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Abstract

Estimation of a complete univariate distribution from a sequence of observations is
a useful primitive for both manual and automated decision making. This problem
has received extensive attention in the i.i.d. setting, but the arbitrary data dependent
setting remains largely unaddressed. We present computationally felicitous time-
uniform and value-uniform bounds on the CDF of the running averaged conditional
distribution of a sequence of real-valued random variables. Consistent with known
impossibility results, our CDF bounds are always valid but sometimes trivial when
the instance is too hard, and we give an instance-dependent convergence guarantee.
The importance-weighted extension is appropriate for estimating complete coun-
terfactual distributions of rewards given data from a randomized experiment, e.g.,
from an A/B test or a contextual bandit.

1 Introduction

What would have happened if I had acted differently? Although as old as time itself, successful
companies have recently embraced this question via offline estimation of counterfactual outcomes
using data from existing randomized experiments or contextual bandits. The problem is important in
diverse domains such as software testing [Lindon et al.,[2022] [Wang and Chapman), 2022], portfolio
management [Liu} 2021]], and medicine [Shen et al., 2022]. These experiments are run in the real
(digital) world, which is rich enough to demand non-asymptotic statistical techniques under non-
parametric and non-stationary (i.e., not i.i.d.) models. Although existing methods apply for estimating
average outcomes in this general setting (either under the observed distribution or counterfactual
ones), estimating a complete distribution of outcomes is heretofore only possible with additional
assumptions: see Table T|for a summary and Section [5]for complete discussion of related work.

To fix ideas, we briefly describe an application from [Lindon et al.|[2022] in the context of canary
testing: rolling out changes in an online service to a small, random subset of users in order to detect
accidental performance regressions while minimizing effect on overall user experience. The metric
of interest measures latency for fetching content from the service. It is common to look beyond the
mean of the latency distribution and especially to check for regressions in upper quantiles. As such,
the authors choose to estimate bounds on the entire CDF of this latency metric under both the control
and treatment arms and check for a statistically significant differences at any point in the CDF. The
hope is to detect regressions as soon as possible, often within seconds or minutes, so the authors
employ a sequential method which allows an automated system to continuously update the CDF
bounds as data accumulates and to stop as soon as a significant regression is detected. Statistically,
this translates into the requirement of confidence bands for the CDF which are both uniform over time
(valid after every update) and uniform over values (so we can check for regressions at any quantile).
We seek such bounds whose statistical validity is guaranteed under a minimum of assumptions.

Intriguingly, this problem is provably impossible in the general data dependent setting [Rakhlin et al.,
2015]. Consequently, our bounds always achieve non-asymptotic coverage, but may converge to zero
width slowly or not at all, depending on the hardness of the instance. We call this design principle
AVAST (Always Valid And Sometimes Trivial).
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Table 1: Comparison to prior art for quantile-uniform CDF estimation. Time-uniform: a sequence of
confidence bands whose coverage holds uniformly over time with high probability. Nonstationary:
does not require an i.i.d. assumption. Non-asymptotic: guarantees hold at all sample sizes. Non-
parametric: guarantees apply over an infinite-dimensional class of distributions. Counterfactual:
method applies to estimating a distribution other than the one which generated the observed data, via
importance weighting. wn,.x-free: guarantee applies without a bound on the maximum importance
weight. See SectionE] for details.

REFERENCE TIME- NON- NON- NON- COUNTER- | Wmax-
UNIFORM? | STATIONARY?| ASYMPTOTIC?| PARAMETRIC?| FACTUAL? | FREE?
HR22 v v v N/A
HLLA21 v v v
UNO21, [1ID] v v v v
UNO21, [NS] v v
WS22, [§4] v v v v v
THIS PAPER v v v v v v
Contributions

1. In Section[3.2]we provide a time- and value-uniform upper bound on the CDF of the averaged
historical conditional distribution of a discrete-time real-valued random process. Consistent
with the lack of sequential uniform convergence of linear threshold functions [Rakhlin et al.,
2015]), the bounds are Always Valid (see Theorem @ And Sometimes Trivial, i.e., the
width guarantee is instance-dependent (see Theorem [3.3)) and may not converge to zero
width in the infinite data limit. When the data generating process is smooth with respect
to the uniform distribution on the unit interval, the bound width adapts to the unknown
smoothness parameter, following the framework of smoothed online learning [Rakhlin et al.|
2011, Haghtalab et al., 2020} 2022bla, |Block et al., 2022].

2. In Section[3.3]we extend the previous technique to distributions with support over the entire
real line, and further to distributions with a known countably infinite or unknown nowhere
dense set of discrete jumps; with analogous instance-dependent guarantees.

3. In Section [3.4) we extend the previous techniques to importance-weighted random variables,
achieving our ultimate goal of estimating a complete counterfactual distribution of outcomes.

We exhibit our techniques in various simulations in Section [d] Computationally our procedures
have comparable cost to point estimation of the empirical CDF, as the empirical CDF is a sufficient
statistic.

2 Problem Setting

Let (2, F, {F:},cn » P) be a probability space equipped with a discrete-time filtration, on which let
X be an adapted, real-valued random process. Let E; [-] = E [-|F;]. The quantity of interest is the
(random) map CDF; : R — [0, 1], the CDF of the averaged historical conditional distribution at time
t:

N o1
CDF,(v) = - DB [Ix,<o]- (1)
s<t
We desire simultaneously time- and value-uniform bounds which hold with high probability, i.e.,
adapted sequences of maps L, U; : R — [0, 1] satisfying

P (Vi) : Li(v) < CDF,(v) < Uy(v)) = 1 - 2a. @)

Note that the estimand CDF; is changing at each time step as we incorporate the conditional
distribution of the latest observation into our historical average. The maps L, U; provide a sequence
of confidence bands which contain this sequence of changing CDFs uniformly over time with high
probability.

In the i.i.d. setting, Equation (I)) is deterministic and independent of ¢, reducing to the CDF of
the (unknown) generating distribution. In this setting, the classic results of |Glivenko| [[1933]] and
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Cantelli| [[1933]] established uniform convergence of linear threshold functions; subsequently the
Dvoretzky-Kiefer-Wolfowitz (DKW) inequality characterized fixed-time and value-uniform conver-
gence rates [Dvoretzky et al.l 1956, Massart, [1990]]; extended later to simultaneously time- and value-
uniform bounds [Howard and Ramdas| [2022]. The latter result guarantees an O(t~* log(log(t)))
confidence interval width, matching the limit imposed by the Law of the Iterated Logarithm.

AVAST principle In contrast, under arbitrary data dependence, linear threshold functions are not
sequentially uniformly convergent, i.e., the averaged historical empirical CDF does not necessarily
converge uniformly to the CDF of the averaged historical conditional distribution [Rakhlin et al.|
2015]]. Consequently, additional assumptions are required to provide a guarantee that the confidence
width decays to zero. In this paper we design bounds that are Always Valid And Sometimes Trivial,
i.e., under worst-case data generation, sup, |U;(v) — L(v)] = O(1) as t — oo. Fortunately our
bounds are also equipped with an instance-dependent width guarantee based upon the smoothness of
the distribution to a reference measure qua Definition [3.2]

Additional Notation Let X, = {X S}Z:a denote a contiguous subsequence of a random process.
Let P; denote the average historical conditional distribution, defined as a (random) distribution over
the sample space R by Py(A) = ¢~ >, _, E,_1 [1x,eca] for a Borel subset A (note P; represents the
entire historical average while E; corresponds to a single conditional distribution).

3 Derivations

3.1 High Level Design

Our approaches work as reductions, achieving the value- and time-uniform guarantee of Equation (2)
by combining bounds A;, =, that satisfy a time-uniform guarantee at any fixed value p,

P (vt e N: Ay(p) < CDFi(p) < Ei(p)) = 1—d(p). 3)

The bounds A, =, are tools for estimating a sequence of scalars, in this case (CDFy(p)){2, for
a fixed value p. We show how to extend such tools to the more difficult problem of estimating a
sequence of (cumulative distribution) functions.

There are multiple existing approaches to obtaining the guarantee of Equation (3): we provide a self-
contained introduction in Appendix [Al For ease of exposition, we will only discuss how to construct



a time- and value-uniform upper bound by combining fixed-value, time-uniform upper bounds, and
defer the analogous lower bound construction to Appendix Our approach is to compose these
fixed-value bounds into a value-uniform bound by taking a union bound over a particular collection
of values, leveraging monotonicity of the CDF.

Quantile vs Value Space In the i.i.d. setting, a value-uniform guarantee can be obtained by taking a
careful union bound over the unique value associated with each quantile [Howard and Ramdas, 2022].
This “quantile space” approach has advantages, e.g., variance based discretization and covariance to
monotonic transformations. However, under arbitrary data dependence, the value associated with
each quantile can change. Therefore we proceed in “value space”. See Appendix[A.T|for more details.

3.2 On the Unit Interval

Algorithm [T} visualized in Figure [T| constructs an upper bound on Equation (I) which, while
valid for all values, is designed for random variables ranging over the unit interval. For a given
value v, it searches over upper bounds on the CDF evaluated at a decreasing sequence of values
p1 = p2 = -+ = v and exploits monotonicity of CDF;(v). That s, at each level d = 1,2,..., we
construct a discretizing grid of size €(d) over the unit interval, and construct a time-uniform upper
bound on CDF;(p) for each grid point p using the fixed-value confidence sequence oracle Z;. Then,
for a given value v, at each level d we make use of the fixed-value confidence sequence for smallest
grid point pg > v, and we search for the level d which yields the minimal upper confidence bound. A
union bound over the (countably infinite) possible choices for p, controls the coverage of the overall
procedure. Because the error probability d, decreases with d (and the fixed-value confidence radius
=; increases as § decreases), the procedure can terminate whenever no observations remain between
the desired value v and the current upper bound pg4, as all subsequent bounds are dominated.

The lower bound is derived analogously in Algorithm [2| (which we have left to Appendix
for the sake of brevity) and leverages a lower confidence sequence A; (p;d, ¥;) (instead of an
upper confidence sequence) evaluated at an increasingly refined lower bound on the value p «

e(d)~!e(d)v].
Theorem 3.1. If e(d) 1t o as d | oo, then Algorithms and[z] terminate with probability one.
Furthermore, if for all p, 6, and d the algorithms Ay (p; 0, Vy) and =¢(p; 8, U) satisfy

PVt : CDF.(p) = Ae(p;0,94)) = 1 =6, )
P(Vt: CDFi(p) < Z¢(p;0,0;)) = 1 — 6, Q)
then guarantee (2)) holds with Uy, L, given by the outputs of Algorithms[I|and 2] respectively.

Proof. See Appendix [B.3] O

Theorem ensures Algorithms (1| and |2| yield the desired time- and value-uniform coverage,
essentially due to the union bound and the coverage guarantees of the oracles =;, A;. However,
coverage is also guaranteed by the trivial bounds 0 < CDF,(v) < 1. The critical question is: what is
the bound width?

Smoothed Regret Guarantee Even assuming X is entirely supported on the unit interval, on what
distributions will Algorithm [I] provide a non-trivial bound? Because each [A¢(p; 8, ¥y), E¢(p; 6, ¥y)]
is a confidence sequence for the mean of the bounded random variable 1y, <,, we enjoy width
guarantees at each of the (countably infinite) p which are covered by the union bound, but the
guarantee degrades as the depth d increases. If the data generating process focuses on an increasingly
small part of the unit interval over time, the width guarantees on our discretization will be insufficient
to determine the distribution. Indeed, explicit constructions demonstrating the lack of sequential
uniform convergence of linear threshold functions increasingly focus in this manner [Block et al.|
2022].

Conversely, if V¢ : CDF(v) was Lipschitz continuous in v, then our increasingly granular discretiza-
tion would eventually overwhelm any fixed Lipschitz constant and guarantee uniform convergence.
Theorem [3.3]expresses this intuition, but using the concept of smoothness rather than Lipschitz, as
smoothness will allow us to generalize further [Rakhlin et al.| 2011, [Haghtalab et al.| 2020, 2022bla,
Block et al., |2022]].
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Definition 3.2. A distribution D is &-smooth wrt reference measure M if D « M and
esssup,, (4P/am) < €71

When the reference measure is the uniform distribution on the unit interval, {-smoothness implies
an & _1—Lipschitz CDF. However, when the reference measure has its own curvature, or charges
points, the concepts diverge. When reading Theorem [3.3] note £ < 1 (since the reference measure
is a probability distribution) and as £ — 0 the smoothness constraint is increasingly relaxed. Thus
Theorem [3.3]states “for less smooth distributions, convergence is slowed.”

Theorem 3.3. Let U;(v) and Ly(v) be the upper and lower bounds returned by Algorithm[I| and
Algorithm|2| respectively, when evaluated with e(d) = 2% and the confidence sequences \; and Z; of
Equation (15). If Vt : P, is &-smooth wrt the uniform distribution on the unit interval then

Vt,Vv : Ut(U) — Lt('U) <

% +0 <\/‘? log (5{2a1t3/2)> : ©

where g = CDF(v); Vi = Vi + (@:=1/2)fi0g(at/1—q,); and O() elides polylog V; factors.

Proof. See Appendix [C] O

Theorem [3.3| matches our empirical results in two important aspects: (i) logarithmic dependence upon
smoothness (e.g.,, Figure[); (ii) tighter intervals for more extreme quantiles (e.g., Figure 2)). Note the
choice €(d) = 2¢ ensures the loop in Algorithm terminates after at most log, (A) iterations, where
A is the minimum difference between two distinct realized values.

Worked Example To build intiution, in Appendix [B.1] we explicitly calculate Algorithm [I]for a
synthetic data set.

3.3 Extensions

Arbitrary Support In Appendix we describe a variant of Algorithm |1|which uses a countable
dense subset of the entire real line. It enjoys a similar guarantee to Theorem|3.3} but with an additional

width which is logarithmic in the probe value v: O <\/‘? log ((2 + §t|v|t—1/2)2 gtza—1t3/2)> .

Note in this case &; is defined relative to (unnormalized) Lebesgue measure and can therefore exceed
1.

Discrete Jumps If P; is smooth wrt a reference measure which charges a countably infinite number
of known discrete points, we can explicitly union bound over these additional points proportional to
their density in the reference measure. In this case we preserve the above value-uniform guarantees.
See Appendix [D.2]for more details.

For distributions which charge unknown discrete points, we note the proof of Theorem [3.3] only
exploits smoothness local to v. Therefore if the set of discrete points is nowhere dense, we eventually
recover the guarantee of Equation (6) after a “burn-in” time ¢ which is logarithmic in the minimum
distance from v to a charged discrete point.
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3.4 Importance-Weighted Variant

An important use case is estimating a distribution based upon observations produced from another
distribution with a known shift, e.g., arising in transfer learning [Pan and Yang} 2010] or off-policy
evaluation [Waudby-Smith et al., 2022]]. In this case the observations are tuples (W;, X;), where
the importance weight W; is a Radon-Nikodym derivative, implying V¢ : E; [W;] = 1 and a.s.
W; > 0; and the goal is to estimate CDF;(v) = ¢! o<t Es—1 [Wslx, <. The basic approach in
Algorithm[T]and Algorithm [2]is still applicable in this setting, but different A; and Z; are required.
In Appendix [E] we present details on two possible choices for A; and =;: the first is based upon the
empirical Bernstein construction of Howard et al.|[2021]], and the second based upon the DDRM
construction of Mineiro| [2022]. Both constructions leverage the L* Adagrad bound of |Orabona
[2019] to enable lazy evaluation. The empirical Bernstein version is amenable to analysis and
computationally lightweight, but requires finite importance weight variance to converge (the variance
bound need not be known, as the construction adapts to the unknown variance). The DDRM version
requires more computation but produces tighter intervals. See Section[d.1]for a comparison.

Inspired by the empirical Bernstein variant, the following analog of Theorem [3.3|holds. Note P,
is the target (importance-weighted) distribution, not the observation (non-importance-weighted)
distribution.

Theorem 3.4. Let U(v) and Li(v) be the upper and lower bounds returned by Algorithm|l|and
Algorithm respectively with e(d) = 2% and the confidence sequences Ay and Z; of Equation (18). If
Yt : Py is &-smooth wrt the uniform distribution on the unit interval then

Ve, Vo : Up(v) — Li(v) <

B+ (T4+ W)/t
t
(N

"o (w 0 o e a”)

+O0(t og (& %)),
where q; = CDFt(v),~ K(g) = (@=1/2))iog(astpr-a,); Vi = O (K(qt) ng Wf) By =
t71 Y <t (Ws — 1), and O\) elides polylog V; factors.
Proof. See Appendix [E.2] O

Theorem [3.4] exhibits the following key properties: (i) logarithmic dependence upon smoothness; (ii)
tighter intervals for extreme quantiles and importance weights with smaller quadratic variation; (iii)
no explicit dependence upon importance weight range; (iv) asymptotic zero width for importance
weights with sub-linear quadratic variation.

Additional Remarks First, the importance-weighted average CDF is a well-defined mathematical
quantity, but the interpretation as a counterfactual distribution of outcomes given different actions in
the controlled experimentation setting involves subtleties: we refer the interested reader to Waudby-
Smith et al.|[2022]] for a complete discussion. Second, the need for nonstationarity techniques for



0.10{ — i.i.d. LogNormal(0, 1) t=10000
. —— LogNormal(10, 1) [\
—— LogNormal(20, 1) [

!
i 0.08{ . Time uniform DKW o\ ( \
/ [
!

|

; ! /A /
! ) | Z0.06 [ /
Importance-Weighted Continuous Polya Urn ! I / \ |

S
Y=t Wna =4 / So0.04 f

/ /

pid |

=== /I ’
\ /

- —— true weighted CDF1000 0.02 f
bounds at t=10000 'A

-~ true unweighted CDF10000 / \ 7

0.0 02 0.4 0.6 08 1.0 0.00 10° 107 10° 10° 10° 107

Figure 6: A nonstationary, importance-weighted Figure 7: Demonstration of the variant described
simulation in which the factual distribution (red) in Section[3.3]and Appendix [D.T]for distributions
diverges dramatically from the counterfactual dis- with arbitrary support, based on i.i.d. sampling
tribution (green). The bound correctly covers the from a variety of lognormal distributions. Loga-
counterfactual CDF. rithmic range dependence is evident.

0.0

estimating the importance-weighted CDF is driven by the outcomes (X;) and not the importance-
weights (W;). For example with off-policy contextual bandits, a changing historical policy does not
induce nonstationarity, but a changing conditional reward distribution does.

4 Simulations

These simulations explore the empirical behaviour of Algorithm [I]and Algorithm [2] when instantiated
with €(d) = 2¢ and curved boundary oracles A and =. To save space, precise details on the
experiments as well additional figures are elided to Appendix [F] Reference implementations which
reproduce the figures are available at https://github.com/microsoft/csrobust.

4.1 Thei.i.d. setting

These simulations exhibit our techniques on i.i.d. data. Although the i.i.d. setting does not fully
exercise the technique, it is convenient for visualizing convergence to the unique true CDF. In this
setting the DKW inequality applies, so to build intuition about our statistical efficiency, we compare
our bounds with a naive time-uniform version of DKW resulting from a (6/x%¢>) union bound over
time.

Beta distribution 1In this case the data is smooth wrt the uniform distribution on [0, 1] so we can
directly apply Algorithm [I]and Algorithm[2] Figure [2]shows the bounds converging to the true CDF
as t increases for an i.i.d. Beta(6, 3) realization. Figure [8|compares the bound width to time-uniform
DKW at ¢ = 10000 for Beta distributions that are increasingly less smooth with respect to the uniform
distribution. The DKW bound is identical for all, but our bound width increases as the smoothness
decreases.

The additional figures in Appendix [F clearly indicate tighter bounds at extreme quantiles, in corre-
spondence with Theorem 3.3]

Beyond the unit interval In Figure[7] (main text) and Appendix [F.1|we present further simulations
of i.i.d. lognormal and Gaussian random variables, ranging over R and R respectively, and using
Algorithm[3] The logarithmic dependence of the bound width upon the probe value is evident.

An Exhibition of Failure Figure [ shows the (empirical) relative convergence when the data is
simulated i.i.d. uniform over [0, €] for decreasing e (hence decreasing smoothness). The reference
width is the maximum bound width obtained with Algorithmﬂ] and Algorithm[Z] at ter = 10000 and
€ = 1/16, and shown is the multiplicative factor of time required for the maximum bound width
to match the reference width as smoothness varies. The trend is consistent with arbitrarily poor
convergence with arbitrarily small e. Because this is i.i.d. data, DKW applies and a uniform bound
(independent of ¢€) is available. Thus while our instance-dependent guarantees are valuable in practice,
they can be dominated by stronger guarantees leveraging additional assumptions. On a positive note,
a logarithmic dependence on smoothness is evident over many orders of magnitude, confirming the
analysis of Theorem 3.3]


https://github.com/microsoft/csrobust

Importance-Weighted In these simulations, in addition to being i.i.d., X; and W, are drawn
independently of each other, so the importance weights merely increase the difficulty of ultimately
estimating the same quantity.

In the importance-weighted case, an additional aspect is whether the importance-weights have finite
or infinite variance. Figures [5|and[I3]demonstrate convergence in both conditions when using DDRM
for pointwise bounds. Figures[T4]and [I5]show the results using empirical Bernstein pointwise bounds.
In theory, with enough samples and infinite precision, the infinite variance Pareto simulation would
eventually cause the empirical Bernstein variant to reset to trivial bounds, but in practice this is not
observed. Instead, DDRM is consistently tighter but also consistently more expensive to compute, as
exemplified in Table 2] Thus either choice is potentially preferable.

Table 2: Comparison of DDRM and Empirical Bernstein on i.i.d. X; ~ Beta(6, 3), for different W;.
Width denotes the maximum bound width sup,, U;(v) — L¢(v). Time is for computing the bound at
1000 equally spaced points.

W, WHAT WIDTH TIME (SEC)
DDRM 0.09 24.8
Exp(1) EMP. BERN 0.10 1.0
DDRM  0.052 59.4

3
PARETO(%2)  pyp BERN  0.125 2.4

4.2 Nonstationary

Continuous Polya Urn In this case

X; ~ Beta (2 + Ve Z Ix,>12,2 + 7 Z 1Xs<1/2) )

s<t s<t

i.e., Xy is Beta distributed with parameters becoming more extreme over time: each realization will
increasingly concentrate either towards 0 or 1. Suppose v, = t9. In the most extreme case that
(t =Yyt Lx.>15), the conditional distribution at time ¢ is Beta (2; 2 + t7;,2) = O(t'9), hence
dPr/qu = O(t1+9), which is smooth enough for our bounds to converge. Figure [3{shows the bounds
covering the true CDF for two realizations with different limits. Figure [12|shows (for one realization)
the maximum bound width, scaled by /%/log(t) to remove the primary trend, as a function of ¢ for
different -, schedules.

Importance-Weighted Continuous Polya Urn In this case W is drawn i.i.d. either W; = 0 or
Wi = wmax, such as might occur during off-policy evaluation with an epsilon-greedy logging policy.
Given W4, the distribution of X, is given by

X|W, ~ Beta (2 + 71 Z Ix,s>121lw,=w;,

s<t

247 ), 1X5<1/21W5=Wt> ;

s<t

i.e., each importance weight runs an independent Continuous Polya Urn. Because of this, it is
possible for the unweighted CDF to mostly concentrate at one limit (e.g., 1) but the weighted CDF to
concentrate at another limit (e.g., 0). Figure [6]exhibits this phenomenon.

5 Related Work

Constructing nonasymptotic confidence bands for the cumulative distribution function of i.i.d. ran-
dom variables is a classical problem of statistical inference dating back toDvoretzky et al.|[[1956]
and Massart [[1990]. While these bounds are quantile-uniform, they are ultimately fixed-time bounds



(i.e. not time-uniform). In other words, given a sample of i.i.d. random variables Xi,..., X, ~ F,

these fixed time bounds [L,, (), Uy, ()] zcr satisfy a guarantee of the form:
P(Vz € R, Ly(z) < F(z) < Up(x)) =1 — o, (8)

for any desired error level o € (0,1). [Howard and Ramdas| [2022] developed confidence bands
[Li(z), Us(x)]zer,ten that are both quantile- and time-uniform, meaning that they satisfy the stronger
guarantee:

P(VzxeR,teN, Li(z) < F(z) < Ui(x)) 21— o ©)

However, the bounds presented in[Howard and Ramdas| [2022] ultimately focused on the classical i.i.d.
on-policy setup, meaning the CDF for which confidence bands are derived is the same CDF as those of
the observations (X;);2 ;. This is in contrast to off-policy evaluation problems such as in randomized
controlled trials, adaptive A/B tests, or contextual bandits, where the goal is to estimate a distribution
different from that which was collected (e.g. collecting data based on a Bernoulli experiment with the
goal of estimating the counterfactual distribution under treatment or control). |(Chandak et al.|[2021]
and |[Huang et al.|[[2021]] both introduced fixed-time (i.e. non-time-uniform) confidence bands for
the off-policy CDF in contextual bandit problems, though their procedures are quite different, rely
on different proof techniques, and have different properties from one another. Waudby-Smith et al.
[2022] Section 4] later developed time-uniform confidence bands in the off-policy setting, using a
technique akin to [Howard and Ramdas|[2022, Theorem 5] and has several desirable properties in
comparison to (Chandak et al.|[2021]] and [Huang et al.| [2021]] as outlined in Waudby-Smith et al.
(2022, Table 2].

Nevertheless, regardless of time-uniformity or on/off-policy estimation, all of the aforementioned
prior works assume that the distribution to be estimated is fixed and unchanging over time. The
present paper takes a significant departure from the existing literature by deriving confidence bands
that allow the distribution to change over time in a data-dependent manner, all while remaining
time-uniform and applicable to off-policy problems in contextual bandits. Moreover, we achieve this
by way of a novel stitching technique which is closely related to those of [Howard and Ramdas| [2022]
and Waudby-Smith et al.| [2022].

6 Discussion

This work constructs bounds by tracking specific values, in contrast with i.i.d. techniques which track
specific quantiles. The value-based approach is amenable to proving correctness qua Theorem [3.1}
but has the disadvantage of sensitivity to monotonic transformations. We speculate it is possible to
be covariant to a fixed (wrt time) but unknown monotonic transformation without violating known
impossibility results. A technique with this property would have increased practical utility.
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A Confidence Sequences for Fixed v

Since our algorithm operates via reduction to pointwise confidence sequences, we provide a brief
self-contained review here. We refer the interested reader to|Howard et al.|[2021]] for a more thorough
treatment.

A confidence sequence for a random process X, is a time-indexed collection of confidence sets CI,
with a time-uniform coverage property P (Vt € N : X; € Cl;) > 1 — . For real random variables,
the concept of a lower confidence sequence can be defined viaP (Vi e N: X; > L;) > 1 — o, and
analogously for upper confidence sequences; and a lower and upper confidence sequence can be
combined to form a confidence sequence CI; = {x|L; < 2 < U,} with coverage (1 — 2«) via a
union bound.

One method for constructing a lower confidence sequence for a real valued parameter z is to exhibit a
real-valued random process F;(z) which, when evaluated at the true value z* of the parameter of
interest, is a non-negative supermartingale with initial value of 1, in which case Ville’s inequality
ensures P (Vt € N: Ey(2*) < a™') > 1 — o If the process E;(z) is monotonically increasing in
z, then the supremum of the lower contour set L, = sup, {z|E;(z) < a~'} is suitable as a lower
confidence sequence; an upper confidence sequence can be analogously defined.

We use the above strategy as follows. We bound these deviations using the following nonnegative
martingale,

Et()‘) = exXp <)‘St - Z IOg (h(/\7 05))) ’ (10)

where \ € R is fixed and h(), z) = (1 — z)e™** + 2e*(!17%)_ the moment-generating function of a
centered Bernoulli(z) random variable. Equation is a test martingale qua Shafer et al.|[2011]],
i.e., it can be used to construct time-uniform bounds on §; — ¢; via Ville’s inequality.

Next we lower bound Equation (10,

E,(\) = exp <)\St — > log (h(, es))> , (1O

s<t

and eliminate the explicit dependence upon 6, by noting log h (A, -) is concave and therefore
E:(\) = exp(M (g — G:) —t logh (N qt)), (11)

because (tf(q) = maxe}lwth Dlest f(93)> for any concave f. Equation is monotonically

increasing in ¢; and therefore defines a lower confidence sequence. For an upper confidence sequence
we use ¢ = 1 — (1 — ¢;) and a lower confidence sequence on (1 — ¢;).

Regarding the choice of ), in practice many A are (implicitly) used via stitching (i.e., using different
A in different time epochs and majorizing the resulting bound in closed form) or mixing (i.e., using
a particular fixed mixture of Equation via a discrete sum or continuous integral over \); our
choices will depend upon whether we are designing for tight asymptotic rates or low computational
footprint. We provide specific details associated with each theorem or experiment.

Note Equation (TT) is invariant to permutations of X7.; and hence the empirical CDF at time ¢ is a
sufficient statistic for calculating Equation (TT) at any v.

A.1 Challenge with quantile space

In this section assume all CDFs are invertible for ease of exposition.

In the i.i.d. setting, Equation can be evaluated at the (unknown) fixed v(¢) which corresponds
to quantile g. Without knowledge of the values, one can assert the existence of such values for a
countably infinite collection of quantiles and a careful union bound of Ville’s inequality on a particular
discretization can yield an LIL rate: this is the approach of [Howard and Ramdas| [2022]. A key
advantage of this approach is covariance to monotonic transformations.

Beyond the i.i.d. setting, one might hope to analogously evaluate Equation (I0) at an unknown fixed
value v;(q) which for each ¢ corresponds to quantile g. Unfortunately, v;(g) is not just unknown,
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but also unpredictable with respect to the initial filtration, and the derivation that Equation (I0) is a
martingale depends upon v being predictable. In the case that X; is independent but not identically
distributed, v (q) is initially predictable and therefore this approach could work, but would only be
valid under this assumption.

The above argument does not completely foreclose the possibility of a quantile space approach, but
merely serves to explain why the authors pursued a value space approach in this work. We encourage
the interested reader to innovate.

B Unit Interval Bounds

B.1 Worked Example

Our (synthetic) data set consists of five values, each of which has occurred 1000 times:
D = {(1000, 0), (1000, 1/7), (1000, 2/7), (1000, 3/7), (1000, 6/7)} .

We use resolution €(d) = 2% and coverage error oo = 1/20.

Upper bound for v = 4/7 The upper bound algorithm starts with the trivial upper bound of 1. The
first evaluated point p; = 271[2!v]| = 1 again yields the trivial bound of 1. There are still empirical
counts between the probe value (v = 4/7) and the bound value (p; = 1) so the algorithm continues.
The second evaluated point py = 272[2%0] = 3/4, for which there are 4000 empirical counts below
p2 out of 5000 total. The pointwise confidence sequence is evaluated with counts (4000, 5000) and
coverage error 0o = /24, resulting in improved bound ~ 0.825. Now, there are no empirical counts
between the probe value (v = 4/7) and the bound value (p2 = 3/4) so the algorithm terminates. To see
all subsequent bounds are dominated, note that a tighter upper bound p4~o will result in the same
empirical counts (4000 out of 5000) but a looser coverage error and hence worse bound.

Upper bound for v = 13/28  The upper bound algorithm starts with the trivial upper bound of 1. The
first evaluated point p; = 271[21v] = 1/2, for which there are 4000 empirical counts below p, out of
5000 total. The pointwise confidence sequence is evaluated with counts (4000, 5000) and coverage
error 0; = /4, resulting in improved bound ~ 0.822. There are no empirical counts between the
probe value (v = 13/28) and the bound value (p; = 1/2) so the algorithm terminates. Relative to the
previous example, the bound is slightly tighter as the discretization worked better for this v.

Upper bound for v = 5/14 The upper bound algorithm starts with the trivial upper bound of 1.
The first evaluated point p; = 27 [21v] = 1/2, for which there are 4000 empirical counts below py
out of 5000 total. The pointwise confidence sequence is evaluated with counts (4000, 5000) and
coverage error 07 = /4, resulting in improved bound ~ 0.822. There are empirical counts between
the probe value (v = 5/14) and the bound value (p; = 1/2) so the algorithm continues. The second
evaluated point py = 272[22v] = 1/2, which has the same empirical counts but worse coverage
error at this level, and hence does not improve the bound. There are empirical counts between
the probe value (v = 5/14) and the bound value (p; = 1/2) so the algorithm continues. The third
evaluated point p3 = 273[23v] = 3/s, for which there are 3000 empirical counts below p3 out of
5000 total. The pointwise confidence sequence is evaluated with counts (3000, 5000) and coverage
error 63 = /96, resulting in improved bound ~ 0.633. There are no empirical counts between the
probe value (v = 5/14) and the bound value (p3 = 3/8) so the algorithm terminates.

B.2 Lower Bound
Algorithm [2]is extremely similar to Algorithm I} the differences are indicated in comments. Careful
inspection reveals the output of Algorithm U, (v), can be obtained from the output of Algorithm

Li(v), via Ug(v) = 1 — Lt(1 — v); but only if the sufficient statistics are adjusted such that
Et(pa; 0, 9;) =1 — Ay(1 — pg; 6, U}). The reference implementation uses this strategy.

B.3 Proof of Theorem 3.1

We prove the results for the upper bound Algorithm [T} the argument for the lower bound Algorithm 2]
is similar.
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Algorithm 2 Unit Interval Lower Bound. ¢(d) is an increasing function specifying the resolution
of discretization at level d. Ay (p;d,d, U;) is a lower confidence sequence for fixed value p with
coverage at least (1 — J).

Input: value v; confidence «; sufficient statistic U;. // comments below indicate differences from
upper bound
// ‘l’/ = /Y1;/ or \l// = (/”'1;/‘4\71;/)
Output: L;(v) satisfying Equation .
if v < 0 then return 0 end if // check for underflow of range rather than overflow
<0 // initialize with 0 instead of 1
v <« min (1, v) / project onto [0, 1] using min instead of max
ford = 1to oo do
pa < €(d) " e(d)v] // use floor instead of ceiling
dq — 2%(d)
I — max (I, A¢ (pa; 0, ¥¢)) // use lower bound instead of upper bound
if0 = Zsét 1Xs€[pd,7'0) then
return [
end if
end for

The algorithm terminates when we find a d such that 0 = > _, 1x e(v,p,]- Since €(d) 1 o0 asd 1 oo,
we have pg = e(d)[e(d)""v] | v,sothat Y _, 1x, e(v,p,] | 0. So the algorithm must terminate.
At level d, we have ¢(d) confidence sequences. The i confidence sequence at level d satisfies

(67

P(3t : CDF:(i/e(d)) > Ei(i/e(d); 04, d, Py)) < e(d) (12)
Taking a union bound over all confidence sequences at all levels, we have
P(3deN,ie{l,...,d},t e N: CDF.(i/e(d)) > E¢(i/e(d); 6,d, ¥,)) < a. (13)
Thus we are assured that, for any v € R,
P(Vt,d : CDF;(v) < CDF(pa) < Et(pa;da,d, 1)) =1 — . (14)

Algorithm will return Z,(pg; 44, d, ¥y) for some d unless all such values are larger than one, in
which case it returns the trivial upper bound of one. This proves the upper-bound half of guarantee
(). A similar argument proves the lower-bound half, and union bound over the upper and lower
bounds finishes the argument.

C Proof of Theorem

Theorem 3.3. Let Uy(v) and Ly (v) be the upper and lower bounds returned by Algorithm [I|and
Algorithm|2| respectively, when evaluated with €(d) = 2¢ and the confidence sequences Ay and Z; of
Equation (15). IfVt : Py is &-smooth wrt the uniform distribution on the unit interval then

Vt, Yo : Up(v) — Li(v) <

\/?'f’ 0 <\/‘f log (& a1t3/2)> : ©

where g, = CDF,(v); Vi = Vi + (@:=1/2)fi0g(at/1—q,); and O() elides polylog V; factors.

Note v is fixed for the entire argument below, and &; denotes the unknown smoothness parameter at
time ¢.

We will argue that the upper confidence radius Uy (v) —¢ =1 > <t 1X. <o has the desired rate. An anal-
ogous argument applies to the lower confidence radius ¢! s <t 1x.<o — Lt (v), and the confidence
width Uy (v) — Lt (v) is the sum of these two.
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For the proof we introduce an integer parameter 77 > 2 which controls both the grid spacing
(e(d) = n?) and the allocation of error probabilities to levels (64 = a/(n%e(d))). In the main paper
we setn = 2.

Atlevel d we construct  confidence sequences on an evenly-spaced grid of values 1/n¢,2/n%,... 1.
We divide total error probability a,/n? at level d among these 1 confidence sequences, so that each
individual confidence sequence has error probability a,/n?.

For a fixed bet A and value p, S; defined in Section is sub-Bernoulli quaHoward et al.|[2021,
Definition 1] and therefore sub-Gaussian with variance process V; = tK(q:), where K(p) =
(2p—1)/210g(v/1-p) is from [Kearns and Saull [1998]; from Howard et al.[[2021} Proposition 5] it follows
that there exists an explicit mixture distribution over A such that

15)

n?d JtK(q) + T n 1)
2 T

M(t;qe,7) = |2 (tK(qt) + 7) log <
is a (curved) uniform crossing boundary, i.e., satisfies

«
2d

n

M(t;qnf)>7

t

where S; = CDF(p) —t™' 3, <t 1x.<p is from Equation || and 7 is a hyperparameter to be
determined further below.

Because the values at level d are 1/n¢ apart, the worst-case discretization error in the estimated
average CDF value is

CDF(e(d)[e(d)~"v]) — CDFy(v) < 1/(¢n),

and the total worst-case confidence radius including discretization error is

1 2<K<qtt>+r/t)log(fj WH).

Now evaluate at d such that v/4; < &n® < nv/ib, where ¢, = ¢ (K (q1) + 7/t) ",

[K(q) + 7/t 2(K(q) +7/t) &P t tK(q) + 7
ra(t) < ¢ + t log < 20 (K(qt) + T/t) T + 1)'

The final result is not very sensitive to the choice of 7, and we use 7 = 1 in practice.

D Extensions

D.1 Arbitrary Support

Algorithm [3]is a variation on Algorithm [T| which does not assume a bounded range, and instead uses
a countably discrete dense subset of the entire real line. Using the same argument of Theorem [3.3]
with the modified probability from the modified union bound, we have

|kal =1 < n~o] < |kal,

&/ >0 = 07 N
— 1+ |ka| <2+ &vl/\/dr

= rq(t) <O (\/‘f log ((2 + §t|v|t71/2)2§t_ a1t3/2)> ,

demonstrating a logarithmic penalty in the probe value v (e.g., Figure [7).
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Algorithm 3 Entire Real Line Upper Bound. €(d) is an increasing function specifying the resolution
of discretization at level d. Z; (p; d, d, ¥;) is an upper confidence sequence for fixed value p with
coverage at least (1 — J).

Input: value v; confidence «; sufficient statistic Wy.
leg VU, = X1 p0r Uy = (Wi, Xit)
Output: U, (v) satisfying Equation (2).
u<—1
for d = 1to oo do
kq < [e(d)~ ] // Sub-optimal: see text for details
Pd < E(d)k'd
dq — (¢/27) (3/(x2=3)(1+ka))?) /I Union bound over d € Nand kg € Z
u <« min (u, Z; (pg; 04, d, Ut))
if 0 = Zsét 1Xs€(v,Pd] then
return u
end if
end for

Sub-optimality of k; The choice of kq in Algorithm [3]is amenable to analysis, but unlike in
Algorithm [I] it is not optimal. In Algorithm [I]the probability is allocated uniformly at each depth,
and therefore the closest grid point provides the tightest estimate. However in Algorithm [3] the
probability budget decreases with |k,4| and because k4 can be negative, it is possible that a different
k4 can produce a tighter upper bound. Since every &, is covered by the union bound, in principle we
could optimize over all k4 but it is unclear how to do this efficiently. In our implementation we do
not search over all k4, but we do adjust k4 to be closest to the origin with the same empirical counts.

D.2 Discrete Jumps

Known Countably Infinite Suppose D is smooth wrt a reference measure M, where M is of the
form .
M =M+ (L,
i€l
with I a countable index set, 1 > >}, , ¢; and M a sub-probability measure normalizing to (1 —
ez Gi)- Then we can allocate (1 — > ., ¢;) of our overall coverage probability to bounding M

using Algorithm [1|and Algorithm For the remaining {v; };c; we can run explicit pointwise bounds
each with coverage probability fraction (;.

Computationally, early termination of the infinite search over the discrete bounds is possible. Suppose
(wlog) I indexes ¢ in non-increasing order, i.e., i < j == (; < (;: then as soon as there are no
remaining empirical counts between the desired value v and the most recent discrete value v;, the
search over discrete bounds can terminate.

E Importance-Weighted Variant

E.1 Modified Bounds

Algorithm [I] and Algorithm 2]are unmodified, with the caveat that the oracles A; and =; must now
operate on an importance-weighted realization (W7.., X7.;), rather then directly on the realization
X1

E.1.1 DDRM Variant

For simplicity we describe the lower bound A; only. The upper bound is derived analogously via the
equality Y; = W, — (W, — Y;) and a lower bound on (W, — Y5): see[Waudby-Smith et al.|[2022}
Remark 3] for more details.

This is the Heavy NSM from Mineiro| [2022]] combined with the L* bound of |Orabonal [2019, §4.2.3].
The Heavy NSM allow us to handle importance weights with unbounded variance, while the Adagrad
L* bound facilitates lazy evaluation.
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For fixed v, let Y; = W;1lx,>, be a non-negative real-valued discrete-time random process, let
Y, € [0, 1] be a predictable sequence, and let A € [0, 1) be a fixed scalar bet. Then

£y o (3 (570l + Sos (101 (1- 7))

s<t

is a test supermartingale [Mineiro, 2022, §3]. Manipulating,

s<t

=exp<)\<§Ys—E51 ) ) Y)))

> exp (A (21@—& : ) (Zh (A (v - ))) —Reg(t)) (1)

.0 — e | 2 (Z Vo ) (v~ 7.) - (1TA(yg_sz)))

s<t s<t
=exp< (tY* ;&Eg 1 ) +82<tlog <1+)\<Y37Yt*)> Reg(t)) ,

where for (f) we use a no-regret learner on h() with regret Reg(¢) to any constant prediction
Y;* € [0, 1]. The function h() is M-smooth with M = ﬁ so we can get an L* bound [Orabonal
2019, §4.2.3] of

Reg(t) = 15 AQA) Sy 2k ( (Ys _ yt*))

s<t

= 4(1 i2)\)2 +41i)\ <—th* + ZYS) —szgtlog (1 + A (Ys _Yt*))7

s<t

thus essentially our variance process is inflated by a square-root. In exchange we do not have to
actually run the no-regret algorithm, which eases the computational burden. We can compete with
any in-hindsight prediction: if we choose to compete with the clipped running mean Y; then we end
up with

Ei(\) = exp ( (mm ( Z Y) ]) + 2 log (1+A(Y,—Y;)) — Reg(t)) ,

s<t s<t
(16)
which is implemented in the reference implementation as
LogApprox:getLowerBoundWithRegret (lam).  The A-s are mixed using DDRM from
Mineiro| [2022, Thm. 4], implemented via the DDRM class and the getDDRMCSLowerBound method
in the reference implementation. getDDRMCSLowerBound provably correctly early terminates the
infinite sum by leveraging

Dllog (1+A (Y, —Y,)) < (ZY—tY})

s<t s<t
as seen in the termination criterion of the inner method logwealth (mu).

To minimize computational overhead, we can lower bound log(a+ b) for b > 0 using strong concavity
qua Mineiro|[2022, Thm. 3], resulting in the following geometrically spaced collection of sufficient
statistics:

A+k)"=z<z<z,=04+k)z=1+k™",

along with distinct statistics for z = 0. k is a hyperparameter controlling the granularity of the
discretization (tighter lower bound vs. more space overhead): we use k = 1/4 exclusively in our

17



experiments. Note the coverage guarantee is preserved for any choice of k since we are lower
bounding the wealth.

Given these statistics, the wealth can be lower bounded given any bet A and any in-hindsight prediction
Y/* via
f(2) = log <1 + A (z - }A/t*)) ,
1
1) 2 af(z) + (1= a)f(z) + 5a(l - a)m(a),

Zy — %

a = ,
Zu — 21

2
m(z) . ]{Zl>\
VT \ ka1 avp

Thus when accumulating the statistics, for each Yy = W1 x_>,, a value of a must be accumulated
atkey f(z;), a value of (1 — a) accumulated at key f(z,), and a value of a(1 — «) accumulated at
key m(z;). The LogApprox: :update method from the reference implementation implements this.

Because these sufficient statistics are data linear, a further computational trick is to accumulate the suf-
ficient statistics with equality only, i.e., for Yy = W 1x_—,; and when the CDF curve is desired, com-
bine these point statistics into cumulative statistics. In this manner only O(1) incremental work is done
per datapoint; while an additional O(tlog(t)) work is done to accumulate all the sufficient statistics
only when the bounds need be computed. The method StreamingDDRMECDF: :Frozen: :__init__
from the reference implementation contains this logic.

E.1.2 Empirical Bernstein Variant

For simplicity we describe the lower bound A; only. The upper bound is derived analogously via the
equality Yy = W, — (W, — Y;) and a lower bound on (W, — Y;): see[Waudby-Smith et al.[[2022,
Remark 3] for more details.

This is the empirical Bernstein NSM from |[Howard et al.[[2021] combined with the L* bound of
Orabona [2019] §4.2.3]. Relative to DDRM it is faster to compute, has a more concise sufficient
statistic, and is easier to analyze; but it is wider empirically, and theoretically requires finite importance
weight variance to converge.

For fixed v, let Y; = W;1lx,>, be a non-negative real-valued discrete-time random process, let
Y; € [0, 1] be a predictable sequence, and let A € [0, 1) be a fixed scalar bet. Then

E/(0) _exp< <ZY E,_ [Y. >+Zlog(1+)\(Y Y))>

s<t <t

is a test supermartingale [Mineirol |2022| §3]. Manipulating,

E(\) = exp | A <Z Y, —Eo1 [Ys]> -3 (A (Y- ¥a) 10g (142 (v - 12)))

s<t s<t ~-

=h(A (¥~ 1)
exp< <ZY Esoq| > — h(— Z (Y Y) ) [Fan, Lemma 4.1]

s<t s<t

> exp (A (2 Y - oy [Ys]> ~ (=) (Reg(t) - 1@*>2>> (1),

s<t s<t

= exp (AS; — h(=\)W),

where Sy = >, _, Ys—E,_1 [Y;] and for () we use a no-regret learner on squared loss on feasible set
[0, 1] with regret Reg(t) to any constant in-hindsight prediction Y;* € [0, 1]. Since Y is unbounded
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above, the loss is not Lipschitz and we can’t get fast rates for squared loss, but we can run Adagrad
and get an L* bound,

Reg(t) = 2v2, [> g2

s<t

= 4v2, [ (Ve = V)2

<4v2, [Reg(t) + ). (Ve — V)2,

s<t

— Reg(t) <16 + 4\@\/8 + ) (Ve = V)2

s<t
Thus basically our variance process is inflated by an additive square root.
We will compete with Y;* = min (1,1 . V).

A key advantage of the empirical Bernstein over DDRM is the availability of both a conjugate (closed-
form) mixture over A and a closed-form majorized stitched boundary. This yields both computational
speedup and analytical tractability.

For a conjugate mixture, we use the truncated gamma prior from|Waudby-Smith et al.|[2022, Theorem
2] which yields mixture wealth

Te

MtEB£< ()T _ ))( L >1F1(1,Vt+7’+1,5t+vt+7')7 (17

(7, T+ W

where 1 F1 (. ..) is Kummer’s confluent hypergeometric function and I'(-, -) is the upper incomplete
gamma function. For the hyperparameter, we use 7 = 1.

E.2 Proof of Theorem 3.4

Theorem 3.4. Let Uy (v) and Li(v) be the upper and lower bounds returned by Algorithm|l| and
Algorithmrespectively with e(d) = 2¢ and the confidence sequences Ay and Z; of Equation lb If
Yt : Py is &-smooth wrt the uniform distribution on the unit interval then

Ve, Yo 0 Up(v) — Ly(v) <

B+ (r +tV})/t
(7
w0 <\/< 0 o <€t2a‘1)>

+ O(f1 log (5{2071)),

where ¢z = CDFy(v), K(g) = (@=Y2fiog(ay—a); Vi = O (K(qt) Ds<t Wf), B, =
t71 Y <t (Ws — 1), and O() elides polylog V; factors.

Note v is fixed for the entire argument below, and &; denotes the unknown smoothness parameter at
time ¢.

We will argue that the upper confidence radius U (v) — t71 >, <t Wslx, <o has the desired rate.
An analogous argument applies to the lower confidence radius. One difference from the non-
importance-weighted case is that, to be sub-exponential, the lower bound is constructed from an
upper bound on U;(v) = W,(1 — 1x,.<,) via L¢(v) — 1 — U/(v), which introduces an additional
By = t7' Y, (W, — 1) term to the width. (Note, because Vt E:[W; — 1] = 0, this term will
concentrate, but we W111 simply use the realized value here.)

For the proof we introduce an integer parameter 7 > 2 which controls both the grid spacing
(¢(d) = %) and the allocation of error probabilities to levels (3, = a/(n%e(d))). In the main paper
we setn = 2.
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Atlevel d we construct  confidence sequences on an evenly-spaced grid of values 1/n¢,2/n%, ... 1.
We divide total error probability a/n? at level d among these 1 confidence sequences, so that each
individual confidence sequence has error probability a/n??.

For a fixed bet A and value p, S; defined in Appendix is sub-exponential qua|[Howard et al.
[2021] Definition 1] and therefore from Lemma@]there exists an explicit mixture distribution over
A inducing (curved) boundary

« Sy C(1) @
W)P(Ht}l:thax( : , U Vt;T,W ,
a (T+V)/t T+Ve 1 (14 np¥a?
Vi, _ — 21— )1 - I2(7+Vy)+1 R S —
Y ( 6T 772d> < t 8 o C(7)
1 T+ Ve _ 1 14 n*dat
—1 - 12(7+ V) +1 _r - 18
+ t og( 27 € ( C(7) ’ (18)

where S; = CDFy(p) —t~! D <t Wslx,.<p, and 7 is a hyperparameter to be determined further
below.

Because the values at level d are 1/n¢ apart, the worst-case discretization error in the estimated
average CDF value is

CDF¢(e(d)[e(d)~"v]) — CDFy(v) < 1/(&n),

and the total worst-case confidence radius including discretization error is

1 C(r) o«
_gt’r]d“"maX( n 7u(‘/;77—7772d>>.
Now evaluate at d such that \/P; < &1 < v/ where 1, =t (7 + V3)/t) ",

1 C(7) < a ))
rq(t) < +max(,u Vs, ———
V<7 e\ g,

_ TV :Vt)/t +0 (\/(T +t%)/t log (& a1)> +O(t M og (&%),

Td(t)

where O() elides polylog V; factors. The final result is not very sensitive to the choice of 7, and we
use 7 = 1 in practice.

Lemma E.1. Suppose

exp (ASy — ¥e(\)V4)
Pe(A) = —A —log(1 =),

is sub-1y. qua|\Howard et al.|[2021| Definition 1]; then there exists an explicit mixture distribution
over A with hyperparameter T > 0 such that

az=P <3t >1: i;t > max (CiT),U(Vt;T,Oz))> ,
(T +Vi)/t R — 1+at
. — 21 ——27 )1 . 12(7+Vy)+1
u(Viim,a) < t °8 o e C(r)

+llo T+Vte,m 1+at
o8 27 ' C(r) ’

I(r) =T(r,7)’

is a (curved) uniform crossing boundary.

C(r) =
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Proof. We can form the conjugate mixture using a truncated gamma prior from Howard et al.| [2021},
Proposition 9], in the form from Waudby-Smith et al.| [2022, Theorem 2], which is our Equation (17).

T ,—T 1
M= (T R (LY, 1,8+,
t (F(T)-F(T,T) T""/t 1 1(7 t+7+ 1,5+ t+T)7

where 1 Fi (. . .) is Kummer’s confluent hypergeometric function. Using (Olver et al.| [2010, identity
13.6.5],

1Fi(l,a+ 1,2) = €®ax™ (I'(a) — T'(a, x))

where T'(a, x) is the (unregularized) upper incomplete gamma function. From Pinelis|[2020, Theorem
1.2] we have

e ®
r <
(a,2) < =
= 1F1(1l,a+ 1,2) = eaz™T(a) — @
r—a
Applying this to the mixture yields
C(r)eT+Vetse C(1)
EB r V) —
! (T+ Vi 4+ 8)7tV (r+ V) St
C T+Vi+Se
()e (7 +V;)—1, (1)

- (7' + % + St)TJth
where (1) follows from the self-imposed constraint S; > C(7). This yields crossing boundary

B C«(T)eﬂ—VH—Sf,
1 _
TGSy UL

eTTVi+S: B (T+Vt)7+w (1 -‘rOé_l) . (7__|_Vvt)'r+Vt 5 (T a)
S R AN C IR A
R - (r+ V)V
(1+L) T\ TE+W)

T+Vi
St = (’T + V;) (—1 - W,1 (—Zt_l>> .
Chatzigeorgiou| [2013| Theorem 1] states

2
W_oi(—e “ e —-1-vV2u+ [—u, _SU]

> (bt(Taa) TV = Zty

— —1-W_i(—e " 1 ev2u+ [;u,u] .

Substituting yields

(T+ V) (1 =W_i (—27Y)) < (1 + W) <4 [21og (g) + log (3)) : (19)

From |[Feller| [1958] Equation (9.8)] we have
n

I'(1+n) e v2mn (—1) [eﬁ,eﬁ]
e

1
v 1
(7_ + ‘/t)‘f'—f-‘/t T+V T+ ‘/t PICER ) L -~ 1 _ 1
— ~ 7 c e [e L2(r+Vi)? e 12(r+vt>2+<r+vt>]_

F'ir+W) 27

Therefore

T+ V;

2t 2(7'in) _ 1 1
(r+ V) [2l0g () < (7 + Vi) | 2log ¢ T gy (r, )
e

Vi -1
=,12(r +V;)log (« / % ;— b e TRV o (T, a)> , (20)
m
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and

1
Vi\ 2+ _ 1 1
(1 + V) log (g) < (14 W) log ((T ;—71- t) e 12(r V)2t (r+Vp) ¢t(T7Oé)T+Vf>

— log <4 ,%‘46— 12(T+‘1Vf,)+1 d)t(T’a)) . 21
™

Combining Equations (T9) to 1)) yields the crossing boundary

Sy (T+ W)/t T+V, _ 1 1+a!
Zt = A7 Lt T et [
t 2( t log o o C(r)

+110 T+%€*W M
¢t o8 2 C(7)

F Simulations

F.1 ii.d. setting

For non-importance-weighted simulations, we use the Beta-Binomial boundary of |[Howard et al.
[2021]] for A; and =Z;. The curved boundary is induced by the test NSM

tqs o\ H(1=ae)
§,, dBeta (p; ba, b(1 - q)) (ﬁ) (11—51)
S; dBeta (p; by, b(1 — q4))

_ 1 (Beta(qt, 1,bq: + tGe, b(1 — q¢) + t(1 — (jt))>
(1- qt)t(l—ét)qf‘it Beta(qt, 1, bqy, b(l — %))

with prior parameter b = 1. Further documentation and details are in the reference implementation
csnsquantile.ipynb.

Wt(b7 th7 Qt> =

The importance-weighted simulations use the constructions from Appendix[E} the reference implemen-
tation is in csnsopquantile.ipynb for the DDRM variant and csnsopquantile-ebern.ipynb
for the empirical Bernstein variant.
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Figure CDF bounds approaching the true CDF Figure 8: Comparison to naive time-uniform
when sampling i.i.d. from a Beta(6,3) distribution. DKW (which is only valid in the i.i.d. setting)
Note these bounds are simultaneously valid for for Beta distributions of varying smoothness. De-
creasing smoothness degrades our bound.

all times and values.
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Figure 9: CDF bounds approaching the true CDF Figure [/} Demonstration of the variant described
when sampling i.i.d. from a lognormal(0, 1) dis- in Section[3.3]and Appendix [D.I]for distributions
tribution. Recall these bounds are simultaneously with arbitrary support, based on i.i.d. sampling
from a variety of lognormal distributions. Loga-
rithmic range dependence is evident.

valid for all times and values.
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Figure 10: CDF bounds approaching the true CDF  Figure 11: Demonstration of the variant described

when sampling i.i.d. from a Gaussian(0, 1) distri- in Section[3.3]and Appendix [D.1]for distributions
bution. Recall these bounds are simultaneously with arbitrary support, based on i.i.d. sampling

from a variety of Gaussian distributions. Loga-
rithmic range dependence is evident.

valid for all times and values.
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seeds approaching different average conditional +/%/log(t) to remove the primary trend, as a func-
CDFs. Bounds successfully track the true CDFs tion of £, for nonstationary Polya simulations with
different ; schedules. See Section[4.2]

in both cases. See Section
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Beta(6,3) with finite-variance importance weights,
using DDRM for the oracle confidence sequence.
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Figure 14: CDF bounds’ approaching the true Figure 15: CDF bounds’ approaching the true

counterfactual CDF when sampling i.i.d. from a
Beta(6,3) with finite-variance importance weights,

counterfactual CDF when sampling i.i.d. from
a Beta(6,3) with infinite-variance importance

using Empirical Bernstein for the oracle confi- weights, using Empirical Bernstein for the oracle
confidence sequence. Despite apparent conver-
gence, eventually this simulation would reset the
Empirical Bernstein oracle confidence sequence

dence sequence.

to trivial bounds.
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