we discuss below. Finally, see Appendix F for training and
hyper-parameter optimization details, and Appendix E for details on data, hardware, and software.

Maximum Clique. A set S ⊆ V is a clique of G = (V,E) if (i, j) ∈ E for all i, j ∈ S. The
MaxClique problem is to find the largest set S that is a clique: i.e., f(S) = |S| · 1{S a clique}.

Maximum Independent Set (MIS). A set S ⊆ V is an independent set of G = (V,E) if (i, j) /∈ E
for all i, j ∈ S. The goal is to find the largest S in the graph that is independent, i.e., f(S) =
|S| · 1{S an ind. set}. MIS differs significantly from MaxClique due to its high heterophily.

Results. Table 1 displays the mean and standard deviation of the approximation ratio f(S)/f(S∗) of
the solver solution S and an optimal S∗ on the test set graphs. The neural Lovaśz extension outper-
forms its scalar counterpart in 8 out of 10 cases, often by significant margins, for instance improving
a score of 0.778 on PROTEINS MaxClique to 0.926. The neural SFE proved effective at boosting
poor scalar SFE performance, e.g., 0.311 on ENZYMES MIS, to the competitive performance of
0.775. Neural Lovaśz outperformed or equalled and straight-through in 9 out of 10 cases, and the
method of Karalias & Loukas (2020) in 6 out of 10.

5.2 Constraint Satisfaction Problems

Constraint satisfaction problems ask if there exists a set satisfying a given set of conditions (Kumar,
1992; Cappart et al., 2021b). In this section, we apply SFEs to the k-clique problem: given a graph,
determine if it contains a clique of size k or more. We test on the ENZYMES and PROTEINS
datasets. Since satisfiability is a binary classification problem we evaluate using F1 score.
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Figure 2: k-clique constraint satisfaction: higher F1-score is better. The k-bounded cardinality
Lovasz extension is better aligned with the task and significantly improves over the Lovász extension.
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Figure 3: Left: Runtime and performance of neural SFEs on MaxClique using different numbers of
eigenvectors. Right: Histogram of spectrum of matrix X, outputted by a GNN trained on MaxClique.

Results. Figure 2 shows that by specifically searching over sets of size k using the cardinality
constrained Lovász extension from Section 3.1, we significantly improve performance compared to
the Lovász extension, and REINFORCE. This illustrates the value of SFEs in allowing task-dependent
considerations (in this case a cardinality constraint) to be built into extension design.

5.3 Training Error as a Classification Objective
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Figure 4: Neural SFEs outperform a naive
alternative high-dimensional extension.

During training the performance of a classifier
h is typically assessed using the training error
1
n

∑n
i=1 1{yi ̸= h(xi)}. Since training error itself is

non-differentiable, it is standard to train h to optimize
a differentiable surrogate such as the cross-entropy
loss. Here we offer an alternative training method by
continuously extending the non-differentiable map-
ping ŷ 7→ 1{yi ̸= ŷ}. This map is a set function
defined on single item sets, so we use the singleton
extension (definition in Section 3.1). Our goal is to
demonstrate that the resulting differentiable loss func-
tion closely tracks the training error, and can be used
to minimize it. We do not focus on test time gener-
alization. Figure 6 shows the results. The singleton
extension loss (left plot) closely tracks the true train-
ing error at the same numerical scale, unlike other common loss functions (see Appendix G for setup
details). While we leave further consideration to future work, training error extensions may be useful
for model calibration (Kennedy & O’Hagan, 2001) and uncertainty estimation (Abdar et al., 2021).

5.4 Ablations

Number of Eigenvectors. Figure 3 compares the runtime and performance of neural SFEs using only
the top-k eigenvectors from the eigendecomposition X =

∑n
i=1 λixix

⊤
i with k ∈ {1, 2, 3, 4, 5, 6}

on the maximum clique problem. For both ENZYMES and PROTEINS, performance increases
with k—easily outperforming scalar SFEs and REINFORCE—until saturation around k = 4, while
runtime grows linearly with k. Histograms of the eigenvalues produced by trained networks show a
rapid decay in the spectrum, suggesting that the smaller eigenvalues have little effect on F.

Comparison to Naive High-Dimensional Extension. We compare neural SFEs to a naive high-
dimensional alternative which, given an n×d matrix X simply computes a scalar SFE on each column
independently and sums them up. This naive function design is not an extension, and the dependence
on the d dimensions is linearly separable, in contrast to the complex non-linear interactions between
columns of X in neural SFEs. Figure 4 shows that this naive extension, whilst improving over
one-dimensional extensions, performs considerably worse than neural SFEs.

8



0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0Singleton Extension

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Cross Entropy

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Exponential

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 MSE

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Hinge

train loss
train error

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0Singleton Extension

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Cross Entropy

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Exponential

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 MSE

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Hinge

train loss
train error

Figure 5: Top: CIFAR10. Bottom: SVHN. The singleton extension loss (left) is the only loss that
approximates the true non-differentiable training error at the same numerical scale.

6 Related Work

Neural combinatorial optimization Our experimental setup largely follows recent work on un-
supervised neural combinatorial optimization (Karalias & Loukas, 2020; Schuetz et al., 2022; Xu
et al., 2020; Toenshoff et al., 2021; Amizadeh et al., 2018), where continuous relaxations of discrete
objectives are utilized. In that context, it is important to take into account the key conceptual and
methodological differences of our approach. For instance, in the unsupervised Erdős goes neural
(EGN) framework from Karalias & Loukas (2020), the probabilistic relaxation and the proposed
choice of distribution can be viewed as instantiating a multilinear extension. As explained earlier,
this extension is costly in the general case (since f must be evaluated 2n times, and summed) but can
be computed efficiently in closed form in certain cases. On the other hand, our extension framework
offers multiple options for efficiently computable extensions without imposing any further conditions
on the set function. For example, one could efficiently (linear time in n) compute the scalar and
neural Lovász extensions of any set function with only black-box access to the function. This renders
our framework more broadly applicable. Furthermore, EGN incorporates the problem constraints
additively in the loss function. In contrast to that, our extension framework does not require any
commitment to a specific formulation in order to obtain a differentiable loss. This provides more flex-
ibility in modelling the problem, as we can combine the cost function and the constraints in various
other ways (e.g., multiplicatively). For general background on neural combinatorial optimization, we
refer the reader to the surveys (Bengio et al., 2021; Cappart et al., 2021a; Mazyavkina et al., 2021).

Lifting to high-dimensional spaces. Neural SFEs are heavily inspired by the Goemans-Williamson
(Goemans & Williamson, 1995) algorithm and other SDP techniques (Iguchi et al., 2015), which lift
problems onto higher dimensional spaces, solve them, and then project back down. Our approach
to lifting set functions to high dimensions is motivated by the algorithmic alignment principle (Xu
et al., 2019): neural networks whose computations emulate classical algorithms often generalize
better with improved sample complexity (Yan et al., 2020; Li et al., 2020; Xu et al., 2019). Emulating
algorithmic and logical operations is the focus of Neural Algorithmic Reasoning (Veličković et al.,
2019; Dudzik & Veličković, 2022; Deac et al., 2021) and work on knowledge graphs (Hamilton et al.,
2018; Ren et al., 2019; Arakelyan et al., 2020), which also emphasize operating in higher dimensions.

Extensions. Scalar SFEs use an LP formulation of the convex closure (El Halabi, 2018, Def. 20), a
classical approach for defining convex extensions of discrete functions (Murota, 1998, Eq. 3.57). See
Bach (2019) for a study of extensions of submodular functions. The constraints of our dual LP arise
in contexts from global optimization (Tawarmalani & Sahinidis, 2002) to barycentric approximation
and interpolation schemes in computer graphics (Guessab, 2013; Hormann, 2014). Convex extensions
have also been used for combinatorial penalties with structured sparsity (Obozinski & Bach, 2012,
2016), and general minimization algorithms for set functions (El Halabi & Jegelka, 2020).

Stochastic gradient estimation. SFEs produce gradients for f requiring only black-box access.
There is a wide literature on sampling-based approaches to gradient estimation, for instance the
REINFORCE algorithm (Williams, 1992) (i.e., score function estimator). However, sampling
introduces noise which can cause unstable training and convergence issues, prompting significant

9



study of variance reducing control variates (Gu et al., 2017; Liu et al., 2018; Grathwohl et al., 2018;
Wu et al., 2018; Cheng et al., 2020). SFEs can avoid sampling (and noise) all-together, as our
extensions are differentiable and can be computed deterministically. A closely related, yet distinct,
task is to produce gradients through sampling operations, which introduce non-differentiable nodes in
neural network computation graphs. The Straight-Through Estimator (Bengio et al., 2013), arguably
the simplest solution, treats sampling as the identity map in the backward pass, yielding biased
gradient estimates. The Gumbel-Softmax trick (Maddison et al., 2017; Jang et al., 2017), provides an
alternative method to sample from categorical distributions (also benefiting from variance reduction
(Paulus et al., 2020a)). The trick can be seen through the lens of the more general Perturb-and-MAP
framework that treats sampling as a perturbed optimization program. This framework has since been
used to generalize the trick to more complex distributions (Paulus et al., 2020b) and to differentiate
through the parameters of exponential families for learning and combinatorial tasks (Niepert et al.,
2021). Broadly, these techniques relax a discrete distribution into a continuous one by utilizing a
noise distribution and assuming access to a continuous loss function. SFEs are complementary to this
setup, addressing the problem of designing continuous extensions.

Differentiating through convex programs and algorithms. Recent years have seen a surge of
interest in combining neural networks with solvers (e.g., LP solvers) and/or algorithms in differen-
tiable end to end pipelines (Agrawal et al., 2019; Amos & Kolter, 2017; Paulus et al., 2021; Pogančić
et al., 2019; Wang et al., 2019). Whilst sharing the algorithmic alignment motivation of SFEs, the
convex programming connection is mostly cosmetic: these works directly embed solvers into network
architectures, while SFEs use convex programs as an analytical tool, without requiring solver access.

7 Conclusion

We introduced Neural Set Function Extensions, a framework that enables evaluating set functions on
continuous and high dimensional representations. We showed how to construct such extensions and
demonstrated their viability in a range of tasks including combinatorial optimization and image clas-
sification. Notably, neural extensions deliver good results and improve over their scalar counterparts,
further affirming the benefits of problem-solving in high dimensions.
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Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. In International Conference on Learning Representations, 2019.
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