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ABSTRACT

Current model-based reinforcement learning methods struggle when operating
from complex visual scenes due to their inability to prioritize task-relevant fea-
tures. To mitigate this problem, we propose learning Task Informed Abstractions
(TIA) that separates reward-correlated visual features from background distractions.
For learning TIA, we introduce the formalism of Task Informed MDP (TiMDP),
which is realized by training two models that learn visual features via coopera-
tive reconstruction, but one model is adversarially dissociated from the reward
signal. Empirical evaluation shows that TIA leads to significant performance
gains over state-of-the-art methods on many visual control tasks where natural and
unconstrained visual distractions pose a formidable challenge.

1 INTRODUCTION
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Figure 1: Comparison of the performance of a state-of-the-
art model-based RL algorithm, Dreamer, on two versions
of the Cheetah Run with vs. without visual distraction.
Performance is reported for three models of different sizes
(0.5×, 1×, 2× of original Dreamer). Results show that even
the smallest model has sufficient capacity to capture task-
relevant features when observations are distractor-free (gray),
but when the scene is complex (red), task-irrelevant features
consume most of the model capacity. Error bars indicate one
standard deviation.

Consider results of a simple exper-
iment reported in Figure 1. We
train state-of-the-art model-based re-
inforcement learning agents (Hafner
et al., 2020) operating from visual
inputs to solve two versions of the
Cheetah Run task (Tassa et al., 2018):
one with a simple and the other with a
visually complex background (Zhang
et al., 2021). For each version we
train three model variants that only
differ in in the capacity of their world
model, which contain 0.5× (small),
1× (medium) and 2× (large) of the
parameters of the original implemen-
tation. Not surprisingly, the perfor-
mance with the simple background
is only marginally affected by model
capacity, which shows that even the smallest model is sufficient for learning the features necessary
for solving the task. Performance is much worse with the complex background, but it increases
monotonically with the model size. Given that the task-relevant information (i.e., joint information of
the cheetah) is the same in both, the performance improvements with model size indicates that the
increase in representational capacity is used to encode the complex background. The background
conveys no information about the task and therefore interferes with the learning of task-relevant
information by consuming model capacity. Here “relevant” refers to those features that are needed
to predict the optimal actions, whereas “irrelevant” refers to everything else that makes up the
observation.

There are two main components to a model-based learner: (i) a forward dynamics model that predicts
future events resulting from executing a sequence of actions from the current state and (ii) a reward
predictor for evaluating possible future states. The policy performance critically depends on the
prediction accuracy of this model, which is intimately tied to the feature space in which the future
∗Equal contribution.
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is predicted. Similar to the complex background version of Cheetah run, the real world contains
observations that are full of irrelevant content. Therefore to learn directly in the real-world, a compact
feature space that only captures task-relevant information could make the learning problem much
easier. Without this bias towards “task-relevant features”, spurious features that confounds with the
task would unnecessarily increase the data requirement or lead to training issues. Larger models will
be also be needed for complex domains, despite that the dynamics of the core control problem is
simple.

A popular choice for feature learning is to reconstruct the raw observations (Kingma & Welling, 2014;
Kingma et al., 2014; Watter et al., 2015; Hafner et al., 2020). Often these features are encouraged
to be disentagled (Bengio, 2013; Higgins et al., 2016; 2017) to identify distinct factors of variation.
Since disentanglement simply re-formats the input space, the disentangled feature space would
still contain irrelevant information and does not address the core issue of learning task-relevant
features. Because the model-based agent also predicts rewards from the feature space, one might
expect the combination of disentanglement and reward prediction sufficient to incentivize learning of
task-relevant features. However, rewards provide insufficient supervision for feature learning (Yarats
et al., 2019). For instance, just knowing the center of mass of a humanoid moving forward is sufficient
to predict the reward, whereas it would require the full pose to come up with the optimal action. In a
nutshell reconstruction captures too much information, whereas reward-prediction captures too little.
Several works attempt to combine these two training signals (Hafner et al., 2020; Oh et al., 2017)
but still struggle to learn in complex visual scenarios. Since the goal of the agent is to maximize
the expected return, predicting the value function instead of one-step reward may aid in learning all
the relevant information (Silver et al., 2017; Oh et al., 2017). However, because the value function
is learned simultaneously with the model, it is not stationary and may not provide a stable training
signal.

These challenges inspired several works to investigate feature learning methods that neither rely
on reconstruction nor solely depend on rewards. One line of work biases the learned features to
only capture controllable parts of the environment using an inverse model that predicts actions from
a pair of states (Agrawal et al., 2015; Jayaraman & Grauman, 2015; Agrawal et al., 2016; Pathak
et al., 2017), or using metrics such as empowerment (Klyubin et al., 2005; Gregor et al., 2016). To
understand their shortcoming, consider the scenario of the arm pushing an object. Here both the arm
and the object are controllable. While it is easy to capture the part that is directly controllable (e.g., the
arm), capturing all controllable features (i.e., arm and the object) without imposing a reconstruction
loss is non-trivial. Another idea that has shown promise is the bisimulation metric (Ferns et al., 2011;
Zhang et al., 2021). Because supervision in bisimulation comes solely from rewards, it is subject to
the same insufficiency mentioned earlier. Another possibility is to use contrastive learning (Chen
et al., 2020; Oord et al., 2018), but without additional constraints, these methods do not distinguish
between relevant and irrelevant features.

The ongoing discussion illustrates the fundamental challenge in learning task-relevant features:
some objectives (e.g., reconstruction) capture too much information, whereas others (e.g., rewards,
inverse models, empowerment) capture too little. Using a weighted loss function that combines these
objectives has been empirically found not to learn task-relevant features (see Figure1). In this work,
we revisit feature learning by using reconstruction and the reward but propose to explicitly “explain
away” irrelevant features by constructing a co-operative two-player game between two models. These
models, dubbed as task and distractor, learn task-relevant (s+t ) and irrelevant features (s−t ) of the
observation (ot) respectively. Similar to prior work, we force the task model to learn task-relevant
features (s+t ) by predicting the reward. But unlike past work, we also force the distractor model to
learn task-irrelevant features (s−t ) via adversarial dissociation with the reward signal. However, both
models cooperate to reconstruct ot by maximizing p(ot|s+t , s−t ).
Our method models a Markov decision process (MDP) of a specific factored structure, which we
call Task Informed MDP (TiMDP) (see Figure 2b). It is worth noting that TiMDP is structurally
similar to the relaxed block MDP (Zhang et al., 2020) formulation in partitioning the state-space
into two separate components. However, Zhang et al. 2020 neither proposes a practical method for
segregating relevant information nor does it provide any experimental validation in the context of
learning from complex visual inputs. We evaluate our method on a custom ManyWorld environment,
a suite of control tasks that specifically test the robustness of learning to visual distractions (Zhang
et al., 2021) and ATARI games. The results convincingly demonstrate that our method, which we call
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Task Informed Abstractions (TIA), successfully learns relevant features and outperforms existing
state-of-the-art methods.

2 PRELIMINARIES

A Markov Decision Process is represented as the tuple 〈S,O,A, T, r, γ, ρ0〉 where O is a high-
dimensional observation space. A is the space of actions. S is the state space. ρ0 is the initial
state distribution. r : S 7→ R is the scalar reward. The goal of RL is to learn a policy π∗(a| s) that
maximizes cumulative reward Jπ = argmaxπ E

∑
t γ

t−1rt discounted by γ.

Our primary contribution is in learning a feature space for forward dynamics and it is agnostic to the
specific choice of the model-based algorithm. We choose to build upon the state-of-the-art method
known as Dreamer (Hafner et al., 2020). The main components of this model are:

Representation model: pθ(st | ot, st−1, at−1)

Observation model: qθ(ot | st)
Transition model: qθ(st | st−1, at−1)

Reward model: qθ(rt | st)

(1)

Model Learning Dreamer (Hafner et al., 2019) makes future predictions in a feature space that is
supervised by three signals: (a) image reconstruction

[
J tO

.
= ln q(ot | st)

]
, (b) reward prediction[

J tR
.
= ln q(rt | st)

]
and (c) dynamics regularization

[
J tD

.
= −βKL

(
p(st | st−1, at−1, ot)

∥∥q(st |
st−1, at−1)

)]
. The overall objective is:

JDreamer
.
= Eτ

[∑
t

J tO + J tR + J tD
]

(2)

optimized over the agent’s experience τ . To achieve competitive performance on ATARI, a few
modifications that are incorporated in this variant DreamerV2 described in (Hafner et al., 2021).

Policy Learning Dreamer uses the learned forward dynamics model to train a policy using an
actor-critic formulation described below:

Action model: aτ ∼ qφ(aτ | sτ )

Value model: vψ(sτ ) ≈ Eq(·|sτ )
∑t+H
τ=t γ

τ−trτ
(3)

The action model is trained to maximize cumulative rewards over a fixed horizon H . Both the action
and value models are learned using imagined rollouts from the forward dynamics model. We refer
the reader to (Hafner et al., 2020) for more details.

3 LEARNING TASK INFORMED ABSTRACTIONS

Task Informed MDP The state space of an MDP is often not directly observed in the real world,
where high-dimensional observations are produced by latent states. We present the graphical model
of this common scenario in Figure 2a. As discussed earlier the raw visual observations typically
contain both task-relevant and irrelevant features. In order to explicitly segregate these factors,
we propose to factor the state space S into two components: a task-relevant component S+ and a
task-irrelevant component S−. We assume that the reward is fully determined by the task-relevant
component r : S+ 7→ R, and the task-irrelevant component contains no information about the reward:
MI(rt; s

−
t ) = 0 at each time step t.

In the most general case, s−t+1 can depend on s+t and s+t+1 can depend on s−t . However, in many
realistic scenarios the task vs distractor distinction often follows factored forward dynamics (Guestrin
et al., 2003; Pitis et al., 2020) which greatly simplifies the learning model. For this reason we further
incorporate this factored structure into our formulation through the assumption: p(st+1|st, at) =
p(s+t+1|s

+
t , at)p(s

−
t+1|s

−
t , at).

Our method involves learning two models: one model captures the task-relevant state component
s+t , which we call the task model. The other model captures the task-irrelevant state component
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(c) Assumptions for TiMDP
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−
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−
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+
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−
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s
+/−
t+1 has no dependency on s−/+t

Figure 2: (a) The graphical model of an MDP. (b) Task-Informed MDP (TiMDP). The state space
decomposes into two components: s+t captures the task-relevant features, whereas s−t captures the
task-irrelevant features. The cross-terms between s+/− are removed by imposing a factored MDP
inductive bias. The red arrow indicates an adversarial loss to discourage s− from picking up reward
relevant information.
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(b) Policy Learning only unrolls in S+.

Figure 3: Components of Task Informed Abstraction Learning. (a) From the dataset of past experience,
TIA uses the reward to factor the MDP into a task-relevant world model and a task-irrelevant one.
(b) Only the forward dynamics in s+t is used during policy learning. The Policy is trained using
back-propagation through time. Note that the images are shown just for demonstration purposes and
are not generated during policy learning.

s−t , which we call the distractor model. The learning objective for these two models are denoted
by JP and JS (task and distractor), and expanded in Equation (4). A visual illustration is provided
in Figure 3a.

JP
.
= Ep(

∑
t

(
J tOj + J tR + J tD

)
)

JS
.
= Ep(

∑
t

(
J tOj + J tOs + J tRadv + J tDs

)
)

J tOj
.
= ln q(ot | s+t , s−t ) J tOs

.
= λOs ln q(ot | s−t )

J tR
.
= ln q(rt | s+t ) J tRadv

.
= −λRadv max

q
ln q(rt | s−t )

J tD
.
= −βKL

(
p(s+t | s+t−1, at−1, ot)||q(s+t | s+t−1, at−1)

)
J tDs

.
= −βKL

(
p(s−t | s−t−1, at−1, ot)||q(s−t | s−t−1, at−1)

)
(4)

We will explain each component in the following section.

Reward Dissociation for the distractor model is accomplished via the adversarial objective J tRadv.
This is a minimax setup where we interleave optimizing the distractor model’s reward prediction head
(for multiple iterations/training step) with training the distractor model. While the reward prediction
head is trained to minimize the reward prediction loss − ln q(rt|s−t ), the distractor model maximizes
this objective, so as to exclude reward-correlated information from its learned features (Ganin &
Lempitsky, 2015). The reward prediction loss is computed using lnN (rt; r̂t, 1), where N (·;µ, 1) is
the unit Gaussian, and r̂t is the predicted reward.
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TIA Distractor Recon

TIA Mask
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Dreamer Recon
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Figure 4: Visualizing the information represented by Dreamer Hafner et al. (2020) and the task
and distractor models of our method on several environments. (a) In the ManyWorld environments,
Dreamer mistakes the distractor (yellow) for the target object (blue). The task model of TIA isolates
the target object (blue) and the goal (red). (b, c) Dreamer’s capacity is consumed at reconstructing
the irrelevant video background, and it fails to capture the agent’s outline, which is the task-relevant
information. In all domains, Dreamer reconstruction tries to capture every pixel of the raw observation
but misses task-relevant information. TIA is able to capture task-relevant information with the task
model and task-irrelevant information with the distractor model.

Cooperative Reconstruction By jointly reconstructing the image, the distractor model that’s biased
towards capturing task-irrelevant information will enable the task model to focus on task-relevant
features. We implement joint reconstruction through the objective J tOj. Starting with a sequence of
observation and actions {o[<t], a[<t]}, we first pass this sequence through the two separate recurrent
state space model (RSSM, Hafner et al. 2019) to produce the states s+t and s−t , which are then used to
decode two images ô+t and ô−t . Given the observation ot, the joint reconstruction is achieved through
a learned mixing where each model additionally decodes a 64× 64×3 tensor. These two tensors are
concatenated channel-wise before being passed through a 1×1 convolution layer followed by sigmoid
activation to obtain a 64× 64×1 mask Mt with the value between (0, 1). The final reconstruction
is obtained through ôt = ô+t �Mt + ô−t � (1−Mt), where � denotes element-wise product. The
reconstruction objective is computed as lnN (ot; ôt, 1).

Distractor-model-only Reconstruction A degenerate case exists where a distractor model that
captures no information at all can still satisfy the two objectives above, letting the task model
reconstruct the entire observation by itself. To avoid such degeneracy, we add an additional image
decoder to encourage the distractor model to capture as much information from the observation as
possible. This is implemented via the objective J tOs.

Policy Learning is similar to Dreamer, except that we replace the world model with the task model.
This way, the forward unroll only involves the S+ subspace.

Action model: aτ ∼ qφ(aτ | s+τ )

Value model: vψ(s
+
τ ) ≈ E

q(·|s+τ )
(
∑t+H
τ=t γ

τ−trτ )
(5)

An illustration of the policy learning stage is in Figure 3b.

4 EXPERIMENTS

Our empirical evaluation aims to answer if our method outperforms existing methods when learning in
environments that contain irrelevant information in the form of distractor objects or visually complex
backgrounds. For this purpose we make use of three environments that are described in Section 4.1.
Baseline wise, we compare our method against several alternatives described in Section 4.2.

4.1 ENVIRONMENTS
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Figure 5: Our method consistently outperforms Dreamer and other baseline methods in a variety of
visual control tasks with distraction. The curves show mean and standard deviation, over five seeds
for TIA, Dreamer, and Dreamer-Inverse. Results for DBC and DeepMDP are adopted from results
reported in Zhang et al. (2021) and used ten seeds. Our method is effective for both ManyWorld
environments (a,b), which contains confusing distracting objects that look similar to the task-relevant
components; and the DMC tasks with natural video backgrounds (c,d,e), where the distracting
background contains rich information that would consume significant model capacity to capture.

Figure 6: (Left) Raw observation of
ATARI Robotank. (Right) The task
model of TIA emphasizes task-relevant
information such as the crosshair and the
radar for tracking enemies, while ignor-
ing task-irrelevant information such as
textures in the raw observation.

ManyWorld (Figure 4a) We want a test environment
where one can vary the level of distraction in a controlled
manner. For this purpose, we introduce ManyWorld, a
physics domain where one can control the number of
objects and their dynamics. The task is to move a tar-
get block (in blue) to a location indicated visually by a
translucent red sphere. Other objects act as distractors.
We turn off collision between objects so that they do not
physically interfere with the target object, but occlusion
does occur. The visual similarity between the objects in-
troduces confusion, requiring additional effort to resolve
when learning a world model.

Kinematic Control with Natural Video Distraction
(Figure 4b) We consider the DeepMind Control (DMC) suite with natural video background from the
Kinetics dataset (Kay et al., 2017) used in prior work (Zhang et al., 2021), which was introduced
specifically to test learning under natural visual distraction. These control tasks involve different
types of challenges, such as long planning horizon (Hopper), contact and collision (Walker), and
larger state/action space (Cheetah). The natural video backgrounds in this test suite contain a large
number of factors of variation, adding additional burden to world-model learning and negatively
affecting policy optimization downstream. It is a challenging domain for both model-based and
model-free algorithms to master. The video backgrounds are from the class “driving car” and are
grayscale as in Zhang et al. (2021).

Atari Learning Environments (ALE) (Figure 6) are a standard benchmark for vision-based
control. The visuals of these games naturally contain many distractor objects that are irrelevant to the
game objective. Our limited compute resources only allowed us to experiment on five games. Each
seed takes a week on a V100 Volta GPU. We present results on games where state-of-the-art model-
based algorithms perform significantly worse than model-free algorithms or human performance in
the hope of closing this gap.

4.2 BASELINE METHODS

We include both model-based and model-free baselines, a few proposed specifically to tackle learning
in the presence of task-irrelevant distractions. In particular we compare against Dreamer (Hafner
et al., 2020) which is a state of the art model-based algorithm on DMC. On ALE, we compare against
an improved variant Dreamer(V2) (Hafner et al., 2021). We compare against a strong model-free
method, Deep Bisimulation for Control (DBC) (Zhang et al., 2021), which uses the bisimulation
metric and is developed specifically to tackle task-irrelevant distractions. Finally, we also include
DeepMDP (Gelada et al., 2019) which learns a forward model with the sole purpose of acquiring a
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Figure 7: ATARI performance at 50M steps. TIA significantly improves policy learning in Demon
Attack, Robotank, and Yars Revenge, in which DreamerV2 fails to learn or has inferior sample
complexity. We also add the performance of DreamerV2 at 100M and 200M steps, along with the
performance of two model-free algorithms, DQN and Rainbow DQN, at 200M steps.

representation, then uses model-free, distributional Q learning for the policy. The DeepMDP and
DBC results are adapted from Zhang et al. (2021).

Representation learning through an inverse model Inverse model take the observations ot and
ot+1 as input and predict the intervening action at (Agrawal et al., 2015; Jayaraman & Grauman,
2015). To investigate if features learned by inverse model suffice for learning task-relevant features,
we constructed the Dreamer-Inverse model. In this model, the learning objective becomes the
following: J tInverse = J tinv + J tR + βJ tD where J tinv

.
= ln q(at | st, st+1) is the inverse model

objective and J tD is the dynamics regularizer described in Section 2.

4.3 CAN TIA DISASSOCIATE TASK-IRRELEVANT INFORMATION?

We first evaluate our method on the ManyWorld domain, where relevant information comprises
the agent (blue block) and the goal (red sphere). Figure 4a provides a qualitative comparison of
the information represented by TIA and the baseline method of Dreamer. In many cases, Dreamer
mistakes the distractor (yellow) for the agent (blue). On the other hand, the task model of TIA isolates
the agent (blue) and the goal (red), while the distractor model of TIA captures the distractors (yellow
and green). This demonstrates that indeed s+t captures task-relevant information and successfully
ignores the rest. Quantitative evaluation depicted in Figure 5 (a) and (b) demonstrates that TIA
outperforms the baselines, and the performance gap increases with the number of distractors.

Next, we considered the DMC domains with natural video distractions. We evaluate on three
environments, Cheetah Run, Walker Run and Hopper Stand since they are visually different and
cover a variety of learning challenges described in Section 4.1. The image reconstruction results
Figure 4b and Figure 4c show that Dreamer performs poorly in capturing the full state of the agents
and is distracted by the background. In contrast, the task model of our TIA method accurately
recovers the relevant part of the raw observation, which happens to be the agent’s body in these
examples. Quantitative performance reported in Figure 5 (c,d,e) clearly shows that TIA outperforms
strong baseline methods described in Section 4.2. Overall, these results suggest that TIA is the new
state-of-the-art in learning from cluttered observations.

4.4 RESULTS ON ATARI

In previous test environments, the irrelevant factors were manually injected. Due to human interven-
tion, it is possible these tasks were biased, which our method exploited. To investigate performance
in more natural settings, we experimented on ATARI games that innately contain significant visual
distractions. E.g., images of robotank game contain several visual signatures that change during the
game: the number of enemy tanks destroyed, the rotating radar scanner, the green sprites, and so on.
We evaluated performance on five ATARI games that are known to be challenging for model-based
methods (Hafner et al., 2020) without any hyperparameter tuning (i.e., just a single value chosen
based on the intuition described in Section 4.5).

The results reported in Figure 7 demonstrate that we substantially outperform the strong baseline of
DreamerV2. Furthermore, for the games of Chopper Command, Demon Attack and Yars Revenge
we either match or outperform strong model-free baselines of DQN/Rainbow trained for 200M
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steps, while our method is only trained for 50M steps. These results convincingly demonstrate the
superiority of our method. Figure 6 shows the image reconstruction of TIA’s task model in Robotank.

4.5 HYPERPARAMETER SELECTION
Task Model

Distractor Model

Mean Predictor

Loss Lowerbound

Figure 8: Reward Dissociation During Learning
We plot the negative log-likelihood loss of the reward
prediction − ln p(r), (lower bounded by 0.92) of a
mean predictor, the reward prediction module of the
primary model, and the reward prediction module of
the secondary model. The features from the primary
model contain sufficient information for reward pre-
diction. The performance of the reward predictor for
the secondary model follows the same trend as the
mean predictor, indicating that the features learned
by the secondary model are reward-independent.

The two important hyperparameters are
λRadv and λOs. One particular mode of fail-
ure is when the distractor model takes over
the reconstruction. It strips the task model of
task-relevant information, thus preventing the
policy from learning any meaningful behav-
ior. Our reward dissociation scheme relies
on informative reward signals to work. Yet,
at the beginning of training, the reward col-
lected by a random policy tend to be sparse
and noisy, making λRadv less effective at pre-
venting a dominant distractor model. This
scenario suggests using a large λRadv at the
beginning of training and slowly increasing
the weight λOs for the distractor reconstruc-
tion loss.

The other extreme is for the distractor model
to collapse into degeneracy, where it fails to capture any information from the observations. TIA
degenerates into Dreamer in this case. We can increase λOs so that the distractor model is encouraged
to capture more.

To gain more insight into the reward dissociation process, we want to know how much information of
the reward does the distractor model capture during learning. We use errors in predicting the reward,
measured with the log-likelihood (as unit Gaussian) in Figure 8. We estimate the upper bound of this
prediction error using the trailing average of the reward. This corresponds to an uninformed reward
predictor (the “Mean Predictor”) that always guesses the average. The reward prediction loss of the
distractor model trails behind this upper bound during learning (see Figure 8, in red), whereas the
reward prediction loss of the main model remains small (in blue), slightly above the loss lower bound,
which equals to − lnN (0; 0, 1) = − ln 1√

2π
≈ 0.92.

5 CONCLUSION AND DISCUSSION

In this work, we have shown that the TiMDP formulation that explains away task-irrelevant informa-
tion can successfully learn from cluttered visual inputs. Our approach of learning Task Informed
Abstractions (TIA) outperforms previous state-of-the-art model-based RL methods on multiple
standard benchmarks.

An issue worth mentioning is that while one set of hyperparameters worked well across ATARI
games, in the DMC suite, the choice of hyperparameters λRadv and λOs is domain-dependent. We
discussed good practices for choosing these hyperparameters in Section 4.5. Based on these practices,
it might be possible to automatically tune the hyperparameters by considering the reconstruction and
reward-prediction loss of the two models that constitute TIA.

Our goal in this work is to build agents that operate from complex visual imagery. While we
outperform previous methods, all of our evaluation is on simulated data. We plan to test our method
on real-world data in the future. Another area of potential investigation is to characterize performance
as a function of the sparsity of reward signals. We hypothesize that a low-noise reward signal is a key
factor for the robustness of TIA, and the performance might drop in scenarios with sparse rewards.
Developing methods that can overcome this “potential” challenge is another avenue for future work.

8



Published at ICLR 2021 SSL-RL Workshop

ACKNOWLEDGEMENT

This work is supported by the MIT-IBM grant on adversarial learning of multi-modal and structured
data, the DARPA Machine Common Sense Program, and the National Science Foundation under
Cooperative Agreement PHY-2019786 (The NSF AI Institute for Artificial Intelligence and Funda-
mental Interactions, http://iaifi.org/). The authors also acknowledge the MIT SuperCloud and the
Lincoln Laboratory Supercomputing Center for providing interactive HPC resources.

REFERENCES

Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. In International
Conference on Learning Representations, 2021.

Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In Proceedings of the
IEEE international conference on computer vision, pp. 37–45, 2015.

Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to
poke by poking: Experiential learning of intuitive physics. In Advances in Neural Information
Processing Systems, pp. 5074–5082, 2016.

Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning de-biased
representations with biased representations. In International Conference on Machine Learning, pp.
528–539. PMLR, 2020.

Ershad Banijamali, Rui Shu, Hung Bui, Ali Ghodsi, et al. Robust locally-linear controllable embed-
ding. In International Conference on Artificial Intelligence and Statistics, pp. 1751–1759. PMLR,
2018.

Yoshua Bengio. Deep learning of representations: Looking forward. In Adrian-Horia Dediu,
Carlos Martı́n-Vide, Ruslan Mitkov, and Bianca Truthe (eds.), Statistical Language and Speech
Processing - First International Conference, SLSP 2013, Tarragona, Spain, July 29-31, 2013.
Proceedings, volume 7978 of Lecture Notes in Computer Science, pp. 1–37. Springer, 2013. doi:
10.1007/978-3-642-39593-2\ 1.

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi Parikh, et al. Rubi: Reducing unimodal biases
for visual question answering. In Advances in neural information processing systems, pp. 841–852,
2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way out: Ensemble
based methods for avoiding known dataset biases. In Kentaro Inui, Jing Jiang, Vincent Ng,
and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 4067–4080. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/D19-1418.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Learning to model and ignore dataset bias
with mixed capacity ensembles. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: Findings, EMNLP 2020,
Online Event, 16-20 November 2020, pp. 3031–3045. Association for Computational Linguistics,
2020. doi: 10.18653/v1/2020.findings-emnlp.272.

Thomas L. Dean, Robert Givan, and Sonia M. Leach. Model reduction techniques for computing
approximately optimal solutions for markov decision processes. In Dan Geiger and Prakash P.
Shenoy (eds.), UAI ’97: Proceedings of the Thirteenth Conference on Uncertainty in Artificial
Intelligence, Brown University, Providence, Rhode Island, USA, August 1-3, 1997, pp. 124–131.
Morgan Kaufmann, 1997.

9



Published at ICLR 2021 SSL-RL Workshop

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.
Provably efficient rl with rich observations via latent state decoding. In International Conference
on Machine Learning, pp. 1665–1674. PMLR, 2019.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
Model-based value estimation for efficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI, volume 4, pp. 162–169, 2004.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous markov
decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011.

Norman Ferns and Doina Precup. Bisimulation metrics are optimal value functions. In UAI, pp.
210–219. Citeseer, 2014.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2786–2793. IEEE, 2017.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 2170–2179. PMLR, 2019.

Robert Givan, Thomas L. Dean, and Matthew Greig. Equivalence notions and model minimization in
markov decision processes. Artif. Intell., 147(1-2):163–223, 2003. doi: 10.1016/S0004-3702(02)
00376-4.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution algorithms
for factored mdps. Journal of Artificial Intelligence Research, 19:399–468, 2003.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
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A OTHER RELATED WORKS

State-of-the-art deep reinforcement learning algorithms often jointly optimize the the discounted
return together with an auxiliary representation learning objective such as image reconstruction (Wat-
ter et al., 2015; Wahlström et al., 2015) or contrastive learnpredictive coding (CPC, Sermanet et al.
2018; Oord et al. 2018; Yan et al. 2020; Lee et al. 2020; Mazoure et al. 2020). In model-based
reinforcement learning methods, reward and value prediction (Oh et al., 2017; Racanière et al., 2017;
Silver et al., 2017; Tamar et al., 2016; Feinberg et al., 2018; Schrittwieser et al., 2020) are also shown
to improve performance, along with learning a world model. More recently, data augmentations are
found to improve sample complexity (Laskin et al., 2020a; Yarats et al., 2021; Raileanu et al., 2020;
Laskin et al., 2020b; Stooke et al., 2020) by taking advantage of domain knowledge of symmetry
transformations in the space of data. A recent benchmark (Stone et al., 2021) however, shows that
data augmentation helps but still performs poorly in the presence of complex visual distractions.
We do find data augmentation to be an orthogonal and complementary approach to our proposal,
which focuses on the way to inform representation learning for RL, which feature is more useful, and
therefore should be learned first.

A more principled approach exploits additional structure in the real world to learn state-abstractions.
The most representative are block MDPs (Du et al., 2019), bisimulation (Givan et al., 2003; Dean
et al., 1997) and bisimulation metrics (Ferns et al., 2004; 2011; Ferns & Precup, 2014), including
recent impressive empirical gains on natural scene domains (Zhang et al., 2021; Gelada et al., 2019;
Agarwal et al., 2021). The work presented here fall under the broad umbrella of learning state and
temporal abstractions and is the most closely related to utile distinction (McCallum, 1997) which is
limited to finite-state machines. Like utile distinction, TIA is distinct from DBC and bisimulation
embeddings in that we rely on the task specification for feature separation, and we are not concerned
about generalization across a set of MDPs related by dynamics.

The spiritual nearest neighbor to our work is the idea of using a primary-bias duo for model debiasing
in supervised learning (Clark et al., 2019; Cadene et al., 2019; Wang et al., 2019; He et al., 2019;
Bahng et al., 2020; Clark et al., 2020). These methods remove dataset bias by imposing independence
constraints between the primary model and a model that’s biased by design. Our approach focuses on
RL and uses two models for removing task-irrelevant features for policy learning. Our implementation
extends recent work in model-based RL from pixels (Watter et al., 2015; Finn & Levine, 2017;
Banijamali et al., 2018; Ha & Schmidhuber, 2018; Kaiser et al., 2020; Hafner et al., 2020; 2021;
Srinivas et al., 2018; Pertsch et al., 2020).

B PERFORMANCE GAP WHEN LEARNING IN THE PRESENCE OF VISUAL
DISTRACTIONS

When complex visual distractors are present in the observations, state of the art model-based agents
struggle to maintain their original sample efficiency and asymptotic performance. We produce this
gap in details with Figure 9, where we include three additional (six in total) domains from the
DeepMind Control suite. We arrange the domains in the order of difficulty levels, from easy to
hard for the model-based approach. This gap is smaller on the two easiest domains, Walker stand
and Walker walk; and is much more pronounced in Walker run, Hopper stand, and Cheetah run.
On the most challenging task, Finger spin, where the model-based algorithm dreamer Hafner et al.
(2020) performs much worse than model-free approaches, the gap almost disappears – making the
domain ill-suited for testing our proposal. Note that the maximum episodic return on these tasks is
calibrated to 1000 Tassa et al. (2018). We additionally provide the ratio for the number of pixels that
are replaced by the background video for each domain, as a proxy for how much visual distraction is
introduced: Walker 63%, Hopper 77%, Cheetah: 83%, and Finger 92%.

Our intent with this paper and the proposal, learning Task Informed Abstractions, is to close this
gap, such that model-based agents can retain its performance even when learning in the presence of
complex visual distractions.
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No Background Video Distractor Background

Figure 9: The data efficiency and performance gap when learning with video distraction back-
grounds.

C BRIDGING THE GAP BY LEARNING TASK INFORMED ABSTRACTIONS

We produce the complete result on DeepMind Control Suite including the 3 additional tasks from
above where we only expect marginal improvements. We setup the experiments by matching the total
number of parameters, so that each one of TIA’s two models are only half in size as the single world
model from dreamer. This comparison is disadvantage to our method, because the smaller task model
runs the risk of being too small to capture the set of task-relevant features in its entirety.

Figure 10: Performance of Task Informed Abstractions on three additional DeepMind control
domains.

Despite of this disadvantage in model capacity, task informed abstraction is able to reduce the
gap on Walker run while making the gap significantly smaller on Hopper stand and Cheetah run
(see Figure 9). On Walker stand and Walker walk the gap is small to begin with, therefore our method
cannot bring much benefit. Finally, despite being a poor choice for testing our method, we include
results on Finger spin for the sake of completeness.

D UNDERSTANDING FAILURE CASES

In Section 4.5 we provide the principled approach to tuning the hyperapameters λRadv and λOs,
where we balance these two terms to avoid either one of the two models taking over the entire
reconstruction. We label these two extreme cases, where either the distractor model, or the task model
takes over, as type I, and type II. We provide detailed renderings of these failure cases below Figure 11,
in comparison to a successfully learned world model.

The first column in Figure 11a shows a successfully trained agent whose task model is able to
perfectly reconstruct the walker agent. In type I failure mode (Figure 11b) the distractor model
would take over the entire reconstruction, causing the task model to lose its grasp on the task-relevant
features. This would prevent the policy from learning any useful behavior, which makes the collected
reward practically random. With random rewards, the term JRadv is ineffective at dissociating
task-relevant features, causing training to fail. The policy performance under this scenario is usually
close to that of a random policy. When this happens, we want to increase λRadv to dissociate the
distractor model from the reward, or decrease λOs that weighs the distractor reconstruction term.

In the type II failure case (see Figure 11c), the task model takes over the reconstruction. In this
case the model degenerates into dreamer without separating out the task-irrelevant features, and the
performance is close to a dreamer agent with a smaller model. In this case we would increase the
weight λOs on the distractor reconstruction to encourage it to learn more features.

By tuning these two parameters λRadv and λOs, we were able to avoid these two failure modes,
and stabilize training on a wide variety of domains. A future direction would be to tune these to
parameters automatically using the signals mentioned in Section 4.5.
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Figure 11: Detailed rendering from one successfully trained walker agent, and two failure cases of
type 1 and type 2. In type 1 failure case, the distractor model takes over the entire reconstruction,
rendering the task model ineffective for policy learning (random policy). In the type 2 failure case,
the task model attempts to capture all factors of variation by itself, thus failing to perfectly reconstruct
the image, also leading to sub-par policy performance in the lower 400.

E MODEL SIZES AND ARCHITECTURE DETAILS

For fair comparison, on DMC and ManyWorld we match the total number of parameters of our two
world models combined with that of a single, large Dreamer model. The total number of parameters
is 10 million on DMC, and 1 million on ManyWorld. We divide the two models equally in size, with
an additional image reconstruction head for the distractor model. Dreamer-Inverse has the same size
for all model components as the Dreamer model except it replaces the deconvolution head with an
action prediction head for learning the inverse dynamics. We scale the model size by changing the
width of each layer in the networks, without changing the overall architecture or the depth of the
networks. All other hyperparameters such as learning rates are kept the same as Hafner et al. (2020).

On the ATARI Learning Environments we compare against the state-of-the-art on this domain,
DreamerV2 Hafner et al. (2021), which uses a world model of 20 million trainable parameters. We
made the task model the same size as the original implementation while adding a smaller distractor
model which contains 12 million parameters. A key difference between Dreamer and DreamerV2 is
that the latter has an additional prediction head for the discount factor γt besides the standard reward
prediction head. This discount factor head plays an instrumental role in allowing DreamerV2 to solve
ATARI games, therefore we additionally dissociate the distractor model from information about the
discount factor, by adding an additional adversarial prediction loss. We use the same scale for the
discount factor γ as that for reward: λγadv = λRadv. All other hyperparameters such as learning
rates are kept the same as Hafner et al. (2021).

We use an input size of 32×32×3 in ManyWorld, 64×64×3 in DeepMind Control Suite, and 64×64×1
in ATARI games. We use grayscale for the natural video backgrounds, the same as previous work
Zhang et al. (2021).

F HYPERPARAMETERS

For fair comparison, we did not tweak existing hyperparameters from Dreamer and used identical
settings as Hafner et al. (2020) and Hafner et al. (2021). Our reward-dissociation scheme introduces
two new hyperparameters λRadv and λOs. We scale the reward dissociation loss via λRadv such
that the term matches reconstruction losses in magnitude. For this reason, the differences in scale
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in Table 1 mostly reflect the differences in input image sizes. We tweaked λOs to stabilize training.
Detailed settings for each domain are in Table 1.

Table 1: Hyperparameters

Domain and Task λRadv λOs

ManyWorld, 1 Distractor 600.0 2.0
ManyWorld, 2 Distractor 150.0 2.0
Hopper Stand 30k 2.0
Cheetah Run 20k 1.5
Walker Run 20k 0.25
Walker Walk 20k 0.25
Walker Stand 20k 0.25
Finger Spin 30k 2.5
All ATARI games 2k 1.0

G TRANSFER TO NOVEL DISTRACTIONS

The task informed abstraction we introduce in this paper improves learning when distractions are
present. To adapt to out-of-distribution scenarios unseen during training, additional architectural
changes that reject distracting image features on the fly may be required. To provide a baseline and
intuitions for this future direction, we evaluate how well existing agents perform under this type
of domain shift. In Table 2 we take agents that are trained (1) without video background, (2) with
background videos from the driving car class or (3) with white noise backgrounds, and evaluate
against background videos from a different class, walking the dog (labeled as transfer, see Table 2).

Table 2: DeepMind Control Transfer Performance transfer to the video class walking the dog as
background

Training Condition Drmr, No Bg Drmr, Video TIA, Video Drmr, Noise TIA, Noise

Hopper Stand In-domain 906.8± 29.3 183.8± 162.1 596.4± 234.1 769.7± 205.4 744.8± 75.8
Transfer 18.1± 12.1 186.2± 142.2 629.4± 231.5 357.4± 206.7 354.9± 136.9

Walker Run In-domain 728.2± 37.8 520.2± 84.4 625.3± 64.7 737.6± 26.7 696.9± 43.9
Transfer 127.4± 34.0 530.9± 76.9 645.3± 78.4 341.1± 108.9 345.5± 138.0

Cheetah Run In-domain 876.3± 36.0 325.7± 96.6 556.6± 167.7 754.9± 67.0 734.2± 163.4
Transfer 21.1± 7.7 312.6± 115.7 557.4± 194.6 227.0± 75.1 309.5± 233.2

The Dreamer agent trained with no background distraction fails to transfer its performance when
background videos are introduced at test time, which is expected. In the second experiment we
train both dreamer and TIA with video background, but test using videos from a different category.
Dreamer did not learn as well as TIA as indicated by its poor performance in the training environments,
but both methods retain their training performance post-transfer, unaffected by the change in the
background video. As control, we also train both methods using white noise as the background.
The training and transfer performance are both identical between the two methods, and the transfer
performance is worse than performance on white noise.

We additionally evaluate ManyWorld agents that are trained with (1) no distractor, (2) one distractor,
or (3) two distractors, with an additional distractor (three distractors, see Table 3).

Table 3: ManyWorld Transfer Performance transfer to three distraction blocks.

Training Condition Drmr, 0 Drmr, 1 Drmr, 2 TIA, 1 TIA, 2

ManyWorld In-domain 246.0± 3.5 242.9± 5.4 217.4± 29.3 246.1± 1.7 245.8± 1.8
Transfer 192.6± 18.9 198.4± 27.4 192.0± 35.1 185.7± 21.4 233.4± 6.5
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Both results show that while TIA learns better from cluttered scenes, mechanism to reject unseen
backgrounds at decision time is required to transfer successfully. This points to the incorporation of
attention as a great avenue for future work.
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