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ABSTRACT

In natural language processing and computer vision, self-supervised pre-training
on large datasets unlocks foundational model capabilities across domains and tasks.
However, this potential has not yet been realised in time series analysis, where exist-
ing methods disregard the heterogeneous nature of time series characteristics. Time
series are prevalent in many domains, including medicine, engineering, natural
sciences, and finance, but their characteristics vary significantly in terms of variate
count, inter-variate relationships, temporal dynamics, and sampling frequency. This
inherent heterogeneity across domains prevents effective pre-training on large time
series corpora. To address this issue, we introduce OTiS, an open model for gen-
eral time series analysis, that has been specifically designed to handle multi-domain
heterogeneity. We propose a novel pre-training paradigm including a tokeniser with
learnable domain-specific signatures, a dual masking strategy to capture temporal
causality, and a normalised cross-correlation loss to model long-range dependen-
cies. Our model is pre-trained on a large corpus of 640, 187 samples and 11 billion
time points spanning 8 distinct domains, enabling it to analyse time series from any
(unseen) domain. In comprehensive experiments across 15 diverse applications -
including classification, regression, and forecasting - OTiS showcases its ability to
accurately capture domain-specific data characteristics and demonstrates its com-
petitiveness against state-of-the-art baselines. Our code and pre-trained weights
are publicly available at https://github.com/OTiS-official/OTiS.

1 INTRODUCTION

In natural language processing (NLP) or computer vision (CV), generalisable language features, e.g.
semantics and grammar (Radford et al., 2018; Touvron et al., 2023; Chowdhery et al., 2023), or visual
features, e.g. edges and shapes (Geirhos et al., 2019; Dosovitskiy et al., 2021; Oquab et al., 2024), are
learned from large-scale data. Self-supervised pre-training paradigms are designed to account for the
specific properties of language (Radford et al., 2018; Touvron et al., 2023; Chowdhery et al., 2023)
or imaging (Zhou et al., 2022; Cherti et al., 2023; Oquab et al., 2024), unlocking foundational model
capabilities that apply to a wide range of domains and downstream tasks. This potential, however,
remains largely unrealised in time series due to the lack of self-supervised pre-training paradigms
that account for the heterogeneity of time series across domains.

Time series are widespread in everyday applications and play an important role in various domains,
including medicine (Pirkis et al., 2021), engineering (Gasparin et al., 2022), natural sciences (Ravuri
et al., 2021), and finance (Sezer et al., 2020). They differ substantially with respect to the number
of variates, inter-variate relationships, temporal dynamics, and sampling frequency (Fawaz et al.,
2018; Ismail Fawaz et al., 2019; Ye & Dai, 2021; Wickstrøm et al., 2022). For instance, standard
10-20 system electroencephalography (EEG) recordings come with up to 256 variates (Jurcak et al.,
2007), while most audio recordings have only 1 (mono) or 2 (stereo) variates. Weather data shows
high periodicity, whereas financial data is exposed to long-term trends. Both domains encompass
low-frequency data recorded on an hourly (278mHz), daily (12µHz), or even monthly (386 nHz)
basis, while audio data is sampled at high frequencies of 44.1 kHz or more. Overall, this heterogeneity
across domains renders the extraction of generalisable time series features difficult (Fawaz et al.,
2018; Gupta et al., 2020; Iwana & Uchida, 2021; Ye & Dai, 2021).
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Figure 1: Overview of OTiS. Pre-trained on a large corpus of time series from diverse domains,
OTiS enables general time series analysis. Its domain-specific tokeniser addresses time series
heterogeneity across domains - including different numbers of variates, inter-variate relationships,
temporal dynamics, and sampling frequencies - by learning unique domain signatures. After pre-
training, the model can be fine-tuned on limited data from any domain, including previously unseen
ones, to perform various tasks such as classification, regression, and forecasting.

While most existing self-supervised pre-training methods for time series are limited to single domains
(Wu et al., 2021; 2022a; Nie et al., 2023; Dong et al., 2024; Jiang et al., 2024), recent works propose
simple techniques to incorporate time series from multiple domains (Yang et al., 2024; Das et al.,
2024; Woo et al., 2024; Liu et al., 2024). These works for instance crop all time series into segments
of unified size (Jiang et al., 2024), resample them to a uniform frequency (Yang et al., 2024), or
analyse each variate of a multi-variate time series independently (Liu et al., 2024). While these naive
techniques address differences in sampling frequency and variate count, they degrade the original
time series and neglect the critical inter-variate relationships and temporal dynamics required for
effective real-world analysis. Consequently, there is a clear need for pre-training strategies that
adequately handle heterogeneity in time series to unlock foundational model capabilities.

In this work, we propose a novel multi-domain pre-training paradigm that addresses the full spectrum
of time series heterogeneity across domains. Our approach facilitates the comprehensive extraction
of generalisable features from diverse time series. Pre-trained on a large corpus of publicly available
data, our open model for general time series analysis (OTiS) can be fine-tuned on limited data of any
(unseen) domain to perform a variety of downstream tasks, as showcased in Figure 1.

Our key contributions can be summarised as follows:

1. We present OTiS, an open model for general time series analysis, with our en-
tire pipeline and pre-trained weights publicly available at https://github.com/
OTiS-official/OTiS.

2. We propose a novel pre-training paradigm based on masked data modelling to address
heterogeneity in multi-domain time series. Our approach includes a novel tokeniser with
learnable signatures to capture domain-specific data characteristics, a dual masking strategy
to learn temporal causality, and a normalised cross-correlation loss to model long-range
dependencies.

3. We pre-train OTiS on a large corpus of publicly available time series from 8 domains,
spanning medicine, engineering, natural sciences, and finance. With 640, 187 samples and
11 billion time points, this corpus represents diverse time series characteristics, enabling
generalisable feature extraction.

4. We evaluate OTiS across 15 downstream applications, including classification, regression,
and forecasting. Our comprehensive analysis demonstrates that OTiS accurately captures
domain-specific data characteristics and is competitive with both specialised and general
state-of-the-art (SOTA) models, achieving new SOTA performance in 10 tasks. Notably,
none of the baselines is capable of performing all the tasks covered by OTiS.
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2 RELATED WORKS

2.1 SELF-SUPERVISED LEARNING FOR TIME SERIES

Time series vary significantly across domains, with differences in the number of variates, inter-variate
relationships, temporal dynamics, and sampling frequencies. Due to this inherent heterogeneity, most
existing works focus on pre-training models within a single domain (Oreshkin et al., 2019; Tang
et al., 2020; Wu et al., 2021; Zhou et al., 2021; Wu et al., 2022a; Woo et al., 2022; Yue et al., 2022;
Zhang et al., 2022; Li et al., 2023; Nie et al., 2023; Zeng et al., 2023; Dong et al., 2024). To develop
more generalisable time series models, recent methods have explored multi-domain pre-training by
addressing certain aspects of the heterogeneity, such as differences in variate count and sampling
frequency. For instance, Liu et al. (2024) treat each variate in multi-variate time series independently
to standardise generative tasks like forecasting, while Goswami et al. (2024) extend uni-variate
analysis to discriminative tasks like classification. Similarly, Jiang et al. (2024) and Yang et al. (2024)
standardise time series by cropping them into segments of predefined size and resampling them to a
uniform frequency, respectively, to enable general classification capabilities in medical domains.

While partially addressing time series heterogeneity, these methods limit model capabilities for
general time series analysis. Standardisation techniques like cropping or resampling may distort
inter-variate relationships, temporal dynamics, and long-range dependencies. Additionally, many of
these approaches are tailored to specific applications, such as generative tasks (Das et al., 2024; Liu
et al., 2024; Woo et al., 2024), or focused on particular domains like medicine (Jiang et al., 2024;
Yang et al., 2024). Moreover, recent foundational models (Das et al., 2024; Goswami et al., 2024;
Liu et al., 2024) focus on uni-variate analysis, ignoring crucial inter-variate relationships essential
for real-world applications, such as disease prediction (Schoffelen & Gross, 2009; Wu et al., 2022b).
Our study aims to overcome these limitations by fully addressing heterogeneity of multi-domain time
series, establishing a foundation for general time series analysis across domains and tasks.

2.2 TIME SERIES TOKENISATION

Transformers (Vaswani et al., 2017) have emerged as the preferred architecture for foundational
models in NLP and CV due to their scalability (Kaplan et al., 2020; Gordon et al., 2021; Alabdul-
mohsin et al., 2022), enabling the training of models in the magnitude of 100 billion parameters
(Chowdhery et al., 2023; Touvron et al., 2023; Oquab et al., 2024; Ravi et al., 2024). To utilise a
Transformer for time series analysis, a tokeniser is required to map the time series into a compact
latent space. Current methods (Jin et al., 2023; Nie et al., 2023; Zhou et al., 2023; Das et al., 2024;
Goswami et al., 2024; Jiang et al., 2024; Liu et al., 2024; Woo et al., 2024; Yang et al., 2024) follow
established techniques from NLP and CV, dividing time series into patches of pre-defined size. These
patches are then flattened into a 1D sequence, with positional embeddings used to retain positional
information. While uni-variate models (Nie et al., 2023; Das et al., 2024; Goswami et al., 2024; Liu
et al., 2024) consider only temporal positions, multi-variate approaches (Woo et al., 2024; Yang et al.,
2024; Jiang et al., 2024) account for both temporal and variate positions. However, none of these
methods address the unique characteristics of variates, mistakenly assuming that the relationships
between variates are identical across domains. Our work seeks to adapt the tokenisation process to
preserve the domain-specific relationships between variates.

3 METHODS

In this work, we present a novel multi-domain pre-training paradigm that enables generalisable
feature extraction from large, heterogeneous time series corpora. We introduce a domain-specific
tokeniser with learnable signatures to address heterogeneity in multi-domain time series, as described
in Section 3.1. We tailor masked data modelling (MDM) for multi-domain time series to pre-train
our open model for general time series analysis (OTiS) on a large, heterogeneous corpus, as detailed
in Section 3.2. In particular, we propose normalised cross-correlation as a loss term to capture
global temporal dynamics in time series, as explained in Section 3.3. Moreover, we introduce a dual
masking strategy to capture bidirectional relationships and temporal causality, essential for general
time series analysis, as described in Section 3.4. After pre-training, we fine-tune OTiS on limited
data to perform a variety of downstream tasks in any - including previously unseen - domain, as
outlined in Section 3.5. A graphical visualisation of our method is provided in Figure 2.
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Figure 2: Architecture of OTiS. During pre-training, batches of time series from diverse domains
are processed using a domain-specific tokeniser. This tokeniser splits a time series into fixed-size
patches, which are then embedded using a patch projector shared across all variates and domains. A
temporal embedding and a domain-specific variate embedding are added to each patch embedding.
A dual masking strategy is employed to mask the resulting input tokens. The reconstruction of the
multi-domain input tokens is guided using an auxiliary normalised cross-correlation (NCC) loss.

3.1 DOMAIN-SPECIFIC TOKENISER

Overview. Assume a time series sample X ∈ RVS×T from domain S, where VS denotes the
number of variates specific to S and T denotes the number of time points. We randomly crop or
zero-pad X to a fixed context length of T time points. We then split it into T ′ temporal patches of
size P along the time dimension, resulting in VS · T ′ patches xv,t ∈ R1×P , where v ∈ {1, . . . , VS}
and t ∈ {1, . . . , T ′}.

Next, we embed these patches using a shared patch projector across all variates and domains, resulting
in patch embeddings eP(xv,t) = ePv,t ∈ R1×D, where D denotes the model dimension. The patch
projector consists of a 1D convolutional layer followed by layer normalisation and GELU activation.

The permutation-equivariant nature of Transformers (Vaswani et al., 2017) requires the use of po-
sitional embeddings to accurately capture the inherent relationships in the input data. Initially
introduced for 1D textual token sequences (Vaswani et al., 2017), positional embeddings simply intro-
duce an ordering into the input sequence. Modern implementations further extend their capabilities to
encode more complex geometric information, such as 2D spatial (Dosovitskiy et al., 2021) or graph
(Kreuzer et al., 2021) structures. For the analysis of any-variate time series, we distinguish between
the temporal and variate structure. The temporal structure is equivalent to a sequential 1D structure,
such that we use standard 1D sinusoidal embeddings eT (xv,t) = eTt ∈ R1×D.

The variate structure exhibits great heterogeneity across domains. In domains with uni-variate and
two-variate data, such as mono and stereo audio, the structure is either trivial or only requires a basic
distinction between variates. In other domains, however, the variate structure may represent more
complex relationships, such as 3D manifolds for electroencephalography (EEG) or electrocardiogra-
phy (ECG) data, or be of non-spatial nature, such as for financial data. Hence, we introduce learnable
domain-specific variate embeddings to adequately address the heterogeneity across domains. These
embeddings, denoted as eVS (xv,t) = eVS,v ∈ R1×D for each variate v in domain S, are designed to
model the unique properties of a domain. They capture the inter-variate relationships and temporal
dynamics specific to domain S, forming what can be considered as the signature of the very domain.

Finally, the patch, temporal, and domain-specific variate embeddings are summed to form the input
token ev,t = ePv,t + eTt + eVS,v ∈ R1×D. These input tokens collectively constitute the final input
sequence E ∈ R(VS ·T ′)×D. To support batches of any-variate time series from multiple domains, we
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pad the variate dimension to the maximum number of variates in a batch V = maxS VS . For samples
where VS < V or T < T , attention masking is used to ensure that padded variate or temporal tokens
are ignored. The domain-specific tokeniser is trained end-to-end with the Transformer layers.

Definition of (Sub-)Domains. The domain-specific tokeniser is designed to integrate different
datasets within a domain. Consider two EEG datasets, TDBrain (Van Dijk et al., 2022) and SEED
(Zheng & Lu, 2015), which share 19 identical variates but have different sampling frequencies
of 500Hz and 200Hz, respectively. In this case, a single EEG-specific tokeniser (VEEG = 19)
is sufficient to accommodate both sampling frequencies, i.e. EV

EEG-TDBrain = EV
EEG-SEED =

[eVEEG,1, . . . , e
V
EEG,19]

⊤ ∈ R19×D, as demonstrated in our experiments in Section 4. Note that
while these positional embeddings are agnostic to variate ordering, we simplify processing by align-
ing the variate order across datasets within the same domain. Consider another EEG dataset, LEMON
(Babayan et al., 2019), which includes 62 electrodes. Of these, 15 overlap with the electrodes in
TDBrain (Van Dijk et al., 2022) and SEED (Zheng & Lu, 2015), while the remaining 47 are unique to
LEMON (Babayan et al., 2019). In this scenario, the EEG-specific tokeniser can be extended by the 47
new variates (VEEG = 66), such that EV

EEG-LEMON = [eVEEG,1, . . . , e
V
EEG,15, e

V
EEG,20, . . . , e

V
EEG,66]

⊤ ∈
R62×D. In this way, different datasets can be combined to approximate the underlying data distribu-
tion of a domain S, e.g. EEG, enabling the creation of large and diverse time series corpora.

Multi-Variate or Uni-Variate Analysis? Consider the Electricity dataset (UCI, 2024), which
contains electricity consumption data for 321 households recorded from 2012 to 2014. These 321
observations are sampled from an underlying population and are assumed to be independent and
identically distributed (i.i.d.). In this scenario, we perform a uni-variate analysis (VElectricity = 1) of the
data, initialising a single Electricity-specific variate embedding that models the hourly consumption
of a household. In contrast, the Weather dataset (Wetterstation, 2024) contains 21 climatological
indicators, such as air temperature, precipitation, and wind speed, which are not i.i.d. because they
directly interact and correlate with one another. Therefore, a multi-variate analysis (VWeather = 21) is
conducted to account for the dependencies and interactions between the observations.

3.2 PRE-TRAINING ON MULTI-DOMAIN TIME SERIES

We pre-train our model using masked data modelling (MDM) (He et al., 2022) to learn generalisable
time series features across domains. We mask a subset of input tokens and only encode the visible
(i.e. non-masked) tokens using an encoder f(·). Afterwards, we complement the encoded tokens
with learnable mask tokens and feed them to a decoder g(·), reconstructing the original input tokens.

More precisely, we draw a binary mask m ∈ {0, 1}VS ·T ′
, following the dual masking strategy

proposed in Section 3.4, and apply it to the input sequence E ∈ R(VS ·T ′)×D. Thus, we obtain a
visible view E[m] ∈ RN1×D, where N1 =

∑VS

v=1

∑T ′

t=1 mv,t and N0 = (VS · T ′)−N1 denote the
number of visible and masked tokens, respectively. The visible view E[m] is then fed to the encoder
f(·) to compute the token features H ∈ RN1×D:

H = f(E[m]). (1)
To reconstruct the original input, these token features are fed to the decoder g(·) together with a
special, learnable mask token eM ∈ R1×D, that is inserted at the masked positions where mv,t = 0:

h′
v,t =

{
hv,t if mv,t = 1

eM if mv,t = 0
, (2)

such that H ′ ∈ R(VS ·T ′)×D. The decoder g(·) then predicts the reconstructed input X̂ ∈ RVS×(T ′·P ):

X̂ = g(H ′), (3)

where (T ′ · P ) = T , i.e. the context length specified in time points. Eventually, the domain-specific
tokeniser described in Section 3.1, the encoder f(·), and the decoder g(·) are optimised end-to-end
using the mean squared error (MSE) loss on all reconstructed input tokens:

LMSE =
1

VS · T ′

VS∑
v=1

T ′∑
t=1

∥xv,t − x̂v,t∥22. (4)
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3.3 NORMALISED CROSS-CORRELATION LOSS

MDM focuses on reconstructing masked parts of the data, emphasising local patterns through the
MSE loss (4). However, time series often exhibit long-range dependencies, where past values
influence future outcomes over extended periods. To accurately capture these global patterns, we
introduce normalised cross-correlation (NCC) as a loss term in MDM for time series:

LNCC =
1

VS · T

VS∑
v=1

T∑
t=1

1

σxvσx̂v

(xv,t − µxv )(x̂v,t − µx̂v
) ∈ [−1, 1] , (5)

where µ and σ denote the mean and standard deviation, respectively. Hence, to capture both local
and global temporal dynamics, the total loss used to optimise OTiS is defined as

L = LMSE + λ · (1− LNCC) , (6)

where λ is empirically set to 0.1 during pre-training.

3.4 DUAL MASKING STRATEGY

We design the masking strategy to enhance foundational model capabilites in time series analysis.
Specifically, we randomly select between two masking schemes during pre-training, namely random
masking and post-fix masking. In 75% of cases, we apply random masking, where each mv,t is
independently sampled from a Bernoulli distribution with probability p = 1 − ρ, with ρ denoting
the masking ratio (i.e. mv,t ∼ Bernoulli(1 − ρ)). This encourages the model to learn complex
inter-variate relationships across the entire time series. In the remaining 25% of cases, we employ
post-fix masking, which masks the second half of the temporal dimension, leaving only the first half
visible (i.e. mv,t = 1[t≤T ′/2]). The prediction of future values solely based on past observations
simulates real-world forecasting conditions, helping the model to capture temporal causality. Overall,
this dual masking strategy enables OTiS to learn both bidirectional relationships and temporal
causality, which are essential for general time series analysis.

3.5 FINE-TUNING & INFERENCE ON (UNSEEN) TARGET DOMAINS

Inclusion of Unseen Domains. For a new domain S, a randomly initialised variate embedding
EV

S ∈ RVS×D is introduced. The domain-specific tokeniser is then fine-tuned alongside the encoder
f(·), and, if required, the decoder g(·), for the specific downstream task, as described in the following.

Classification & Regression. We use the encoder f(·) and the unmasked input sequence E to
compute all token features H = f(E) ∈ R(VS ·T ′)×D. We average-pool these features into a global
token h∗ ∈ R1×D, which we feed through a linear layer to obtain the final model prediction. We
optimise a cross-entropy and MSE loss for the classification and regression tasks, respectively.

Forecasting. We apply post-fix masking to generate a binary mask m ∈ {0, 1}VS ·T ′
for the

forecasting task. The encoder f(·) is used to compute the visible token features H ∈ RN1×D. We
then concatenate the sequence with learnable mask tokens to form H ′ ∈ R(VS ·T ′)×D, which is
passed through the decoder g(·) to produce the final output. We optimise the MSE loss together with
the NCC loss term over all reconstructed input tokens.

4 EXPERIMENTS & RESULTS

4.1 MODEL VARIANTS AND IMPLEMENTATION DETAILS

We introduce OTiS in three different configurations, Base, Large, and Huge, with their specific
architectures described in Appendix C.1, to explore scaling laws with respect to the model size. We set
the patch size and stride to P = 24, respectively, to split the time series into T ′ = T

P non-overlapping
patches along the time dimension. For pre-training, the context length specified in time points is set
to T = 1008, resulting in T ′ = 42 sinusoidal temporal embeddings. If longer context lengths are

6
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Table 1: Overview of our large and diverse pre-training corpus. The corpus is built with unlabelled
data from eight domains, encompassing medicine, engineering, natural sciences, and finance.

Domain Name Samples Variates Time points Frequency Disk size
S VS

ECG MIMIC-IV-ECG 2023 400, 000 12 5, 000 500Hz 90GB
Temperature DWD 2024 203, 340 1 720 (hourly) 278µHz 614MB

Audio (stereo) AudioSet-20K 2017 16, 123 2 441, 000 44.1 kHz 53GB
Audio (mono) AudioSet-20K 2017 3, 491 1 441, 000 44.1 kHz 6GB

Electromechanics FD-A 2016 13, 640 1 5, 120 64 kHz 161MB
EEG TDBrain 2022 2, 692 19 60, 000 500Hz 12GB
EEG SEED 2015 675 19 37, 000 200Hz 2GB

Banking NN5 2012 111 1 971 (daily) 12µHz 370KB
Economics FRED-MD 2016 107 1 728 (monthly) 386 nHz 330KB
Economics Exchange 2018 8 1 7, 588 (daily) 12µHz 240KB

640,187 11,052,756,981 164 GB

required during fine-tuning, these embeddings are linearly interpolated (i.e. T ′
ft ≥ 42) to offer greater

flexibility for downstream applications. We tune the hyperparameters for pre-training and fine-tuning
as described in Appendix C. An overview of the computational costs is provided in Appendix D.

4.2 LARGE AND DIVERSE PRE-TRAINING CORPUS

We aim to develop a general time series model that fully handles the heterogeneity in real-world data.
Specifically, our model is designed to handle time series with different variate counts VS , inter-variate
relationships, temporal dynamics, and sampling frequency, ensuring flexibility for downstream tasks.
To this end, we pre-train our model on a large and diverse corpus of publicly available data spanning
8 domains, with a total of 640, 187 samples and 11 billion time points, as summarised in Table 1. A
detailed description of the datasets included in our pre-training corpus can be found in Appendix A.
The time series corpus is split into 612, 394 training and 27, 793 validation samples for pre-training.

4.3 BENCHMARKING ACROSS DOMAINS AND TASKS

To evaluate OTiS in real-world settings, we conduct experiments on three key use cases in time series
analysis: classification, regression, and forecasting. We use 10 datasets across 8 domains to compare
our model against 21 specialised and general baselines as outlined in Appendix B. The baselines
include 11 target-specific models (either fully supervised or pre-trained and fine-tuned on target data),
6 general models (pre-trained on external data and fine-tuned on target data), and 4 foundation models
(pre-trained on large corpora and fine-tuned on target data). We follow established data splitting and
evaluation procedures for classification (Zhang et al., 2022), regression (Turgut et al., 2023), and
forecasting (Zhou et al., 2021), with results reported across five seeds set during fine-tuning.

The experiments reveal that OTiS is a powerful feature extractor for time series analysis, achieving
state-of-the-art performance on 10 out of 15 diverse benchmarks. The classification results in Table
2a highlight its particular strength in processing long time series, as indicated by a huge performance
boost on FD-B (T FD-B = 5112). We also find that pre-training across domains is more effective than
domain-specific pre-training. For instance, in the regression tasks shown in Table 2b, OTiS excels at
predicting cardiac phenotypes, outperforming baselines pre-trained solely on ECG data (MAE) and
even multimodally pre-trained baselines (CM-AE and MMCL). These results stress the strength of
pre-training across domains for generalisable feature extraction, enabling OTiS to achieve superior
performance even in unseen domains, as shown by the forecasting results in Table 3 and Appendix
H. Zero-shot and linear probing experiments detailed in Appendix F further demonstrate OTiS’
generalisability, resulting in competitive performance on Epilepsy, LVESV, and Weather prediction.

4.4 DOMAIN SIGNATURE ANALYSIS

A key component of OTiS is its use of domain-specific variate embeddings. While these embeddings
are randomly initialised, we expect them to capture unique domain characteristics during training,
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Table 2: Classification and regression performance on a total of 9 benchmark tasks. OTiS is
competitive with specialised baselines, setting new state-of-the-art on 6 tasks and even outperforming
the multimodal CM-AE and MMCL. This demonstrates the capability of OTiS to extract high-level
semantics. Best score in bold, second best underlined. • indicates tasks in previously unseen domains.

(a) Classification [Accuracy (ACC1↑) in %]

Model Epilepsy FD-B Gesture• EMG•

SimCLR 2020 90.71 49.17 48.04 61.46
TimesNet 2022a 94.01 56.86 59.79 91.22
CoST 2022 88.40 47.06 68.33 53.65
TS2Vec 2022 93.95 47.90 69.17 78.54
TF-C 2022 94.95 69.38 76.42 81.71
Ti-MAE 2023 89.71 60.88 71.88 69.99
SimMTM 2024 95.49 69.40 80.00 97.56

OTiS-Base 94.25 99.24 63.61 97.56
OTiS-Large 94.03 98.62 62.50 98.37
OTiS-Huge 91.48 98.32 63.61 98.37

OTiS0
◦ 95.18 61.32 51.67 95.12

◦ Zero-shot predictions of OTiS-Base.

(b) Regression [R-squared (R2 ↑)]

Model LVEDV LVESV LVSV LVEF LVM

iTransf. 2023 0.307 0.279 0.227 0.070 0.361

ViT 2023 0.409 0.396 0.299 0.175 0.469

MAE 2023 0.486 0.482 0.359 0.237 0.573

CM-AE* 2023 0.451 0.380 0.316 0.103 0.536

MMCL* 2023 0.504 0.503 0.370 0.250 0.608

OTiS-Base 0.509 0.512 0.391 0.292 0.592
OTiS-Large 0.504 0.503 0.371 0.267 0.592
OTiS-Huge 0.505 0.510 0.376 0.281 0.593

OTiSLP
◦ 0.414 0.394 0.279 0.161 0.453

* Models incorporate paired imaging data during pre-training.
◦ Linear probing of OTiS-Base.

Table 3: Forecasting performance on 6 benchmark tasks. OTiS is competitive with specialised
and general baselines, setting new state-of-the-art on 4 tasks and showcasing its ability to capture
local time series features. A forecasting horizon of 96 time points is predicted from the past 336
(*512, +904) time points. Mean squared error (MSE ↓) is reported. Best score in bold, second best
underlined. • indicates tasks in previously unseen domains.

Model ETTh1• ETTh2• ETTm1• ETTm2• Weather• Electricity•

N-BEATS 2019 0.399 0.327 0.318 0.197 0.152 0.131
Autoformer 2021 0.435 0.332 0.510 0.205 0.249 0.196
TimesNet 2022a 0.384 0.340 0.338 0.187 0.172 0.168
DLinear 2023 0.375 0.289 0.299 0.167 0.176 0.140
PatchTST 2023 0.370 0.274 0.293 0.166 0.149 0.129
Time-LLM‡ 2023 0.408 0.286 0.384 0.181 † †

GPT4TS 2023 0.376 0.285 0.292 0.173 0.162 0.139
MOMENT* 2024 0.387 0.288 0.293 0.170 0.154 0.136
MOIRAI+ 2024 0.375 0.277 0.335 0.189 0.167 0.152

OTiS-Base 0.424 0.212 0.337 0.161 0.139 0.128
OTiS-Large 0.446 0.205 0.362 0.173 0.142 0.127
OTiS-Huge 0.461 0.215 0.384 0.181 0.149 0.132

OTiSVE
◦ 0.434 0.217 0.396 0.182 0.149 0.164

† Experiments could not be conducted on a single NVIDIA RTX A6000-48GB GPU.
‡ Model incorporates paired text data during pre-training and fine-tuning.
◦ Predictions of OTiS-Base with only the domain-specific variate embeddings (VE) and mask token trained.

eventually serving as the signature of their respective domain. To validate this hypothesis, we analyse
the domain-specific variate embeddings after pre-training using principal component analysis (PCA).

First, we find that OTiS unifies time series from diverse domains into a meaningful latent space,
where embeddings of domains with shared high-level semantics cluster together, as depicted in
Appendix E.1. For example, embeddings of mono and stereo audio group closely, as do those of
banking and economics. Moreover, EEG-specific embeddings are clearly separated and ECG-specific
embeddings form a tight cluster.

Second, we observe that OTiS preserves the low-level semantics of a domain, such as the relationships
between variates. To explore this, we focus on EEG, where variates correspond to electrodes with
defined spatial positions (either in 3D space or 2D on the scalp), making it an ideal domain for studying
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Figure 3: First two principal components of the EEG-specific variate embeddings, overlaid on the
true EEG electrode layout. (Left) Embeddings of 10-20 system EEG recordings with 19 electrodes
learned during pre-training. (Right) Embeddings of previously unseen EEG recordings with 32
electrodes learned during fine-tuning. The embeddings accurately reflect the spatial electrode layout,
as confirmed by high correlations (R2) between the PCA projections • and the true layout ◦.
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Figure 4: Performance of OTiS with different numbers of pre-training samples. Shaded regions
indicate the standard deviation across 5 seeds. Increasing dataset size generally improves downstream
performance. Scaling model size requires even larger pre-training corpora to be effective.

inter-variate relationships. Our analysis includes (i) variate embeddings of 10-20 system EEG
recordings with 19 electrodes learned during multi-domain pre-training, and (ii) variate embeddings
of previously unseen EEG recordings with 32 electrodes learned during fine-tuning. We determine
the first three principal components of the learned EEG-specific variate embeddings (visualised in
Appendix E.2.1) and find that they explain (i) 74.7% and (ii) 87.9% of the variance. These findings
suggest that the embeddings reflect the true EEG electrode layout. To approve this hypothesis, we
linearly align the 3D PCA projections with the true 3D electrode coordinates and quantify their
correlation, as detailed in Appendix E.2.1. We observe R2 values of (i) 0.81 and (ii) 0.95, confirming
that the learned variate embeddings accurately capture the true electrode layout, as visualised in
Figure 3. Further analyses of ECG- and Weather-specific variate embeddings, presented in Appendix
E.2.2, strengthen OTiS’ ability to model complex inter-variate relationships across diverse domains.

4.5 SCALING STUDY

We analyse the scaling behaviour of OTiS with respect to model and dataset size. To this end, we
subsample the pre-training data to 10% and 1% of its original size, ensuring that each subset is fully
contained within the corresponding superset. We evaluate the downstream performance of all OTiS
variants across classification, regression, and forecasting tasks, as depicted in Figure 4.

The experiments demonstrate that downstream performance generally scales with dataset size,
achieving the best results with the full pre-training dataset. This trend, however, does not directly
apply to model size, which is in line with the scaling behaviour observed in current time series
foundational models (Woo et al., 2024; Goswami et al., 2024). Given that performance generally
improves across all models with increasing data size, we hypothesise that scaling the model size
could prove beneficial with even larger pre-training corpora.
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Figure 5: Ablation study on key components of OTiS. Downstream performance is analysed across
5 seeds. A leave-one-out approach is used to evaluate the influence of each component. The default
setting, that includes all components, demonstrates superior model capabilities across tasks.

4.6 ABLATION STUDY

We perform an ablation study to analyse the impact of OTiS’ key components: the domain-specific
tokeniser, dual masking strategy, and normalised cross-correlation (NCC) loss. As shown in Figure 5,
the best and most robust performance is achieved when all components are used during pre-training.

Replacing the domain-specific variate embeddings with domain-agnostic embeddings (i.e. learnable
embeddings shared across all domains) consistently led to inferior performance across all tasks,
demonstrating the importance of capturing domain-specific data characteristics during tokenisation.
Switching from dual masking to random masking resulted in performance degradation, although the
impact was less notable for generative tasks than for discriminative tasks. We hypothesise that the
NCC loss already captures temporal causality, which is particularly crucial for generative tasks like
forecasting. Overall, removing the NCC loss caused performance declines across all downstream
tasks, emphasising the role of long-range dependencies for general time series understanding.

5 DISCUSSION & CONCLUSION

In this study, we explore the problem of effective pre-training on heterogeneous time series corpora.
Time series vary substantially across domains, e.g. with respect to inter-variate relationships and
temporal dynamics, rendering generalisable feature extraction from multi-domain time series difficult.
To address this issue, we present OTiS, an open model for general time series analysis, specifically
designed to handle multi-domain heterogeneity. Our novel multi-domain pre-training paradigm,
including a domain-specific tokeniser with learnable signatures, a dual masking strategy, and a
normalised cross-correlation (NCC) loss, enables OTiS to extract generalisable time series features.

In extensive experiments, we demonstrate that OTiS generalises well across 15 diverse downstream
applications spanning 8 distinct domains, achieving competitive performance with both specialised
and general state-of-the-art (SOTA) models. In a qualitative analysis, we further show that OTiS
unifies time series from diverse domains in a meaningful latent space, while preserving low-level
semantics of a domain including the inter-variate relationships. Thereby, our work establishes a
strong foundation for future advancements in interpretable and general time series analysis.

Limitations. While OTiS outperforms SOTA models across 10 tasks, our experiments in low-data
regimes suggest that larger pre-training corpora could further enhance its performance. Unlike in NLP
and CV, where large datasets are curated from web-crawled data, foundational models in time series,
including OTiS, still rely on manually curated datasets. Future work could explore fully automatic
pipelines, e.g. using embedding similarity, to filter and rebalance multi-domain time series from the
web. OTiS could further benefit from processing domain signatures during inference, potentially
unlocking zero-shot capabilities, similarly to those seen in foundational models in NLP and CV.
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A LARGE MULTI-DOMAIN PRE-TRAINING CORPUS

In this section, we present an overview of our large and diverse pre-training corpus. The corpus
consists of publicly available data spanning eight domains, with a total of 640, 187 samples and
11 billion time points. In the following, we provide a detailed breakdown of the domains and the
datasets they encompass. Note that we apply channel-wise standard normalisation to the datasets
unless otherwise specified.

ECG. The MIMIC-IV-ECG dataset (Gow et al., 2023) contains diagnostic 10-second, 12-lead ECG
recordings sampled at a frequency of 500 Hz. While the entire dataset comprises 800, 035 samples,
we include only the first half of the recordings available in the database, preventing the ECG data
from predominating in the pre-training corpus. To remove the baseline drift from the ECG data,
we use the asymmetric least square smoothing technique (Zhang et al., 2010). Note that we apply
standard normalisation separately to the Einthoven, Goldberger, and Wilson leads.

Temperature. The Deutscher Wetterdienst (DWD) dataset (Wetterdienst, 2024) contains hourly air
temperature measurements from 629 weather stations across Germany. Since the recording length
varies significantly, ranging from 763 to 1, 148, 290 hours per station, we split the data into chunks
of 720 hours (approximately one month).

Audio. The AudioSet dataset (Gemmeke et al., 2017) contains 10-second YouTube clips for audio
classification, featuring 527 types of audio events that are weakly annotated for each clip. The full
training set includes a class-wise balanced subset (AudioSet-20K, 22, 176 clips) and an unbalanced
(AudioSet-2M 2, 042, 985 clips) set. For our pre-training corpus, we use the balanced AudioSet-20K,
which contains 3, 491 mono and 16, 123 stereo recordings, all sampled at 44.1 kHz.

Electromechanics. The FD-A dataset (Lessmeier et al., 2016) collects vibration signals from
rolling bearings in a mechanical system for fault detection purposes. Each sample consists of 5, 120
timestamps, indicating one of three mechanical device states. Note that the FD-B dataset is similar
to FD-A but includes rolling bearings tested under different working conditions, such as varying
rotational speeds.

EEG. The TDBrain dataset (Van Dijk et al., 2022) includes raw resting-state EEG data from 1, 274
psychiatric patients aged 5 to 89, collected between 2001 and 2021. The dataset covers a range
of conditions, including Major Depressive Disorder (426 patients), Attention Deficit Hyperactivity
Disorder (271 patients), Subjective Memory Complaints (119 patients), and Obsessive-Compulsive
Disorder (75 patients). The data was recorded at 500Hz using 26 channel EEG-recordings, based on
the 10-10 electrode international system.

The SEED dataset (Zheng & Lu, 2015) contains EEG data recorded under three emotional states:
positive, neutral, and negative. It comprises EEG data from 15 subjects, with each subject participating
in experiments twice, several days apart. The data is sampled at 200Hz and recorded using 62 channel
EEG-recordings, based on the 10-20 electrode international system.

For simplicity, we only consider the 19 channels common to both datasets, i.e. the channels that
correspond to the 10-20 electrode international system.

Banking. The NN5 competition dataset (Taieb et al., 2012) consists of daily cash withdrawals
observed at 111 randomly selected automated teller machines across various locations in England.

Economics. The FRED-MD dataset (McCracken & Ng, 2016) contains 107 monthly time series
showing a set of macro-economic indicators from the Federal Reserve Bank of St Louis. The data
was extracted from the FRED-MD database.

The Exchange dataset (Lai et al., 2018) records the daily exchange rates of eight different nations,
including Australia, Great Britain, Canada, Switzerland, China, Japan, New Zealand, and Singapore,
ranging from 1990 to 2016.
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B BENCHMARK DETAILS

To assess the utility of OTiS in real-world settings, we conduct experiments on three key use cases in
time series analysis: classification, regression, and forecasting. For classification, we perform binary
epilepsy detection using EEG (Epilepsy 2001), multi-class fault detection in rolling bearings from
vibration signals (FD-B 2016), multi-class hand-gesture classification with accelerometer signals
(Gesture 2009), and multi-class muscular disease classification using electromyographie (EMG 2000).
For regression, we predict five imaging-derived cardiac phenotypes from 12-lead ECG (LVEDV,
LVESV, LVSV, LVEF, LVM 2020). For forecasting, we predict electricity transformer temperature
(ETT 2021), weather (Weather 2024), and electricity consumption (Electricity 2024). We adhere to
the established data splitting and evaluation procedures for the classification (Zhang et al., 2022),
regression (Turgut et al., 2023), and forecasting (Zhou et al., 2021) tasks. We provide an overview of
the datasets and the baselines used to benchmark our model in Table 4 and Table 5, respectively.

Table 4: Summary of all datasets used for benchmarking, including evaluation metrics, domains, and
dataset details.

Task Metric Dataset
Domain Name Samples Variates Time points Frequency

S VS

C
la

ss
ifi

ca
tio

n

ACC

EEG Epilepsy 2001 11, 500 1 178 174Hz
TUEV 2016 112, 237 19 1, 000 200Hz

Electromechanics FD-B 2016 13, 640 1 5, 120 64 kHz
Acceleration Gesture 2009 560 3 206 100Hz

EMG EMG 2000 204 1 1, 500 4 kHz

R
eg

re
ss

io
n

R2 ECG UK BioBank 2015 18, 926 12 5, 000 500Hz

Fo
re

ca
st

in
g

MSE

Energy

ETTh1 2021 1 7 17, 420 (hourly) 278µHz
ETTh2 2021 1 7 17, 420 (hourly) 278µHz
ETTm1 2021 1 7 69, 680 (minutely) 1.1mHz
ETTm2 2021 1 7 69, 680 (minutely) 1.1mHz

Weather Weather 2024 1 21 52, 696 (minutely) 2.8mHz
Electricity Electricity 2024 321 1 26, 304 (hourly) 278µHz

C EXPERIMENT DETAILS

C.1 MODEL VARIANTS

To explore the scaling laws with respect to the model size, we provide OTiS in three variants, as
summerised in Table 6.

C.2 PRE-TRAINING & FINE-TUNING PARAMETERS

We provide the hyperparameters used to pre-train all variants of OTiS in Table 7. The hyperparame-
ters used to fine-tune our models for the classification, regression, and forecasting tasks are provided
in Table 8, 9, and 10, respectively.

D COMPUTATION COSTS

We provide an overview of the computational resources used to train OTiS in Table 11.
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Table 5: Summary of all baseline models used for benchmarking, including pre-training details,
domain adaptation methods, and architectural choices. CL, MDM, and GPT denote contrastive
learning, masked data modelling, and generative pre-training, respectively.

Task Model Pre-training Domain
adaptation Architecture

Method Dataset

C
la

ss
ifi

ca
tio

n

SimCLR 2020 CL SleepEEG* 2000 Fine-tuning 1D-CNN
TimesNet 2022a – Target Fine-tuning 2D-CNN
CoST 2022 CL SleepEEG* 2000 Fine-tuning 1D-CNN
TS2Vec 2022 CL SleepEEG* 2000 Fine-tuning 1D-CNN
TF-C 2022 CL SleepEEG* 2000 Fine-tuning Transformer
Ti-MAE 2023 MDM SleepEEG* 2000 Fine-tuning Transformer
SimMTM 2024 MDM SleepEEG* 2000 Fine-tuning Transformer

R
eg

re
ss

io
n iTransformer 2023 – Target Fine-tuning Transformer

ViT 2023 – Target Fine-tuning Transformer
MAE 2023 MDM Target Fine-tuning Transformer
CM-AE 2023 MDM and CL Target Fine-tuning 1D-CNN
MMCL 2023 MDM and CL Target Fine-tuning Transformer

Fo
re

ca
st

in
g

N-BEATS 2019 – Target Fine-tuning Non-Linear Model
Autoformer 2021 – Target Fine-tuning Transformer
TimesNet 2022a – Target Fine-tuning 2D-CNN
DLinear 2023 – Target Fine-tuning Linear Model
PatchTST 2023 MDM Target Fine-tuning Transformer
Time-LLM 2023 GPT † Fine-tuning Transformer
GPT4TS 2023 GPT ‡ Fine-tuning Transformer
MOMENT 2024 MDM TSP◦ 2024 Fine-tuning Transformer
MOIRAI 2024 MDM LOTSA◁ 2024 Zero-shot Transformer

* 371, 055 uni-variate, 2-seconds EEG recordings sampled at a frequency of 100Hz.
† Llama-7B 2023, pre-trained on 1.4 trillion text tokens, is used as backbone.
‡ GPT2 2018, pre-trained on 10 billion text tokens, is used as backbone.
◦ Time Series Pile (TSP) contains 13 million samples and 1.23 billion time points from 13 domains.
◁ Large-Scale Open Time Series Archive (LOTSA) contains more than 4 million samples and 27 billion time points from 9 domains.

Table 6: Details of model variants.

Model Layers Hidden size D MLP size Heads dkv Parameters
OTiS-Base 12 192 768 3 64 8M
OTiS-Large 18 384 1536 6 64 44M
OTiS-Huge 24 576 2304 8 72 131M

Table 7: Hyperparameters used for pre-training. Pre-training is performed on 4 NVIDIA A100-80GB
GPUs. A cosine learning rate scheduler is applied with a 10% warmup. All OTiS configurations use
a shallow decoder with 2M parameters, consisting of 4 layers with a hidden size of 160, an MLP
with size 640, and 5 heads.

Model Epochs Batch size Base LR LR decay NCC λ Mask ratio ρ Weight decay
OTiS-Base 200 5120 3e-5 cosine 0.1 0.75 0.10
OTiS-Large 200 3328 1e-5 cosine 0.1 0.75 0.15
OTiS-Huge 200 2880 3e-6 cosine 0.1 0.75 0.05

E DOMAIN SIGNATURE ANALYSIS

To analyse the domain signatures, we reduce the dimensionality of the domain-specific variate
embeddings by employing a principal component analysis (PCA). Our analysis shows that OTiS
unifies time series from diverse domains into a meaningful latent space, while accurately capturing
the inter-variate relationships within a domain.
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Table 8: Hyperparameters used for fine-tuning the classification tasks on a single NVIDIA RTX
A6000-48GB GPU. A cosine learning rate scheduler is applied with a 10% warmup.

Dataset Model Epochs Batch size Base LR Drop path Layer
decay

Weight
decay

Label
smoothing

Epilepsy
OTiS-Base 75 32 1e-3 0.2 0.75 0.2 0.1
OTiS-Large 75 32 3e-3 0.2 0.50 0.1 0.1
OTiS-Huge 75 32 3e-3 0.0 0.75 0.2 0.2

FD-B
OTiS-Base 75 32 3e-4 0.0 0.75 0.1 0.1
OTiS-Large 75 32 1e-3 0.1 0.75 0.1 0.2
OTiS-Huge 75 32 3e-4 0.1 0.75 0.2 0.1

Gesture
OTiS-Base 75 32 3e-3 0.2 0.50 0.1 0.1
OTiS-Large 75 32 3e-3 0.2 0.75 0.1 0.0
OTiS-Huge 75 32 1e-2 0.0 0.75 0.1 0.1

EMG
OTiS-Base 75 32 1e-3 0.2 0.75 0.1 0.2
OTiS-Large 75 32 3e-3 0.1 0.75 0.2 0.1
OTiS-Huge 75 32 3e-3 0.1 0.75 0.2 0.2

Table 9: Hyperparameters used for fine-tuning the regression tasks on a single NVIDIA RTX A6000-
48GB GPU. A cosine learning rate scheduler is applied with a 10% warmup.

Dataset Model Epochs Batch size Base LR Drop path Layer
decay

Weight
decay

UK BioBank
OTiS-Base 50 192 3e-4 0.2 0.75 0.1
OTiS-Large 50 160 1e-4 0.2 0.75 0.1
OTiS-Huge 50 200 1e-4 0.2 0.75 0.1

Table 10: Hyperparameters used for fine-tuning the forecasting tasks. A cosine learning rate scheduler
is applied with a 10% warmup.

Dataset Model Epochs Batch size Base LR NCC λ Weight decay

ETTh1
OTiS-Base 1000 1 1e-0 0.1 0.15
OTiS-Large 1000 1 1e-1 0.2 0.15
OTiS-Huge 1000 1 3e-1 0.1 0.15

ETTh2
OTiS-Base 1000 1 1e-0 0.2 0.25
OTiS-Large 1000 1 1e-1 0.1 0.25
OTiS-Huge 1000 1 3e-1 0.0 0.25

ETTm1
OTiS-Base 1000 1 3e-1 0.2 0.25
OTiS-Large 1000 1 3e-1 0.2 0.25
OTiS-Huge 1000 1 1e-1 0.1 0.15

ETTm2
OTiS-Base 1000 1 3e-1 0.1 0.25
OTiS-Large 1000 1 1e-1 0.2 0.25
OTiS-Huge 1000 1 3e-1 0.2 0.25

Weather
OTiS-Base 1000 1 3e-1 0.2 0.25
OTiS-Large 1000 1 3e-1 0.2 0.15
OTiS-Huge 1000 1 1e-1 0.2 0.05

Electricity
OTiS-Base 250 32 3e-2 0.0 0.25
OTiS-Large 250 32 3e-2 0.0 0.15
OTiS-Huge 250 32 3e-2 0.2 0.15
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Table 11: Computational resources used to pre-train OTiS. Note that fine-tuning and inference
of all OTiS variants on downstream applications were performed using a single NVIDIA RTX
A6000-48GB and 32 CPUs.

Model Parameters Power
consumption

CPU
count

GPU
Count Hours Type

OTiS-Base 8M 700W* 128 4 115† NVIDIA A100-80GB
OTiS-Large 44M 800W* 128 4 154† NVIDIA A100-80GB
OTiS-Huge 131M 960W* 128 4 219† NVIDIA A100-80GB
* Total power consumption across all GPUs.
† Total hours across all GPUs.

audio_mono
audio_stereo
banking
ecg
economics
eeg_10-20
electromechanics
temperature

(a) 3D projection. (b) 2D projection.

Figure 6: PCA projections of the domain-specific variate embeddings learned during pre-training.
OTiS unifies time series from diverse domains in a meaningful latent space, while correctly encoding
the inter-variate relationships within a domain. Mono (•) and stereo (•) audio-specific embeddings
cluster closely together, as do those for banking (•) and economics (•). Clear separation is observed
for EEG-specific embeddings (•), while also ECG-specific embeddings (•) form a tight cluster.

E.1 INTER-DOMAIN ANALYSIS

A visualisation of all domain-specific variate embeddings learned during pre-training is provided in
Figure 6. We find that OTiS learns a meaningful latent space, where embeddings of domains with
shared high-level semantics cluster closely together.

E.2 INTRA-DOMAIN ANALYSIS

E.2.1 ALIGNMENT OF EEG-SPECIFIC VARIATE EMBEDDINGS WITH THE TRUE ELECTRODE
LAYOUT

We assume 3D electrode coordinates of the international 10-20 system for EEG recordings (Homan
et al., 1987) to be defined in Euclidean space E3

Y (see Figure 7a). To determine how well the learned
EEG-specific variate embeddings reflect the true electrode layout, we project them into Euclidean
space E3

X (see Figure 7b), linearly align them with the true 3D electrode coordinates in E3
Y , and

eventually quantify their correlation, as described in the following.

First, we determine the first three principal components of the EEG-specific variate embeddings, thus
projecting them into a Euclidean space E3

X . Then, we perform a multivariate linear regression

Y = 1β0 +XB+ ϵ ∈ RN×3 with β0 ∈ R1×3,X ∈ RN×3,B ∈ R3×3, ϵ ∈ RN×3, (7)

where 1 ∈ RN×1 is a vector of ones and N denotes the number of electrodes, to align the first three
principal components in E3

X (here, X) with the 3D electrode coordinates in E3
Y (here, Y). Finally, to

quantify this very alignment, we determine the coefficient of determination R2 ∈ [0, 1]. Note that
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(a) 3D electrode layout of the international 10-20 sys-
tem for EEG recordings.

(b) First three principal components of the EEG-
specific variate embeddings.

Figure 7: Analysis of the variate embeddings for 10-20 system EEG recordings with 19 electrodes
learned during pre-training. The label of each coordinate corresponds to the electrode name.

I

IIIII

aVR

aVL

aVF

V1

V2

V3

V4

V5
V6

(a) Side view.

I

II

III

aVR

aVL

aVF

V1
V2

V3

V4

V5

V6

(b) Bird’s-eye view.
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Figure 8: Principal component analysis of the variate embeddings for standard 12-lead ECG learned
during pre-training. Their first three components, shown in (a), (b), and (c), accurately reflect the true
physiological structure of ECG leads. The V1-V6 leads, arranged on the rib cage from the sternum to
the mid-axillary line, represent a 3D view of the human heart. The I-II-III leads and aVR-aVL-aVF
leads, derived from electrodes placed on one foot and both arms, form a planar 2D triangle.

R2 = 1 represents a perfect alignment, i.e. E3
Y = E3

X , where the first three principal components
of the EEG-specific variate embeddings only need to be shifted and scaled to retrieve the true EEG
electrode layout (i.e. ϵ is a zero matrix).

E.2.2 ADDITIONAL ANALYSES OF DOMAIN-SPECIFIC VARIATE EMBEDDINGS

To further explore OTiS’ ability to capture complex inter-variate relationships across domains, we
analyse (i) the ECG-specific variate embeddings learned during pre-training and (ii) the Weather-
specific variate embeddings learned during fine-tuning. Figure 8 presents a principal components
analysis of the ECG-specific variate embeddings. Since these were learned during pre-training,
similar to the EEG-specific embeddings discussed in Section 4.4 and Section E.2.1, we focus the
following analysis on the Weather-specific variate embeddings learned during fine-tuning.

The central question is whether OTiS can learn domain-specific knowledge - in this case, for the
weather domain - from limited data seen only during fine-tuning. To investigate this, we compute
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the cosine similarity for all pairs of Weather-specific variate embeddings, as summarised in Figure
9. Note that these embeddings were randomly initialised and learned specifically for the Weather
2024 dataset during the forecasting task described in Section B. The Weather variates span diverse
climatological categories, including temperature (T, Tpot, Tdew, Tlog), humidity (rh, VPmax, VPact,
VPdef, sh, H2OC), wind (wv, max. wv, wd), radiation (SWDR, PAR, max. PAR), pressure (p, rho),
and precipitation (rain, raining). Our analysis demonstrates that OTiS effectively captures complex
relationships among these distinct climatological indicators, as detailed in the following discussion.

High positive similarities typically indicate relationships within a single climatological category.
For example, we observe strong similarities among temperature variates, humidity variates, radiation
variates, pressure variates, and precipitation variates. These results are expected, as these variates
all describe different aspects of the same category and often fluctuate together. Additionally, subtle
variations in the similarity scores reveal how, for instance, dew point temperature (Tdew) depends
not only on temperature but also on other factors, such as humidity (rh).

High negative similarities typically represent relationships across climatological categories. For
example, consider the inverse relationship between vapor pressure deficit (VPdef) and relative
humidity (rh), defined as:

VPdef = SVP
(
1− rh

100

)
, (8)

where SVP [mBar] denotes the saturation vapor pressure. Our analysis showcases that OTiS correctly
captures this negative correlation, as well as other relationships across categories. These include the
inverse correlation between strong winds (max. wv) and low air pressure (p), and between extended
precipitation (raining) and lower incoming radiation (SWDR).

F ZERO-SHOT CAPABILITIES

We analyse OTiS’ zero-shot capabilities across four diverse tasks: binary epilepsy detection using
uni-variate EEG (Epilepsy 2001), multi-class fault detection in rolling bearings from uni-variate
electromechanics signals (FD-B 2016), multi-class hand-gesture classification with multi-variate
accelerometer signals (Gesture 2009), and multi-class muscular disease classification using uni-
variate electromyographie (EMG 2000). These datasets vary significantly in domain, number of
variates, time points, sampling frequency, and number of classes, highlighting the versatility of our
analysis. Details on the datasets can be found in Table 4.

In the zero-shot setting, OTiS is evaluated without domain-specific fine-tuning by freezing it after pre-
training and using randomly initialised variate embeddings. Since no classification head is employed,
the encoder’s output tokens are averaged to obtain a global representation for each sample. To create
class representations, the global representations of the training samples are averaged separately for
each class. For classification, the cosine similarity is computed between each test sample’s global
representation and the class representations. The class with the highest similarity score is assigned to
the test sample. As illustrated in Figure 10, OTiS is able to extract distinct representations for different
classes, even without domain-specific fine-tuning. This ability translates to zero-shot classification
accuracies of 93.70% for Epilepsy, 57.87% for FD-B, 51.67% for Gesture, and 95.12% for EMG.
A closer examination of the zero-shot latent space for FD-B (Figure 10b) reveals a partial overlap
of inputs from classes 1 and 2, which explains the lower zero-shot performance compared to the
fine-tuning results (Figure 11b). Similarly, inputs from the eight classes in the Gesture dataset show
poor clustering in the zero-shot latent space (Figure 10c), with only slight improvements observed
after fine-tuning (Figure 11c). Overall, these quantitative and qualitative zero-shot findings highlight
OTiS’ ability to extract time series features that generalise across domains and tasks, providing a
strong foundation for future advancements in general time series analysis.

Additionally, since our pre-training corpus includes time series from EEG (TDBrain 2022 and SEED
2015) and Electromechanics (FD-A 2016), we also evaluate zero-shot performance using the EEG-
and Electromechanics-specific variate embeddings learned during pre-training instead of randomly
initialised ones. As anticipated, leveraging these learned variate embeddings enhances the quality of
the generated representations, resulting in improved zero-shot classification accuracies of 95.18%
for Epilepsy (+1.48%) and 61.32% for FD-B (+3.45%).
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Figure 9: Cosine similarity matrix of Weather-specific variate embeddings. Note that the ordering
of the variates was modified for visualisation purposes. Areas with high positive and high negative
similarity are exemplary framed in yellow. OTiS is capable of capturing non-trivial relationships
between climatological indicators of the Weather 2024 dataset.

G ADDITIONAL ABLATION STUDIES

G.1 DUAL MASKING STRATEGY

In order to enhance OTiS’ foundational capabilities for general time series analysis, we incorporate
a dual masking strategy in our pre-training strategy, as described in Section 3.4. Specifically, we
select between two masking schemes during pre-training: random masking (randomly masking across
variate and temporal dimension) and post-fix masking (masking the second half of the temporal
dimension). To determine the optimal balance between these two schemes, we examine the impact
of different compositions of the dual masking strategy across distinct use cases in time series
analysis. Our analysis reveals that a combination of 75% random masking and 25% post-fix masking
consistently yields the best downstream performance across all tasks, as illustrated in Figure 12.

G.2 PRE-TRAINING STRATEGY

To explore whether domain-specific pre-training is beneficial over pre-training on diverse time series
across domains, we analyse different training strategies for EEG event type classification on the
TUEV 2016 dataset, as summarised in Table 12. In particular, we compare OTiS against specialised
and general baseline models that are particularly designed for EEG analysis. The baselines include i)
specialised models that are randomly initialised and trained fully supervised on the target data, ii) self-
supervised models pre-trained and fine-tuned on the target data, and iii) foundation models pre-trained
on large time series corpora and fine-tuned on the target data. The specialised baselines include
ST-Transformer (Song et al., 2021) (Transformer), CNN-Transformer (Peh et al., 2022) (CNN and
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n = 11420
ACC = 93.7%

class 0
class 1
centroid

(a) Epilepsy.

n = 13559
ACC = 57.87% class 0

class 1
class 2
centroid

(b) FD-B.

n = 120
ACC = 51.67% class 0

class 1
class 2
class 3
class 4
class 5
class 6
class 7
centroid

(c) Gesture.

n = 41
ACC = 95.12% class 0

class 1
class 2
centroid

(d) EMG.

Figure 10: First two principal components of the zero-shot representations generated by OTiS-Base
across four datasets. In this setup, OTiS is frozen after pre-training and randomly initialised variate
embeddings are utilised. As no classification head is employed, the output tokens of the encoder are
averaged to obtain a global representation. OTiS extracts distinct representations for different inputs,
even across domains and tasks, highlighting its potential for general time series analysis.
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(a) Epilepsy.

n = 13559
ACC = 99.24% class 0

class 1
class 2
centroid

(b) FD-B.

n = 120
ACC = 63.61% class 0

class 1
class 2
class 3
class 4
class 5
class 6
class 7
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(c) Gesture.

n = 41
ACC = 97.56% class 0

class 1
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Figure 11: First two principal components of the fine-tuned representations generated by OTiS-Base
across four datasets. Fine-tuning enabels OTiS to form tight clusters for distinct classes, highlighting
its effective adaptation to specific tasks regardless of their domain.
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Figure 12: Ablation study on the composition of the dual masking strategy. Error bars indicate
the standard deviation across 5 seeds. A combination of 75% random masking and 25% post-fix
masking during pre-training consistently yields the best downstream performance across tasks.

Transformer), FFCL (Li et al., 2022) (CNN and LSTM), and SPaRCNet (Jing et al., 2023) (1D-CNN).
Self-supervised baselines include ContraWR (Yang et al., 2023) (2D-CNN). The foundation models
include BIOT (Yang et al., 2024) (Transformer, pre-trained on 6 EEG datasets with over 5 million
samples and 13, 000 recording hours) and LaBraM (Jiang et al., 2024) (Transformer, pre-trained on
16 EEG datasets with a total of 2, 500 recording hours). Similar to OTiS, both foundation models
are pre-trained leveraging masked data modelling. However, the EEG datasets in our pre-training
corpus consist of only 125 recording hours (90 hours in TDBrain 2022 and 35 hours in SEED 2015),
which is substantially lower than the EEG corpora used by baselines.

The experiments show that pre-trained models (ii) and (iii) outperform the fully-supervised models
(i). Notably, for OTiS, pre-training exclusively on EEG data does not yield to improved downstream
performance compared to general pre-training across diverse time series. Moreover, competitive
downstream results can be achieved even without incorporating explicit domain knowledge, as shown
by OTiS with randomly initialised variate-embeddings before fine-tuning, i.e. OTiS-Basew/ rVE. Our
randomly initialised model, OTiS-Basew/p pre-training, outperforms all other specialised models and
performs on par with the self-supervised SPaRCNet and foundational BIOT, suggesting an efficient
interplay between the domain-specific tokeniser and Transformer backbone. Overall, these results
from EEG event type classification highlight that pre-training across domains generally enhances the
quality of representations generated by OTiS, translating to superior downstream performance.

Table 12: Ablation study on pre-training strategies for EEG event type classification on the TUEV
2016 dataset. Mean and standard deviation is reported across 5 seeds set during fine-tuning. Best
score in bold, second best underlined. All baselines are specifically tailored for EEG analysis,
including foundation models (‡) pre-trained on large EEG corpora and fine-tuned on the target data.

Methods Parameters Balanced ACC ↑ Cohen’s Kappa ↑ Weighted F1 ↑
ST-Transformer 2021 3.5M 0.3984 ± 0.0228 0.3765 ± 0.0306 0.6823 ± 0.0190
CNN-Transformer 2022 3.2M 0.4087 ± 0.0161 0.3815 ± 0.0134 0.6854 ± 0.0293
FFCL 2022 2.4M 0.3979 ± 0.0104 0.3732 ± 0.0188 0.6783 ± 0.0120
SPaRCNet 2023 0.79M 0.4161 ± 0.0262 0.4233 ± 0.0181 0.7024 ± 0.0104
ContraWR 2023 1.6M 0.4384 ± 0.0349 0.3912 ± 0.0237 0.6893 ± 0.0136
BIOT ‡ 2024 3.2M 0.5281 ± 0.0225 0.5273 ± 0.0249 0.7492 ± 0.0082
LaBraM ‡ 2024 369M 0.6616 ± 0.0170 0.6745 ± 0.0195 0.8329 ± 0.0086
OTiS-Basew/o pre-training* 8M 0.5361 ± 0.0350 0.5183 ± 0.0316 0.7642 ± 0.0157

OTiS-BaseEEG
† 8M 0.5562 ± 0.0106 0.5504 ± 0.0204 0.7784 ± 0.0095

OTiS-BaseEEG w/ rVE
†▷ 8M 0.5413 ± 0.0302 0.5631 ± 0.0299 0.7860 ± 0.0120

OTiS-Base 8M 0.5743 ± 0.0257 0.5913 ± 0.0146 0.8004 ± 0.0071
OTiS-Basew/ rVE

▷ 8M 0.5728 ± 0.0134 0.5772 ± 0.0281 0.7922 ± 0.0127
* Model was randomly initialised and trained fully supervised.
† Model was pre-trained only with the EEG data of our pre-training corpus.
▷ Variate embeddings (VE) are randomly initialised before for fine-tuning.
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H FORECAST VISUALISATION

We visualise the performance of our model on 6 forecasting benchmarks in Figure 13.
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Figure 13: Visualisation of OTiS-Base forecast predictions on 6 benchmark datasets. A forecasting
horizon of 96 time points is predicted from the past 336 time points. Ground truth in blue, prediction
in orange. Areas highlighted in grey are not visible to the model.
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