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ABSTRACT

There has been significant recent progress in training differentially private (DP)
models which achieve accuracy that approaches the best non-private models. These
DP models are typically pretrained on large public datasets and then fine-tuned on
downstream datasets that are (i) relatively large, and (ii) similar in distribution to
the pretraining data. However, in many applications including personalization, it
is crucial to perform well in the few-shot setting, as obtaining large amounts of
labeled data may be problematic; and on images from a wide variety of domains for
use in various specialist settings. To understand under which conditions few-shot
DP can be effective, we perform an exhaustive set of experiments that reveals how
the accuracy and vulnerability to attack of few-shot DP image classification models
are affected as the number of shots per class, privacy level, model architecture,
dataset, and subset of learnable parameters in the model vary. We show that to
achieve DP accuracy on par with non-private models, the shots per class must
be increased as the privacy level increases by as much as 32× for CIFAR-100 at
ϵ = 1. We also find that few-shot non-private models are highly susceptible to
membership inference attacks. DP provides clear mitigation against the attacks,
but a small ϵ is required to effectively prevent them.

1 INTRODUCTION

It is well known that neural networks trained without formal privacy guarantees can be attacked
to expose a subset of the training data (Carlini et al., 2021; Balle et al., 2022). For applications
where training data are sensitive (Abowd, 2018; Cormode et al., 2018), it has become increasingly
common to train under Differential Privacy (DP) (Dwork et al., 2006) which is considered to be
the gold standard for protecting individual training examples from discovery. Training with DP-
SGD (Rajkumar & Agarwal, 2012; Song et al., 2013; Abadi et al., 2016), which adapts SGD to
guarantee DP, typically impairs model performance due to gradient clipping and the addition of
noise during training in order to mask the contribution of individual examples to model updates.
However, there has been significant recent progress in training DP models which achieve accuracy that
approaches the best non-private models in both NLP (Li et al., 2022; Yu et al., 2022) and computer
vision (Kurakin et al., 2022; De et al., 2022; Mehta et al., 2022; Cattan et al., 2022).

The majority of these approaches are based on transfer learning where the models have been pretrained
on large public datasets and then fine-tuned (Yosinski et al., 2014) on a downstream dataset, as
this approach has been shown to be highly effective on non-private data (Kolesnikov et al., 2019;
Shysheya et al., 2022). The subset of model parameters to fine-tune ranges from all model parameters
(Kolesnikov et al., 2019) to only the final layer, with the tuning of parameter efficient adapters (Perez
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et al., 2018; Houlsby et al., 2019; Karimi Mahabadi et al., 2021) becoming increasingly prevalent.
Transfer learning has also proven successful in the DP setting with (Yu et al., 2022) and without
(Mehta et al., 2022) adapters.

However, strong DP results have only been demonstrated with relatively large datasets, with no
extensive DP few-shot studies performed. The few-shot setting is crucial to any application where
obtaining large amounts of labeled data is problematic. It is also especially important in federated
learning (where a global model is learned from many distributed users) and personalized federated
learning (where a model obtained via federated learning is personalized with a specific user’s data)
where data contributed by each user may be small and sensitive, including personal data or actions
entered on a mobile device (Differential Privacy Team, 2017; Ding et al., 2017), medical images, or
(Sheller et al., 2020), personal photos (Massiceti et al., 2021).

In addition, the strong DP transfer learning results that have recently been reported have largely
considered the case where the data distribution of the downstream dataset overlaps significantly with
the pretraining data distribution (Tramèr et al., 2022). A more demanding test is out-of-domain transfer
where more information needs to be extracted from the downstream dataset, making private learning
more challenging. Support for differing data distributions is essential for frequently encountered
specialist settings such as medical imaging, Earth imaging, or personalized object recognition.

In this work, we answer the question: Under what conditions is differentially private few-shot image
classification effective? We provide the first comprehensive study on the efficacy of DP few-shot
image classification. Our contributions are:
• We perform an exhaustive set of experiments that reveals how the accuracy of DP and non-private

models are affected as the number of shots per class, privacy level, dataset distribution overlap,
model architecture, and the subset of learnable parameters in the model vary.

• We establish a new DP baseline for the VTAB-1k (Zhai et al., 2019) transfer learning benchmark to
encourage DP researchers to test methods on more challenging datasets.

• We assess the vulnerability of DP few-shot models with a strong membership inference attack
(MIA) and find the attack to perform close to the theoretical upper bound derived as a composite of
DP under the substitute adjacency for different δ. The bound is significantly higher than indicated
by naive analysis with (ϵ, δ) from the add/remove adjacency commonly used in DP deep learning.

2 BACKGROUND

In this section, we provide background information, definitions, and nomenclature required for
subsequent sections. We focus our analysis on few-shot transfer learning based image classifiers that
rely on large pretrained backbones.

Preliminaries We denote input images x and image labels y ∈ {1, . . . , C} where C is the number
of image classes indexed by c. Assume that we have access to a model f(x) = hϕ(bθ(x)) that
outputs class-probabilities for an image p(y = c|x,θ,ϕ) for c = 1, . . . , C and comprises a feature
extractor backbone bθ : Rd → Rdb with parameters θ pretrained on a large upstream public dataset
such as Imagenet-21K (Russakovsky et al., 2015) where d is the input image dimension and db is the
output feature dimension, and a linear layer classifier or head hϕ : Rdb → RC with weights ϕ. Let
D = {(xn, yn)}Nn=1 be the downstream dataset that we wish to fine-tune the model f to. We denote
the number of training examples per class or shot as S.

Learnable Parameters In all experiments, the head parameters ϕ are initialized to zero and are
always learned when fine-tuning on D. For the backbone weights θ, we consider three options:
(i) Head: θ are fixed at their pretrained values and do not change during fine-tuning, only the head
parameters ϕ are updated; (ii) All: θ are initialized with pretrained values, but can be updated during
fine-tuning in addition to the head; and (iii) FiLM: using FiLM (Perez et al., 2018) layers. There
exists a myriad of adaptors for both 2D convolutional and transformer networks including FiLM,
Adapter (Houlsby et al., 2019), LoRA (Hu et al., 2021), VPT (Jia et al., 2022), AdaptFormer (Chen
et al., 2022), NOAH (Zhang et al., 2022), Convpass (Jie & Deng, 2022), Model Patch (Mudrakarta
et al., 2019), and CaSE (Patacchiola et al., 2022) that enable a pretrained network to adapt to a
downstream dataset in a parameter efficient manner. In this work, we use FiLM due to its simplicity,
high performance, and low parameter count (Shysheya et al., 2022), though another adapter could
be used. A FiLM layer scales and shifts the activations aij arising from the jth output of a layer in
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the ith block of the backbone as FiLM(aij , γij , βij) = γijaij + βij , where γij and βij are scalars.
We implement FiLM by fixing θ at their pretrained values except for a subset of the scale and
offset parameters utilized in the backbone normalization layers (e.g. BatchNorm, GroupNorm, or
LayerNorm — see Appendix A.5.1 for details), which can update during fine-tuning. For example, in
a ResNet50, there are only 11 648 learnable FiLM parameters, which is fewer than 0.05% of θ.

Dataset Distribution Overlap (DDO) The overlap between the distributions of the pretraining data
and the downstream dataset is a key determinant of the ease and success of transfer learning. We
measure the overlap as the relative difference between the accuracy of the All and Head learnable
parameter configurations for a non-private model. If two domains overlap substantially, then only
adapting the head of the network is sufficient. If the overlap is small, then the backbone must also be
adapted. Table A.1 provides the DDO values for all of the datasets used in the paper.

Differential Privacy (DP) DP (Dwork et al., 2006) is the gold standard for protecting sensitive data
against privacy attacks. A stochastic algorithm is differentially private if it produces similar output
distributions on similar datasets. More formally, (ϵ, δ)-DP with privacy budget ϵ ≥ 0 (lower means
more private) and additive error δ ∈ [0, 1] bounds how much the output distribution can diverge
on adjacent datasets. We primarily use add/remove adjacency, where two datasets are adjacent if
one can be obtained from the other by adding or removing one datapoint. We denote (ϵ, δ) the
corresponding privacy parameters. When considering substitute adjacency, where two datasets are
adjacent if one can be obtained from the other by substituting one datapoint, we use instead (ϵS , δS).
(See Appendix A.2 for more details.) The additive error is typically chosen such that δ < 1/|D|. We
refer to Dwork & Roth (2014) for a comprehensive introduction to DP.

DP-SGD (Rajkumar & Agarwal, 2012; Song et al., 2013; Abadi et al., 2016) adapts stochastic
gradient descent (SGD) to guarantee DP. DP-SGD selects mini-batches using Poisson sampling, clips
the ℓ2 norm of per-example gradients, and adds isotropic Gaussian noise to the sum of mini-batch
gradients. The privacy loss in (ϵ, δ)-DP is a result of the noise multiplier σ2 which scales the variance
of the added noise, the number of steps, and the sampling ratio (the Poisson sampling probability, i.e.,
expected batch size/|D|).
Membership Inference Attacks (MIAs) MIAs aim to determine if a particular example was used in
the training set of a model (Shokri et al., 2017). MIAs can be used to audit DP training algorithms as
they test how well the (ϵ, δ)-DP guarantee holds for trained models. While there are many types of
MIA (Hu et al., 2022), in this work we consider attacks that operate in the black-box mode (i.e. only
model outputs can be observed) and can evaluate the privacy loss on particular training examples
(Carlini et al., 2022; Ye et al., 2022). In addition to black-box access to the model, we assume that
attacks have access to images from the training data distribution and know the training algorithm
used and its hyperparameters. To evaluate the effectiveness of a MIA, we examine the Receiver
Operating Characteristic (ROC) curve which plots the attack true positive rate (TPR) against its false
positive rate (FPR). We focus on the TPR at low FPR regime since a MIA is harmful if it can infer
membership of even a small number of training examples with high certainty (Carlini et al., 2022).
DP implies an upper bound on TPR at a given FPR: TPR ≤ min{eϵSFPR + δS , 1− 1−δS−FPR

exp(ϵS) }
Since MIAs are defined w.r.t. substitute adjacency, this depends on (ϵS , δS) rather than (ϵ, δ).

A detailed discussion of related work on DP transfer learning in the high-shot setting using pretrained
models can be found in Appendix A.3.

3 EXPERIMENTS

The experiments address the question: “Under what conditions is differentially private few-shot
image classification effective?” We focus on transfer learning approaches that utilize large pretrained
backbones. We vary the: (i) number of shots S; (ii) set of learnable parameters in f (All, Head, FiLM);
(iii) downstream dataset D (with varying DDO); and (iv) network architecture: BiT-M-R50x1 (R-50)
(Kolesnikov et al., 2019) pretrained on ImageNet-21K with 23.5M parameters, Vision Transformer
VIT-Base-16 (VIT-B) (Dosovitskiy et al., 2020) pretrained on ImageNet-21K with 85.8M parameters.
Source code for all experiments can be found at: https://github.com/cambridge-mlg/
dp-few-shot.
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Training Protocol For all experiments, we first draw D of the required size (usually |D| = CS or
|D| = 1000 in the case of VTAB-1k) from the entire training split of the current dataset under evalua-
tion. For the purposes of hyperparameter tuning, we then split D into 70% train and 30% validation.
We then perform 20 iterations of Bayesian optimization based hyperparameter tuning (Bergstra et al.,
2011) with Optuna Akiba et al. (2019) to derive a set of hyperparameters that yield the highest
accuracy on the validation split. This set of parameters is subsequently used to train a final model on
all of D. We evaluate the final, tuned model on the entire test split of the current dataset. Details on
the set of hyperparameters that are tuned and their ranges can be found in Appendix A.5.2. We assume
that any pretraining has been non-private. For DP fine-tuning on D, we use Opacus Yousefpour et al.
(2021) and compute the required noise multiplier depending on the targeted (ϵ, δ). We report the
results over three runs. We report (ϵ, δ)-DP computed with the RDP accountant (Mironov, 2017)
and set δ = 1/|D|. Similarly to previous work (De et al., 2022; Mehta et al., 2022; Sander et al.,
2022) we do not account for privacy loss originating from the tuning of the hyperparameters. See
Appendix A.5 for additional training details.

3.1 EFFECT OF SHOTS AND DP
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Figure 1: Classification accuracy as a function of shots and ϵ for CIFAR-10, CIFAR-100 and SVHN.
DDO (low, medium, high) refers to the data distribution overlap (see Appendix A.1). Backbone is
VIT-B and the best performing configuration out of All, FiLM and Head is used for each combination
of ϵ and S, with δ = 1/|D|. The accuracy is reported over three seeds with the line showing the
median and the band reporting the lowest and highest accuracy.
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Figure 2: Classification accuracy as a function of shots and learnable parameters (All, FiLM and
Head) on VIT-B for CIFAR-10, CIFAR-100 and SVHN for ϵ ∈ {2,∞} with δ = 1/|D|. DDO (low,
medium, high) refers to the data distribution overlap (see Appendix A.1). The accuracy is reported
over three seeds with the line showing the median and the band the lowest and highest accuracy.
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Figure 3: Multiplier of shots required to reach
same accuracy as non-private with S = 5 for VIT-
B with FiLM with δ = 1/|D|. The data is obtained
using linear interpolation (see details for more con-
figurations in Appendix A.4.2).

We evaluate the performance of transfer learn-
ing under DP when varying S and ϵ. Results
are in Figures 1 to 3, with tabular versions in Ta-
bles A.2 to A.7. In addition to the CIFAR-10 and
CIFAR-100 datasets (Krizhevsky, 2009), which
are commonly used in DP transfer learning, we
also evaluate SVHN (Netzer et al., 2011), which
has a low DDO and hence requires a greater de-
gree of adaptation of the pretrained backbone.
Key observations are:

Shots Figure 1 shows that accuracy decreases as
ϵ decreases. For S ≤ 10, accuracy is poor under
DP. However, if the DDO is high or medium, a

moderate number of shots (S ≈ 100) is sufficient to approach the accuracy of the non-private setting.

4



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

For example, at S = 100, the model achieves better than 90% accuracy on CIFAR-10 using only 2%
of the full training split at ϵ = 1. On the other hand, if DDO is low, learning is more challenging
and more shots are required to approach non-private accuracy. For example, for S = 100 and ϵ = 2,
SVHN achieves just over 20% accuracy and falls well short of non-private levels even at S = 500.

Learnable Parameters Referring to Figure 2, FiLM is at least as good or better than All and Head
in terms of accuracy, demonstrating its ability to adapt to differing downstream datasets despite
fine-tuning fewer than 0.05% of the parameters in the backbone. When the DDO is high, training
only the Head is competitive with FiLM and All, but when DDO is low, Head falls short as it cannot
adapt the backbone to a downstream dataset that has a different data distribution. See Appendix A.4.4
for heat maps showing the advantage of FiLM over Head.

Effect of DP Referring to Figure 3, we see that DP requires significantly more shots than non-private,
with the multiple of shots increasing as the privacy level increases (i.e. as ϵ decreases). For all datasets,
at ϵ = 8, S must be increased by approximately 8× to meet S = 5 non-private accuracy and 32× at
ϵ = 1 for FiLM and VIT-B. In effect, as the privacy level increases, the effective number of shots
decreases in an exponential manner. There is evidence that these multipliers are lower for simpler
forms of adaptation (e.g. Head) than for more complex forms (e.g. All), see Figures A.9 and A.10.

Backbone Referring to Figure A.11, we see that VIT-B performs comparably to or better than R-50,
at the expense of having significantly more parameters (see Table A.15).

3.2 VTAB-1K

The VTAB-1k benchmark (Zhai et al., 2019) is a low to medium-shot transfer learning benchmark
that consists of 19 datasets grouped into three distinct categories (natural, specialized, and structured).
From each dataset, 1000 examples are drawn at random from the training split to use for the
downstream dataset D. After fine-tuning, the entire test split is used to evaluate performance.

Figure 4 shows average classification accuracy over all of the datasets in the VTAB-1k benchmark.
Complete tabular results are in Tables A.8 to A.13. Key observations are: (i) DP classification
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Figure 4: Average classification accuracy over all VTAB-1k datasets as a function of backbone,
learnable parameters, and privacy level (ϵ) at δ = 10−3. Colored columns indicate results under DP,
light gray indicates non-private accuracy for the corresponding configuration.

accuracy decreases significantly as ϵ is decreased and always falls short of non-private accuracy.
(ii) For non-private settings, the All learnable parameters setting outperforms FiLM which outperforms
Head. For DP settings, All performs worst, FiLM and Head perform similarly, though FiLM is better
in the majority of cases. (iii) At the expense of extra parameters (85.8M vs. 23.5M), the VIT-B
backbone outperforms the R-50 backbone.

Figure 5 depicts the classification accuracy for VTAB-1k datasets ordered by the number of classes
(C) in each as a function of privacy level for the VIT-B backbone in the FiLM configuration. Note that
since the dataset D has a fixed size of 1000 examples, as C increases, S necessarily decreases. The
key observation is that as S decreases, the degradation in accuracy is the more severe as ϵ decreases.
Although classifiers for the Retinopathy dataset appear to perform equally well independently of ϵ,
a closer inspection reveals that this dataset is unbalanced and learned classifiers predict the most
common class in all settings. A complete set of plots for various backbones and configurations can
be found in Figures A.15 and A.16.

Figure A.14 shows the difference between the accuracy of FiLM and Head for VTAB-1k datasets as
a function of ϵ. The datasets are ordered from high to low DDO (see Table A.1). At ϵ = 1, Head has
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Figure 5: Classification accuracy as a function of VTAB-1k dataset and privacy level (ϵ) at δ = 10−3.
Backbone is VIT-B and configuration is FiLM. The datasets are ordered increasingly by C (in
parenthesis) or equivalently decreasingly by S as |D| = 1000.
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Figure 6: ROC curves for LiRA (Carlini et al., 2022) on CIFAR-100 with R-50 backbone for two
values of ϵ (1 and ∞) where S varies and for S = 50 where ϵ varies. TPR values in legends are
measured at FPR=0.001. Complete results in Table A.14 and Figures A.17 and A.18. The dotted red
curve on the ϵ = 1 plot indicates the theoretical upper bound on TPR for S = 10. δ = 1/100S.

an advantage over FiLM on several datasets. FiLM shows a significant advantage when the DDO
decreases and as ϵ increases.

3.3 MEMBERSHIP INFERENCE ATTACKS

We use the state-of-the-art Likelihood Ratio Attack (LiRA) (Carlini et al., 2022) to attack models
trained on CIFAR-100 with varying S and privacy level ϵ. For each setting of S and ϵ, we first sample
2|D| examples (recall |D| = CS = 100S) from the CIFAR-100 training set, and then train 257
different models (1 target model plus 256 shadow models) where each sample for the training set is
randomly selected with 50% probability from the 2|D| examples. This ensures that approximately
half of the models are trained on each example and half are not so that we can create distributions
over the losses for each example being in and out of the training set as described in the LiRA
algorithm (Carlini et al., 2022). We use each of the trained models in turn as the target model and then
accumulate the attack predictions over all 257 targets to produce the ROC curve for the attack. Due to
the extreme computation demand in training a large number of shadow models for each setting of S
and ϵ, we restrict the attacks to the R-50 backbone and the Head and FiLM parameter configurations.
Refer to Appendix A.5.5 for more detail. Excerpts from attack results are shown in Figure 6. The
complete set of attack ROC curves are shown in Figures A.17 and A.18, while Table A.14 reports
TPR at several low FPR values, AUC score, and the maximum membership inference advantage
(defined as TPR - FPR by Yeom et al. (2018)) achieved over the curve.

Key observations are: (i) Non-private (ϵ = ∞) models are extremely vulnerable to MIAs (see
Figure 6, middle). For example, in the case of ϵ = ∞, S = 10, and Head configuration, 84.5% of the
examples can be successfully identified with a false positive rate of only 0.1%. (ii) Vulnerability of
non-private (ϵ = ∞) models decreases as S increases. Also, the FiLM configuration is consistently
less vulnerable than Head (see Figure 6). We hypothesize that FiLM generalizes better, so training
examples do not stand out as much as in the Head configuration. (iii) When S is fixed, vulnerability
to MIAs greatly decreases with decreasing ϵ (see Figure 6, right). However, when S = 10 with ϵ = 1,
5.1% of the examples can be successfully identified with a FPR of 1% and 0.8% of the examples with
0.1% FPR (see Table A.14). (iv) Under DP, there appears to be little or no difference between the
vulnerability of the FiLM and Head configurations at the same ϵ (see Figure 6, right). (v) Under DP
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with small ϵ, the vulnerability to MIA decreases as S increases and TPR is close to the theoretical
upper bound (see Figure 6, left). For larger ϵ there is no trend with S and the bounds are loose.

4 DISCUSSION

Our work shows that there is still much to be done in order to realize effective transfer learning
under DP constraints for few-shot, low DDO datasets. Alternative strategies may include side-
stepping privacy costs by leveraging the zero-shot capabilities of large pretrained models such as
CLIP (Radford et al., 2021) or utilizing public data in addition to private data in the training process
(Golatkar et al., 2022) in order to improve utility.
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A APPENDIX

A.1 DATASET DISTRIBUTION OVERLAP

Table A.1 shows the data distribution overlap between the ImageNet-21K pretraining data and each
of the datasets used in our experiments.

Table A.1: Amount of distribution overlap between each of the 19 VTAB-1k datasets (plus CIFAR-10)
and the ImageNet-21K pretraining data. The Score column is computed as the difference between
the accuracy of the All learnable parameter configuration and the Head configuration, normalized by
the All accuracy, and then scaled by 100. The lower the score, the more the data distribution overlap
between the pretraining data and the downstream VTAB-1k dataset. In the Distribution Overlap
column, we map the score into three buckets: a score of 0-5 is High, 5-10 is Medium, and greater
than 10 is Low. To compute the scores, we use the VIT-B backbone and use accuracies from the
VTAB-1k experiments for the VTAB-1k datasets and the accuracies from the results of the effect of
shots and DP experiments at S = 100 for CIFAR-10.

DATASET SCORE DISTRIBUTION OVERLAP

CALTECH101 (FEI-FEI ET AL., 2006) 0.4 HIGH
CIFAR10 (KRIZHEVSKY, 2009) 1.0 HIGH
CIFAR100 (KRIZHEVSKY, 2009) 7.8 MEDIUM
FLOWERS102 (NILSBACK & ZISSERMAN, 2008) 0.2 HIGH
PETS (PARKHI ET AL., 2012) 1.1 HIGH
SUN397 (XIAO ET AL., 2010) 8.8 MEDIUM
SVHN (NETZER ET AL., 2011) 52.9 LOW
DTD (CIMPOI ET AL., 2014) 1.3 HIGH

EUROSAT (HELBER ET AL., 2019) 1.7 HIGH
RESICS45 (CHENG ET AL., 2017) 6.7 MEDIUM
PATCH CAMELYON (VEELING ET AL., 2018) 3.8 HIGH
RETINOPATHY (KAGGLE & EYEPACS, 2015) 0.2 HIGH

CLEVR-COUNT (JOHNSON ET AL., 2017) 26.2 LOW
CLEVR-DIST (JOHNSON ET AL., 2017) 38.7 LOW
DSPRITES-LOC (MATTHEY ET AL., 2017) 71.4 LOW
DSPRITES-ORI (MATTHEY ET AL., 2017) 37.7 LOW
SMALLNORB-AZI (LECUN ET AL., 2004) 33.3 LOW
SMALLNORB-ELEV (LECUN ET AL., 2004) 28.2 LOW
DMLAB (BEATTIE ET AL., 2016) 21.9 LOW
KITTI-DIST (GEIGER ET AL., 2013) 13.6 LOW

14



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

A.2 DIFFERENTIAL PRIVACY AND MEMBERSHIP INFERENCE ATTACKS

We provide privacy protection for trained models using DP. In this section, we give the mathematical
definition of DP and discuss its relationship to membership inference attacks.

Definition A.1. (Dwork et al., 2006) A mechanism M : X → Y is (ϵ, δ,∼)-DP if for all adjacent
datasets D ∼ D′ and all S ⊆ Y ,

Pr(M(D) ∈ S) ≤ eϵPr(M(D′) ∈ S) + δ .

Our definition differs from the usual one by making explicit its dependence on the adjacency relation
∼. The most common choice in the centralized setting is the add/remove relation ∼AR, where
adjacent datasets are obtained by adding or removing one example and are of different size. This
setting is sometimes called unbounded DP (Kifer & Machanavajjhala, 2011).1 Another widely used
choice is the substitute relation ∼S , where adjacent data sets are obtained by substituting one example
and are of the same size. This setting is called bounded DP.

The values of ϵ and δ for these two settings are not directly comparable. If we use (ϵAR, δAR) to
denote parameters under ∼AR (these correspond to (ϵ, δ) in the main text) and (ϵS , δS) under ∼S ,
we have the following general reduction, which follows immediately from group privacy:

Theorem A.2. Any (ϵAR, δAR,∼AR)-DP mechanism is (ϵS , δS ,∼S)-DP with ϵS = 2ϵAR and
δS = (1 + eϵAR)δAR.

Most works in DP deep learning use ∼AR, and privacy accountants implemented in DP training
libraries report (ϵAR, δAR). This is because privacy accounting with ∼S is much more difficult (Zhu
et al., 2022).

A.2.1 DIFFERENTIAL PRIVACY BOUNDS FOR HYPOTHESIS TESTING

Given the output y of a DP mechanism M : X → Y on either of two adjacent datasets D ∼ D′, an
attack against the (ϵ, δ,∼)-DP of M can be formulated as a hypothesis test where the null hypothesis
is that the input to M was D and the alternative hypothesis is that it was D′. A false positive occurs
when the null hypothesis holds but the the attack rejects it, while a false negative occurs when the
null hypothesis does not hold but the attack does not reject it. Kairouz et al. (2017) characterize
DP in terms of the FPR and FNR of hypothesis tests (this strengthens an earlier result of Hall et al.
(2013) that shows that the conditions are necessary, but not that they are sufficient). Given that
TPR = 1− FNR, we restate this result as follows:

Theorem A.3 (Kairouz et al. (2017)). A mechanism M : X → Y is (ϵ, δ,∼)-DP if and only if for
all adjacent D ∼ D′,

TPR ≤ min{eϵFPR + δ, 1− e−ϵ(1− δ − FPR)} . (A.1)

The set of TPR and FPR that can be achieved under (ϵ, δ,∼)-DP thus define a privacy region R(ϵ, δ),
as illustrated in Figure A.7.

A.2.2 FORMALISING MEMBERSHIP INFERENCE AS HYPOTHESIS TESTING

Yeom et al. (2020) (and similarly Carlini et al. (2022)) formalize membership inference using the
following probabilistic experiment parameterized by n, the size of the training dataset, where an
adversary interacts with a challenger:

1. The challenger samples a dataset D of n examples and trains a model f on it;

2. The challenger chooses b ∈ {0, 1} uniformly at random;

3. If b = 0, the challenger draws an example (x, y) from D, otherwise it draws (x, y) from the
underlying training data distribution;

1Unlike e.g. Balle et al. (2018), we use ∼AR to denote the add/remove relation to distinguish this from
separate add and remove relations used by Zhu et al. (2022).
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Figure A.7: Privacy region of a R(ϵ, δ)-DP mechanism. The region is symmetric w.r.t. the TPR =
FPR diagonal to account for complementary tests.

4. The adversary produces a guess b̂ for b, given f , (x, y), n, the training data distribution and
the training algorithm.

A membership inference attack defined in this way is a hypothesis test for the ∼S adjacency relation,
because it asks the adversary to distinguish between two possible points in a training set of fixed size.

A.2.3 DP BOUNDS ON MEMBERSHIP INFERENCE

Following the recommendation of Carlini et al. (2022), we primarily measure the performance of a
MIA as its true positive rate (TPR) at a fixed small false positive rate (FPR). To give a more complete
picture, we also provide full ROC curves in Appendix A.4.6. For ϵ ̸= ∞, these curves must be
contained between the corresponding privacy region R(ϵ, δ).

Taking into account that a MIA is a hypothesis test for the ∼S adjacency relation, we can combine
Theorems A.2 and A.3 to obtain the following result.
Proposition A.4. Let M be an (ϵAR, δAR,∼AR)-DP training algorithm. The FPR and TPR of a
membership inference attack distinguishing members of the training dataset of models trained with
M from non-members satisfy

TPR ≤ min{e2ϵARFPR + (1 + eϵAR)δAR, 1− e−2ϵAR(1− (1 + eϵAR)δAR − FPR)} . (A.2)

The bound in Equation (A.2) applies to all (ϵ, δ)-DP algorithms. Most algorithms satisfy (ϵ, δ)-DP for
multiple values of (ϵ, δ), which can be parameterized as (ϵ(δ), δ). For DP-SGD, we can evaluate the
(ϵ(δ), δ) curve using a privacy accountant such as a Rényi DP (RDP, Mironov, 2017) or a numerical
DP accountant (Koskela et al., 2020; 2021; Gopi et al., 2021). The accounting results with different δ
will give slightly different TPR bounds that are all valid. To get the maximally tight bounds, we can
take the minimum of the bounds over all (ϵ(δ), δ) to obtain the final composite bound:

TPR ≤ min
(ϵAR, δAR) s.t. M is (ϵAR, δAR)-DP

min{e2ϵARFPR+(1+eϵAR)δAR, 1−e−2ϵAR(1−(1+eϵAR)δAR−FPR)}.
(A.3)

Considering the bound of equation A.2, we observe that in order to have a meaningful bound,
we need to have ϵS ≤ 2 or equivalently ϵAR ≤ 1 with small corresponding δ, although ϵS ≤ 1
(equivalently ϵAR ≤ 0.5) would be preferable. These are smaller than commonly used values
ϵAR > 1. Conflation of results from the two relations, i.e. using the natural bound of Equation (A.1)
but carelessly substituting ϵAR for ϵS , may misrepresent the residual risk and DP protection when
using the standard definition of MIA (Carlini et al., 2022; Yeom et al., 2020).

The connection between DP and MIA via Theorem A.3 can be used to derive bounds for other metrics.
For instance, Humphries et al. (2020) provide a tight bound for the MI advantage (defined by Yeom
et al. (2020) as TPR - FPR) of attacks against general DP mechanisms.
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A.2.4 COMPARING THE DIFFERENT BOUNDS
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UB (PRV multiple δ): S= 10
Head: S=10, TPR=0.006
FiLM: S=10, TPR=0.008

Figure A.8: Comparison of the bounds given at single δ in Equation (A.2) with the composite bound
in Equation (A.3), using both the RDP accountant and the PRV accountant (Gopi et al., 2021), for a
model trained with RDP target bound ϵ = 1.0, δ = 10−3.

In Figure A.8 we compare the bounds given at single δ in Equation (A.2) with the composite bound
in Equation (A.3), using both the RDP accountant and the PRV accountant (Gopi et al., 2021). We
find that using the composite bound is very important to obtain bounds that are tight over a broad
FPR range, while moving from the RDP accountant to an accurate numerical accountant such as the
PRV accountant further makes the bounds slightly tighter.

A.3 RELATED WORK

Section 1 describes various works where DP transfer learning using models pretrained on large public
datasets achieves accuracy close to non-private approaches. However, to the best of our knowledge,
there are no comprehensive studies on few-shot transfer learning under DP. The closest work to ours
is Luo et al. (2021) where the authors evaluate DP fine-tuning of a sparse subset of the parameters of
models pretrained on public data on a small number of few-shot downstream datasets. Their work
employs a relatively small backbone (ResNet18), pretrained on a small public dataset (miniImageNet),
with limited analysis. In contrast, our work utilizes large backbones, a large public pretraining set,
a wider range of privacy levels and downstream datasets, in addition to assessing vulnerability to
attacks.

Tramèr et al. (2022) point out that current DP benchmarks rely excessively on downstream datasets
with a high level of overlap with the pretraining data. Our work aims at resolving this issue by
evaluating DP models on datasets that have a wide range of DDO.

A.4 ADDITIONAL RESULTS

A.4.1 ADDITIONAL EFFECT OF SHOTS PER CLASS AND DP RESULTS

Tables A.2 to A.7 depict tabular results for different backbones (R-50, VIT-B), different
learnable parameter sets (Head, FiLM, All), different numbers of shots per class (S =
1, 5, 10, 25, 50, 100, 250, 500) and various privacy levels (ϵ = 1, 2, 4, 8,∞), all at δ = 1/|D|).
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Table A.2: Classification accuracy as a function of ϵ, S and learnable parameters for CIFAR-10.
Backbone is R-50 pretrained on ImageNet-21k. Accuracy figures are percentages and the ± sign
indicates the 95% confidence interval over 3 runs with different seeds.

1S 5S 10S 25S 50S 100S 250S 500S

ϵ = 1 10.0±0.0 9.8±0.3 9.9±0.2 29.3±4.3 54.1±7.4 74.3±1.2 86.1±1.7 90.5±0.7
ϵ = 2 9.8±0.3 14.0±7.9 9.8±0.2 50.2±3.5 71.2±2.3 83.3±1.9 90.4±0.6 91.6±0.1

ALL ϵ = 4 10.0±0.1 9.8±0.3 9.8±0.3 69.2±4.1 81.9±3.1 88.2±1.0 91.5±0.3 92.0±0.3
ϵ = 8 10.0±0.0 20.1±19.7 28.0±35.9 53.0±26.2 85.9±2.0 90.1±0.8 91.8±0.5 92.8±0.8
ϵ = ∞ 51.3±6.0 78.7±3.0 86.3±0.7 89.3±1.1 91.9±0.6 93.5±0.3 94.6±0.4 95.5±0.3

ϵ = 1 11.1±0.6 18.8±3.5 21.4±4.4 45.6±3.4 68.3±3.9 78.3±4.6 89.6±0.9 92.4±0.8
ϵ = 2 13.3±3.3 21.0±5.6 31.7±6.6 63.4±3.0 80.9±2.4 86.9±0.9 92.3±0.4 93.6±0.7

FILM ϵ = 4 14.9±4.3 30.3±8.5 52.4±3.4 76.1±1.5 86.2±1.7 89.1±1.2 93.4±0.0 94.4±0.3
ϵ = 8 17.1±5.3 40.1±5.0 67.0±5.8 80.9±1.2 89.2±1.7 92.4±0.7 94.0±0.3 94.7±0.3
ϵ = ∞ 48.1±3.6 79.4±6.3 86.5±2.6 91.7±0.4 94.1±0.3 94.9±0.2 95.5±0.2 95.8±0.2

ϵ = 1 11.7±5.0 18.7±1.6 20.5±8.3 44.7±4.7 68.7±3.3 82.0±1.6 87.3±0.2 88.9±0.8
ϵ = 2 11.9±3.8 23.7±1.5 31.1±8.4 62.2±8.8 80.1±1.2 86.2±0.6 89.3±0.4 90.0±0.7

HEAD ϵ = 4 13.1±2.6 30.0±5.2 45.5±12.1 79.4±1.8 84.7±0.7 87.7±0.5 89.8±0.2 90.8±0.4
ϵ = 8 16.8±4.4 41.5±6.5 65.5±3.1 83.2±1.7 86.2±0.7 89.1±0.3 90.1±0.3 91.2±0.1
ϵ = ∞ 49.2±4.7 75.2±6.0 83.5±0.4 87.2±0.6 89.0±0.2 90.3±0.2 91.4±0.2 92.1±0.3

Table A.3: Classification accuracy as a function of ϵ, S and learnable parameters for CIFAR-100.
Backbone is R-50 pretrained on ImageNet-21k. Accuracy figures are percentages and the ± sign
indicates the 95% confidence interval over 3 runs with different seeds.

1S 5S 10S 25S 50S 100S 250S 500S

ϵ = 1 1.0±0.0 1.7±0.8 1.7±1.4 7.9±1.5 23.9±0.7 48.5±2.1 53.0±6.7 49.9±8.5
ϵ = 2 1.3±0.6 1.2±0.6 6.8±0.2 23.1±0.6 46.0±2.1 59.4±2.9 63.2±0.6 59.1±6.3

ALL ϵ = 4 1.0±0.0 1.6±1.3 15.3±1.1 43.7±3.9 57.6±2.8 64.8±0.4 65.9±1.9 66.6±0.6
ϵ = 8 1.0±0.0 5.1±7.9 31.1±2.0 55.9±2.6 59.6±3.7 67.3±0.3 70.5±1.4 68.2±3.4
ϵ = ∞ 28.3±2.4 51.9±5.6 59.7±9.9 71.9±0.5 76.0±0.8 79.9±0.1 83.6±0.4 82.5±1.4

ϵ = 1 1.0±0.4 1.8±0.5 3.7±0.2 14.2±0.2 34.2±1.8 59.2±1.0 72.4±0.3 72.2±0.4
ϵ = 2 1.4±0.5 2.9±0.3 9.3±0.6 33.4±0.8 55.0±3.2 72.2±0.3 79.0±0.2 78.7±0.7

FILM ϵ = 4 1.7±0.4 7.2±1.3 22.4±1.2 53.9±0.9 70.1±0.6 77.9±0.6 81.4±0.3 81.5±0.2
ϵ = 8 2.2±0.3 18.6±0.3 38.7±3.7 65.3±1.6 75.6±0.5 80.5±0.8 83.0±0.2 83.3±0.4
ϵ = ∞ 25.8±6.1 64.8±3.2 71.8±1.1 77.6±0.1 81.4±0.4 82.9±0.4 84.9±0.3 84.4±0.1

ϵ = 1 1.3±0.6 2.3±0.9 4.4±1.2 13.5±1.5 32.3±0.9 52.1±0.7 63.5±0.9 64.1±0.8
ϵ = 2 1.4±0.7 3.9±0.8 8.7±1.4 31.6±1.2 51.0±1.2 63.1±1.0 70.1±0.3 70.2±0.1

HEAD ϵ = 4 1.8±0.6 7.5±1.8 22.1±1.3 46.3±0.7 61.7±1.6 68.4±0.8 73.2±0.5 72.8±0.6
ϵ = 8 2.5±0.7 17.2±1.7 38.9±1.9 58.9±0.3 67.5±0.4 72.1±0.5 75.4±0.3 75.4±0.1
ϵ = ∞ 25.6±5.6 56.4±0.3 62.8±1.4 69.6±0.2 72.9±0.3 75.8±0.3 78.3±0.3 78.3±0.3

Table A.4: Classification accuracy as a function of ϵ, S and learnable parameters for SVHN. Backbone
is R-50 pretrained on ImageNet-21k. Accuracy figures are percentages and the ± sign indicates the
95% confidence interval over 3 runs with different seeds.

1S 5S 10S 25S 50S 100S 250S 500S

ϵ = 1 7.1±2.0 12.9±6.3 8.8±1.2 9.0±1.2 8.8±2.3 20.5±3.6 25.7±0.4 32.1±9.5
ϵ = 2 7.2±2.0 9.0±1.6 9.4±1.9 8.6±0.7 12.3±6.3 23.1±4.9 35.5±2.9 46.1±5.0

ALL ϵ = 4 7.2±2.0 7.3±2.3 7.6±1.7 7.8±1.8 9.5±1.4 27.8±3.7 42.9±6.7 65.1±6.9
ϵ = 8 7.2±2.0 8.5±2.3 8.7±1.1 9.0±0.6 22.4±8.9 39.6±3.1 60.9±5.9 78.1±3.1
ϵ = ∞ 14.4±1.5 19.6±12.8 42.2±4.1 76.1±4.5 84.1±5.5 86.8±5.0 93.1±0.5 94.6±0.2

ϵ = 1 12.6±3.6 9.5±0.6 11.4±2.8 12.3±1.4 13.9±1.6 18.6±2.1 25.1±1.1 33.8±2.5
ϵ = 2 11.3±4.0 10.8±1.3 12.0±1.6 15.0±1.8 16.3±0.5 21.7±1.4 32.9±3.5 45.3±2.9

FILM ϵ = 4 9.3±0.4 11.4±2.0 13.5±1.3 17.0±0.8 20.7±1.8 27.6±2.1 39.8±3.4 61.1±2.6
ϵ = 8 9.9±1.0 11.9±1.6 16.6±1.4 21.2±1.8 25.6±1.9 33.3±2.1 51.4±3.9 67.3±2.0
ϵ = ∞ 13.8±0.3 20.2±1.1 25.7±1.7 37.8±4.1 42.4±1.8 58.7±6.2 71.5±5.5 84.4±3.1

ϵ = 1 10.0±0.9 8.7±1.0 10.8±0.1 11.1±1.2 13.3±0.9 18.1±1.4 24.7±1.0 31.2±0.7
ϵ = 2 9.9±0.5 9.1±1.4 11.2±1.4 13.9±1.6 17.1±1.1 21.2±2.0 29.6±1.5 36.1±1.7

HEAD ϵ = 4 10.3±0.8 10.2±0.8 13.5±2.1 17.4±0.2 19.3±0.7 24.9±1.1 35.3±1.2 40.9±1.0
ϵ = 8 10.3±0.8 11.1±1.3 15.0±3.1 19.9±1.8 23.3±1.3 29.3±1.0 39.7±1.5 45.2±1.2
ϵ = ∞ 13.8±0.5 18.5±1.6 21.2±3.4 28.7±1.4 32.8±1.6 38.0±1.4 47.1±0.5 48.5±3.2
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Table A.5: Classification accuracy as a function of ϵ, S and learnable parameters for CIFAR-10.
Backbone is VIT-B pretrained on ImageNet-21k. Accuracy figures are percentages and the ± sign
indicates the 95% confidence interval over 3 runs with different seeds.

1S 5S 10S 25S 50S 100S 250S 500S

ϵ = 1 12.5±1.3 20.9±10.2 18.8±7.4 64.9±13.2 70.3±15.1 84.2±10.9 93.0±2.0 95.3±1.0
ϵ = 2 12.7±1.0 9.1±2.7 24.8±24.0 76.9±1.4 88.4±1.3 93.1±0.9 95.4±1.0 97.0±0.9

ALL ϵ = 4 12.6±1.4 42.7±3.2 59.2±5.2 86.8±1.5 91.8±1.0 95.3±0.7 96.9±0.7 97.6±0.5
ϵ = 8 12.7±1.7 51.7±9.6 54.9±10.7 86.2±10.5 90.9±4.9 96.6±0.8 97.3±0.3 98.1±0.3
ϵ = ∞ 64.3±12.8 91.4±1.6 95.1±0.8 97.2±0.3 97.6±0.4 97.9±0.3 98.3±0.1 98.4±0.1

ϵ = 1 10.3±3.1 15.0±3.9 23.8±1.7 57.7±8.7 81.9±1.6 89.6±1.5 95.5±1.0 96.9±0.2
ϵ = 2 11.4±2.9 21.5±8.0 37.5±6.4 74.5±4.8 91.7±0.2 93.5±1.5 96.1±0.9 97.3±0.1

FILM ϵ = 4 13.3±2.0 37.7±5.4 58.6±5.9 82.8±5.5 93.1±1.0 94.4±1.2 96.9±0.4 97.5±0.1
ϵ = 8 16.4±1.1 51.4±10.9 71.5±2.0 89.4±4.4 94.6±1.1 96.0±1.0 97.1±0.1 97.6±0.6
ϵ = ∞ 67.0±7.4 92.1±2.7 95.3±2.4 97.2±1.1 97.9±0.6 98.0±0.4 98.6±0.1 98.7±0.1

ϵ = 1 14.6±2.7 19.1±5.0 30.3±6.7 56.6±2.1 81.5±1.7 90.6±1.5 95.3±0.3 96.4±0.2
ϵ = 2 15.7±2.9 23.7±4.9 44.7±12.3 74.9±9.3 86.2±2.1 93.9±0.2 96.3±0.4 96.9±0.1

HEAD ϵ = 4 17.3±2.9 34.9±9.8 59.7±9.3 85.3±6.5 94.4±0.6 95.1±1.4 96.7±0.3 97.0±0.4
ϵ = 8 19.5±4.1 42.2±2.8 74.7±9.3 91.7±1.6 92.9±5.5 95.4±0.7 97.0±0.2 97.1±0.3
ϵ = ∞ 66.0±5.7 74.8±5.6 90.7±4.7 95.1±2.6 96.5±0.4 97.0±0.1 97.3±0.1 97.4±0.1

Table A.6: Classification accuracy as a function of ϵ, S and learnable parameters for CIFAR-100.
Backbone is VIT-B pretrained on ImageNet-21k. Accuracy figures are percentages and the ± sign
indicates the 95% confidence interval over 3 runs with different seeds. Note that for three entries not
all runs finished before submission deadline. The confidence intervals for these entries will be added
for the rebuttal.

1S 5S 10S 25S 50S 100S 250S 500S

ϵ = 1 1.1±0.3 1.0±0.3 3.4±2.1 18.7±3.3 41.0±2.0 62.7±2.0 62.2±24.4 63.7±25.9
ϵ = 2 1.1±0.1 3.2±1.9 11.9±1.4 39.9±2.5 60.8±2.2 78.0±0.8 71.3 75.9±19.1

ALL ϵ = 4 0.9±0.2 10.5±2.1 24.3±2.2 56.4±3.5 68.5±15.8 82.9±5.3 84.2±9.6 84.3±7.9
ϵ = 8 1.3±0.4 17.3±7.7 18.8±2.9 60.8±18.8 84.2±0.3 86.9±2.4 88.3±3.4 87.1±5.2
ϵ = ∞ 26.2±14.5 78.1±1.0 85.3±0.6 88.4±0.7 89.6±0.3 90.9±0.4 88.9±3.9 86.4

ϵ = 1 1.3±0.1 2.1±1.2 5.1±1.3 22.4±0.4 53.5±4.1 71.6±2.5 83.5±0.2 82.7±3.0
ϵ = 2 1.6±0.2 4.5±1.5 15.5±0.7 51.4±2.7 69.1±1.3 82.4±2.0 87.8±0.9 88.8±1.9

FILM ϵ = 4 1.6±0.1 11.2±1.9 35.3±4.0 66.2±3.2 82.0±0.8 87.0±0.4 88.9±1.4 89.7±0.9
ϵ = 8 2.7±0.7 25.6±2.4 53.3±4.6 77.6±1.8 83.6±3.5 88.1±1.2 89.9±0.9 90.3±0.6
ϵ = ∞ 42.1±2.5 79.1±3.1 84.2±2.8 89.4±0.5 90.6±0.5 91.6±0.4 92.1±0.3 92.2±0.4

ϵ = 1 1.3±0.4 2.8±0.3 5.7±0.7 24.2±0.9 49.0±3.2 70.9±0.3 79.7±1.1 80.4±0.3
ϵ = 2 1.4±0.2 5.7±0.1 12.7±2.4 48.7±1.1 70.2±1.3 78.5±2.4 83.0±2.2 83.9±1.1

HEAD ϵ = 4 2.2±0.4 11.7±0.9 29.5±5.0 65.7±3.9 76.0±5.0 83.7±0.6 85.3±1.7 86.1±0.5
ϵ = 8 3.2±0.5 21.7±2.0 51.9±4.6 74.5±4.2 82.0±0.3 85.4±0.5 86.6±1.1 87.4±0.2
ϵ = ∞ 35.8±12.2 72.2±4.5 78.7±3.0 84.3±0.8 86.1±0.3 87.4±0.4 87.6±0.1 88.0±0.8

Table A.7: Classification accuracy as a function of ϵ, S and learnable parameters for SVHN. Backbone
is VIT-B pretrained on ImageNet-21k. Accuracy figures are percentages and the ± sign indicates the
95% confidence interval over 3 runs with different seeds.

1S 5S 10S 25S 50S 100S 250S 500S

ϵ = 1 11.9±1.9 9.5±2.1 9.7±2.4 9.2±1.5 10.3±1.4 14.1±4.6 22.4±2.8 33.5±14.9
ϵ = 2 11.7±1.7 10.1±0.3 9.9±1.9 8.6±0.5 12.6±5.5 22.8±0.4 37.9±8.4 55.2±20.9

ALL ϵ = 4 10.7±0.5 10.9±2.1 10.8±1.7 9.7±2.0 15.6±6.2 28.6±5.3 45.8±17.7 66.1±22.0
ϵ = 8 10.5±0.5 10.5±0.6 9.1±0.5 14.3±5.1 25.5±4.0 36.6±18.3 64.6±31.4 84.4±5.3
ϵ = ∞ 10.5±1.2 15.6±11.2 28.4±22.9 63.0±26.9 86.1±5.0 91.2±1.0 93.0±1.1 94.2±1.0

ϵ = 1 11.7±3.0 10.7±2.4 11.1±1.4 10.0±1.2 11.4±2.4 17.0±1.7 26.4±1.1 43.7±4.5
ϵ = 2 11.6±2.8 12.2±0.6 10.3±0.9 13.1±2.8 14.4±4.2 23.5±0.6 41.0±3.6 68.6±4.0

FILM ϵ = 4 10.3±2.2 11.1±2.2 12.5±2.2 15.8±4.0 20.5±1.9 30.3±4.4 64.8±4.6 77.5±2.3
ϵ = 8 9.1±1.6 13.1±1.4 14.4±2.1 20.9±0.9 23.4±2.1 53.4±4.8 74.3±1.2 83.7±0.5
ϵ = ∞ 12.6±2.6 22.1±1.2 31.0±3.6 65.9±21.8 83.7±3.1 87.7±5.9 92.2±0.7 93.6±0.7

ϵ = 1 9.1±0.5 10.0±2.9 10.9±1.5 11.5±0.3 12.5±0.4 15.5±0.9 21.5±1.6 31.1±1.5
ϵ = 2 9.2±0.7 11.7±2.9 12.1±0.7 12.4±1.6 15.8±1.4 22.0±2.1 28.8±2.1 37.4±0.6

HEAD ϵ = 4 9.7±0.5 12.2±4.1 12.9±0.1 15.5±2.2 19.5±0.5 24.8±2.1 35.5±1.2 42.9±1.0
ϵ = 8 9.3±0.8 10.7±0.8 14.5±0.2 18.4±0.5 23.2±2.1 29.6±2.3 40.5±0.9 46.3±1.1
ϵ = ∞ 12.7±2.0 14.6±2.8 23.5±0.9 29.6±1.6 33.8±2.6 38.8±1.3 47.6±1.7 52.6±1.1
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A.4.2 ADDITIONAL VARIATIONS OF FIGURE 3

We compute the multiplier for a configuration and dataset at ϵ as follows: Using the median accuracy
obtained through the experiments depicted in Tables A.2 to A.7 (S = 1, 5, 10, 25, 50, 100, 250, 500)
we linearly interpolate the median accuracy in the complete S = [1, 500] grid. We determine the
minimum S required to reach at least the same accuracy as for non-private at S ∈ {5, 10} using
the S = [1, 500] grid. The multiplier is then the minimum S required for DP divided by the S for
non-private.

The Figures A.9 and A.10 display the same analysis as Figure 3 for all backbones (VIT-B, R-50) and
non-private shots of S ∈ {5, 10}.

ϵ=1 ϵ=2 ϵ=4 ϵ=8
1
2
4
8

16
32

M
ul

tip
lie

r

VIT-B (All) for non-private S=5

SVHN
CIFAR-10
CIFAR-100

ϵ=1 ϵ=2 ϵ=4 ϵ=8
1
2
4
8

16
32

M
ul

tip
lie

r

VIT-B (FiLM) for non-private S=5

ϵ=1 ϵ=2 ϵ=4 ϵ=8
1
2
4
8

16
32

M
ul

tip
lie

r

VIT-B (Head) for non-private S=5

ϵ=1 ϵ=2 ϵ=4 ϵ=8
1
2
4
8

16
32

M
ul

tip
lie

r
R-50 (All) for non-private S=5

ϵ=1 ϵ=2 ϵ=4 ϵ=8
1
2
4
8

16
32

M
ul

tip
lie

r

R-50 (FiLM) for non-private S=5

ϵ=1 ϵ=2 ϵ=4 ϵ=8
1
2
4
8

16
32

M
ul

tip
lie

r

R-50 (Head) for non-private S=5

Figure A.9: Multiplier of shots required to reach same accuracy as non-private with S = 5 for VIT-B
and R-50 on CIFAR-10, CIFAR-100 and SVHN with δ = 1/|D|. The data is obtained using linear
interpolation of the median results of the experiments of Section 3.1.
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Figure A.10: Multiplier of shots required to reach same accuracy as non-private with S = 10 for
VIT-B and R-50 on CIFAR-10, CIFAR-100 and SVHN with δ = 1/|D|. The data is obtained using
linear interpolation of the median results of the experiments of Section 3.1.
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A.4.3 COMPARISON OF BACKBONES FOR EFFECT OF SHOTS AND DP

Figure A.11 compares the backbones (VIT-B, R-50) using their best performing configuration. The
VIT-B backbone achieves comparable or better performance.

1 5 10 25 50 100 250 500
shots

0
20
40
60
80

100

ϵ
=
1

 A
cc

ur
ac

y 
(%

)

CIFAR-10 (high DDO)

VIT-B
R-50

1 5 10 25 50 100 250 500
shots

CIFAR-100 (medium DDO)

1 5 10 25 50 100 250 500
shots

SVHN (low DDO)

1 5 10 25 50 100 250 500
shots

0
20
40
60
80

100

ϵ
=
2

 A
cc

ur
ac

y 
(%

)

CIFAR-10 (high DDO)

1 5 10 25 50 100 250 500
shots

CIFAR-100 (medium DDO)

1 5 10 25 50 100 250 500
shots

SVHN (low DDO)

1 5 10 25 50 100 250 500
shots

0
20
40
60
80

100

ϵ
=
4

 A
cc

ur
ac

y 
(%

)

CIFAR-10 (high DDO)

1 5 10 25 50 100 250 500
shots

CIFAR-100 (medium DDO)

1 5 10 25 50 100 250 500
shots

SVHN (low DDO)

1 5 10 25 50 100 250 500
shots

0
20
40
60
80

100

ϵ
=
8

 A
cc

ur
ac

y 
(%

)

CIFAR-10 (high DDO)

1 5 10 25 50 100 250 500
shots

CIFAR-100 (medium DDO)

1 5 10 25 50 100 250 500
shots

SVHN (low DDO)

1 5 10 25 50 100 250 500
shots

0
20
40
60
80

100

ϵ
=
∞

 A
cc

ur
ac

y 
(%

)

CIFAR-10 (high DDO)

1 5 10 25 50 100 250 500
shots

CIFAR-100 (medium DDO)

1 5 10 25 50 100 250 500
shots

SVHN (low DDO)

Figure A.11: Classification accuracy for different ϵ as a function of S and backbone (VIT-B, R-50)
for CIFAR-10, CIFAR-100 and SVHN. DDO (low, medium, high) refers to the data distribution
overlap and is computed as in Appendix A.1. The best performing configuration out of All, FiLM and
Head for each combination of ϵ, S and backbone is used. The accuracy is reported over three seeds
with the line showing the median and the band reporting the lowest and highest accuracy.
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A.4.4 ADVANTAGE OF FiLM AS A FUNCTION OF SHOTS

Figures A.12 to A.14 show the difference between the mean classification accuracy of FiLM and
Head. Darker red indicates FiLM is better. Darker blue indicates Head is better.
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Figure A.12: Heat map showing the accuracy advantage of FiLM over Head for CIFAR-10, CIFAR-
100 and SVHN as a function of ϵ. Backbone is VIT-B. Darker red indicates FiLM is better. Darker
blue indicates Head is better. Datasets ordered from highest to lowest DDO (data distribution overlap).
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Figure A.13: Heat map showing the accuracy advantage of FiLM over Head for CIFAR-10, CIFAR-
100 and SVHN as a function of ϵ. Backbone is R-50. Darker red indicates FiLM is better. Darker blue
indicates Head is better. Datasets ordered from highest to lowest DDO (data distribution overlap).
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Figure A.14: Heat map showing the accuracy difference between FiLM and Head for the VTAB-1k
datasets as a function of ϵ. Backbone is VIT-B. Darker red indicates FiLM is better. Darker blue
indicates Head is better. Datasets ordered from highest to lowest DDO. δ = 10−3.

23



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

A.4.5 ADDITIONAL VTAB-1K RESULTS

Tables A.8 to A.13 depict tabular results for different backbones (R-50, ViT-B), different learnable
parameter sets (Head, FiLM, All), and various privacy levels (ϵ = 1, 2, 4, 8,∞), all at δ = 10−3.

Table A.8: Classification accuracy as a function of ϵ for each of the datasets in the VTAB-1k bench-
mark. Backbone is R-50 pretrained on ImageNet-21k. Learnable parameters are Head. Accuracy
figures are percentages and the ± sign indicates the 95% confidence interval over 3 runs with different
seeds.

DATASET CLASSES ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = ∞
CALTECH101 (FEI-FEI ET AL., 2006) 102 11.8±6.9 30.0±4.7 57.1±3.6 69.3±1.4 87.9±0.2
CIFAR100 (KRIZHEVSKY, 2009) 100 4.2±1.2 10.6±1.0 20.8±1.6 34.7±2.2 61.5±0.6
FLOWERS102 (NILSBACK & ZISSERMAN, 2008) 102 11.3±2.7 33±6.4 73.1±0.7 89.8±2.1 98.4±0.1
PETS (PARKHI ET AL., 2012) 37 28.6±5.4 50±2.4 65.6±1.5 73.4±1.0 84.4±0.3
SUN397 (XIAO ET AL., 2010) 397 4.7±0.2 8.4±0.2 13.4±1.2 21.5±0.7 46.2±0.4
SVHN (NETZER ET AL., 2011) 10 23.0±1.0 26.8±2.5 30.6±1.9 34.9±2.0 41.9±2.2
DTD (CIMPOI ET AL., 2014) 47 19.6±4.0 36.2±1.3 51.2±1.2 61.3±0.9 72.0±0.4

EUROSAT (HELBER ET AL., 2019) 10 77.2±1.9 85.3±1.4 88.4±1 91.1±0.0 94.3±0.2
RESICS45 (CHENG ET AL., 2017) 45 19.3±3.5 33.4±2.8 48.6±2.5 60.9±0.8 78.5±0.2
PATCH CAMELYON (VEELING ET AL., 2018) 2 77.6±2.3 79.2±1.0 80.8±1.6 80.6±0.3 81.2±0.2
RETINOPATHY (KAGGLE & EYEPACS, 2015) 5 73.2±0.6 73.7±0.3 73.4±0.6 74.0±0.4 75.2±0.1

CLEVR-COUNT (JOHNSON ET AL., 2017) 8 27.5±1.5 30.1±1.9 33.6±1.5 36.8±2.1 51.2±1.2
CLEVR-DIST (JOHNSON ET AL., 2017) 6 26.4±2.2 28.7±0.7 29.8±0.9 30.9±1.6 36.2±0.9
DSPRITES-LOC (MATTHEY ET AL., 2017) 16 6.6±0.1 6.8±0.7 7.6±0.5 7.5±1.2 18.9±6.5
DSPRITES-ORI (MATTHEY ET AL., 2017) 16 9.3±0.9 10.8±0.5 13.2±0.7 16.2±0.2 45.9±2.5
SMALLNORB-AZI (LECUN ET AL., 2004) 18 6.1±0.5 7.5±0.5 8.1±0.4 8.7±0.7 11.7±0.1
SMALLNORB-ELEV (LECUN ET AL., 2004) 9 17±3.3 19.8±1.1 22.5±0.9 24.5±0.7 31±0.5
DMLAB (BEATTIE ET AL., 2016) 6 26.9±0.8 28.8±0.6 31±0.2 32.4±0.1 34.6±3.7
KITTI-DIST (GEIGER ET AL., 2013) 4 54.5±2.5 59.6±3.5 66.9±1.6 65.4±1.3 69.2±0.7

ALL 27.6 34.7 43.0 48.1 58.9
NATURAL 14.7 27.9 44.5 55.0 70.4
SPECIALIZED 61.8 67.9 72.8 76.7 82.3
STRUCTURED 21.8 24.0 26.6 27.8 37.3

Table A.9: Classification accuracy as a function of ϵ for each of the datasets in the VTAB-1k
benchmark. Backbone is R-50 pretrained on ImageNet-21k. Learnable backbone parameters are
FiLM. Accuracy figures are percentages and the ± sign indicates the 95% confidence interval over 3
runs with different seeds.

DATASET CLASSES ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = ∞
CALTECH101 (FEI-FEI ET AL., 2006) 102 11.3±1.3 35.8±4.1 55.7±0.5 72.2±1.9 88.8±0.5
CIFAR100 (KRIZHEVSKY, 2009) 100 3.4±0.8 10.2±0.5 23.2±0.8 38.5±1.3 71.7±1.3
FLOWERS102 (NILSBACK & ZISSERMAN, 2008) 102 10.4±0.6 34.2±5.4 70.4±1.0 89.3±0.3 98.7±0.1
PETS (PARKHI ET AL., 2012) 37 28.4±1.4 48.8±3.0 64.1±1.1 75±1.1 88±0.4
SUN397 (XIAO ET AL., 2010) 397 4.2±0.5 8.0±0.1 14.1±0.8 21.7±0.8 46.8±0.7
SVHN (NETZER ET AL., 2011) 10 23.3±1.4 28.1±0.9 32.9±0.7 38.6±3.2 56.6±2.4
DTD (CIMPOI ET AL., 2014) 47 20.8±2.7 36.7±1.5 50.3±4.5 61.4±1.3 72.4±0.4

EUROSAT (HELBER ET AL., 2019) 10 79.2±0.8 85.1±1.5 88.8±2.2 92.1±0.7 95±0.1
RESICS45 (CHENG ET AL., 2017) 45 21.1±1.7 35.2±0.6 49.5±1.6 61.3±0.8 81.9±0.1
PATCH CAMELYON (VEELING ET AL., 2018) 2 76.8±0.8 77.3±2.7 79.1±1.2 79.4±0.4 81.3±0.1
RETINOPATHY (KAGGLE & EYEPACS, 2015) 5 73.4±0.3 73.5±0.1 73.9±0.5 74.4±0.2 74.0±3.2

CLEVR-COUNT (JOHNSON ET AL., 2017) 8 29.1±1.5 31.0±0.4 34.6±1.3 38±1.4 73±1.3
CLEVR-DIST (JOHNSON ET AL., 2017) 6 26.7±1.3 28.7±0.7 30.5±0.6 31.8±0.6 49.3±1.6
DSPRITES-LOC (MATTHEY ET AL., 2017) 16 6.6±0.3 6.4±0.3 6.7±0.5 8.5±1.4 64.0±8.7
DSPRITES-ORI (MATTHEY ET AL., 2017) 16 9.1±2.0 11.2±1.7 12.3±1.0 16.7±0.8 56.8±3.8
SMALLNORB-AZI (LECUN ET AL., 2004) 18 6.4±0.4 7.3±0.8 8.2±0.8 9.4±0.5 14.6±0.2
SMALLNORB-ELEV (LECUN ET AL., 2004) 9 17.6±1.0 20.8±0.3 22.7±1.1 25.6±0.3 32.0±4.0
DMLAB (BEATTIE ET AL., 2016) 6 25.8±0.7 28.7±0.7 30.5±0.9 32.1±0.8 41.8±0.4
KITTI-DIST (GEIGER ET AL., 2013) 4 56.3±1.6 60.7±3.9 63.4±2.5 68.5±1.6 80.4±0.5

ALL 27.9 35.1 42.7 49.2 66.7
NATURAL 14.6 28.8 44.4 56.7 74.7
SPECIALIZED 62.6 67.8 72.8 76.8 83.1
STRUCTURED 22.2 24.3 26.2 28.8 51.5
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Table A.10: Classification accuracy as a function of ϵ for each of the datasets in the VTAB-1k
benchmark. Backbone is R-50 pretrained on ImageNet-21k. All parameters are learnable. Accuracy
figures are percentages and the ± sign indicates the 95% confidence interval over 3 runs with different
seeds.

DATASET CLASSES ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = ∞
CALTECH101 (FEI-FEI ET AL., 2006) 102 8.2±8.5 17.6±7.0 26.0±3.9 33.0±3.9 86.8±2.0
CIFAR100 (KRIZHEVSKY, 2009) 100 1.0±0.1 2.3±1.5 6.9±2.9 13.3±2.7 59.3±7.0
FLOWERS102 (NILSBACK & ZISSERMAN, 2008) 102 6.2±2.8 6.9±7.1 33.7±11.6 69.7±7.3 95.8±1.8
PETS (PARKHI ET AL., 2012) 37 12.8±0.5 22.7±2.2 32.4±4.1 24.7±9.0 83.0±0.2
SUN397 (XIAO ET AL., 2010) 397 3.3±0.4 3.0±0.5 2.7±0.4 3.4±1.2 38.3±0.8
SVHN (NETZER ET AL., 2011) 10 19.2±0.8 23.6±5.5 26.8±7.0 37.2±2.3 88.5±2.5
DTD (CIMPOI ET AL., 2014) 47 13.7±3.6 21.6±2.3 27.7±3.8 34.0±1.9 72.4±0.1

EUROSAT (HELBER ET AL., 2019) 10 49.8±9.5 69.2±5.5 72.7±1.2 82.4±3.4 96.0±1.0
RESICS45 (CHENG ET AL., 2017) 45 11.9±1.4 13.8±6.4 24.3±1.0 26.8±6.8 84.1±1.1
PATCH CAMELYON (VEELING ET AL., 2018) 2 65.9±15.7 70.5±20.1 80.5±1.2 79.5±2.9 85.0±0.8
RETINOPATHY (KAGGLE & EYEPACS, 2015) 5 73.6±0.0 73.6±0.0 73.6±0.0 73.6±0.0 76.0±1.3

CLEVR-COUNT (JOHNSON ET AL., 2017) 8 18.1±4.6 26.3±2.0 36.2±2.7 41.4±7.0 93.2±0.2
CLEVR-DIST (JOHNSON ET AL., 2017) 6 23.8±1.4 22.7±2.2 25.2±1.7 36.9±3.3 62.1±1.7
DSPRITES-LOC (MATTHEY ET AL., 2017) 16 6.2±0.1 6.4±0.3 6.3±0.1 6.2±0.1 89.1±3.7
DSPRITES-ORI (MATTHEY ET AL., 2017) 16 7.5±0.0 6.6±1.8 7.2±0.1 8.8±2.9 61.0±5.2
SMALLNORB-AZI (LECUN ET AL., 2004) 18 5.4±0.2 5.7±0.1 5.7±0.3 6.2±0.8 21.9±3.3
SMALLNORB-ELEV (LECUN ET AL., 2004) 9 12.3±1.2 13.8±2.4 21.2±2.7 22.7±5.5 39.5±6.3
DMLAB (BEATTIE ET AL., 2016) 6 22.5±0.3 24.9±3.1 28.5±1.4 30.3±5.2 48.4±0.8
KITTI-DIST (GEIGER ET AL., 2013) 4 34.4±6.7 46.9±1.8 55.2±0.5 60.6±2.5 81.1±0.2

ALL 20.8 25.2 31.2 36.4 71.7
NATURAL 9.2 13.9 21.1 28.7 73.3
SPECIALIZED 50.3 56.8 61.1 65.6 85.3
STRUCTURED 16.3 19.2 23.2 26.6 62.0

Table A.11: Classification accuracy as a function of ϵ for each of the datasets in the VTAB-1k
benchmark. Backbone is VIT-B pretrained on ImageNet-21k. Learnable backbone parameters are
Head. Accuracy figures are percentages and the ± sign indicates the 95% confidence interval over 3
runs with different seeds.

DATASET CLASSES ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = ∞
CALTECH101 (FEI-FEI ET AL., 2006) 102 20.8±2.1 39.7±5.7 65.6±1.1 79.9±0.3 93.3±0.3
CIFAR100 (KRIZHEVSKY, 2009) 100 7.0±1.4 15.9±2.7 33.3±1.5 49.9±2.3 77.6±2.4
FLOWERS102 (NILSBACK & ZISSERMAN, 2008) 102 13.7±3.0 47.2±1.5 85.4±1.8 93.5±2.6 99.3±0.3
PETS (PARKHI ET AL., 2012) 37 38.3±2.8 65.6±0.2 76.0±3.9 81.1±2.4 90.7±0.1
SUN397 (XIAO ET AL., 2010) 397 3.5±0.5 6.9±0.8 13.2±1.5 24.0±0.3 51.0±3.4
SVHN (NETZER ET AL., 2011) 10 23.3±1.4 27.2±1.5 31.6±1.2 35.3±0.3 43.1±0.4
DTD (CIMPOI ET AL., 2014) 47 20.4±2.6 37.0±3.1 49.9±4.0 61.6±3.2 75.7±0.3

EUROSAT (HELBER ET AL., 2019) 10 81.3±1.3 87.0±1.0 89.9±0.9 91.6±1.1 94.6±0.4
RESICS45 (CHENG ET AL., 2017) 45 23.2±2.8 41.4±2.1 58.0±2.7 67.9±2.1 82.5±0.5
PATCH CAMELYON (VEELING ET AL., 2018) 2 79.8±2.9 78.5±2.1 81.6±1.8 82.8±0.4 83.8±0.7
RETINOPATHY (KAGGLE & EYEPACS, 2015) 5 73.3±0.6 72.6±1.3 73.6±0.6 74.0±0.2 73.8±2.3

CLEVR-COUNT (JOHNSON ET AL., 2017) 8 25.5±0.9 27.7±1.3 30.8±0.4 33.3±0.5 42.5±0.5
CLEVR-DIST (JOHNSON ET AL., 2017) 6 26.1±0.7 27.5±0.5 30.1±0.3 31.5±0.5 35.1±0.3
DSPRITES-LOC (MATTHEY ET AL., 2017) 16 6.9±0.5 7.8±0.7 8.7±0.1 9.4±0.6 19.1±2.7
DSPRITES-ORI (MATTHEY ET AL., 2017) 16 11.2±0.9 13.3±1.2 15.6±0.9 18.9±1.5 31.2±0.6
SMALLNORB-AZI (LECUN ET AL., 2004) 18 6.9±0.6 7.8±0.5 8.1±1.3 9.0±0.8 12.2±0.1
SMALLNORB-ELEV (LECUN ET AL., 2004) 9 16.9±1.4 19.3±0.4 20.4±1.1 22.7±1.8 27.5±0.4
DMLAB (BEATTIE ET AL., 2016) 6 29.2±1.7 33.0±1.6 35.0±1.0 37.3±1 40.2±0.6
KITTI-DIST (GEIGER ET AL., 2013) 4 51.3±8.4 57.1±5.6 61.2±0.6 61.4±3.0 65.7±3.2

ALL 29.4 37.5 45.7 50.8 59.9
NATURAL 18.1 34.2 50.7 60.8 75.8
SPECIALIZED 64.4 69.9 75.8 79.1 83.7
STRUCTURED 21.7 24.2 26.2 27.9 34.2
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Table A.12: Classification accuracy as a function of ϵ for each of the datasets in the VTAB-1k
benchmark. Backbone is VIT-B pretrained on ImageNet-21k. Learnable backbone parameters are
FiLM. Accuracy figures are percentages and the ± sign indicates the 95% confidence interval over 3
runs with different seeds.

DATASET CLASSES ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = ∞
CALTECH101 (FEI-FEI ET AL., 2006) 102 11.7±6.0 42.9±4.9 65.7±3.0 78.7±2.6 94.1±0.8
CIFAR100 (KRIZHEVSKY, 2009) 100 7.1±0.2 17.4±1.2 35.4±2.0 52.9±2.0 83.8±0.6
FLOWERS102 (NILSBACK & ZISSERMAN, 2008) 102 16.0±2.8 48.8±5.2 85.3±1.7 96.4±0.7 99.5±0.0
PETS (PARKHI ET AL., 2012) 37 39.3±2.2 62.5±3.6 78.0±0.9 83.6±2.4 91.8±0.4
SUN397 (XIAO ET AL., 2010) 397 2.7±0.4 7.1±1.2 14.6±1.0 23.1±0.5 53.7±2.0
SVHN (NETZER ET AL., 2011) 10 25.1±1.5 28.0±1.1 33.4±0.7 52.4±7.4 79.1±2.6
DTD (CIMPOI ET AL., 2014) 47 17.5±2.0 33.0±3.5 50.5±1.4 61.7±1.1 75.3±3.9

EUROSAT (HELBER ET AL., 2019) 10 79.6±1.8 86.6±2.2 90.9±0.2 91.0±0.5 96.5±0.2
RESICS45 (CHENG ET AL., 2017) 45 22.0±3.1 40.6±2.3 55.5±3.9 66.1±1.7 87.0±0.5
PATCH CAMELYON (VEELING ET AL., 2018) 2 76.6±2.7 78.1±2.2 80.1±1.6 80.6±0.4 82.8±1.0
RETINOPATHY (KAGGLE & EYEPACS, 2015) 5 73.5±0.1 73.4±0.4 73.5±0.5 73.5±0.9 74.5±0.6

CLEVR-COUNT (JOHNSON ET AL., 2017) 8 25.6±1.5 28.0±1.3 31.6±0.5 33.7±0.6 52.0±3.3
CLEVR-DIST (JOHNSON ET AL., 2017) 6 26.5±0.9 29.0±0.7 32.6±1.3 38.0±3.2 52.6±6.4
DSPRITES-LOC (MATTHEY ET AL., 2017) 16 8.0±1.6 12.2±1.1 20.9±6.1 29.8±5.4 68.1±10
DSPRITES-ORI (MATTHEY ET AL., 2017) 16 9.3±0.7 13.7±1.5 17.0±1.4 21.5±1.1 47.8±3.9
SMALLNORB-AZI (LECUN ET AL., 2004) 18 6.6±0.3 7.3±0.5 8.4±0.3 9.1±0.4 15.1±1.5
SMALLNORB-ELEV (LECUN ET AL., 2004) 9 16.2±1.6 19.2±1.3 21.5±1.2 22.9±1.4 35.3±4.6
DMLAB (BEATTIE ET AL., 2016) 6 29.8±1.7 33.3±0.5 35.5±0.8 36.5±0.9 43.3±3.6
KITTI-DIST (GEIGER ET AL., 2013) 4 53.6±2.6 60.8±2.1 63.5±0.8 66±2.9 76.9±4.4

ALL 28.8 38.0 47.1 53.6 68.9
NATURAL 17.0 34.3 51.9 64.1 82.4
SPECIALIZED 62.9 69.7 75.0 77.8 85.2
STRUCTURED 21.9 25.4 28.9 32.2 48.6

Table A.13: Classification accuracy as a function of ϵ for each of the datasets in the VTAB-1k
benchmark. Backbone is VIT-B pretrained on ImageNet-21k. All parameters are learnable. Accuracy
figures are percentages and the ± sign indicates the 95% confidence interval over 3 runs with different
seeds.

DATASET CLASSES ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = ∞
CALTECH101 (FEI-FEI ET AL., 2006) 102 16.1±5.2 34.9±2.1 55.3±1.0 69.9±2.7 93.7±0.4
CIFAR100 (KRIZHEVSKY, 2009) 100 7.1±0.4 14.3±0.7 24.2±1.5 36.2±4.0 84.2±0.3
FLOWERS102 (NILSBACK & ZISSERMAN, 2008) 102 10.6±2.9 33±4.9 77.3±6.9 96±1.2 99.5±0.0
PETS (PARKHI ET AL., 2012) 37 26.7±6.0 56.9±7.0 76.0±3.7 84.2±0.7 91.7±0.2
SUN397 (XIAO ET AL., 2010) 397 2.4±2.1 5.7±1.5 7.7±0.4 11.6±3.1 55.9±0.2
SVHN (NETZER ET AL., 2011) 10 22.9±1.5 28.8±0.7 34±5.6 44.3±9.0 91.6±0.8
DTD (CIMPOI ET AL., 2014) 47 17.3±1.1 29.3±2.4 41.1±1.2 51.7±5.0 76.7±0.5

EUROSAT (HELBER ET AL., 2019) 10 74.3±1.4 78.9±2.2 86±1.4 91.6±1.6 96.3±0.5
RESICS45 (CHENG ET AL., 2017) 45 16±2.4 28±1.6 45.7±3.3 60.8±2.1 88.4±0.4
PATCH CAMELYON (VEELING ET AL., 2018) 2 74.1±1.5 76.6±1.4 78.9±2.1 76.2±5.3 87.1±0.7
RETINOPATHY (KAGGLE & EYEPACS, 2015) 5 73.4±0.5 73.1±0.5 73.6±0.1 73.6±0.1 74.0±1.3

CLEVR-COUNT (JOHNSON ET AL., 2017) 8 21.5±5.6 28.8±1.5 33.6±2.4 38.2±0.7 57.6±8.7
CLEVR-DIST (JOHNSON ET AL., 2017) 6 27.0±1.8 36.4±3.5 42.2±3.2 45.8±1.3 57.2±2.5
DSPRITES-LOC (MATTHEY ET AL., 2017) 16 6.4±0.5 7.9±3.4 22.7±2.6 37.6±5.0 66.8±5.2
DSPRITES-ORI (MATTHEY ET AL., 2017) 16 7.9±2.1 11.1±3.7 13.5±6.5 19.9±2.9 50.1±1.1
SMALLNORB-AZI (LECUN ET AL., 2004) 18 5.9±0.7 7.9±0.8 8.5±0.4 11.4±2.3 18.3±0.7
SMALLNORB-ELEV (LECUN ET AL., 2004) 9 14.5±1.0 17.0±3.8 18.7±4.4 26.7±0.1 38.3±2.9
DMLAB (BEATTIE ET AL., 2016) 6 29.2±1.3 32.7±1.4 35.4±2.0 39.3±1.1 51.5±1.9
KITTI-DIST (GEIGER ET AL., 2013) 4 41.7±5.8 51.2±3.4 57.9±8.6 68.9±0.3 76.0±0.7

ALL 26.1 34.3 43.8 51.8 71.3
NATURAL 14.7 29.0 45.1 56.3 84.8
SPECIALIZED 59.4 64.2 71.0 73.6 86.4
STRUCTURED 19.3 24.1 29.1 36.0 52.0
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Figure A.15: Classification accuracy for VTAB-1k datasets as a function of privacy level (ϵ). Back-
bone is R-50. Top is Head, middle is FiLM, and bottom is All. The datasets are ordered increasingly
by C (in parenthesis) or equivalently decreasingly by S as |D| = 1000.

Figures A.15 and A.16 depict the complete set of VTAB-1k accuracy results as a function of dataset,
privacy level (ϵ), backbone, and learnable parameters. The datasets are ordered increasingly by C or
or equivalently decreasingly by S as |D| = 1000 and S = |D|/C.
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Figure A.16: Classification accuracy for VTAB-1k datasets as a function of privacy level (ϵ). Back-
bone is VIT-B. Top is Head, middle is FiLM, and bottom is All. The datasets are ordered increasingly
by C (in parenthesis) or equivalently decreasingly by S as |D| = 1000.
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Figure A.17: ROC curves for LiRA (Carlini et al., 2022) on CIFAR-100 with R-50 backbone for
various privacy levels (ϵ) and backbone configurations Head and FiLM at a fixed S. TPR values in
legends are measured at FPR=0.001.

A.4.6 ADDITIONAL MEMBERSHIP INFERENCE ATTACK RESULTS

Figure A.17 depicts the complete set of ROC curves for LiRA on CIFAR-100 with the R-50 backbone
for various privacy levels (ϵ) and learnable parameters Head and FiLM at a fixed S.

Figure A.18 depicts the complete set of ROC curves for LiRA on CIFAR-100 with the R-50 backbone
for various shots S at fixed privacy levels (ϵ) and learnable parameters Head and FiLM.

Table A.14 presents the True Positive Rates (TPR) at various False Positive Rates (FPR), along
with their upper bounds (UB), Area Under Receiver Operating Curve (AUC), and Attack Advantage
(Attack Adv) (Yeom et al., 2018) for various privacy levels (ϵ) and shots per class (S) corresponding
to the plots in Figures A.17 and A.18.
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Figure A.18: ROC curves for LiRA (Carlini et al., 2022) on CIFAR-100 with R-50 backbone for
various S at fixed privacy levels (ϵ) and backbone configurations Head and FiLM. TPR values in
legends are measured at FPR=0.001. The dotted red curve on the ϵ = 1 plot indicates the theoretical
upper bound on TPR for S = 10 and ϵ = 1.
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Table A.14: True Postive Rates (TPR) at various False Positive Rates (FPR), Area Under Receiver
Operating Curve (AUC), and Attack Advantage (Yeom et al., 2018) for various privacy levels (ϵ) and
shots per class (S) corresponding to the plots in Figures A.17 and A.18. Dataset (D) is CIFAR-100.
Backbone is R-50 pretrained on ImageNet-21k. The UB columns list the theoretical upper bound on
TPR. See Appendix A.2 for details.

TPR (%) @ 0.1% FPR TPR (%) @ 1% FPR TPR (%) @ 10% FPR AUC ATTACK ADV

ϵ S HEAD FILM UB HEAD FILM UB HEAD FILM UB HEAD FILM HEAD FILM

10 0.62 0.77 0.84 5.13 5.11 5.97 37.12 32.20 56.66 0.765 0.731 0.419 0.354
1 25 0.43 0.40 0.71 3.85 3.45 5.87 30.14 27.37 57.52 0.721 0.702 0.343 0.312

50 0.34 0.37 0.65 3.16 3.20 5.91 25.92 25.18 58.44 0.689 0.682 0.291 0.279
100 0.27 0.22 0.63 2.70 2.79 6.0 23.77 23.82 59.67 0.670 0.668 0.260 0.252

10 1.02 0.79 3.99 7.90 6.47 33.8 48.20 41.37 97.3 0.819 0.788 0.509 0.454
2 25 0.49 0.47 3.75 4.55 4.13 34.99 35.41 31.39 97.42 0.754 0.730 0.397 0.356

50 0.66 0.71 3.71 5.42 5.36 35.84 35.87 34.30 97.48 0.751 0.740 0.380 0.362
100 0.34 0.51 3.75 3.54 5.31 36.85 30.65 32.27 97.56 0.717 0.719 0.325 0.319

10 0.96 1.05 99.92 7.91 7.56 99.92 48.84 43.26 99.93 0.821 0.797 0.516 0.465
4 25 0.47 1.07 99.92 4.24 7.86 99.92 33.77 45.66 99.93 0.744 0.805 0.382 0.472

50 1.58 1.78 99.93 11.24 10.83 99.93 48.08 45.50 99.94 0.809 0.794 0.466 0.438
100 1.63 1.42 99.93 10.63 8.89 99.93 43.09 38.18 99.94 0.778 0.749 0.402 0.356

10 1.36 2.68 100.0 10.57 17.41 100.0 55.23 68.03 100.0 0.847 0.895 0.558 0.643
8 25 4.69 5.49 100.0 24.28 24.15 100.0 67.23 65.19 100.0 0.888 0.880 0.612 0.590

50 4.12 4.05 100.0 19.25 18.36 100.0 56.89 52.75 100.0 0.845 0.825 0.520 0.480
100 2.69 3.35 100.0 13.37 14.25 100.0 45.15 43.12 100.0 0.787 0.771 0.413 0.375

10 84.46 52.68 91.44 79.49 97.51 93.75 0.993 0.982 0.914 0.851
∞ 25 52.70 45.04 65.80 57.70 82.95 76.38 0.952 0.930 0.730 0.664

50 41.43 23.63 53.02 40.25 71.10 60.06 0.911 0.862 0.612 0.506
100 20.58 8.88 38.70 23.24 61.30 46.85 0.870 0.790 0.524 0.381
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A.5 TRAINING AND EVALUATION DETAILS

A.5.1 FILM LAYER IMPLEMENTATION

Table A.15 details the locations and count of the parameters that are updateable for the FiLM
configuration in each of the backbones used in the experiments.

Table A.15: Backbone parameter count, FiLM parameter count, FiLM parameter count as a percentage
of the backbone parameter count, and FiLM parameter locations within the backbone for each of the
backbones used in the experiments.

BACKBONE BACKBONE COUNT FILM COUNT FILM (%) LOCATIONS

R-18 11.2M 7808 0.07 GROUPNORM SCALE AND BIAS THAT FOLLOWS EACH 3X3CONV LAYER

R-50 23.5M 11648 0.05 GROUPNORM SCALE AND BIAS THAT FOLLOWS EACH
3X3CONV LAYER
FINAL GROUPNORM SCALE AND BIAS BEFORE HEAD

VIT-B 85.8M 38400 0.04 ALL LAYERNORM SCALE AND BIAS

A.5.2 HYPERPARAMETER TUNING

For all experiments, we first draw D of the required size (|D| = CS, or |D| = 1000 in the case of
VTAB-1k) from the entire training split of the current dataset under evaluation. For the purposes
of hyperparameter tuning, we then split D into 70% train and 30% validation. We then perform
20 iterations of hyperparameter tuning using the tree-structured parzen estimator (Bergstra et al.,
2011) strategy as implemented in Optuna (Akiba et al., 2019) to derive a set of hyperparameters that
yield the highest accuracy on the validation split. This set of parameters are subsequently used to
train a final model on all of D. We the evaluate the final, tuned model on the entire test split of the
current dataset. Details on the set of hyperparameters that are tuned and their ranges can be found
in Table A.16. For DP training, we compute the required noise multiplier depending on the target
(ϵ, δ)-DP guarantee. The hyperparameter ranges are purposely broad and have been empirically
derived. We fine-tune models for at most 200 epochs to limit the amount of compute necessary.

Table A.16: Hyperparameter ranges used for the Bayesian optimization.

LOWER BOUND UPPER BOUND

EPOCHS 1 200
LEARNING RATE 1E-7 1E-2
BATCH SIZE 10 |D|
CLIPPING NORM 0.2 10
NOISE MULTIPLIER BASED ON TARGET ϵ

A.5.3 EFFECT OF SHOTS PER CLASS AND DP EXPERIMENTS

For each evaluated configuration, we draw |D| = CS examples from the dataset training split, tune
hyperparameters as described in Appendix A.5.2, and then test on the entire test split of the dataset.
We use the DP-Adam optimizer as implemented in Opacus (Yousefpour et al., 2021) for all private
experiments. For non-private experiments, we used the Adam (Kingma & Ba, 2015) optimizer for
the Head and FiLM parameter configurations and the SGD optimizer for the All configuration. No
data augmentation was used and images were scaled to 224×224 pixels.

All of the effect of S and ϵ experiments were carried out on 1 (for Head and FiLM) and up to 3 (for
All) NVIDIA V100 GPUs with 32GB of memory. The runtime for executing the whole experiment
depends on the the size of the few-shot training set and the number of parameters resulting from the
choice of the backbone and the number of learnable parameters (All > FiLM > Head). For CIFAR-10
and SVHN the runtime for one configuration ranges from less than 5 GPU minutes (S = 1 + Head)
to 60 GPU hours (S = 500 + All). For CIFAR-100, the range is from 15 GPU minutes (S = 1 +
Head) to over 700 GPU hours (S = 500 + All).
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A.5.4 VTAB-1K EXPERIMENTS

For each evaluated configuration of each of the 19 datasets in the VTAB-1k benchmark, we draw
|D| = 1000 examples from the dataset training split, tune hyperparameters as described in Ap-
pendix A.5.2, and then test on the entire test split of the dataset. We use the DP-Adam optimizer
as implemented in Opacus (Yousefpour et al., 2021) for all private experiments. For non-private
experiments, we used the Adam (Kingma & Ba, 2015) optimizer for the Head and FiLM parameter
configurations and the SGD optimizer for the All configuration.

No data augmentation was used. For the R-50 backbone, images were scaled to 384×384 pixels
unless the image size was 32×32 pixels or less, in which case the images were scaled to 224×224
pixels. For the VIT-B backbone, images were scaled to 224×224 pixels.

All of the VTAB-1k transfer learning experiments were carried out on a single NVIDIA A100 GPU
with 80GB of memory. Processing times for each configuration of each dataset will vary with the
selected hyperparameters and the size of the test split, but approximate times are listed in Table A.17.

Table A.17: Approximate time to tune, train, and test a single configuration of parameters on a single
VTAB-1k dataset for various backbones and parameter configurations. Units are wall clock GPU
hours.

PARAMETER CONFIGURATION

BACKBONE NONE FILM ALL

R-50 0.6 0.9 2.7
VIT-B 1.3 2.4 6.5

A.5.5 MEMBERSHIP INFERENCE ATTACKS EXPERIMENTS

Our implementation is based on code from the TensorFlow Privacy library (Google, 2019). All of
the VTAB-1k transfer learning experiments were carried out on a single NVIDIA A100 GPU with
80GB of memory. When training the 257 models for each attack configuration, we do not perform
hyperparameter tuning, instead we used the hyperparameter set from the CIFAR-100 experiments in
Section 3.1 that yielded the highest accuracy for the particular configuration. Approximate training
times for all 257 models in each configuration are listed on Table A.18. The value of ϵ did not alter
the training times to a significant degree.

Table A.18: Approximate time to train 257 models for a single configuration of parameters for a
LiRA attack on the CIFAR-100 dataset for various parameter and shot configurations. Units are wall
clock GPU hours.

SHOT (S)

PARAMETER CONFIGURATION 10 25 50 100

HEAD 6 12 16 46
FILM 8 25 49 96
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