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Abstract

In decision-dependent games, multiple players optimize their decisions under a data dis-
tribution that shifts with their joint actions, creating complex dynamics in applications
like market pricing. A practical consequence of these dynamics is the performatively stable
equilibrium, where each player’s strategy is a best response under the induced distribution.
Prior work relies on β-smoothness, assuming Lipschitz continuity of loss function gradients
with respect to the data distribution, which is impractical as the data distribution maps, i.e.,
the relationship between joint decision and the resulting distribution shifts, are typically un-
known, rendering β unobtainable. To overcome this limitation, we propose a gradient-based
sensitivity measure that directly quantifies the impact of decision-induced distribution shifts.
Leveraging this measure, we derive convergence guarantees for performatively stable equilibria
under a practically feasible assumption of strong monotonicity. Accordingly, we develop a
sensitivity-informed repeated retraining algorithm that adjusts players’ loss functions based
on the sensitivity measure, guaranteeing convergence to performatively stable equilibria
for arbitrary data distribution maps. Experiments on prediction error minimization game,
Cournot competition, and revenue maximization game show that our approach outperforms
state-of-the-art baselines, achieving lower losses and faster convergence.

1 Introduction

In supervised learning, models are typically trained and tested under the assumption that data are sampled
from a fixed distribution. However, in real-world applications, model predictions often influence decisions
that shift the underlying data distribution, a phenomenon known as performative prediction (Perdomo et al.,
2020). For example, a company predicting high demand may raise prices to maximize revenue, inadvertently
reducing the actual demand. Such dynamics are ubiquitous in economy (Hardt et al., 2022), education (Zhang,
2024), and recommendation systems (Eilat & Rosenfeld, 2023), where decisions reshape data distributions.

While performative prediction has been extensively studied in single learner settings, where the distribution
reacts solely to a single model, real-world scenarios often involve multiple competing agents. In these
decision-dependent games (Narang et al., 2023), each player optimizes decisions based on a distribution
influenced by not only their own actions but also those of others. For instance, a firm’s demand may decrease
due to its own price increase or competitors’ price reductions, creating complex multi-agent interactions and
dynamics that challenge traditional learning models.

Existing research in decision-dependent games focuses on two equilibria: Nash equilibria and performatively
stable equilibria. Nash equilibria ensure that each player’s decision is a best response across all potential
induced distributions given a predefined data distribution map Di(X), which describes the relationship
between the joint decision X = (x1, x2, · · · , xn) and the induced distribution Di (Narang et al., 2023; Zhu
et al., 2023). However, validating Nash equilibria is challenging in practice, as Di(X) is typically unknown
and may take various forms (Huang et al., 2013), making the inference of resulting distributions challenging
or even infeasible during the optimization process. Mis-specifying Di(X) can lead to unreliable equilibria,
limiting their applicability.
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In contrast, performatively stable equilibria require each player’s decision to be a best response under the
distribution induced by the current joint decision, enabling empirical validation without prior knowledge
of Di(X) (Cutler et al., 2024). Such a performatively stable equilibrium is highly desirable, since the joint
decision optimized on the distribution Di(XPS) will consistently converge to this equilibrium, eliminating
the need for further updates of decisions. These equilibria are practical consequences of rational multi-player
decisions, making them highly relevant to real-world applications. However, current studies rely on impractical
assumptions, particularly β-smoothness, which assumes Lipschitz continuity of loss function gradients with
respect to the data distribution (Narang et al., 2023; Cutler et al., 2024). Since Di(X) is typically unknown,
quantifying the extent of distribution shifts to verify β is challenging, making it difficult to apply theoretical
results in practice (A detailed example is provided in Appendix A). Additionally, prior research has applied
the W1 distance to quantify distribution shifts; however, its sample complexity grows exponentially with the
data dimensions, limiting the applicability of existing methods in high-dimensional spaces. To illustrate these
challenges, we consider a revenue maximization game:
Example 1.1. (Revenue Maximization Game (Narang et al., 2023)) Suppose n firms, each indexed by i ∈ [n],
set prices xi ∈ Rdi for products across di areas to maximize revenue Ri = zTi xi. The demand zi ∈ Rdi

decreases as xi increases or as competitors’ prices x−i = (x1, · · · , xi−1, xi+1, · · · , xn)T ∈ R
∑n

j ̸=i
dj decrease.

Furthermore, price changes in one area xij may also affect demand in other areas zik (k ≠ j), impacting Ri.
The data distribution map Di(X), relating the joint decision X to the induced demand distribution, can be
modeled as a logistic function (Bowerman et al., 2003; Phillips, 2021):

zi,X ∼ Di(X) = 2zinitiali ⊘
(

1 + e−(Aixi+A−ix−i)
)
,∀i ∈ [n], (1)

where zi,X ∈ Rdi is the demand of firm i induced by prices X set by n firms, zinitiali ∈ Rdi is the initial
demand of firm i, the operator ⊘ denotes the Hadamard division (i.e., the element-wise division) (Cyganek,
2013), and Ai ∈ Rdi×di and A−i ∈ Rdi×

∑n

j ̸=i
dj control demand shifts induced by xi and x−i, respectively.

In Example 1.1, the demand function Di(X) may take various forms (Huang et al., 2013; Chen et al., 2006;
Song et al., 2008; Kocabıyıkoğlu & Popescu, 2011), complicating the validation of Nash equilibria due to the
potential mis-specification. For performatively stable equilibria, estimating β is challenging without knowing
Di(X), as the range of demand shifts cannot be quantified. Moreover, prior methods relying on W1 distance
to measure distribution shifts face high sample complexity, particularly for global firms (Bernard et al., 2018)
with high-dimensional di, making accurate estimation impractical. Consequently, these limitations hinder the
real-world applicability of existing theoretical results for performatively stable equilibria.

1.1 Contribution

This paper proposes a framework for achieving performatively stable equilibria in decision-dependent games
for arbitrary data distribution maps, eliminating the need for impractical β-smoothness assumptions. Our
contribution can be summarized as follows:

• Gradient-based Sensitivity Definition and Theoretical Guarantees: We introduce a gradient-
based ε̂i-sensitivity measure in Section 3.1 that quantifies the impact of decision-induced distribution
shifts for arbitrary Di(X). By leveraging each player’s loss function gradient, this measure directly
captures the influence of distribution shifts on individual decisions. Using this definition, we derive
convergence guarantees for performatively stable equilibria in Sections 3.2-3.3, effective even with
finite samples, under practically feasible conditions of strong monotonicity. Our analyses rely on
measurable ε̂i and adjustable α, ensuring wide applicability across diverse scenarios.

• Algorithm Design and Systematic Validation: We develop the Sensitivity-Informed Repeated
Retraining (SIR2) algorithm in Section 4, which adjusts loss functions by tuning the monotonicity
parameter α based on estimated ε̂i-sensitivity, guaranteeing convergence to performatively stable
equilibria. In Section 5, we evaluate the effectiveness of SIR2 by comparing it against five state-of-
the-art methods in the prediction error minimization game between prediction platforms, Cournot
competition in crude oil trade, and the revenue maximization game in ride-share markets. Our
method outperforms baselines in two key aspects: players’ losses and equilibrium convergence speed.
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1.2 Related Work

Performative prediction focuses on single-learner settings, where a model’s predictions alter the distribution,
which, in turn, influences the model’s predictions. Performative optimality minimizes the performative loss by
incorporating the data distribution map into the objective, using convex optimization (Miller et al., 2021; Yan
& Cao, 2023; Lin & Zrnic, 2024) or gradient descent with estimated performative gradients (Izzo et al., 2021;
2022; Liu et al., 2024). In contrast, performative stability minimizes loss under the induced data distribution,
preventing further distribution shifts through repeated retraining Perdomo et al. (2020); Mofakhami et al.
(2023); Brown et al. (2022) or repeated gradient descent (Mendler-Dünner et al., 2020; Shan et al., 2023).

Decision-dependent games extend these concepts to multi-agent settings, where joint decisions shape the
distribution. Existing work for Nash equilibria optimizes performative losses of all players, assuming linear
data distribution maps. Specifically, in each iteration, each player alternates between: (1) updating the
decision using the estimated performative gradient, and (2) updating the data distribution map by fitting the
predefined function through collected decision-distribution pairs (Narang et al., 2023) or online stochastic
approximation (Zhu et al., 2023). For performatively stable equilibria, current studies conduct analyses under
three conditions: (1) an α-strongly monotone game, (2) β-smooth loss functions, and (3) γ-Lipschitz data
distribution maps with respect to W1 distance. Their theoretical results guarantee the convergence through
repeated retraining (Narang et al., 2023) or repeated gradient descent (Narang et al., 2023; Cutler et al.,
2024). Different from existing work, our framework eliminates the assumption of β-smoothness, using a
gradient-based sensitivity measure to achieve practical convergence for arbitrary distribution maps.

2 Problem Statement

This section formalizes the problem under consideration. First, we introduce decision-dependent games. We
then define the performatively stable equilibrium, a central concept in our analysis. Finally, we describe the
repeated retraining procedure that forms the basis of our analytical framework.

In a decision-dependent game, each player seeks to minimize their own loss function through their individual
decision. This loss function depends on both the decisions made by all players and the resulting decision-
dependent data distribution, which is induced by the joint decision. For an index set [n] = {1, 2, · · · , n}, each
player i ∈ [n] aims to solve the following decision-dependent optimization problem:

min
xi∈Xi

E
Zi∼Di(X)

ℓi(xi, x−i, Zi), (2)

where xi is the decision vector of player i with the dimension di, Xi ⊂ Rdi is the decision space of
player i, X = X1 × X2 × · · · × Xn ⊂ Rd is the joint decision space with the dimension d =

∑n
i=1 di,

X = (x1, x2, · · · , xn)T ∈ X is the joint decision vector of all players, x−i = (x1, · · · , xi−1, xi+1, · · · , xn)T is
the decision vector of all players except player i, Di(X) is the distribution for player i induced by the joint
decision vector X, Zi = {zi1 , zi2 , · · · , zim} is a sample set of m data points drawn i.i.d. from Di(X), and
ℓi(·) is the loss function of player i.

The decision-dependent game on the data distributions induced by joint decision Y ∈ X is composed of the
loss functions of all n players, which can be jointly formulated as follows:

G(Y ) :=
(

E
Z1∼D1(Y )

ℓ1(x1, x−1, Z1), · · · , E
Zn∼Dn(Y )

ℓn(xn, x−n, Zn)
)T

, (3)

Accordingly, a joint decision X∗ = (x∗
1, x

∗
2, · · · , x∗

n)T ∈ Rd is called a Nash equilibrium of the game G(Y ) in
Eq. (3) if the following holds:

x∗
i ∈ arg min

xi∈Xi

E
Zi∼Di(Y )

ℓi(xi, x∗
−i, Zi),∀i ∈ [n], (4)

where x∗
−i = (x∗

1, · · · , x∗
i−1, x

∗
i+1, · · · , x∗

n)T is the decision of all players except player i in the Nash equilibrium.
We denote such a Nash equilibrium of game G(Y ) as Nash(Y ):

Nash(Y ) := {X∗ ∈ X : X∗ is a Nash Equilibrium of game G(Y )} . (5)
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In a decision-dependent game, a joint decision X by all players may alter the underlying data distributions.
This data distribution shift can create opportunities for players to reduce their losses by adapting decisions to
the new distributions. In this context, a practical consequence is the performatively stable equilibrium, where
the joint decision XPS is a Nash equilibrium under the decision-induced data distributions Di(XPS),∀i ∈ [n].
Training on the distributions Di(XPS),∀i ∈ [n] results in the same XPS , which prevents the distributions
from further shifting. Formally, a performatively stable equilibrium is defined as follows:
Definition 1. (Performatively stable equilibrium) A joint decision XPS ∈ X is a performatively stable
equilibrium if it is a Nash equilibrium on the data distribution induced by XPS:

XPS = Nash(XPS). (6)

In this paper, we investigate the conditions under which a performatively stable equilibrium can be reached
through the following repeated retraining procedure1, where each player i optimize the next decision xt+1

i

according to the current distribution Di(Xt). In this procedure, the performatively stable equilibrium is
verified when the joint decision stabilizes, i.e., Xt+1 = Xt.
Definition 2. (Repeated retraining) Repeated retraining refers to the procedure where, at each step t+ 1,
the joint decision Xt+1 is determined based on the data distribution Di(Xt) for all i ∈ [n], induced by the
previous joint decision Xt:

Xt+1 = Nash(Xt), (7)
where X0, X1, · · ·Xt, Xt+1, · · · ∈ XRR, and XRR denotes the closed convex hull of the sequence of joint
decisions {Xt} obtained during the repeated retraining procedure.

In this paper, we employ repeated retraining, as an example, to derive theoretical guarantees and develop
our algorithm for decision-dependent games. Notably, the proposed framework is flexible and can be readily
extended to incorporate other decision update approaches, such as repeated gradient descent, as explored in
prior work (Narang et al., 2023; Cutler et al., 2024).

3 Theoretical Results

In this section, we present our main theoretical results, including: (1) a gradient-based sensitivity measure of
Di(X), (2) guarantees for convergence to performatively stable equilibrium with feasible conditions, and (3)
finite-sample convergence guarantees.

3.1 Gradient-based Sensitivity Measure

We introduce the ε̂i-sensitivity measure for Di(X) of player i, using practically calculable gradients to
quantify performative shifts without the impractical β-smoothness assumption. This definition stems from
the observation that shifts in data distributions can be reflected by changes to each player’s loss function
gradient during the repeated retraining procedure.
Definition 3. (ε̂i-sensitivity) The data distribution map Di(X) is ε̂i-sensitive for each i ∈ [n] if, for all joint
decisions Y,X,X ′ ∈ XRR, the following inequality holds during repeated retraining:∥∥∥∥∥ E

Zi∼Di(X)
∇yiℓi(yi, y−i, Zi)− E

Z′
i
∼Di(X′)

∇yiℓi(yi, y−i, Z
′
i)
∥∥∥∥∥

2

≤ ε̂i∥X −X ′∥2. (8)

This measure bounds the gradient discrepancy under distributions induced by X and X ′ using ε̂i, which can
be practically estimated via the supremum during repeated retraining iterations (Section 4). It characterizes
the sensitivity of the data distribution map Di(X) without requiring its explicit representation, allowing
Di(X) to be arbitrarily complex. It offers a verifiable criterion for the sensitivity of Di(X), serving as a
foundation for the following convergence analysis.

1Note that, although the repeated gradient descent approaches can also achieve a performatively stable equilibrium, we adopt
the repeated retraining in this paper to avoid frequent decision deployments required for partial model updates in repeated
gradient descent methods, which increases practical costs. In addition, existing gradient-based methods often rely on a β-joint
smoothness condition for equilibrium analysis, where β, a critical parameter to algorithm design, may be unverifiable in real-world
scenarios due to the unknown data distribution maps.
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3.2 Theoretical Guarantees for Performatively Stable Equilibria

Before presenting our theoretical results, we introduce two key definitions, which are essential for understanding
the subsequent theorems.
Definition 4. (Individual gradients of game G(·)) The individual gradients of the joint decision X, under
the distributions induced by Y , are defined as:

∇XG(Y ) :=
(

E
Z1∼D1(Y )

∇x1ℓ1(x1, x−1, Z1), · · · , E
Zn∼Dn(Y )

∇xn
ℓn(xn, x−n, Zn)

)T
. (9)

Definition 5. (α-strong monotonicity) A game G(Y ) is α-strongly monotone for Y ∈ X if, for all joint
decisions X,X ′ ∈ X , the following inequality holds:

α∥X −X ′∥2
2 ≤ (∇XG(Y )−∇X′G(Y ))T (X −X ′). (10)

The α-strongly monotonicity guarantees the existence of a unique Nash equilibrium in each iteration of the
repeated retraining, ensuring tractable game dynamics. This condition is applied in existing research on
decision-dependent games (Narang et al., 2023; Zhu et al., 2023; Cutler et al., 2024), facilitating the analysis’s
focus on the performative effect. Having established these definitions, we now present two theorems that
provide practical convergence conditions for performatively stable equilibria.
Theorem 1. If the game G(Y ) is α-strongly monotone and each data distribution map Di(Y ) is ε̂i-sensitive
for i ∈ [n], then the repeated retraining procedure of the game defined in Eq. (3) produces a sequence of joint
decisions {X0, X1, · · · , Xt−1, Xt, Xt+1, · · · } ⊂ XRR such that:

∥Xt+1 −Xt∥2 ≤
√∑n

i=1 ε̂
2
i

α
∥Xt −Xt−1∥2 ≤

(√∑n
i=1 ε̂

2
i

α

)t
∥X1 −X0∥2. (11)

Proof sketch. Here, we provide a proof sketch. The complete proof is given in Appendix B.

Given an α-strongly monotone G(·) and the definition of Nash(X) in Eq. (5), by applying the first-order
optimality conditions (Bubeck et al., 2015) and the Cauchy-Schwarz inequality (Hunter & Nachtergaele,
2001), we have, ∀X,X ′ ∈ X :

α∥Nash(X)−Nash(X ′)∥2 ≤ ∥∇Nash(X′)G(X ′)−∇Nash(X′)G(X)∥2. (12)

From Definitions 3 and 4, ∀Y,X,X ′ ∈ XRR, we have:

∥∇Y G(X)−∇Y G(X ′)∥2 ≤

√√√√ n∑
i=1

ε̂2
i ∥X −X

′∥2. (13)

We set Y = Nash(X ′) in Eq. (13), and combined with Eq. (12), we have:

∥Nash(X)−Nash(X ′)∥2 ≤
√∑n

i=1 ε̂
2
i

α
∥X −X ′∥2. (14)

Without loss of generality, we set X = Xt and X ′ = Xt−1. Then, we obtain:

∥Xt+1 −Xt∥2 ≤
√∑n

i=1 ε̂
2
i

α
∥Xt −Xt−1∥2 ≤

(√∑n
i=1 ε̂

2
i

α

)t
∥X1 −X0∥2. (15)

■

Theorem 1 establishes the dynamics of players’ decisions during repeated retraining. Leveraging this result,
Theorem 2 demonstrates that, under certain conditions, the repeated retraining procedure converges to
performatively stable equilibria2.
Theorem 2. If α >

√∑n
i=1 ε̂

2
i , then the repeated retraining procedure for the game defined in Eq. (3)

converges to a performatively stable equilibrium XPS within the set XRR, i.e., XPS ∈ XRR.
2The proof of Theorem 2 is given in Appendix C.
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3.3 Finite-Sample Convergence Analysis

Theorems 1 and 2 ensure guaranteed convergence to performatively stable equilibria under practically feasible
conditions, assuming full distribution access. In reality, players rely on finite collected samples, thereby
introducing challenges due to limited data and potential measurement noise. To address this, we extend
our results in Theorem 3, deriving finite-sample convergence conditions to maintain the practicality of
our framework. First, we derive a lemma that quantifies the discrepancy between empirical and expected
individual gradients. This will facilitate our analysis of convergence to performatively stable equilibria with
finite samples3.
Lemma 1. Consider the empirical average individual gradients ∇XGm(Y ) estimated over m samples of a
game G(Y ):

∇XGm(Y ) :=

 1
m

m∑
j=1
∇x1 ℓ1(x1, x−1, z1j

)
z1j

∼D1(Y )
, · · · , 1

m

m∑
j=1
∇xn

ℓn(xn, x−n, znj
)

znj
∼Dn(Y )

T

. (16)

Then for any δ > 0, with probability at least Fχ2(d)(mδ
2

σ ), the following inequality holds:∥∥∥∇XGm(Y )−∇XG(Y )
∥∥∥

2
≤ δ, (17)

where ∇XG(Y ) is the expected individual gradients in Definition 4, Fχ2(d)(·) denotes the cumulative distribution
function of the χ2 distribution with d degrees of freedom, and σ = λmax(Σ) denotes the largest eigenvalue of
Σ, the covariance matrix of the average individual gradients ∇XGm(Y ).

With Lemma 1 established, we now present the following theorem.
Theorem 3. If a game G(Y ) is α-strongly monotone and each data distribution map Di(X) is ε̂i-sensitive
for all i ∈ [n], and α > 2

√∑n
i=1 ε̂

2
i , then the repeated retraining procedure of the game defined in Eq. (3) with

finite samples produces a sequence of joint decisions {X0, X1, · · · , Xt−1, Xt, Xt+1, · · · } ⊂ XRR that converges
to a performatively stable equilibrium XPS. Specifically, with probability at least Fχ2(d)(

mt

∑n

i=1
ε̂2

i δ
2

σ ), the
following inequality holds:

∥Xt −XPS∥2 ≤ δ, ∀t ≥
log
(

δ
∥X0−XP S∥2

)
log
(

2
√∑n

i=1
ε̂2

i

α

) , (18)

where δ > 0 controls the convergence rate, and mt denotes the number of samples collected by each player at
time step t.

Proof sketch. Here, we provide a proof sketch. The complete proof is given in Appendix E.

By applying the triangle inequality, we have:
∥∇Nash(Xt)Gmt

(Xt)−∇Nash(Xt)G(XPS)∥2

≤ ∥∇Nash(Xt)Gmt
(Xt)−∇Nash(Xt)G(Xt)∥2 + ∥∇Nash(Xt)G(Xt)−∇Nash(Xt)G(XPS)∥2,

(19)

where mt is the number of samples each player collects at time step t, ∇Nash(Xt)Gmt(Xt) represents the
average of individual gradients at the joint decision Nash(Xt), computed over mt collected samples.

From Theorem 2 and Definition 3, we obtain: ∥∇Nash(Xt)G(Xt)−∇Nash(Xt)G(XPS)∥2 ≤
√∑n

i=1 ε̂
2
i ∥Xt −

XPS∥2. According to Lemma 1, we have ∥∇Nash(Xt)Gmt(Xt) − ∇Nash(Xt)G(Xt)∥2 ≤
√∑n

i=1 ε̂
2
i δ, with

probability at least Fχ2(d)(
mt

∑n

i=1
ε̂2

i δ
2

σ ). Combining these two inequalities with Eq. (19), when ∥Xt−XPS∥2 >

δ and α >
√∑n

i=1 ε̂
2
i , with probability at least Fχ2(d)(

mt

∑n

i=1
ε̂2

i δ
2

σ ), we have:

∥∥∥∇Nash(Xt)Gmt(Xt)−∇Nash(Xt)G(XPS)
∥∥∥

2
≤ 2

√√√√ n∑
i=1

ε̂2
i ∥X

t −XPS∥2. (20)

3The proof of Lemma 1 is given in Appendix D.
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XPS and Nash(Xt) are the Nash equilibria of G(XPS) and G(Xt), respectively, and G(·) is monotone.
According to the first-order optimality condition (Bubeck et al., 2015) for an α-strongly monotone G(·), we
multiply both sides of Eq. (20) by

∥∥Nash(Xt)−XPS
∥∥

2 and apply Cauchy-Schwarz inequality (Hunter &

Nachtergaele, 2001), when α >
√∑n

i=1 ε̂
2
i , with probability at least Fχ2(d)(

mt

∑n

i=1
ε̂2

i δ
2

σ ), we have:

∥Nash(Xt)−XPS∥2 ≤
2
√∑n

i=1 ε̂
2
i

α
∥Xt −XPS∥2. (21)

By Theorem 2, if α > 2
√∑n

i=1 ε̂
2
i , then with probability at least Fχ2(d)(

mt

∑n

i=1
ε̂2

i δ
2

σ ), we have:

∥Xt −XPS∥2 ≤ δ, ∀ t ≥
log
(

δ
∥X0−XP S∥2

)
log
(

2
√∑n

i=1
ε̂2

i

α

) . (22)

■

Theorem 3 guarantees finite-sample convergence to performatively stable equilibria with high probability
when α > 2

√∑n
i=1 ε̂

2
i , a condition readily satisfied by tuning α based on measured ε̂i, given sufficient sample

size mt in each iteration. This result, therefore, informs practical algorithm design in the next section.

4 Algorithm

Based on the theoretical results, we propose the Sensitivity-Informed Repeated Retraining (SIR2) algorithm
(Algorithm 1) to achieve performatively stable equilibria in decision-dependent games. SIR2 iteratively
optimizes each player’s decision by adapting to the data distribution maps Di(X), using a gradient-based
ε̂i-sensitivity measure (Definition 3) to ensure convergence. By setting γ = max(0, c

√∑n
i=1 ε̂

2
i − ψ) with

c > 2, SIR2 tunes the strong monotonicity parameter based on estimated ε̂i, which overcomes impractical
β-smoothness assumptions of prior work and guarantees convergence across arbitrary distribution maps.

Specifically, in each iteration t, each player i ∈ [n] first updates γ based on the latest ε̂i estimates (line
4 of Algorithm 1). Then, for the monotone game G := (Eℓ1(x1, x−1, Z1), · · · , Eℓn(xn, x−n, Zn)), each
player i adds a regularization term γ

2 ∥xi∥
2
2 to its loss function, constructing an α-strongly monotone game

Ḡ :=
(
Eℓ̄1(x1, x−1, Z1), · · · ,Eℓ̄n(xn, x−n, Zn)

)
with α = ψ+γ (line 5). Following this, each player i optimizes

its decision xti under the game Ḡ(Xt−1) induced by Xt−1 (line 6). After deploying the joint decision
Xt = (xt1, xt2, · · · , xtn)T (line 7), each player i collects samples Zti from the distribution induced by the joint
decision Xt (line 8) and estimates ε̂i (line 9). The procedure repeats until it converges to a performatively
stable equilibrium.

By doing so, our algorithm ensures that the game is α-strongly monotone with α > 2
√∑n

i=1 ε̂
2
i , satisfying

the convergence condition of Theorem 3. Therefore, our SIR2 algorithm converges to a performatively
stable equilibrium XPS with finite samples at the convergence rate and probability specified in Theorem 3.
Furthermore, Theorem 4 proves that this quadratic regularizer R(x) minimizes the upper bound of the
distance between the original and regularized equilibria among all γ-strongly convex regularizers4.
Theorem 4. For any γ-strongly convex regularizer R(·) ∈ R, the quadratic form R(x) = γ

2 ∥x∥
2
2 minimizes

the upper bound of ∥X∗ −XR∥2, where X∗ and XR are the Nash equilibria of the original and regularized
games, respectively.

5 Experiments

In this section, we evaluate the performance of our proposed SIR2 algorithm5 in three multi-agent decision-
dependent games: prediction error minimization between prediction platforms, Cournot competition in crude
oil trade, and revenue maximization in ride-share markets.

4The proof of Theorem 4 is provided in Appendix F.
5The source code of our method is available at: ‘anonymous.4open.science/r/multiplayer-performative-stable’
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Algorithm 1: Sensitivity-Informed Repeated Retraining (SIR2): Procedures for Player i ∈ [n]
1: Input: Parameter c ∈ (2,+∞), initial sensitivity ε̂i > 0,

initial empty joint decision X0 = ∅,
initial time step t = 1, initial dataset Z0

i ∼ Di(X0),
ψ-strongly monotone game G := (Eℓ1(x1, x−1, Z1), · · · ,Eℓn(xn, x−n, Zn))

2: Output: The joint decision at performatively stable equilibrium XPS

3: while not converged do
4: γ ← max(0, c

√∑n
i=1 ε̂

2
i − ψ);

5: ℓ̄i(xi, x−i, Zi)← ℓi(xi, x−i, Zi) + γ
2 ∥xi∥

2
2;

6: xti ← arg minxi EZt−1
i

∼Di(Xt−1) ℓ̄i(xi, x−i, Z
t−1
i );

7: Xt ← (xt1, xt2, · · · , xtn)T ;
8: Collect data Zti ∼ Di(Xt);

9: ε̂i ← max

ε̂i,
∥∥∥EZt

i
∼Di(Xt) ∇xt

i
ℓi(xt

i,x
t
−i,Z

t
i )−E

Z
t−1
i

∼Di(Xt−1)
∇xt

i
ℓi(xt

i,x
t
−i,Z

t−1
i

)
∥∥∥

2
∥Xt−Xt−1∥2

;

10: t← t+ 1;
11: end while
12: XPS ← Xt;

To the best of our knowledge, five methods have been proposed for decision-dependent games in published works:
Repeated Retraining (RR) (Narang et al., 2023), Repeated Gradient Descent (RGD) (Narang et al., 2023),
Stochastic Forward-Backward (SFB) method (Cutler et al., 2024), Adaptive Gradient Method (AGM) (Narang
et al., 2023), and Online Performative Gradient Descent (OPGD) (Zhu et al., 2023). We include all of them
in our performance comparison. For our SIR2, we set c = 2.1, to ensure that α > 2

√∑n
i=1 ε̂

2
i (Theorem 3).

In fact, our method is robust to the key parameter c, which controls the convergence rate to performatively
stable equilibria. The sensitivity analysis of this parameter is presented in Appendix G.1. More details on
experimental settings can be found in Appendix G.2.

5.1 Prediction Error Minimization Game

5.1.1 Game Abstraction

In the prediction error minimization game, platforms compete to make predictions that can shape the
distribution they aim to predict, thereby affecting their own prediction accuracy. For example, in election
forecasting, the prediction released by public media can lead to shifts in the polling of candidates (features)
and the final election results (ground truth output). In our experiment, we consider two platforms, i.e.,
n = 2, in this game. We generate m = 100 data samples θi ∼ N10(0, 0.1) and the corresponding outputs
zi = θTi bi, where bi ∼ N10(0, 0.1). Each platform i ∈ [2] seeks to predict zi by solving a regression problem,
i.e., minimizing the loss function: ℓi(xi, zi) = 1

m∥zi − θ
T
i xi∥2

2. The performative effect shifts features and
outputs, modeled by the data distribution map Di(X) (Perdomo et al., 2020; Narang et al., 2023; Liu et al.,
2024):

θi X ∼ Dθi
(X) = θi +

n∑
i=1

Cixi + ui, and zi X ∼ Dzi
(X) = θTi bi + aTi xi + aT−ix−i + wi, (23)

where Ci ∼ N10×10(0, σ2
c ) is the matrix controlling feature shifts induced by decision xi, ai ∼ N10(0, σ2

ai
) and

a−i ∼ N10(0, σ2
a−i

) are the vectors controlling output shifts induced by the decisions xi and x−i, respectively,
and ui ∼ N10(0, 0.01) and wi ∼ N (0, 0.01) are noise terms. In our experiment, we set σ2

ai
= {2.5, 5.0, 7.5, 1.0},

σ2
a−i

= 12.5 − σ2
ai

, and σ2
c = σ2

ai
/n to simulate varying performative effects on features θi and outputs zi

(higher σ2
ai

indicates greater sensitivity).

8
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Table 1: Sum RMSE comparison for SIR2 and five baselines on the Prediction Error Minimization Game,
with σ2

ai
as the parameter in Di(X). For each method, the average result and standard deviation over 10

trials are reported. The best result on each setting is highlighted in bold.

σ2
ai

= 2.5 σ2
ai

= 5.0 σ2
ai

= 7.5 σ2
ai

= 10.0
SIR2 0.0272 ± 0.0021 0.0272 ± 0.0021 0.0272 ± 0.0021 0.0272 ± 0.0021
RR 0.1022 ± 0.0713 0.1145 ± 0.0411 0.1195 ± 0.0330 0.1229 ± 0.0370

RGD 0.2381 ± 0.0657 0.1735 ± 0.0184 0.1712 ± 0.0175 0.1709 ± 0.0175
SFB 0.2507 ± 0.0855 0.1752 ± 0.0210 0.1837 ± 0.0304 0.2187 ± 0.0845
AGM 4.3717 ± 3.4092 3.6357 ± 2.0388 3.8324 ± 2.1366 3.9956 ± 2.1163

OPGD 0.9663 ± 0.1773 0.4428 ± 0.0860 0.3926 ± 0.0871 0.3280 ± 0.1003

0 50 100
Iterations

10 1
100
101

RM
SE

2
ai

= 2.5

0 50 100
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100
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Figure 1: Sum RMSE comparison for SIR2 and five baselines on the Prediction Error Minimization Game
over iterations.

5.1.2 Result Analysis

Table 1 reports the sum of root mean square error (RMSE) across two platforms (i.e., RMSEplatform 1 +
RMSEplatform 2) for each method. The total RMSE of all methods over 100 iterations is shown in Fig. 1.
The standard deviations of the total RMSE for all methods are provided in Fig. 5 in G.3. Our method,
SIR2, converges to a performatively stable equilibrium within 5 iterations and achieves the lowest RMSE
(< 0.03) across all settings. In contrast, AGM and OPGD, which target Nash equilibria, fail to converge to
their goals due to the iterative exploration of non-convex performative loss gradients. Consequently, they
may converge to local optima where decisions of two platforms are not mutually optimal. Our method
performs superiorly because it leverages the ε̂i-sensitivity measure to adapt dynamically to Di(X), bypassing
β-smoothness assumption and the high sample complexity of W1 distance estimation, thus ensuring rapid
and robust convergence with consistently low error. This adaptability allows our method to achieve less than
0.03 in total RMSE across various σ2

ai
.

5.2 Cournot Competition in Crude Oil Trade

5.2.1 Game Abstraction

In the Cournot competition, n = 28 crude oil exporting countries, covering 99% of 2021 global exports, adjust
crude oil export quantities to maximize revenue. These countries can only adjust their export quantities,
and the price per barrel is determined by the global market. Utilizing 2021 crude oil trade data6, we denote
each country i’s export quantity as qi, and we use an uniform cost c = $10 per barrel across all countries.
The crude oil price follows a publicly known linear inverse demand function Pz∼D(X) = z − b

∑n
i=1(qi + xi),

where xi is the decision representing export adjustment for country i, qi + xi is the resulting export
quantity, z ∼ D(X) is a demand intercept parameter influenced by the joint decision X, and b quantifies
the price sensitivity to the total supply. Each country i minimizes its expected loss by adjusting exports
xi: ℓi(xi, x−i, z) = c · (qi + xi)− (qi + xi) · (z − b

∑n
j=1(qj + xj)), where c · (qi + xi) is the cost of country i,

and (qi + xi) · (z − b
∑n
j=1(qj + xj)) is the revenue of country i. The data distribution map D(X), which is

identical across all countries, implies that adjustments in total exports induce a nonlinear transformation of
6The crude oil trade dataset is available at ‘kaggle.com/datasets/toriqulstu/global-crude-petroleum-trade-1995-2021’.
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Table 2: Total revenue comparison for SIR2 and five baselines in the crude oil trade, with µ as the parameter
in Di(X). For each method, the average result and standard deviation over 10 trials are reported. The best
result on each setting is highlighted in bold.

µA = 0.25 µA = 0.5 µA = 0.75 µA = 1.0
SIR2 618251411923 ± 1635671644 560449136725 ± 2629501069 503822792211 ± 3388233272 448246602633 ± 3767477132
RR 85035090500 ± 237538674 77758961237 ± 182496366 70896413786 ± 229411032 64375230958 ± 196728515

RGD 118313395016 ± 867566985 104466540145 ± 645281801 91690507635 ± 993368768 78509390697 ± 835770396
SFB 235378270289 ± 4187677120 197475481462 ± 2969661817 162490825268 ± 4876880178 123608760493 ± 4656565976
AGM 433178569023 ± 105599160581 449946235135 ± 93499995063 275705686600 ± 147704759267 234758549675 ± 190519125599

OPGD 361785347444 ± 68669589294 355973349481 ± 36688804447 281432972896 ± 89134716147 208427770817 ± 69948415660
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Figure 2: Total revenue comparison for SIR2 and five baselines on the crude oil trade over iterations.

the price function P (X):

z ∼ D(X) = z0 − µ · sinh−1

(
n∑
i=1

xi

)
+ wi, (24)

where z0 = 147.27 is a base price representing the historic peak crude oil price reached in July 2008, µ
controls the sensitivity of the data distribution map D(X), sinh−1(·) denotes the inverse hyperbolic sine
transformation, and wi ∼ N (0, 0.01) is the noise term. In our experiment, we set µ = {0.25, 0.5, 0.75, 1.0} to
simulate different performative effects on the price function P (X), where larger values of µ correspond to
higher sensitivities. For further details, please refer to Appendix G.4.

5.2.2 Result Analysis

Table 2 presents the total revenue of 28 countries across all methods in the Cournot competition. The results
of all methods over 100 iterations are shown in Fig. 2, with standard deviations provided in Appendix G.5
(Fig. 6). Our SIR2 algorithm outperforms all baseline methods in revenue and converges to a performatively
stable equilibrium within 10 iterations, while RR, RGD, and SFB struggle in reaching equilibrium under
shifted distributions due to reliance on impractical assumptions (e.g., β-joint smoothness). AGM and OPGD,
despite attempting to learn data distribution maps, assume linear maps. As a result, they fail to capture
complex real-world distribution dynamics, leading to oscillatory results. The detailed exporting quantities
and prices achieved by all methods are provided in Figs. 7 and 8, respectively, in Appendix G.5.

5.3 Revenue Maximization Game in Ride-Share Markets

5.3.1 Game Abstraction

In the revenue maximization game, companies set optimal prices to maximize revenue, where each company’s
price decisions influence both its own demand and that of its competitors. Specifically, a company that raises
its prices reduces demand for its own services while increasing demand for competitors’ services. In this game,
two companies (n = 2), Lyft and Uber, set price adjustments to maximize revenue in 11 Boston locations7.
Each company i seeks to maximize its revenue zTi xi in the price interval by minimizing the regularized loss

7The Lyft and Uber Dataset is available at ‘kaggle.com/datasets/brllrb/uber-and-lyft-dataset-boston-ma’.
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Table 3: Total revenue comparison for SIR2 and five baselines on the Ride-Share Markets, with µA as the
parameter in Di(X). For each method, the average result and standard deviation over 10 trials are reported.
The best result on each setting is highlighted in bold.

µA = 0.25 µA = 0.5 µA = 0.75 µA = 1.0
SIR2 228348 ± 664 219390 ± 723 217054 ± 954 214854 ± 780
RR 207515 ± 2713 135764 ± 4790 84074 ± 5266 49624 ± 3890

RGD 176232 ± 4046 99141 ± 2923 65041 ± 2262 45986 ± 1860
SFB 212102 ± 3375 157131 ± 4805 118173 ± 4942 92016 ± 4990
AGM 186364 ± 2964 148872 ± 5652 151494 ± 9386 157927 ± 9953

OPGD 160929 ± 2007 129170 ± 2337 117443 ± 1806 113418 ± 1453
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Figure 3: Total revenue comparison for SIR2 and five baselines on the Ride-Share Markets over iterations.

function: ℓi(xi, zi) = −zTi xi + α
2 ∥xi∥

2
2, where α > 0 is the regularization parameter. The data distribution

map is designed based on the logistic demand function (Bowerman et al., 2003; Phillips, 2021):

zi ∼ Di(X) = 2z0 i

1 + e−(Aixi+A−ix−i) + wi, (25)

where z0 i is the initial demand of company i, Ai, A−i ∈ R11×11, and wi ∼ N11(0, 0.01) is the noise term. We
generate matrices Ai and A−i as Ai = diag(N11(−µA, (µA

5 )2)) + E and A−i = diag(N11(µA

2 , (
µA

10 )2)) + E,
respectively, where Eij ∼ N (0, 0.01), and the diagonal entries are truncated to ensure Ai ⪯ 0 and A−i ⪰ 0.
In our experiment, we vary µA = {0.25, 0.5, 0.75, 1.0}, increasing the sensitivity as µA grows. For further
details, please refer to Appendix G.6.

5.3.2 Result Analysis

Table 3 summarizes the total revenue of two companies across all methods in the revenue maximization
game. Consistent with the results in Section 5.1, our method outperforms baselines across all values of µA,
achieving revenue gains of at least $16, 246 (at µA = 0.25) and up to $65, 560 (at µA = 0.75), demonstrating
its effectiveness in adapting to Di(X). Fig. 3 shows total revenues of two companies over 1000 iterations, with
standard deviations in Appendix G.7 (Fig. 9). While initial revenue fluctuates due to the adaptation to Di(X),
our method converges to a performatively stable equilibrium within 10 iterations and maintains consistently
high revenue. Our method achieves higher revenue primarily due to an appropriate strategy: it sets a slightly
lower price (5%) than baselines. This strategy stimulates greater demand, ultimately outperforming other
methods in total revenue. The detailed revenues, demands, and prices of each company achieved by all
methods are provided in Figs. 10-12, respectively, in Appendix G.7.

6 Conclusion

In this paper, we propose a framework for decision-dependent games with decision-induced distribution shifts.
By introducing a gradient-based ε̂i-sensitivity measure for Di(X), we quantify decision-induced distribution
shifts, relaxing the impractical β-smoothness assumption. Based on the definition, we derive convergence
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guarantees to performatively stable equilibria, which hold across arbitrary data distribution maps under
practically feasible conditions, even with finite samples. Building upon the theoretical results, we propose an
SIR2 algorithm, which adapts loss functions using calculated ε̂i-sensitivity, so as to achieve rapid convergence.
Empirical evaluations support our theoretical findings and demonstrate the superiority of SIR2 in losses and
convergence speed over baselines in the prediction error minimization game, the Cournot competition, and
the revenue maximization game. The proposed framework offers insights for multi-agent learning in dynamic
environments, such as reinforcement learning (Mandal et al., 2023) and federated learning (Jin et al., 2024).

The current version of our approach is potentially limited by: (1) the strong monotonicity condition, which
may not hold in complex games with multiple Nash equilibria, and (2) the need for large sample sizes to
guarantee the convergence with high probability in high-dimensional settings. To address these issues, in our
future work, we will extend the framework to non-strongly monotone games by incorporating the analysis of
mixed strategies and will enhance convergence guarantees for small sample sizes with alternative statistical
tools, such as Chebyshev’s inequality (Ferentios, 1982).
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Appendices

A An Example of Unverifiable β-smoothness

The β-smoothness condition (referring to individual βi-smoothness for each loss function) applied in current
research (Narang et al., 2023; Zhu et al., 2023; Cutler et al., 2024) assumes that for each player i ∈ [n], its
loss function gradient is βi-Lipschitz continuous with respect to the data zi and decision xi. Specifically,
each loss function ℓi(xi, x−i, Zi) is βi-smooth if, ∀xi, x′

i ∈ Xi and ∀zij , z′
ij
∈ Zi,Zi := ∪X∈X sup(Di(X)), the

following holds:
∥∇xiℓi(xi, x−i, zij )−∇xiℓi(xi, x−i, z

′
ij )∥2 ≤ βi∥zij − z′

ij∥2,

∥∇xi
ℓi(xi, x−i, zij )−∇xi

ℓi(x′
i, x−i, zij )∥2 ≤ βi∥xi − x′

i∥2.
(26)

Since Di(X) is typically unknown, quantifying the extent of distribution shifts to verify βi is challenging.
Here, we use the 1-dimensional case of Prediction Error Minimization Game (Section 5.1) as a practical
example: Each platform i ∈ [n] seeks to predict outcome zij ∈ R with feature θij ∈ R by solving a regression
problem, i.e., minimizing the loss function: ℓi(xi, zi, θi) = E{zi,θi}∼Di(X)∥zi − θixi∥2

2, where {zi, θi} denotes
the dataset for platform i, and xi ∈ R is the decision of platform i.

According to the definition of β-smoothness in Eq. (26), we have:

∥ − 2(zij − θijxi)θij + 2(z′
ij − θijxi)θij∥2 = ∥ − 2θij∥2∥zij − z′

ij∥2,

∥ − 2(zij − θijxi)θij + 2(zij − θ′
ijxi)θ

′
ij∥2 = ∥ − 2zij + 2(θij − θ′

ij )xi∥2∥θij − θ′
ij∥2,

∥ − 2(zij − θijxi)θij + 2(zij − θijx′
i)θij∥2 = ∥2θ2

ij∥2∥xi − x′
i∥2,

(27)

where −2(zij − θijxi)θij is the loss function gradient ∇xi
ℓi(xi, zij , θij ).

In this example, βi must satisfy: βi ≥ max(∥− 2θij∥2, ∥− 2zij + 2(θij − θ′
ij

)xi∥2, ∥2θ2
ij
∥2). However, when the

data distribution map Di(X) is unknown, the upper bound of ∥ − 2θij∥2, ∥ − 2zij + 2(θij − θ′
ij

)xi∥2, ∥2θ2
ij
∥2

cannot be determined. Consequently, the value of βi can not be verified in this case.

B Proof of Theorem 1

Given an α-strongly monotone game G(·) (as defined in Eq. (10)) and the definition of Nash(X) in Eq. (5),
we have, for all X,X ′ ∈ X :

α∥Nash(X)−Nash(X ′)∥2
2 ≤ (∇Nash(X)G(X)−∇Nash(X′)G(X)))T (Nash(X)−Nash(X ′)). (28)

By the first-order optimality conditions (Bubeck et al., 2015), for all X,X ′ ∈ X ,

∇Nash(X)G(X)T (Nash(X)−Nash(X ′)) ≤ 0,
∇Nash(X′)G(X ′)T (Nash(X)−Nash(X ′)) ≥ 0,

(29)

and thus we have:

∇Nash(X)G(X)T (Nash(X)−Nash(X ′)) ≤ ∇Nash(X′)G(X ′)T (Nash(X)−Nash(X ′)). (30)

Combining Eqs. (28) and (30) and applying the Cauchy-Schwarz inequality (Hunter & Nachtergaele, 2001),
we obtain:

α∥Nash(X)−Nash(X ′)∥2
2

≤ (∇Nash(X)G(X)−∇Nash(X′)G(X))T (Nash(X)−Nash(X ′))
≤ (∇Nash(X′)G(X ′)−∇Nash(X′)G(X))T (Nash(X)−Nash(X ′))
≤ ∥∇Nash(X′)G(X ′)−∇Nash(X′)G(X)∥2∥Nash(X)−Nash(X ′)∥2

=⇒ α∥Nash(X)−Nash(X ′)∥2 ≤ ∥∇Nash(X′)G(X ′)−∇Nash(X′)G(X)∥2.

(31)
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From the definition of individual gradients (Definition 4) and that of the ε̂i-sensitivity (Definition 3), for all
Y,X,X ′ ∈ XRR, we have:

∥∇Y G(X)−∇Y G(X ′)∥2
2

=
n∑
i=1

∥∥∥∥∥ E
Zi∼Di(X)

∇yi
ℓi(yi, y−i, Zi)− E

Z′
i
∼Di(X′)

∇yi
ℓi(yi, y−i, Z

′
i)
∥∥∥∥∥

2

2

≤
n∑
i=1

ε̂2
i ∥X −X ′∥2

2

=⇒ ∥∇Y G(X)−∇Y G(X ′)∥2 ≤

√√√√ n∑
i=1

ε̂2
i ∥X −X

′∥2.

(32)

Since Y can be any joint decision in the set XRR as stated in Definition 3, without loss of generality, we set
Y = Nash(X ′). Then the inequality in Eq. (32) becomes the following:

∥∇Nash(X′)G(X)−∇Nash(X′)G(X ′)∥2 ≤

√√√√ n∑
i=1

ε̂2
i ∥X −X

′∥2. (33)

Combining Eqs. (31) and (33), we have:

∥Nash(X)−Nash(X ′)∥2 ≤
√∑n

i=1 ε̂
2
i

α
∥X −X ′∥2. (34)

Since X,X ′ can be any joint decisions in the set XRR as stated in Definition 3, without loss of generality, we
set X = Xt and X ′ = Xt−1, so that Nash(X) = Xt+1, Nash(X ′) = Xt. Then, we obtain:

∥Xt+1 −Xt∥2 ≤
√∑n

i=1 ε̂
2
i

α
∥Xt −Xt−1∥2 ≤

(√∑n
i=1 ε̂

2
i

α

)t
∥X1 −X0∥2. (35)

■

C Proof of Theorem 2

We first proof that {Xt} is a Cauchy sequence when α >
√∑n

i=1 ε̂
2
i . For any two positive integers q and p

(assume that q > p), by repeatedly applying the triangle inequality, we have:

∥Xq −Xp∥2 ≤ ∥Xq −Xp+1∥2 + ∥Xp+1 −Xp∥2 ≤ · · · ≤
q−1∑
r=p
∥Xr+1 −Xr∥2. (36)

From Theorem 1, we have ∥Xt+1 −Xt∥2 ≤
(√∑n

i=1
ε̂2

i

α

)t
∥X1 −X0∥2. Combining this with Eq. (36), we

get:

∥Xq −Xp∥2 ≤
q−1∑
r=p
∥Xr+1 −Xr∥2 ≤

q−1∑
r=p

(√∑n
i=1 ε̂

2
i

α

)r
∥X1 −X0∥2. (37)

Let B =
√∑n

i=1
ε̂2

i

α . Since α >
√∑n

i=1 ε̂
2
i , we have B < 1. The sum of the geometric series (Friberg, 2007) is:

q−1∑
r=p
Br = B

p (1− Bq−p)
1− B ≤ Bp

1− B . (38)
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Substituting this into Eq. equation 37, we have:

∥Xq −Xp∥2 ≤
Bp

1− B∥X
1 −X0∥2. (39)

For any k > 0, we want to find a number N such that for all q > p ≥ N , ∥Xq −Xp∥2 ≤ k. Solving for p, we
get:

Bp

1− B∥X
1 −X0∥2 ≤ k ⇐⇒ Bp ≤ k (1− B)

∥X1 −X0∥2

⇐⇒ p logB ≤ log
(

k (1− B)
∥X1 −X0∥2

)
⇐⇒ p ≥

log
(

k(1−B)
∥X1−X0∥2

)
logB .

(40)

Thus, we can choose any positive N >
log
(

k(1−B)
∥X1−X0∥2

)
log B . Since such an N always exists for any k > 0, the

sequence {Xt} is a Cauchy sequence (Lang, 2002).

As a result, the joint decision sequence generated by the repeated retraining procedure, {Xt}, converges to
a single joint decision: limt→∞ Xt = Xt→∞. This implies that the difference between neighbouring joint
decisions becomes negligible: limt→∞ ∥Xt+1 −Xt∥2 = 0. Using the definition of repeated retraining given
in Eq. (7), i.e., Xt+1 = Nash(Xt), we have: limt→∞ ∥Nash(Xt) − Xt∥2 = 0. Further, according to the
definition of the performatively stable equilibrium XPS given in Eq. (6), we can conclude that the sequence
{Xt} converges to a performatively stable equilibrium: limt→∞ Xt = XPS . Finally, as XRR is a closed convex
hull that contains all joint decisions during the repeated retraining procedure, it must also contain the limit
point Xt→∞. Therefore, the performatively stable equilibrium XPS , being equal to Xt→∞, belongs to the
set XRR: XPS ∈ XRR. ■

D Proof of Lemma 1

We decompose the loss function of player i into two components:

ℓi(xi, x−i, Zi) = ℓi1(xi, x−i, Zi) + ℓi2(xi, x−i), (41)

where ℓi1(xi, x−i, Zi) represents the Zi-dependent component, and ℓi2(xi, x−i) represents the Zi-independent
component. We then define the following gradients:

• ∇xi
ℓi zij

∼Di
= ∇xi

ℓi1(xi, x−i, zij ) + ∇xi
ℓi2(xi, x−i): the gradient of the loss function for a single

sample zij from data distribution Di.

• ∇xi
ℓi Zim ∼Di

= 1
m

∑
zij

∈Zim

∇xi
ℓi1(xi, x−i, zij ) + ∇xi

ℓi2(xi, x−i): the average gradient of the loss

function over a set of m i.i.d. samples from data distribution Di, where Zim is the sample set
containing these m samples, and zij is the jth sample in set Zim .

• ∇xi
ℓi Di

= E
Zi∼Di

∇xi
ℓi(xi, x−i, Zi): the expected gradient of the loss function over the underlying,

ground-truth distribution Di.

• ∇XGz•j
∼D =

(
∇x1ℓ1 z1j

∼D1 , · · · ,∇xn
ℓn znj

∼Dn

)T
: the individual gradients of the game for samples

zij from data distribution Di, i ∈ [n], where each player i obtains a sample zij .

• ∇XGZ•m ∼D =
(
∇x1ℓ1 Z1m ∼D1 , · · · ,∇xn

ℓn Znm ∼Dn

)T : the average individual gradients of the game
over a set of m i.i.d. samples from data distribution Di, i ∈ [n], where each player i obtains m
samples.

• ∇XGD = (∇x1ℓ1 D1 , · · · ,∇xnℓn Dn)T : the expected individual gradients of the game over the
underlying, ground-truth distribution Di, i ∈ [n].
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Then, the covariance matrix of ∇XGz•j
∼D, j = 1, 2, · · · ,m is given by:

Σ = Cov
[
∇XGz•j

∼D,∇XGz•j
∼D

]
= 1
m

m∑
j=1

(
∇XGz•j

∼D −∇XGZ•m ∼D

)(
∇XGz•j

∼D −∇XGZ•m ∼D

)T
,

(42)

where Σ is the covariance matrix.

According to the Central Limit Theorem (Bauer, 2001), we have:
√
m
(
∇XGZ•m ∼D −∇XGD

)
∼ Nd(0,Σ), (43)

where Nd(0,Σ) denotes the d-dimensional zero-mean Gaussian distribution with covariance matrix Σ. The
eigendecomposition of Σ yields:

Σ = UΛUT , (44)
where U is the d× d matrix whose jth column is the jth eigenvector uj of Σ, and Λ is the diagonal matrix
whose diagonal elements are the corresponding eigenvalues of Σ: Λjj = λj .

Let a = Λ− 1
2 UT

√
m
(
∇XGZ•m ∼D −∇XGD

)
, we have:

a ∼ Nd(0,Λ− 1
2 UTΣUΛ− 1

2 )
=⇒ a ∼ Nd(0,Λ− 1

2 UT
(
UΛUT

)
UΛ− 1

2 )
=⇒ a ∼ Nd(0, Id),

(45)

where Id denotes the d× d identity matrix, and the vector a follows the standard d-dimensional multivariate
normal distribution Nd(0, Id). Accordingly, the quadratic form aTa follows a χ2 distribution with d degrees
of freedom (Pearson, 1893)8:

aTa = m
(
∇XGZ•m ∼D −∇XGD

)T UΛ− 1
2 Λ− 1

2 UT
(
∇XGZ•m ∼D −∇XGD

)
= m

(
∇XGZ•m ∼D −∇XGD

)T Σ−1 (∇XGZ•m ∼D −∇XGD
)

∼ χ2(d).

(46)

Then, for any positive real number τ , we have:

P
[
m
(
∇XGZ•m ∼D −∇XGD

)T Σ−1 (∇XGZ•m ∼D −∇XGD
)
≤ τ

]
= Fχ2(d)(τ), (47)

where Fχ2(d)(τ) denotes the cumulative distribution function of the χ2 distribution with d degrees of freedom,
evaluated at τ .

For any real symmetric matrix B ∈ Rd×d and vector v ∈ Rd, the inequality vTBv ≥ λmin(B)∥v∥2
2 holds,

where λmin(B) denotes the smallest eigenvalue of B. Therefore, we have:

m
(
∇XGZ•m ∼D −∇XGD

)T Σ−1 (∇XGZ•m ∼D −∇XGD
)

≥ mλmin(Σ−1)∥∇XGZ•m ∼D −∇XGD∥2
2.

(48)

Using this inequality, we can derive the following:
P
[
mλmin(Σ−1)∥∇XGZ•m ∼D −∇XGD∥2

2 ≤ τ
]

= P

[
∥∇XGZ•m ∼D −∇XGD∥2

2 ≤
τλmax(Σ)

m

]
= P

[
∥∇XGZ•m ∼D −∇XGD∥2 ≤

√
τλmax(Σ)

m

]
≥ P

[
m
(
∇XGZ•m ∼D −∇XGD

)T Σ−1 (∇XGZ•m ∼D −∇XGD
)
≤ τ

]
= Fχ2(d)(τ).

(49)

8For the case of non-invertible Σ, please refer to Appendix E.1 for details.
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Let δ =
√

τλmax(Σ)
m and σ = λmax(Σ), then τ = mδ2

σ . When each player i samples m samples, we can state
that the following inequality holds with probability at least Fχ2(d)(mδ

2

σ ):

∥∇XGZ•m ∼D −∇XGD∥2 ≤ δ. (50)

Consider the game on the data distribution induced by the joint decision Y , we can set ∇XGZ•m ∼D =
∇XGm(Y ) and ∇XGD = ∇XG(Y ) to complete the proof. ■

E Proof of Theorem 3

By applying the triangle inequality, we have:

∥∇Nash(Xt)GZ•mt
∼D(Xt) −∇Nash(Xt)GD(XP S)∥2

≤ ∥∇Nash(Xt)GZ•mt
∼D(Xt) −∇Nash(Xt)GD(Xt)∥2+

∥∇Nash(Xt)GD(Xt) −∇Nash(Xt)GD(XP S)∥2,

(51)

where mt is the number of samples each player collects at time step t, Z•mt
∼ D(Xt) denotes the set of

mt samples drawn from the data distribution Di(Xt) for each i ∈ [n], ∇Nash(Xt)GZ•mt
∼D(Xt) represents

the average of individual gradients at the joint decision Nash(Xt), computed over mt collected samples,
∇Nash(Xt)GD(Xt) is the expected gradient of the game at Nash(Xt) with respect to the true data distribution
at time step t, and ∇Nash(Xt)GD(XP S) is the expected gradient of the game at Nash(Xt) with respect to the
stable distribution Di(XPS), i ∈ [n].

From Theorem 2, we know that XPS ∈ XRR when α >
√∑n

i=1 ε̂
2
i . As stated in Definition 3, Y , X, and X ′

can be any joint decisions in the set XRR. Therefore, by setting Y = Nash(Xt), X = Xt, and X ′ = XPS in
Eq. (32), we obtain:

∥∇Nash(Xt)GD(Xt) −∇Nash(Xt)GD(XP S)∥2 ≤

√√√√ n∑
i=1

ε̂2
i ∥X

t −XPS∥2. (52)

Similarly, by setting X = Nash(Xt), m = mt, and D = D(Xt), according to Eq. (50), the following inequality
holds with probability at least Fχ2(d)(

mt

∑n

i=1
ε̂2

i δ
2

σ ):

∥∇Nash(Xt)GZ•mt
∼D(Xt) −∇Nash(Xt)GD(Xt)∥2 ≤

√√√√ n∑
i=1

ε̂2
i δ. (53)

Combining Eqs. (51-53), when ∥Xt −XPS∥2 > δ and α >
√∑n

i=1 ε̂
2
i , we have:

∥∇Nash(Xt)GZ•mt
∼D(Xt) −∇Nash(Xt)GD(XP S)∥2

≤

√√√√ n∑
i=1

ε̂2
i δ +

√√√√ n∑
i=1

ε̂2
i ∥X

t −XPS∥2 ≤ 2

√√√√ n∑
i=1

ε̂2
i ∥X

t −XPS∥2,
(54)

with probability at least Fχ2(d)(
mt

∑n

i=1
ε̂2

i δ
2

σ ).

Since XPS and Nash(Xt) are the Nash equilibria of game G(XPS) and G(Xt), respectively, and the game G(·)
is monotone, according to the first-order optimality condition (Bubeck et al., 2015), the following inequalities
hold:

(XPS −Nash(Xt))T∇Nash(Xt)GZ•mt
∼D(Xt) ≥ 0,

(Nash(Xt)−XPS)T∇XP SGD(XP S) ≥ 0.
(55)
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Combining the two inequalities in Eq. (55), we have:

(XPS −Nash(Xt))T∇Nash(Xt)GZ•mt
∼D(Xt) + (Nash(Xt)−XPS)T∇XP SGD(XP S)

= (Nash(Xt)−XPS)T
(
∇XP SGD(XP S) −∇Nash(Xt)GZ•mt

∼D(Xt)

)
= (Nash(Xt)−XPS)T

(
∇XP SGD(XP S) −∇Nash(Xt)GD(XP S)

)
+

(Nash(Xt)−XPS)T
(
∇Nash(Xt)GD(XP S) −∇Nash(Xt)GZ•mt

∼D(Xt)

)
≥ 0.

(56)

The last inequality in Eq. (56) can be rewritten as follows:

(Nash(Xt)−XPS)T
(
∇Nash(Xt)GD(XP S) −∇XP SGD(XP S)

)
≤(Nash(Xt)−XPS)T

(
∇Nash(Xt)GD(XP S) −∇Nash(Xt)GZ•mt

∼D(Xt)

)
.

(57)

As the game G(·) is α-strongly monotone, we have:

α∥Nash(Xt)−XPS∥2
2 ≤

(
∇Nash(Xt)GD(XP S) −∇XP SGD(XP S)

)T (Nash(Xt)−XPS). (58)

Multiplying both sides of Eq. (54) by
∥∥Nash(Xt)−XPS

∥∥
2 and applying Cauchy-Schwarz inequality (Hunter

& Nachtergaele, 2001), when α >
√∑n

i=1 ε̂
2
i , we have:(

∇Nash(Xt)GD(XP S) −∇Nash(Xt)GZ•mt
∼D(Xt)

)T
(Nash(Xt)−XPS)

≤
∥∥Nash(Xt)−XPS

∥∥
2

∥∥∥∇Nash(Xt)GD(XP S) −∇Nash(Xt)GZ•mt
∼D(Xt)

∥∥∥
2

≤2

√√√√ n∑
i=1

ε̂2
i

∥∥Nash(Xt)−XPS
∥∥

2 ∥X
t −XPS∥2,

(59)

with probability at least Fχ2(d)(
mt

∑n

i=1
ε̂2

i δ
2

σ ). Combining Eqs. (57-59), when α >
√∑n

i=1 ε̂
2
i , we have:

∥Nash(Xt)−XPS∥2 ≤
2
√∑n

i=1 ε̂
2
i

α
∥Xt −XPS∥2, (60)

with probability at least Fχ2(d)(
mt

∑n

i=1
ε̂2

i δ
2

σ ).

Similar to the proof of Theorem 2, let B =
√∑n

i=1
ε̂2

i

α . When α > 2
√∑n

i=1 ε̂
2
i , we have B < 1

2 . By Theorem 2,
XPS ∈ XRR when B < 1

2 . As a result, we can conclude that, when each player collects a finite number
of samples, the sequence {Xt} converges towards the performatively stable equilibrium XPS during the
repeated retraining procedure. Specifically, with probability at least Fχ2(d)(

mt

∑n

i=1
ε̂2

i δ
2

σ ), we have:

∥Xt −XPS∥2 ≤ 2B∥Xt−1 −XPS∥2 ≤ (2B)t ∥X0 −XPS∥2. (61)
Given B < 1

2 , for any arbitrarily small positive number δ, to ensure that ∥Xt −XPS∥2 ≤ δ, it suffices to
satisfy:

(2B)t ∥X0 −XPS∥2 ≤ δ ⇐⇒ (2B)t ≤ δ

∥X0 −XPS∥2

⇐⇒ t log (2B) ≤ log
(

δ

∥X0 −XPS∥2

)
⇐⇒ t ≥

log
(

δ
∥X0−XP S∥2

)
log (2B) .

(62)

Therefore, if B < 1
2 , then with probability at least Fχ2(d)(

mt

∑n

i=1
ε̂2

i δ
2

σ ), we have:

∥Xt −XPS∥2 ≤ δ, ∀ t ≥
log
(

δ
∥X0−XP S∥2

)
log (2B) . (63)

■
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E.1 Extension of Theorem 3 for not invertible Σ

Begin with Lemma 1, according to the Central Limit Theorem (Bauer, 2001), we have:
√
m
(
∇XGZ•m ∼D −∇XGD

)
∼ Nd(0,Σ). (64)

For a non-invertible covariance matrix Σ, we consider another vector µ ∼ Nd(0, ηId), independent of the
distribution given in Eq. (64), where η is a very small positive number. According to the property of the
Gaussian distribution, we have:

√
m
(
∇XGZ•m ∼D −∇XGD

)
+
√
mµ ∼ Nd(0,Σ +mηId). (65)

Then we perform the same procedure in the proof of Lemma 1 (Appendix D) to
√
m
(
∇XGZ•m ∼D −∇XGD

)
+

√
mµ. Let δ =

√
τλmax(Σ+mηId)

m and σ = λmax(Σ + mηId), then we have τ = mδ2

σ . When each player i

samples m samples, we can state that the following inequality holds, with probability at least Fχ2(d)

(
mδ2

σ

)
:

∥∇XGZ•m ∼D −∇XGD + µ∥2 ≤ δ. (66)

By the triangle inequality, we know that ∥∇XGZ•m ∼D − ∇XGD∥2 ≤ ∥∇XGZ•m ∼D − ∇XGD + µ∥2 + ∥µ∥2.
Then, with probability at least Fχ2(d)

(
mδ2

σ

)
, we have:

∥∇XGZ•m ∼D −∇XGD∥2 ≤ δ + ∥µ∥2. (67)

For the scale of ∥µ∥2, since µ√
η ∼ Nd(0, Id), the quadratic form µTµ

η ∼ χ
2(d) (Pearson, 1900). Then, for any

positive real number τ , we have:

P

[
µTµ

η
≤ τ

]
= P

[
µTµ ≤ ητ

]
= Fχ2(d)(τ). (68)

Thus, with the probability Fχ2(d)( δ
′2

η ), we have:

∥µ∥2 ≤ δ′. (69)

From Eqs. (67) and (69), with a small positive η, the average empirical gradient ∇XGZ•m ∼D approaches the
expected gradient ∇XGD with high probability as the sample size m increases. Specifically, as η → 0, Eq. (69)
holds for an arbitrarily small δ′ with probability approaching 1. This result is consistent with Lemma 1.
We follow the same procedure in the proof of Theorem 3 (Appendix E) by replacing δ with δ + ∥µ∥2. Since
∥µ∥2 → 0 almost surely as η → 0, the conclusion of Theorem 3 remains valid. ■

F Proof of Theorem 4

For any γ-strongly convex regularization term R(·), the regularized game becomes:

ḠR(Y ) :=
(

E
Z1∼D1(Y )

[ℓ1(x1, x−1, Z1) +R(x1)] , · · · , E
Zn∼Dn(Y )

[ℓn(xn, x−n, Zn) +R(xn)]
)
. (70)

Since the regularized game ḠR(Y ) is (ψ + γ)-strongly monotone, the individual gradient ∇X ḠR(Y ) satisfies:

(∇X∗ ḠR(Y )−∇XR ḠR(Y ))T (X∗ −XR) ≥ (ψ + γ)∥X∗ −XR∥2
2. (71)
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Applying the Cauchy-Schwarz inequality (Hunter & Nachtergaele, 2001) to Eq. (71), we obtain:

∥∇X∗ ḠR(Y )−∇XR ḠR(Y )∥2∥X∗ −XR∥2

≥(∇X∗ ḠR(Y )−∇XR ḠR(Y ))T (X∗ −XR)
≥(ψ + γ)∥X∗ −XR∥2

2,

=⇒∥∇X∗ ḠR(Y )−∇XR ḠR(Y )∥2 ≥ (ψ + γ)∥X∗ −XR∥2.

(72)

By first-order optimality conditions, we have:

∇X∗G(Y ) = 0 =⇒ ∇X∗ ḠR(Y ) = ∇X∗R(X∗),
∇XR ḠR(Y ) = 0.

(73)

Substituting ∇X∗ ḠR(Y ) and ∇XR ḠR(Y ) into Eq. (72) yields:

∥∇X∗R(X∗)∥2 ≥ (ψ + γ)∥X∗ −XR∥2 =⇒ ∥∇X
∗R(X∗)∥2

(ψ + γ) ≥ ∥X∗ −XR∥2. (74)

Considering the gradient of R(·) is L-Lipschitz continuous, we have:

∥∇XR(X)−∇X′R(X ′)∥2 ≤ L∥X −X ′∥2,

=⇒∥∇XR(X)∥2 = ∥∇XR(X)−∇0R(0) +∇0R(0)∥2

≤∥∇XR(X)−∇0R(0)∥2 + ∥∇0R(0)∥2 ≤ L∥X∥2 + ∥∇0R(0)∥2.

(75)

Combining Eqs. (74) and (75), we have:
L∥X∗∥2 + ∥∇0R(0)∥2

(ψ + γ) ≥ ∥∇X
∗R(X∗)∥2

(ψ + γ) ≥ ∥X∗ −XR∥2. (76)

This indicates that the distance between the original and regularized equilibria, i.e., ∥X∗ −XR∥2, is upper
bounded by L∥X∗∥2+∥∇0R(0)∥2

(ψ+γ) .

For γ-strongly convex R(·), by definition:

R(X)−R(X ′) ≥ ∇X′R(X ′)T (X −X ′) + γ

2 ∥X −X
′∥2

2,

R(X ′)−R(X) ≥ ∇XR(X)T (X ′ −X) + γ

2 ∥X −X
′∥2

2.
(77)

Summing these two inequalities yields:

0 ≥ (∇X′R(X ′)−∇XR(X))T (X −X ′) + γ∥X −X ′∥2
2. (78)

By the Cauchy-Schwartz inequality (Hunter & Nachtergaele, 2001) and L-Lipschitz continuity of the gradient:

(∇XR(X)−∇X′R(X ′))T (X −X ′) ≤ ∥∇X′R(X ′)−∇XR(X)∥2∥X −X ′∥2 ≤ L∥X −X ′∥2
2,

=⇒(∇X′R(X ′)−∇XR(X))T (X −X ′) ≥ −L∥X −X ′∥2
2.

(79)

Combining Eqs. (78) and (79):

0 ≥ −L∥X −X ′∥2
2 + γ∥X −X ′∥2

2 =⇒ L ≥ γ. (80)

The upper bound of ∥X∗ −XR∥2, i.e., L∥X∗∥2+∥∇0R(0)∥2
(ψ+γ) , is minimized when: (1) L is minimized, i.e., L = γ,

and (2) ∥∇0R(0)∥2 = 0. Clearly, the proposed quadratic regularizer R(X) = γ
2 ∥X∥

2
2 satisfies these two

conditions, as it is γ-Lipschitz in gradient, and has ∇R(0) = 0, yielding the tightest upper bound γ∥X∗∥2
(ψ+γ) .

Thus, R(X) = γ
2 ∥X∥

2
2 minimizes the upper bound of the distance ∥X∗ −XR∥2 among all γ-strongly convex

regularizers. ■
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G Experimental Details

G.1 Parameter Sensitivity Analysis

We evaluate the robustness of SIR2 to c, a key parameter that controls the convergence rate to performatively
stable equilibria. Theorem 3 guarantees convergence for c > 2. We test c ∈ {2.1, 4, 6, 8, 10} in the revenue
maximization game, averaging total revenue over 10 trials across 15 iterations for µA ∈ {0.25, 0.5, 0.75, 1.0}
(Fig. 4). Our method exhibits robust performance, converging within approximately 5 iterations with revenue
variance below 5% despite large variations in c.
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Figure 4: Average total revenue of SIR2 with different c in Revenue Maximization in Ride-Share Markets
with µA = {0.25, 0.5, 0.75, 1.0} over 10 trails.

G.2 Additional Experimental Settings

Regarding the machine configuration, all experiments were conducted on a laptop equipped with a 13th Gen
Intel Core i9-13900HX CPU (24 threads) and 64 GB of RAM. The Python implementation required 50 MB
of storage, and all experiments were completed within 20 minutes.

In this work, we compare our method with five state-of-the-art methods, including Repeated Retraining
(RR) (Narang et al., 2023), RGD (Narang et al., 2023), SFB (Cutler et al., 2024), AGM (Narang et al., 2023)
and OPGD (Zhu et al., 2023). Notably, the first two methods, RGD and SFB, aim for performatively stable
equilibria, while the latter two, AGM and OPGD, target Nash equilibria. Note that prior work on cooperative
or constrained settings (Wang et al., 2023; Li et al., 2022; Yan & Cao, 2024) is not directly comparable due
to our focus on non-cooperative games without constraints.

In each experiment, each player i ∈ [n] deploys an initial decision x0
i based on the initial dataset Z0

i ∼ Di(X0).
At time step t, each player i optimizes the decision xti under the distribution Di(Xt−1) and then collects
samples from the data distribution induced by the joint decision Xt. We evaluate the performance of decision
Xt on the induced distribution Di(Xt), using root mean square error (RMSE) for prediction games and total
revenue for ride-share markets. Regarding the stopping criterion, while our algorithm typically stabilizes
within a few iterations, the stabilized level varies across datasets, leading us to use a fixed time step (T = 100
for prediction games and Cournot competition, and T = 1000 for ride-share markets) as a stopping criterion
rather than a fixed error/revenue level. We repeat our experiments 10 times for each setting and report the
average results of all methods.
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G.3 Additional Experimental Results on Prediction Error Minimization Game
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Figure 5: Performance comparison (in terms of the sum RMSE and standard deviation) of our proposed
method, SIR2, against five baseline approaches: RR, RGD, SFB, AGM and OPGD on the Prediction Error
Minimization Game with σ2

ai
= {0.25, 0.5, 0.75, 1.0} across iterations.

G.4 Cournot Competition Game Details

To solve this equilibrium, we first calculate the best response of each country by the first-order optimality
condition ∀i ∈ [n]:

∇xi
ℓi(z, xi, x−i) = 2bxi + 2bqi + b

n∑
j ̸=i

(qj + xj) + c− z = 0,

=⇒2bxi + b

n∑
j ̸=i

xj = −2bqi − b
n∑
j ̸=i

qj − c+ z.

(81)

Then, we solve the Nash equilibrium by solving the above equations simultaneously for all countries:

2bx1 + b

n∑
j ̸=1

xj = −2bq1 − b
n∑
j ̸=1

qj − c+ z

2bx2 + b

n∑
j ̸=2

xj = −2bq2 − b
n∑
j ̸=2

qj − c+ z

...

2bxn + b

n∑
j ̸=n

xj = −2bqn − b
n∑
j ̸=n

qj − c+ z

(82)

We reformulate it as system of linear equations:
AX = b, (83)

with the matrix A and vector b defined as:

A =


2b b · · · b
b 2b · · · b

b
... . . . b

b b · · · 2b

 ,b =


−2bq1 − b

∑n
j ̸=1 qj − c+ z

−2bq2 − b
∑n
j ̸=2 qj − c+ z
...

−2bqn − b
∑n
j ̸=n qj − c+ z

 . (84)

Since the eigenvalue of A is b(n + 1) and b with b > 0, this Cournot competition is b-strongly monotone,
ensuring the existence of a unique Nash equilibrium, which can be solved by:

X = A−1b. (85)

In addition, the gradient-based methods (RGD, SFB, AGM, and OPGD) update their decisions via the
gradient ∇xiℓi(z, xi, x−i).
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G.5 Additional Experimental Results on Cournot Competition
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Figure 6: Performance comparison (in terms of the total revenue and the standard deviation) of our proposed
method, SIR2, against five baseline approaches: RR, RGD, SFB, AGM and OPGD on the crude oil trade
with µ = {0.25, 0.5, 0.75, 1.0} across iterations.
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Figure 7: Quantity of each company obtained by our proposed method, SIR2, and five baseline approaches:
RR, RGD, SFB, AGM and OPGD on the crude oil trade with µ = {0.25, 0.5, 0.75, 1.0} across iterations.
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Figure 8: Crude oil price of each company obtained by our proposed method, SIR2, and five baseline
approaches: RR, RGD, SFB, AGM and OPGD on the crude oil trade with µ = {0.25, 0.5, 0.75, 1.0} across
iterations.

G.6 Revenue Maximization Game Details

In this game, two companies (n = 2), Lyft and Uber, set prices adjustments to maximize revenue in 11 Boston
locations. The dataset’s ride-share records are grouped into price intervals [10, 15), [15, 20), [20, 25), [25, 30),
[30,+∞), represented by their lower bounds (p = 10, 15, 20, 25, 30) (Narang et al., 2023). The game is
conducted independently per price interval. Records are assigned to intervals according to their actual prices.
For each interval, we calculate the demand for each company across 11 locations, denoted as zi ∈ R11. For
each price interval, company i sets its price adjustments xi ∈ R11 for the 11 locations, with each element in
xi representing the price adjustment in the corresponding location, yielding the actual price vector xi + p.
Each company i seeks to maximize its revenue zTi xi in the price interval by minimizing the regularized loss
function: ℓi(xi, zi) = −zTi xi + α

2 ∥xi∥
2
2, where α > 0 is the regularization parameter.
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G.7 Additional Experimental Results on Revenue Maximization Game
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Figure 9: Performance comparison (in terms of the total revenue and the standard deviation) of our proposed
method, SIR2, against five baseline approaches: RR, RGD, SFB, AGM and OPGD on the Ride-Share Markets
with µA = {0.25, 0.5, 0.75, 1.0} across iterations.
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Figure 10: Revenues of each company obtained by our proposed method, SIR2, and five baseline approaches:
RR, RGD, SFB, AGM and OPGD on the Ride-Share Markets with µA = {0.25, 0.5, 0.75, 1.0} across iterations.
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Figure 11: Demands of each company in each price interval obtained by our proposed method, SIR2,
and five baseline approaches: RR, RGD, SFB, AGM and OPGD on the Ride-Share Markets with µA =
{0.25, 0.5, 0.75, 1.0} across iterations.
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Figure 12: Average prices of each company in each price interval set by our proposed method, SIR2,
and five baseline approaches: RR, RGD, SFB, AGM and OPGD on the Ride-Share Markets with µA =
{0.25, 0.5, 0.75, 1.0} across iterations.
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