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ABSTRACT

This paper challenges semi-supervised segmentation with a rethink on the feature-
prototype interaction in the classification head. Specifically, we view each weight
vector in the classification head as the prototype of a semantic category. The basic
practice in the softmax classifier is to pull a feature towards its positive proto-
type (i.e., the prototype of its class), as well as to push it away from its negative
prototypes. In this paper, we focus on the interaction between the feature and its
negative prototypes, which is always “pushing” to make them dissimilar. While
the pushing-away interaction is necessary, this paper reveals a new mechanism
that the contrary interaction of pulling close negative prototypes is also benefi-
cial. We have two insights for this counter-intuitive interaction: 1) some pseudo
negative prototypes might actually be positive so that the pulling interaction can
help resisting the pseudo-label noises, and 2) some true negative prototypes might
contain contextual information that is beneficial. Therefore, we integrate these
two competing interactions into a Push-and-Pull Learning (PPL) method. On the
one hand, PPL introduces the novel pulling-close interaction between features
and negative prototypes with a feature-to-prototype attention. On the other hand,
PPL reinforces the original pushing-away interaction with a multi-prototype con-
trastive learning. While PPL is very simple, experiments show that it substantially
improves semi-supervised segmentation and sets a new state of the art.

1 INTRODUCTION

This paper considers the semi-supervised semantic segmentation task. We focus on an essential
component in the segmentation model, i.e. the classification head, which consists of a set of learn-
able weight vectors. These weight vectors are usually viewed as a set of prototypes representing
the corresponding semantic categories. The essential training process is to pull each deep feature
towards its positive prototype (i.e., the prototype of its class), as well as to push it away from its
negative prototypes. The “pushing-away” interaction between a feature and its negative prototypes
makes them dissimilar to each other and is critical for discriminating different classes. In all the fol-
lowing parts of this paper, our discussion focuses on the interaction between features and their
negative prototypes and neglects the positive prototypes (unless explicitly pointed out).

While this “pushing away” interaction is necessary, this paper reveals a new mechanism that the
contrary interaction of pulling close features and their negative prototypes is also beneficial. This
“pulling close” interaction may seem counter-intuitive at the first glance but is actually reasonable
from two insights as below:

1) It brings a task-specific benefit for semi-supervised segmentation by resisting the pseudo-label
noises. Specifically, the popular pseudo-label-based pipeline is inevitably confronted with the
pseudo-label noises: some pseudo negative prototypes might be actually positive. Under this con-
dition, the “pulling close” interaction gives the feature a chance to approach its actual-positive pro-
totype. Experiments confirm that the pulling interaction effectively reduces the pseudo label noises
(Section 4.4) and this task-specific benefit is the primary reason for our improvement (Section 4.4).

2) It brings a general benefit for both the semi-supervised and fully-supervised segmentation because
some negative prototypes contain contextual information. Specifically, since our prototypes (i.e.,
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Figure 1: Comparison between the standard feature-prototype interaction and our push-and-pull
learning. (a) In the standard classification head, the interaction with the negative prototypes is always
“pushing-away”. (b) This paper reveals that in addition to the pushing-away interaction, a competing
pulling-close interaction between features and negative prototypes is also beneficial. Therefore, the
proposed push-and-pull learning (PPL) combines the pushing-away and pulling-close interactions
for negative prototypes. Moreover, we use multiple prototypes to represent each individual class
to better reflect the intra-class diversity, which is also beneficial. Circles and squares represent
prototypes and features, respectively. Different classes are in different colors.

the weight vectors) are learned from the whole training set through back-propagation, they naturally
provide clues for deriving the contextual information. Some prior works (Yuan et al., 2020; Jin et al.,
2021; Zhou et al., 2022) already show that exploring the contextual information from mean features
improves the segmentation accuracy. In contrast, we find that directly using the weight vectors for
contextual information can bring the similar benefit and is relatively simple. Empirically, we show
this general benefit is a secondary reason for our improvement (as detailed in Section 4.4).

These two insights motivate us to propose Push-and-Pull Learning (PPL) for semi-supervised seg-
mentation, as shown in Fig. 1. On the one hand, PPL reinforces the basic “pushing negative pro-
totypes” interaction with a multi-prototype contrastive learning, i.e., using multiple (instead of one)
prototypes to better represent each category. On the other hand, PPL enforces the “pulling negative
prototypes” interaction through a feature-to-prototype attention. Specifically, each feature absorbs
information from all the prototypes using a standard cross-attention layer. Although these two in-
teractions share a same effect of pulling close positive prototypes, we name the resulting method as
Push-and-Pull Learning to highlight their competing effect on the negative prototypes.

Another important advantage of the proposed PPL is that it can be cascaded to enlarge its benefit. It
is because, after the pulling-close interaction, the features are refined with the improved resistance
against pseudo-label noises. Therefore, we re-evaluate their pseudo labels to increase label accuracy.
Based on the refined deep features, we may append another round of PPL for further improvement.
Extensive experiments on popular benchmarks validate that cascading multiple PPL accumulates
multiple rounds of improvement (Appendix B.2) and sets a new state of the art (e.g., 77.03% and
74.22% mloU on PASCAL VOC 2012 using 1/8 and 1/16 labels). Moreover, ablation study shows
that within the two benefits of PPL, the task-specific benefit is the major reason for the superiority
of PPL: while the general benefit improves the fully-supervised segmentation (the upper-bound of
semi-supervised segmentation) by a small margin, the benefit of resisting pseudo-label noises largely
reduces the gap between the few-label and full-label regimes.

To sum up, this paper makes the following contributions:

e We investigate the interactions between features and negative prototypes for semi-supervised seg-
mentation and reveal a novel mechanism, i.e., while the standard pushing-away interaction is neces-
sary, the contrary interaction of pulling close negative prototypes is also beneficial.

e We correspondingly propose a pull-and-push learning (PPL) method. PPL combines two com-
peting interactions and brings two benefits, i.e., resisting the pseudo-label noises and leveraging the
contextual information. Moreover, cascading multiple PPL stages can accumulate its benefits and
thus enlarge the improvement.

e We empirically show that PPL substantially improves semi-supervised segmentation by reducing
the accuracy gap between full supervision and semi supervision. The achieved results set new state
of the art on two popular benchmarks.
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2 RELATED WORK

2.1 SEMI-SUPERVISED SEMANTIC SEGMENTATION

Recently, consistency regularization and pseudo-labeling have been extensively explored in semi-
supervised segmentation (French et al., 2019; Ouali et al., 2020; Ke et al., 2020; Chen et al., 2021;
He et al., 2021; Hu et al., 2021; Liu et al., 2022), especially after the success of Mean Teacher
(Tarvainen & Valpola, 2017) and FixMatch (Sohn et al., 2020) in semi-supervised classification.
For example, French et al. (2019) design consistency supervision based on CutMix augmentation to
exploit unlabeled data while Ouali et al. (2020) and Ke et al. (2020) consider feature and network
perturbations, respectively, when designing consistency regularization for unlabeled data. He et al.
(2021) propose to improve model training by producing unbiased pseudo labels which match the
true class distribution in labeled data. Hu et al. (2021) design a confidence bank to balance the
training of well and badly performed categories. Liu et al. (2022) extend the mean-teacher model
for semi-supervised segmentation by including a new auxiliary teacher and developing a stricter
confidence-weighted cross-entropy loss. In this work, we also use consistency regularization and
pseudo-labeling to exploit unlabeled data and propose pushing and pulling feature-prototype inter-
actions to improve the network training for semi-supervised segmentation.

2.2 CONTRASTIVE LEARNING

Contrastive learning aims to pull positive pairs close while pushing negative pairs far away from each
other in the feature space. Recently, contrastive learning has shown its great potential to exploit un-
labeled data in self-supervised learning (Hjelm et al., 2018; Wu et al., 2018; He et al., 2020; Chen
et al., 2020). This inspires the exploration of contrastive learning in semi-supervised segmentation
(Zhou et al., 2021; Alonso et al., 2021; Zhong et al., 2021; Lai et al., 2021; Wang et al., 2022). For
example, Lai et al. (2021) propose to establish consistency between the pixels at the same location
but with different contexts and design a directional contrastive loss with the help of pseudo labels.
Alonso et al. (2021) maintain a memory bank to save high-quality feature vectors from labeled data
and perform contrastive learning with this memory bank to improve the network training. Wang
et al. (2022) propose to effectively use unreliable pseudo labels with contrastive learning. These
state-of-the-art methods usually consider pixel-to-pixel contrastive learning. In contrast, the con-
trastive learning part in our method compares features against prototypes. We represent each class
with multiple prototypes so as to reflect intra-class diversity. Therefore, it better accommodates the
mixture of labeled and unlabeled data and is one important reason for the superiority of our method.

2.3 CONTEXT LEARNING

Context learning is a popular way to improve semantic segmentation by exploring contextual infor-
mation from pixels or regions. Yuan et al. (2020) propose OCRNet to augment features with the
object-contextual representations from local contexts. Jin et al. (2021) leverage object-contextual
representations from the whole datasets to improve features. Zhou et al. (2022) apply context learn-
ing to weakly supervised semantic segmentation. In this work, our PPL provides an alternative
approach for context learning, i.e., directly using the weight vectors. However, we note that context
learning is not our novelty and is merely the secondary reason for our improvement.

3 METHODOLOGY

The overview of Push-and-Pull Learning (PPL) is illustrated in Fig. 2. PPL cascades multiple stages
for successive improvement (Fig. 2(a)). Each PPL stage consists of 1) a standard classifier for
segmentation (with the cross-entropy loss), 2) a contrast-based pushing interaction (Fig. 2(b)) and
3) an attention-based pulling interaction (Fig. 2(c)). Both the contrast-based pushing interaction and
the attention-based pulling interaction require storing the historical prototypes from the classifier
into a classifier memory bank CM, so that each class has multiple prototypes. After the attention-
based pulling interaction, the features are refined to some extent and are fed into the classifier of
the sub-sequential PPL stage as its input. We note that although our method cascades multiple PPL
stages to refine the pseudo labels, it only introduces slight computational overhead (as detailed in
Appendix C).
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Figure 2: Overview of the push-and-pull learning. We perform the pushing interaction by multi-
prototype contrastive learning, as shown in (b), and the pulling interaction via a feature-to-prototype
attention, as shown in (c). The classifier memory bank CM is designed as a queue to store class
prototypes and is updated by the corresponding classifier weights. Multiple pulling and pushing
interactions are leveraged sequentially to enlarge their benefit. “®” and “@®” in (c) denote matrix
multiplication and element-wise sum, respectively. p, 1,  and g are four convolutional modules.

Section 3.1 and Section 3.2 elaborate on the contrast-based pushing and the attention-based pulling,
respectively. Section 3.3 illustrates how to integrate the proposed PPL into a popular teacher-student
framework for semi-supervised segmentation.

3.1 CONTRAST-BASED PUSHING INTERACTION

The contrast-based pushing interaction uses multiple prototypes to represent each single semantic
class and complements the standard classifier (single prototype for each class). The motivation: us-
ing a single prototype lacks consideration for the intra-class diversity and is prone to over-fitting the
noisy pseudo-labeled samples in the current minibatch. Therefore, we collect additional prototypes
from historical classifiers (i.e., the classifiers in previous iterations) and store them in a classifier
memory bank CM, as illustrated in Fig. 2(a). Specifically, CM is updated in a first in last out manner
and maintains a constant size of K x T x C (K is the total number of classes, T is the number
of prototypes per class and C'is the dimension of each prototype). CM improves the robustness and
effectiveness of pushing-away interaction through a multi-prototype contrastive loss function:
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where H and W denote the height and width of the feature map, respectively. M € {0 1H>*Wis a

mask for selecting high-confident pseudo-labelled pixels for training. ¢(a,b) = m denotes

the cosine similarity between a feature vector and a prototype. f* and §™* denote the feature
vector and the corresponding pseudo label at the location (h,w), respectively. CMF-* denotes the
prototype of the k-th class in the ¢-th previous iteration. « and m are the scale factor and the margin,
respectively. In Eq. (1), the first component aims to pull one pixel feature £ close to its positive
prototypes SV (belonging to the same class ()™*) as the feature) while the second component
is designed to push the feature far away from its negative prototypes.
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Figure 3: Integrating the proposed PPL into a popular teacher-student framework for semi-
supervised segmentation. The student and teacher networks share the same architecture and both
contain multiple (n) PPL stages. The detailed structure of each PPL stage is illustrated in Fig. 2(a).
Please note that while each PPL has its own classifier, there is one more classifier (“Final classifier”)
after the last PPL stage. This final classifier uses the refined features of the last PPL as its input
features. The student network uses the ground truth on the labeled data and the pseudo labels on
the unlabeled data for supervision. The teacher network applies weak augmentation (Aug) to the
unlabeled data, while the student network mixes both weak and strong augmentation (Aug’).

3.2 ATTENTION-BASED PULLING INTERACTION

Given the prototypes in CM and the features, the proposed PPL incorporates a pulling-close in-
teraction to compete with the contrast-based pushing interaction. This pulling-close interaction is
implemented with a feature-prototype attention as shown in Fig. 2(c). Specifically, we first compute
the affinity between each feature f* and each prototype CM*:t, which is defined as,

exp(p(f) Ty (cb-t))
Sy Spy exp(p(fhw) T (e )

where wp,, ¢+ is the feature-prototype affinity score, p and ) are two convolutional blocks. Each
block consists of two “1 x 1 convolutional layers + batch normalization + ReLU layer”.

2

Whw,kt =

According to the affinity scores, each feature absorbs some information from all the prototypes into
itself for the pulling-close interaction, which is formulated as:

K T

P = (900> whu kS (CM)) 4 1) /2, (3)

k=1t=1

where g and ¢ are two convolution blocks consisting of a 1 x 1 convolutional layer, a sub-sequential
batch normalization and a ReLU layer. f™* denotes the refined feature vector at the location (h, w)
after absorbing information from the prototypes.

Discussion. The pulling interaction between features and prototypes can be also viewed as an in-
teraction among all the labeled and unlabeled data across the whole training set. This is because
the class prototypes are learned from both the labeled and pseudo-labeled samples, simultane-
ously. Therefore, when a feature absorbs information from these prototypes (Eq. (3)), it constructs
a pulling-close interaction towards all its inherently-similar samples in the training set. Under the
case where an unlabeled sample is assigned with an incorrect pseudo label, this interaction is partic-
ularly beneficial because it allows the feature to approach its ground-truth class prototype, as well
as its true-positive samples. Consequently, the pulling interaction facilitates resistance against noisy
pseudo labels and helps refine the features. Using the oracle view, we find that using the refined fea-
tures to assign the pseudo labels improves the pseudo label quality, as detailed in the supplementary.

3.3 INTEGRATING PPL INTO SEMI-SUPERVISED TEACHER-STUDENT FRAMEWORK

We show how to integrate the proposed PPL into a popular teacher-student framework for semi-
supervised segmentation, as illustrated in Fig. 3. We first present the teacher-student framework as
follows. The student and teacher models share the same network architecture and are parameterized
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with 6 and 6, respectively. The teacher model 6’ is updated as the exponential moving average
(EMA (Tarvainen & Valpola, 2017)) of the student model #, which is formulated as:

0, =a-0,_;+(1—a)- 6 4
where « is a coefficient controlling the update rate.

In the teacher-student framework, the labeled samples and unlabeled samples are jointly used for
training the student. Specifically, the labeled samples x; (after data augmentation) are directly fed
into the student network for training. In contrast, the unlabeled samples x,, are fed into both student
and teacher networks in parallel, because we require the teacher prediction for generating the pseudo
labels to supervise the student. We note that the student and teacher networks have different data
augmentations for the unlabeled data: the teacher network prefers relatively weak data augmentation
and transfers x,, to Z,,, while the student mixes both weak and strong augmentation and transfers x,,
to 2/,. This data augmentation strategy is consistent with FixMatch (Sohn et al., 2020).

We integrate the proposed PPL into this training framework by inserting our cascaded PPL stages
between the encoder (feature extractor) and the classifier, as shown in Fig. 3, for both the student
and teacher networks. We note that each PPL stage has its own classifier (as shown in Fig. 2 (a)),
and there is one more classifier (“Final classifier” in Fig. 3) after the last PPL stage. For the stu-
dent network, all these classifiers need to be learned on the combination of labeled and unlabeled
data. Specifically, for the labeled data, we employ the cross-entropy loss for supervising the student
predictions, which is formulated as:

n+l H W

L=- waZZZy “log(p;';"), (5)

i=1 h=1w=1

where ylh’w denotes the ground-truth of one labeled image at the location (h, w) and p?’iw denote

the corresponding prediction. ¢ = 1, ..., n indicates the prediction is predicted in the i-th PPL stage
while ¢ = n + 1 indicates the prediction is from the final classifier. n is the number of PPL stages.

As for the unlabeled data, given the pseudo labels from the teacher, we apply both cross-entropy
loss and the proposed contrastive loss (Eq. (1)) for supervising the student predictions, which is
formulated as:

n+tl H W

Yu’ (IOg(pZ:;U)) + Z Lcont (fu,iy CMiu Qm M), (6)

=1h =1

where f,, ; and p,, ; denote the feature before the classifier and the corresponding prediction of one
weakly or strongly augmented unlabeled image from the :-th PPL stage. g, is a one-hot pseudo label
map generated according to the prediction p,, from the teacher network. M = 1(max(p,) > 7)
aims to select reliable pseudo labels for training with a threshold 7 = 0.8.

The overall loss consists of losses for the labeled and unlabeled data, i.e., L; and L,,, written as,
L=L;+)L,, @)

where )\ is a coefficient which controls the contributions of different losses. The teacher network is
updated as the momentum of the student network and thus requires no supervision.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION

Datasets: We conduct our experiments on two standard segmentation datasets, i.e., PASCAL VOC
2012 (Everingham et al., 2015) and Cityscapes (Cordts et al., 2016). PASCAL VOC 2012 contains
21 semantic classes to segment (including the background class). In PASCAL VOC 2012 (the
augmented set (Hariharan et al., 2011)), 10,582, 1,449 and 1,456 images are used for training,
validation and test, respectively. Cityscapes focuses on urban scene understanding and contains 19
classes to segment. In Cityscapes, 2,975, 500 and 1, 525 images are used for training, validation
and test, respectively. In our semi-supervised segmentation experiments, we randomly sample 1/2,
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Table 1: Comparison with state-of-the-art methods on PASCAI VOC 2012. Two backbones, i.e.,
ResNet-50 and ResNet-101 and four data partition protocols, i.e., 1/16, 1/8 , 1/4 and 1/2 are consid-
ered. The results of U2PL(Wang et al., 2022) are from the authors’ GitHub issues.

ResNet-50 (%) ResNet-101 (%)
1/16 1/8 1/4 172 1/16 1/8 1/4 172

MT (Tarvainen & Valpola, 2017) | 66.77 70.78 73.22 75.41 | 70.59 73.20 76.62 77.61

Methods

CCT (Ouali et al., 2020) 6522 70.87 7343 7475|6794 73.00 76.17 77.56
CutMix-Seg (French et al., 2019) | 68.90 70.70 72.46 74.49 | 72.56 72.69 74.25 75.89
GCT (Ke et al., 2020) 64.05 7047 7345 7520 | 69.77 7330 7525 77.14
CPS (Chen et al., 2021) 7198 73.67 7490 76.15 | 7448 7644 77.68 78.64
U2PL(Wang et al., 2022) - - - - | 7443 77.60 7870 79.94
PS-MT (Liu et al., 2022) 72.83 7570 7643 77.88 | 7550 78.20 78.72 79.76
PPL (Ours) 7422 7703 7733 78.03 | 77.10 78.57 79.50 80.20

1/4, 1/8 and 1/16 of the whole training set as labeled images and treat the rest as unlabeled images.
We use the same split lists as (Chen et al., 2021) for both two datasets.

Evaluation: We leverage mean Intersection-over-Union (mloU) metric to measure the segmentation
performance. Following (Chen et al., 2021), we report results on 1,456 PASCAL VOC 2012 val set
(or 500 Cityscapes val set) on one single scale testing.

4.2 IMPLEMENTATION DETAILS

In this work, we leverage DeepLabv3+ (backboned on ImageNet-pretrained ResNet-50 and ResNet-
101 (He et al., 2016)) as our baseline network. The encoder in Fig. 2(a) denotes all components of
DeepLabv3+ except the classifier, including the backbone, ASPP and decoder module.

During training, we adopt random scaling, cropping and flipping for both labeled and unlabeled
data. For the unlabeled data, we conduct strong augmentation by additionally applying GrayScale,
GaussianBlurring, and ColorJitter. Stochastic gradient descent (SGD) with momentum set to 0.9
is leveraged to optimize the network, and the weight decay is set to 1le~. Besides, we adopt the
“ploy” learning rate policy where the initial learning rate is multiplied by (1 — %)p with
p = 0.9. The learning rate for the pretrained backbone is additionally multiplied by 0.1. The length
of the classifier memory bank is set to 10 and the number n of our PPL stages is set to 2. v and m
in Eq. (1) is set to 32 and 0.25, respectively. The updating rate « for the teacher network in Eq. (4)
changes during training, written as & = 0.99 + 0.01(1 — cos(m - —L— 4 1) /2).

max-iter

On PASCAL VOC 2012, we randomly crop images into 512 X 512 images and train our network for
80 epochs with the base learning rate set to 0.01. In the first 10 epochs, we warm up our network by
only using labeled data. We set the batch size to 8 and the loss coefficient A in Eq. (7) is set to 0.1.
The iteration number per epoch is measured by the whole training set size and the batch size. On
Cityscapes, we randomly crop images into 800 x 800 images and train networks for 240 epochs with
the base learning rate set to 0.1. We use 20 epochs to warm up our network. We set the batch size
to 8 and the loss coefficient A to 0.5. Besides, OHEM loss is used for labeled images and CutMix
augmentation is used for unlabeled images on Cityscapes.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 1 and Table 2 compare the proposed PPL with seven state-of-the-art methods on PASCAL
VOC 2012 and Cityscapes, respectively. From these comparisons, we draw two observations as
below:

First, PPL achieves accuracy on par with the state of the art. For example, on Pascal VOC 2012, PPL
based on ResNet-50 surpasses the strongest competitor PS-MT (Liu et al., 2022) by 1.39%, 1.33%,
0.90% and 0.15% under 1/16, 1/8, 1/4 and 1/2 data partition protocols, respectively.

Second, focusing on the accuracy decrease from “1/2” to “1/16” data partition, we observe that PPL
presents slower decreases, compared with the competing methods. For example, on Pascal VOC
2012, the competing methods suffer decreases of 4.17% (CPS) and 5.05% (PS-MT) when the labeled
data is reduced from “1/2” to “1/16”. In contrast, given the same condition, the accuracy decrease
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Table 2: Comparison with state-of-the-art methods on Cityscapes. Two backbones, i.e., ResNet-50
and ResNet-101 and four data partition protocols, i.e., 1/16, 1/8, 1/4 and 1/2 are considered.

ResNet-50 (%) ResNet-101 (%)
1/16 1/8 1/4 172 1/16 1/8 1/4 172

MT (Tarvainen & Valpola, 2017) | 66.14 72.03 7447 7743 | 68.08 73.71 76.53 78.59

Methods

CCT (Ouali et al., 2020) 66.35 7246 75.68 76.78 | 69.64 7448 7635 78.29
GCT (Ke et al., 2020) 65.81 71.33 7530 77.09 | 66.90 7296 76.45 78.58
CPS (Chen et al., 2021) 7447 76.61 77.83 7877 | 7472 77.62 79.21 80.21
PS-MT (Liu et al., 2022) 77.12  78.38 79.22

PPL (Ours) 77.02 78.54 79.72 80.29 | 77.54 78.84 80.21 80.79

Table 3: Effectiveness of the attention-based pulling interaction and the contrast-based pushing
interaction. “Pulling” and “Pushing” denote the developed pulling and pushing interactions, respec-
tively. “Semi” and “Fully” denotes networks are trained in semi-supervised and fully-supervised
manners, respectively, while “Gap” denotes the accuracy gap between “Semi” and “Fully”. Results
with semi-supervised learning are evaluated on PASCAL VOC 2012 under 1/8 partition protocol.

Method ‘ Pulling Pushing ‘ ResNet-50 (%) ‘ ResNet-101 (%)

Semi Fully Gap | Semi Fully Gap

Baseline | | 72.15 7571 3.56 | 7535 78.68 3.33
v 7440 77.00 2.60 | 77.35 79.63 2.28

PPL v 74.15 76.84 2.69 | 76.33 79.21 2.88
v v 77.03 78.05 1.02 | 78.57 80.64 2.07

of the proposed PPL is relatively small, i.e., —3.81%. Therefore, PPL reduces the gap between
abundant labeled data and very few labeled data. We recall that PPL has two benefits for semi-
supervised segmentation, i.e., a general one (i.e., contextual information for general segmentation)
and a task-specific one (resistance against pseudo-label noises). This observation shows that the
task-specific benefit is the main reason for the superiority of PPL.

4.4 EFFECTIVENESS OF THE PUSHING AND PULLING INTERACTIONS

We investigate the pushing and pulling interactions through ablation study under the semi-supervised
(1/8 labeled data) and the fully-supervised scenario. The results are summarized in Table 3, from
which we draw three observations: First, both the pulling and pushing interactions bring independent
improvement to the baseline. For example, based on ResNet-50, the pushing and pulling interaction
improve the baseline by 2.00% and 2.25%, respectively.

Second, combing the pushing and pulling interactions achieves further improvement. For example,
based on ResNet-50, PPL achieves a 4.89% mloU overall improvement. It indicates that these two
interactions are complementary to each other.

Third, comparing “Semi” against “Fully”, we notice PPL reduces the “Gap” between semi-
supervision and full supervision. For example, the baseline undergoes a 3.56% gap, while PPL
reduces this gap to 1.02%. It is consistent with our second observation in Section 4.3, further con-
firming that the superiority of PPL mainly comes from its task-specific benefit for semi-supervision.

4.5 PPL IMPROVES THE PSEUDO LABEL QUALITY

PPL enables to improve the pseudo label quality. We evaluate the generated pseudo labels dur-
ing training and present the quantitative and qualitative results in Fig. 4 and Fig. 5, respectively.
In particular, three methods are considered, as follows: 1) “baseline” (the popular teacher-student
framework), 2) “PPL one stage” (adding one PPL stage into the baseline) and 3) “PPL two stage”
(Ours). In Fig. 4, the used pseudo labels are collected and evaluated per epoch, and mloU and
averaged recall are used to measure the quality of the pseudo labels.

We draw two observations from Fig. 4. First, we observe that PPL is able to improve both mloU
and recall of pseudo-labeled pixels. It indicates that our PPL is able to incorporate more pixels with
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Figure 4: Quantitative comparison of generated pseudo labels from 1) the popular teacher-student
“baseline”, 2) “PPL one stage” (using one PPL stage) and 3) “PPL two stage” (Ours).

Input Ground-truth Baseline PPL one stage PPL two stage

Figure 5: Qualitative comparison of the pseudo label quality. Some pixels are in white color because
the predicted pseudo labels are filtered out due to low prediction confidence.

more accurate pseudo labels into training. Second, in Fig. 4, we also notice adding one more PPL
stage improves the recall sightly (while maintaining the mloU). In particular, we average the mloU
and recall from all epochs for “PPL one stage” and “PPL two stage”. “PPL one stage” achieves
73.16% in the averaged mloU and 70.26% in the averaged recall, while “PPL two stage” achieves
73.27% and 70.93% in the averaged mloU and recall, respectively.

Combining the above two observations, we infer that PPL refined the features and thus improves the
pseudo label quality and this refining effect can be enlarged by cascading multiple PPL stages.

Fig. 5 visualizes the pseudo labels generated from the baseline, one-stage PPL and two-stage PPL,
respectively. Different colors denote different classes while white indicates the pseudo labels are
filtered out by the threshold 7 and are not considered during training. The visualization is consistent
with the quantitative results.

5 CONCLUSION

This paper proposes a novel push-and-pull learning (PPL) for semi-supervised semantic segmenta-
tion. In contrast to the common practice of pushing features away from their negative prototypes,
PPL considers pulling features close to some negative prototypes is sometimes beneficial, as well.
Therefore, PPL integrates these two competing feature-prototype interactions for cooperation. On
the one hand, PPL reinforces the fundamental pushing interaction with a multi-prototype contrastive
learning. On the other hand, PPL uses a feature-to-prototype attention to make the feature absorb
information from the negative prototypes, yielding the pulling effect. These two interactions both
improve the semi-supervised baseline, and bring further improvement when PPL combines them
together. Extensive experiments show that PPL effectively reduces the accuracy gap between semi-
supervision and full-supervision, and the achieved results are on par with the state of the art.
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A PPL IMPROVES THE ROBUSTNESS AGAINST NOISY PSEUDO LABELS

Table 4: Comparison between our PPL method and baseline with noisy pseudo labels. “mloU Gap”
denotes the mIoU gap between situations with ground-truth and with noisy pseudo labels.

Noise ratio PPL (%) baseline (%)
) mloU mloU Gap | mloU mloU Gap
0% 78.37 74.69

10% 71.74 -0.63 73.90 -0.79
20% 71.67 -0.70 72.94 -1.75
40% 76.35 -2.02 71.17 -3.75

To explicitly show that our PPL can resist pseudo-label noises, we manually add noises into the
training process. Specifically, during training, we simulate experiments under the 1/8 partition pro-
tocol, i.e., sampling 1/8 data of the whole training set as the labeled samples and using the remaining
7/8 data as the unlabeled samples. For the unlabeled data, we use oracle view (ground truth) to set
up the conditions with clean labels, i.e. there is 0% pseudo label noise. We set up three noisy condi-
tions, i.e., there are 10% / 20%/ 40% pseudo label noises, by replacing ground-truth with inaccurate
pseudo labels at the corresponding ratios. To be specific, we randomly select the index correspond-
ing to the 2nd or the 3rd largest softmax prediction of the teacher network to replace the ground

11
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truth. Since the 2nd and the 3rd largest indexes correspond to the “easy-to-confuse” classes, using
them as the incorrect pseudo labels are reasonable.

The results are summarized in Table 4, from which we clearly observe that when the pseudo labels
become noisy, PPL has less accuracy drop than the baseline. For example, when the ratio of noisy
pseudo labels is 10%, 20% and 40%, the accuracy drop of the baseline is -0.79%, -1.75% and -
3.75%, respectively. In contrast, the accuracy drop of the proposed PPL is smaller (-0.63%, -0.70%
and -2.02%, respectively). Specifically, the superiority of PPL is more significant when the noise
ratio is larger. This observation confirms that PPL improves the robustness against noisy pseudo
labels.

In Table 4, “0% noise” achieves different accuracy from “Fully” in Table 3 (main text) because
they have different experiments setup. In “Fully” experiments, all data instead of partial data are
used for both supervised training and consistency based unsupervised training. Besides, in “Fully”
experiments, pseudo labels rather than ground-truth are used for the consistency-based unsupervised
training.

B IMPACT OF HYPER-PARAMETERS

B.1 IMPACT OF THE LENGTH OF CLASSIFIER MEMORY BANKS (1)

We recall that PPL collects multiple (7) historical prototypes into the memory bank, therefore better
reflecting the intra-class diversity. Table 5(a) investigates the impact of 7" with a ResNet-50-based
network under the 1/8 partition protocol on PASCAL VOC 2012, from which we observe that the
accuracy first gradually increases (when 7' increases from 1 to 10) and then decreases. It is rea-
sonable because when T is too large, some prototypes are severely out-of-date and actually become
distractors. Therefore, we recommend using 7" = 10 as an optimum.

B.2 IMPACT OF THE NUMBER OF PPL STAGES (n)

In Table 5(b), we conduct experiments to anal-
yse the impact of the number of PPL stages Table 5: Analysis of the impact of classifier mem-
(n). As shown in Table 5(b), PPL achieves the ory bank length T and PPL stage number n.

best accuracy when n is set to 2. We infer it
is because using fewer stages cannot take the

full advantage of PPL while using too many T" mloU (%) 8 mI702U 1(5%)
stages may distort the output feature which in- 1 75.86 1 7616
volves too much class-wise prototype informa- 5 76.95 > 7703
tion. Therefore, we set n = 2 in all our experi- 10 77.03 )
ments 20 76.20 3 76.85
’ - - 4 76.18
() ®

B.3 IMPACT OF
THE SCALE FACTOR v AND THE MARGIN m

We recall that the scale factor v and the margin m are adopted in the developed contrastive loss (in
Eq. (1)) for better similarity separation. Table 6 investigates the impact of v and m with a ResNet-
50-based network under the 1/8 partition protocol on PASCAL VOC 2012. As shown in Table 6,
better accuracy is achieved when ~ and m are set to 32 and 0.25, respectively. Thus, we set y to 32
and m to 0.25 in our experiments.

C COMPUTATIONAL COST OF PPL.

We recall that PPL cascades multiple (2) stages which bring additional computational cost during
inference. Thus, we report the number of parameters and GFLOPs of PPL stages in Table 7, and
find that the computational cost of PPL stages are affordable.
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Table 6: Analysis of the impact of the scale factor v and the margin m

v mloU (%) m mloU (%)
16 76.14 0.15 75.80
32 77.03 0.25 77.03
64 75.19 0.35 76.63

(a) (b)

Table 7: Computational cost of PPL during inference.

Method | #params (M) FLOPs (G)

wo/ PPL 40.42 76.24
One PPL stage 40.58 77.60
Two PPL stage 40.75 78.96

13



	Introduction
	Related Work
	Semi-supervised Semantic Segmentation
	Contrastive Learning
	Context Learning

	Methodology
	Contrast-based Pushing Interaction
	Attention-based Pulling Interaction
	Integrating PPL into Semi-Supervised Teacher-Student Framework

	Experiments
	Datasets and Evaluation
	Implementation Details
	Comparison with State-of-the-art Methods
	Effectiveness of the pushing and pulling interactions
	PPL improves the pseudo label quality

	Conclusion
	PPL improves the robustness against noisy pseudo labels 
	Impact of Hyper-parameters
	Impact of the length of classifier memory banks (T)
	Impact of the number of PPL stages (n)
	Impact of the Scale Factor  and the Margin m

	Computational cost of PPL.

