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ABSTRACT

Out of distribution (OoD) generalization has received considerable interest in recent
years. In this work, we identify a particular failure mode of OoD generalization for
discriminative classifiers that is based on test data (from a new domain) lying in
the nullspace of features learnt from source data. We demonstrate the existence of
this failure mode across multiple networks trained across RotatedMNIST, PACS,
TerraIncognita, DomainNet and ImageNet-R datasets. We then study different
choices for characterizing the feature space and show that projecting intermediate
representations onto the span of directions that obtain maximum training accuracy
provides consistent improvements in OoD performance. Finally, we show that
such nullspace behavior also provides an insight into neural networks trained on
poisoned data. We hope our work galvanizes interest in the relationship between
the nullspace occupancy failure mode and generalization.

1 INTRODUCTION

Neural networks often succeed in learning rich function approximators that generalize remarkably
well to the distribution they are trained on, but are often brittle when exposed to inputs that come
from a different distribution (Gulrajani & Lopez-Paz, 2020). With rapid adoption of neural networks
to various safety critical applications such as autonomous driving, healthcare etc. more attention is
being paid to the question of robustness under domain shift (Alcorn et al., 2018; Dai & Van Gool,
2018; AlBadawy et al., 2018).

Recent findings from Huh et al. (2021) hint that overparameterized, deep neural networks are biased
to learn functions with (approximate) low-rank covariance structure and posit that this might be
related to the phenomenon of implicit regularization (Galanti & Poggio, 2022) that has been used to
explain in-distribution generalization of deep networks.

How might such low-rank structure relate to out-of-distribution generalization? As a simple thought
experiment, consider a setting where training data Dtrain is embedded in a three dimensional space
(v1,v2,v3) that exhibits variance only along the first two dimensions (fig. 1 (left)) (with v3 = 1) 1.
Let us train a neural network fθ on this data using a loss functional L(f,Dtrain). Since v3 does not
contribute to any reduction in training error, standard empirical risk minimization (ERM) (Vapnik,
1999) training need not differentiate between functions f which handle v3 in different ways.

Now consider an out-of-distribution (OoD) dataset which has the same structure as the original
dataset along v1 and v2, but the value of v3 now has a different value, e.g. 10. In this case, one would
incur an error (fig. 1, right) if one learns a function f where f(·, ·,v3 = 1) ̸= f(·, ·,v3 = 10). Thus,
the low-rank simplicity bias, while beneficial for IID generalization (Huh et al., 2021) can potentially
cause issues for OoD generalization. In cases where removing the “additional” features observed at
test time improves performance (such as in fig. 1) we say that the network incurs nullspace error and
call the failure mode as “nullspace occupancy”.

1This is a special case of Huh et al. (2021) where the third eigenvalue is 0, instead of being very small
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Figure 1: Illustration of nullspace failure. Left:
Training data with variation in v1, v2 but no vari-
ation in v3 = 1. Black line: Decision boundary
learnt by a 3 hidden layer MLP function f with
inputs (v1,v2,v3) visualized with v3 = 1. Right:
Decision boundary of the same classifier evaluated
on the plane v3 = 10. f is sensitive to v3, causing
nullspace error (red box) on test data.

When diagnosing nullspace occupancy related
failure, it is important to properly choose the
representational basis. Our key technical con-
tribution is combining notions of variation in
training data with utility for the downstream
network f in order to identify the most impor-
tant directions for projection. We formalize this
as an optimization problem that we solve via
projected gradient descent onto orthogonal ma-
trices (Kiani et al., 2022).

Experimentally, we demonstrate the existence
of nullspace occupancy related performance
degradations across different architectures and
datasets evaluated on the DomainBed bench-
mark (table 2). This empirically establishes that
nullspace occupancy is an issue for neural net-

works in OoD settings and suggests further performance improvements by mitigating it. We take
first steps towards showing this in practice in the leave-one-out-validation setting from Gulrajani &
Lopez-Paz (2020) to improve OoD performance on DomainBed.

Overall, our contributions are as follows:
• We identify a nullspace occupancy based failure mode for OoD generalization
• We demonstrate that this failure mode exists for models trained using ERM on DomainBed
• We observe that selecting a few projecting directions with high training accuracy yields the

maximum potential improvements using this approach
• Interestingly, we also find that in a data poisoning setting (Huang et al., 2020), the network

exploits this nullspace occupancy phenomenon to learn a poorly generalizing classifier (section 4)

2 METHODS

2.1 FEATURE PROJECTION MECHANICS

We work in the standard multi-class classification setting with inputs x and labels y. Let z = g(x) ∈
RK be the features extracted in an intermediate layer of the network l using an encoder g, and µ =
1
N

∑N
i=1 zi be the mean of the features zi extracted on a training dataset with N datapoints. Let f be

the classification function that maps a feature z to the logits. Finally, let V ∈ RK×K = [v1, · · · ,vK ]
be an orthonormal matrix, and a rank m subspace of V is Vm ∈ RK×m = [v1, · · · ,vm].

Figure 2: Our meth-
ods add projection
layers (orange) to an
existing pretrained
network with an en-
coder gθ (till layer
l) and downstream
classifier f .

Given a test datapoint x̂, with a corresponding extracted feature ẑ, one can
project the datapoint onto a basis Vm of rank m as follows:

ẑm = VmV T
m (ẑ− µ) + µ (1)

For a convolutional network, we perform projection only along the channel
dimension of the featurization. That is, for an intermediate representation
with nc channels and spatial size H ×W , we consider a set of features Vm

of dimensionality nc. For each spatial location (i, j) ∈ [H]× [W ], we project
a vector zij as follows:

ẑmij = VmV T
m (ẑij − µij) + µij (2)

2.2 WHAT IS THE RIGHT CHOICE OF BASIS V ?

We aim to find a basis V that leads to the highest decrease in the training
loss Ltrain as we increase the rank m. This ensures that we cover the most
important directions for the loss functional L(f,Dtrain). Intuitively, this
incorporates both notions of training sensitivity as well as feature spread, since
directions with a lot of spread of training data and where the function has high
sensitivity would also decrease the training loss.
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We propose to directly learn the projection matrix that identifies the most parsimonious V based on
the training set. The key idea is simple: we initialize the basis V with the principal component basis
computed over the training set, i.e. V = Vpc, then denoting µ as the mean of the features over the
training dataset (as above) we solve the following optimization problem, using a projective approach
for optimizing unitary matrices (Kiani et al., 2022):

minV

K∑
m=1

|Dtrain|∑
i=1

Ltrain(f(Vm · V T
m · (zi − µ) + µ), yi) (3)

subject to the unitary constraint V T · V = I. Here, the training loss Ltrain is cross entropy. For
a convolutional network, we perform analogous projections along the channel dimension of the
featurization. If we consider the training accuracy versus number of components m, optimizing this
equation will yield the basis which maximizes area under the curve. As a result, for any given target
accuracy, we find the smallest value of m that achieves that level of training accuracy, thus learning
the most parsimonious basis.

2.3 BASELINE CHOICES OF BASES V

We consider ablations on the design of the basis V that capture different intuitive notions of what one
considers to be important when choosing the features to project onto (see table 1). We explain each
in more detail below:

Principal Components Analysis: Given the feature matrix Z ∈ RN×K computed over the training
data Dtrain, one can compute the principal components analysis (PCA) (Murphy, 2002) of Z and
use it as the basis V . Intuitively, this captures the directions in the feature space which have the most
variance in the training data, but might not capture which directions are used by the downstream
function f ( table 1). As we validate in section 4, considering both is important for diagnosing
nullspace occupancy related failures.

Approach Uses f Uses g Uses Ltrain

Random ✗ ✗ ✗
PCA ✗ ✓ ✗
Low-rank Wl+1 ✓ ✗ ✗
Jacobian ✓ ✓ ✗
Optimized Basis ✓ ✓ ✓

Table 1: Design space of the different bases and ap-
proaches considered in the paper. g is the network
encoder (till layer ℓ) and f is the downstream classi-
fier as illustrated in fig. 2. Ltrain is the training loss.

Function Sensitivity: The Jacobian matrix en-
codes the sensitivity of the classification func-
tion f to varying input features zi. We derive
a global feature set (independent of a particu-
lar zi) via the columns of the Jacobian. Intu-
itively, this gives us a set of directions which
maximally explains the sensitivity of the func-
tion in the space V . Concretely, we consider
the matrix G of samples {df(zi)j

dzi
}ni=1, where

each sample is the Jacobian vector of one out-
put logit j ∈ Y (chosen by sampling from the
output distribution of the classifier f ). We do
this since backpropagating through each logit
(for each training datapoint) in turn is too ex-
pensive. Next, we decompose G = U ·S ·V T

using singular value decomposition (SVD),
and use the columns vi ∈ RK of the right-singular matrix V as the feature set. This gives us a set of
directions in the input space which explain the dominant directions in which the function varies (but
does not capture directions which necessarily have variance in the training dataset Dtrain).

Random Basis: We start with V ∼ N (0, I), where I is the identity matrix in RK×K and then use
Gram-Schmidt orthonormalization to get a full rank random matrix V for truncating features Vm.

Low Rank Linear Layer: Consider the linear embedding (or convolutional kernel) Wl+1 in the
layer l + 1 proceeding z = g(x). We consider here low-rank approximations to this weight matrix to
study if any potential OoD improvements come from a nullspace phenomenon or some other kind of
capacity control. Following (Kolda & Bader, 2009), we consider the SVD of Wl+1 = A · S · BT ,
where S is a diagonal matrix of singular values diag([s1, · · · , sr]) such that s1 ≥ s2 ≥ · · · ≥ sr, and
r is the rank. A low-rank approximation to Wl+1 can then be easily found by truncating s to top
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m ≤ r singular values, that is, Sm = diag([s0, · · · , sm, 0, · · · , 0]) and the corresponding low rank
Wm

l+1 = A · SmBT .

3 EXPERIMENTAL SETUP

Training Protocol: We evaluate on a number of domain generalization datasets provided as a
part of the DomainBed (Gulrajani & Lopez-Paz, 2020) benchmark. Specifically, we consider
RotatedMNIST (Ghifary et al., 2015), PACS (Li et al., 2017b), TerraIncognita (Beery et al., 2018),
DomainNet (Peng et al., 2019), and Imagenet-R (Hendrycks et al., 2021). We train ERMs using the
hyperparameter selection strategy pioneered by (Gulrajani & Lopez-Paz, 2020), where we train a
large number of ERMs using random hyperparameter search, pick the best one on IID validation
and use it to report OOD test accuracy – repeating this process for multiple independent trials. On
RotatedMNIST we consider two differences to the standard DomainBed protocol: 1) we train on
individual domains and evaluate on all others (to emphasize the fact that our method conceptually
does not need environment annotations), and 2) we include a search over weight decay (which
is fixed to 0 for RotatedMNIST in (Gulrajani & Lopez-Paz, 2020)) since weight decay might be
related to smoothness of f and nullspace occupancy. Following DomainBed, we use ResNet50
for all experiments on PACS, TerraIncognita, DomainNet, and ImageNet-R, and a small CNN for
experiments on Rotated-MNIST. We note that both DomainBed and ImageNet-R are released under
MIT license. To our knowledge, none of these datasets contain personally identifiable information or
offensive content.

OOD Accuracy Oracle: Given trained networks f · g (fig. 2), our objective is to validate whether
OOD accuracy improves when we project out the nullspace components for a test data point. Each of
the datasets above has multiple train and test environment splits in DomainBed. For the best ERM
network that DomainBed yields for a given set of training evironments, we sweep through all the
layers and for each layer, we sweep through different values of m, perform the projection and note
the peak performance improvement achieved. We then average this number across multiple choices
of the training environments (each of which corresponds to a different network) to obtain the “oracle”
accuracy (o) improvement. Following DomainBed methodology, we repeat the entire process for 3
independent trials, and report the mean oracle accuracy achieved. In another experiment, we sweep
through all the layers, but choose the value of m via. some heuristic that can be computed via. Dtrain.
In such cases we call the oracle improvement as “layer-oracle” accuracy improvement or lo, since it
is an oracle that has access to the ideal layer. The OOD accuracy oracle provides an upper bound
to the improvement achievable by our feature projection method, and is indicative of the amount of
generalization failure explained by nullspace failure.

Leave-one-out evaluation: A limitation of the oracle evaluation method is that there is no way to
pick the correct layer in which to perform projection. Towards obtaining a practically achievable
improvement, we perform an additional experiment where we select the layer l and number of
components m based on highest accuracy on a held-out training domain. Our methodology for
PACS, TerraIncognita, and DomainNet datasets is as follows: given a test domain, we hold out one
training domain for selecting projection hyperparameters and train a network using ERM on the
remaining training domains. We fit bases on the remaining domains, select the layer l and number
of components m to get the highest achievable improvement on the held-out domain, and evaluate
performance on the test domain. We train a network on every combination of training and held-out
domain, and compute the mean accuracy on the test domain over networks trained with different
held-out domains. We repeat this entire process for 3 independent trials, and report mean accuracy
and standard error. For Rotated-MNIST, we train networks on 0-degree data, select the layer and
number of components on 45-degree data, and evaluate on remaining domains.

4 RESULTS

Does nullspace occupancy relate to OoD failure? We first illustrate (fig. 3) how the different choices
of bases affect accuracy of the pretrained ERM models when performing projection (for a randomly
chosen network and an oracle choice of layer for the RotatedMNIST, PACS, and TerraIncognita
datasets, see Appendix B for a similar plot on DomainNet). First, notice that projecting with a random
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Figure 3: Nullspace occupancy relates to OoD failure: Projecting test OoD activations onto a
subspace of rank m (x-axis) improves OoD performance (y-axis). For each dataset – Rotated-MNIST
(left), PACS (middle), and TerraIncognita (right) – we pick one illustrative network out of 12 networks
and the layer which best explains the nullspace occupancy related failure mode.

basis (green) does not improve performance over the base ERM. Instead, the performance converges
montonically to that of the base ERM model when m is full-rank.

In contrast to the behavior of the random basis, methods which utilize f , g or Ltrain (table 1) exhibit
a different structure with respect to m. While they all converge to the base ERM accuracy at full
rank m (right end of the plot), at intermediate values of m we observe that projection improves the
OoD performance of the network. More specifically, with increasing number of components, the
performance first increases to an optimal choice of m and then decreases as more and more spurious
nullspace components are added.

The best OoD performance is achieved by the optimized basis (red line fig. 3), which explicitly
finds the directions leading to the highest marginal improvement in the training loss Ltrain and
discards directions which don’t improve Ltrain. This suggests that the optimized basis finds a more
meaningful set of directions for a given m compared to utilizing PCA (that only considers g and
not how f uses the different directions) or the Jacobian-based feature spaces (which considers f ’s
sensitivity to different directions but not whether the sensitivity contributes to improvement in the
training loss Ltrain). Overall, this suggests that nullspace occupancy is a mechanism of OoD failure,
and that the optimized basis is the best choice of basis V with which to investigate this mechanism.

Does projection improve OoD performance? Next we study what improvements in performance
are possible with perfect heuristics or “oracle” choices of layer l and rank m on the DomainBed
benchmark. In addition to ERM, we compare with the CORAL (Sun & Saenko, 2016), SagNet (Nam
et al., 2019), and Interdomain-Mixup (Yan et al., 2020) models (from DomainBed) which achieve
state-of-the-art performances on the datasets explored in our work.

Heuristic for choosing m: As explained in (section 3) we report two oracles for each basis: 1) “oracle”
assumes access to both the best layer as well as best number of components m, and 2) “oracle-layer”
which selects m using a heuristic and picks the best layer. Thus, “oracle-layer” is a more practical
indicator of achievable OoD improvements while “oracle” provides an upper bound on achievable
performance. For the “oracle-layer” approach we choose m at the point when the training accuracy
saturates to 99.9% of the full value.

Notice that for the optimized basis, the oracle numbers (o) compare favourably to the SagNet and
CORAL algorithms on PACS, TerraIncognita as well as DomainNet (suggesting possible improve-
ments of 3.3 ± 1.0 over SagNet on TerraIncognita, for example). Interestingly, the layer oracle (lo)
which uses a heuristic for choosing m also gives consistent improvements over ERM (table 2). A
similar table with results on in-distribution generalization performance is included in Appendix F.

One concern when reporting oracle numbers as an aggregate, maximizing over m and choosing an
oracle layer L, is if the reported improvements are significant or whether even a baseline model
(at the same performance as the original ERM equipped with randomness in how it labels) could
achieve the same improvements given m× L trials. We compare against such baseline models (for
the multi-class classification case) in Appendix C. Our results show that the systematic improvements
we report in table 2 are highly unlikely to occur due to random chance (see Appendix C for details).

Does nullspace occupancy yield non-oracle improvements? We next study if it is possible to
choose the layer l and rank m using an unseen training domain, to obtain performance improvements
on a novel, held-out OoD test domain. Concretely, we train a network using standard DomainBed
protocol on say d training domains, use an unseen training domain d + 1 to pick l and m, and
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Table 2: Aggregate domain generalization performance achieved by different bases on RotatedMNIST,
PACS, TerraIncognita, and DomainNet. For each basis, we report the layer-oracle accuracy (lo) and
the overall oracle performance (o). Error bars are in Appendix A along with per-domain breakdowns.

RotatedMNIST PACS TerraIncognita DomainNet Imagenet-R

ERM 62.8 85.9 48.7 40.9 36.1

ERM + Different Low-Rank bases Vm:
RotatedMNIST PACS TerraIncognita DomainNet Imagenet-R

lo o lo o lo o lo o lo o
Random 62.8 63.2 85.6 86.4 48.7 49.3 40.7 40.9 36.1 36.1
Jacobian 62.9 63.7 86.6 87.1 49.3 50.6 41.0 41.6 37.2 38.2
PCA 63.0 64.3 86.9 87.4 50.1 51.6 41.4 42.2 37.1 37.4
Low Rank Wl+1 62.8 63.4 85.9 86.7 48.7 50.0 41.1 41.6 - -
Optimized 63.5 64.8 87.4 88.1 50.5 51.9 41.6 42.4 37.4 38.4
Representative state-of-the-art approaches:
CORAL N/A 86.2 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 -
SagNet N/A 86.3 ± 0.2 48.6 ± 1.0 40.3 ± 0.1 -
Mixup N/A 84.6 ± 0.6 47.9 ± 0.8 39.2 ± 0.1 -

Table 3: Aggregate domain generalization performance achieved by different bases on RotatedMNIST,
PACS, and TerraIncognita using leave-one-out hyperparameter selection. We report mean results and
standard errors over three independent trials.

RotatedMNIST PACS TerraIncognita

ERM 65.6 ± 0.7 78.2 ± 0.8 39.3 ± 1.1

ERM + Different Low-Rank bases Vm:
Random 64.6 ± 1.3 76.4 ± 1.6 34.8 ± 2.3
Jacobian 65.4 ± 0.7 78.1 ± 0.8 38.1 ± 2.4
PCA 65.7 ± 0.6 78.1 ± 1.3 38.9 ± 1.3
Optimized 66.3 ± 0.6 79.1 ± 1.2 39.6 ± 1.4

report performance after projection on a test domain d + 2. Encouragingly, the optimized basis
yields consistent improvements over ERM across all three datasets we evaluated on, namely, Rotated-
MNIST, PACS, and TerraIncognita (table 3). Further, the optimized basis is the only method that
achieves consistent improvements over ERM in this setting. This demonstrates the value of learning
the optimized basis that makes use of f , g and L (table 1), over other baseline approaches for choosing
the basis. Importantly, this also indicates that reducing nullspace occupancy is a viable method for
improving OoD performance of already trained ERM networks in more practical, non-oracle settings.

Is nullspace occupancy distinct from “capacity control”? We compare against keeping the same
activations ẑ in layer l at test time, but instead reduce the rank of the matrix Wl+1 in the next layer.
This implements a simple, inference-time way to control the capacity of the function f locally around
layer l. Across all datasets, for both oracle as well as layer oracles table 2, we find that this yields
inferior results to both the optimized basis as well as the PCA basis. This result demonstrates that it
is important to take both the variance in the training data, as well as the overall behavior of f into
account when reducing the rank, as opposed to reducing the rank only based on local characteristics
of the network in the next layer.

Is projection complementary to L2 regularization? L2 regularization (Krogh & Hertz, 1991) is
a commonly used heuristic for training deep models and is thought of commonly as a regularizer.
Given parameters θ and a loss function Ltrain, L2 regularization optimizes Ltrain + λ||θ||22, where
|| · || denotes the L2 norm. It is intuitive that L2 regularization should lead to “simpler” networks (in
the linear case this corresponds to lower-rank solutions) which may not suffer from the nullspace
failure mode. While the results in table 2 already include models trained with weight decay (based on
standard DomainBed hyperparameter sweeps), in this section we further scrutinize the connection
between nullspace occupancy failure and L2 regularization, since it is possible that in the presence of
such regularization one might extrapolate more smoothly in a low-rank nullspace (see appendix E).

6



Published as a conference paper at ICLR 2023

Figure 4: (left) Oracle improvements (o) vs L2 penalty: For Rotated-MNIST, for each bin of
L2 penalty values and test domain, we train 15 networks and select the one that achieves highest
validation accuracy. We plot the OoD accuracy of selected networks averaged across test domains
along with the average oracle improvement on the selected networks. We observe our method give
comparable performance for all L2 penalty values. (right) Nullspace occupancy for poisoned test
data: Classification accuracy after projecting network activations to the top-m components in the PC
basis and random basis. The black and red curves are the amount of total variance explained by the
first-m components. We observe that for PC basis, test set accuracy increases till training variance
explained is saturated and sharply declines when including nullspace components.

Instead of the standard DomainBed procedure, where for each set of train and test environments
(termed a condition) one trains a large number of ERM models via random hyperparameter selec-
tion (Gulrajani & Lopez-Paz, 2020) and picks the best model, we instead bin the networks into sets
based on the strength λ of the L2 penalty used to train them (fig. 7) and then pick the best ERM model
(using validation data from the training domain). This allows us to assess the complementary benefits
of our approach (which completely projects down to a chosen subspace) over L2 regularization which
should in principle ensure more smooth functions.

We plot performance of the best model in each L2 penalty bin and compare it to the oracle im-
provements achievable over that specific model using projection into the optimized basis (fig. 7)
on RotatedMNIST (see Appendix B for more datasets). We find that projection gives consistent
improvements over L2 regularization across the different buckets (x-axis fig. 7, right). This suggests
that L2 regularization and projection are quite complementary to each other, and that nullspace failure
occurs in deep networks even in the presence of L2 regularization.

Does nullspace occupancy emerge in data poisoning? So far we studied a setup where we
intervened by projecting the representation down to a subspace Vm, and we observed that this can
improve the performance of the network f operating on the projected features vx

m. What if we
instead did the reverse? That is, does the nullspace occupancy phenomenon emerge in cases where
we explicitly force neural networks to not generalize?

To test this, we utilize the experimental setting of (Huang et al., 2020) who show how to take training
and test datasets Dtrain = {xi, yi}|Dtrain|

i=1 and Dtest = {xi, yi}|Dtest|
i=1 and find a network uθ that

generalizes poorly to Dtest. Let uθ : X → P(Y) be the neural network mapping inputs X to the a
distribution over the labels P(Y). Then we train to optimize:

min
θ

1

|Dtrain|

|Dtrain|∑
i=1

− log uθ(yi|xi) +
1

|Dtest|

|Dtest|∑
i=1

− log(1− uθ(yi|xi)) (4)

We perform our experiment on the MNIST dataset by splitting the dataset into a train and test split.
We essentially train to perform well on the training set and badly on the test set, yielding a small
convolutional network uθ which by construction performs poorly on the given test set Dtest. Having
“poisoned” the test set, we check if projecting the test datapoints x ∈ Dtest to a subspace Vm can
“de-poison” the network. fig. 4 shows that this indeed happens in layer 5 for this network, and that
one can recover a large fraction of the lost performance due to poisoning by projecting into the first
m components of the PCA basis that explain most of the variance.

This indicates that the phenomenon of nullspace occupancy contributing to generalization failure
has applicability in other settings which are not necessarily connected to out-of-distribution general-
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ization and hints at some interesting underlying mechanism that connects nullspace occupancy to
generalization more broadly. See Appendix G for additional experimental details.

Finally, we performed experiments on adversarial robustness (see appendix K) where we found
similar trends as data poisoning – namely that both PCA as well as the optimized basis lead to gains
in robustness, but the gap between PCA and optimized basis is not as large as observed in more
traditional OoD generalization tasks (such as on DomainBed).

5 RELATED WORK

Out-of-Distribution (OoD) Generalization. There has been considerable interest in the out-of-
distribution generalization problem (Gulrajani & Lopez-Paz, 2020; Arjovsky et al., 2019; Sagawa
et al., 2019; Li et al., 2017a) where the goal is to generalize the classifier f · g to novel input domains
D. A number of popular approaches have been pursued including causal invariance (Arjovsky et al.,
2019), gradient starvation (Shah et al., 2020; Pezeshki et al., 2020), risk extrapolation (Krueger et al.,
2020), meta-learning (Li & Li, 2017), distributionally robust optimization (Sagawa et al., 2019; Sinha
et al., 2017) etc.. Among these, causal invariance and gradient starvation (Pezeshki et al., 2020)
(or simplicity bias (Shah et al., 2020)) are quite relevant to us, since they prescribe certain failure
modes which might be causing poor out-of-distribution accuracy. In contrast to work on causal
invariance, our work does not require an underlying “true” causal model or annotation of different
environments (except for the purposes of leave-one-out domain evaluation). While gradient starvation
is concerned with features v1 and v2 where both are potentially useful, our work is focused on
removal of additional/extra features, rather than using all the relevant features. In this sense, gradient
starvation and our work are quite complementary. Another relevant approach is that of last-layer
feature reweighting. Rosenfeld et al. (2022) and Kirichenko et al. (2022) show that ERM already
learns some generalizable features by showing that retraining the last layer using access to the target
distribution or a non-spuriously correlated reference distribution improves OOD performance. In
contrast, we show that it is possible to drop extra nullspace features without access to a target or
reference distribution to improve network performance.

Nullspaces, PCA, and Representation Learning. Low-rank feature spaces (primarily using PCA)
have been utilized for detecting adversarial examples (Li & Li, 2017; Carlini & Wagner, 2017)
and for improving adversarial robustness (Sanyal et al., 2018). In contrast to these works, we are
focused on “semantic” OoD generalization as opposed to adversarial examples. Other recent work
has noted that neural networks learn feature spaces which are essentially low rank (Huh et al., 2021).
Our work makes use of that observation to study OoD generalization and how choices of bases
affect generalization. In contrast to these works, which largely utilize PCA, our work considers the
downstream network f as well to identify the directions that are most predictive of the label on the
training set. In this sense, our work is like a deep version of partial least squares (PLS) (Geladi &
Kowalski, 1986) which aims to find the discriminative directions in feature space for linear models.

Low-rank models and Pruning. There is a lot of work in model compression that focusses on
reducing the rank of the layer weights Wl after training (Cichocki et al., 2016; Udell et al., 2016). A
naive data-independent strategy includes minimizing the distance ||W − UV T || between the original
network layer weight W and the compressed weights UV T , using a closed form solution such as
SVD Denton et al. (2014); Novikov et al. (2015). We utilize these techniques in our low-rank Wl+1

baseline (section 2) to compare against our feature projection techniques (table 2). In contrast to these
works which focus on compression, our goal is instead to improve downstream OoD performance
(our low-rank basis does not yeild any model compression). (Zhang et al., 2021) relates model
pruning to out-of-distribution generalization, showing that even in models which rely on spurious
correlations, there exist subnetworks that are robust to spurious correlations. Similar to this work, we
reduce the capacity of the network (or a particular layer in our case) to study OoD generalization.
However, unlike network pruning, our technique focuses on a particular layer and exposes nullspace
occupancy as a mechanism by which OoD failure can happen.

6 DISCUSSION

Nullspace removal is not sufficient for improving generalization. We observe that while there
usually exists a layer l ∈ {1, · · · , L} where performing the projection improves the oracle out of
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distribution accuracy, it is not necessary that the projection helps in every layer. To understand this,
it is helpful to think of a breakdown of error ϵ into two different sources, namely ϵnull which is the
nullspace error and ϵds which is the distribution shift error. One can have a distribution shift even if
the test data spans the top Vm components which explain the training data very well since even if
the components are same, the distribution of the test datapoints could end up being quite different.
Thus, it is not necessary that removing the nullspace error ϵnull would lead to a low overall error ϵ.
However, in practice it seems to play a role in OoD generalization.

Nullspace occupancy is not necessary for poor generalization. It is also straightforward to notice
that, if a trained network learns appropriately smooth functions f(v1,v2), ignoring an extra feature
v3 = 0 for example, then it would not be troubled by test data occupying the nullspace. In practice,
it appears that networks learnt even in the presence of weight decay do not show such a behavior
which suggests that nullspace occupancy might be a mechanism for explaining generalization failure
in those cases.

Connection to other OoD generalization failure modes. Given input features {v1,v2} ∈ V present
in a dataset Dtrain, and a trained neural network function f(v1,v2) from V → Y , where Y is the
label space (fig. 1), recent work has studied two popular modes of out-of-distribution generalization
failure with deep learning:

• Causality: Given a label y, a causal feature v1 and a “spurious” correlated feature v2, the idea is
to learn a function f(v1) that ignores v2 (Arjovsky et al., 2019). Instead, if we learn a function
f(v2), we fail due to spurious correlation.

• Gradient Starvation (Pezeshki et al., 2020; Shah et al., 2020): Given two predictive features
v1 and v2, where v1 elicits a stronger response at initialization than v2, the dynamics of learning
yields f(v1) that ignores the weaker, but predictive feature v2. This can lead to generalization
failure in a novel environment.

Our approach is distinct from causality in the sense that we are simply measuring geometric properties
of the learnt features as opposed to assuming any underlying causal model that induces OoD failure.
More closely related to our work is gradient starvation. In the language of gradient starvation, let us
assume a stronger feature v1, a less dominant feature v2 and an invariant feature v3 = 0. Gradient
starvation considers the case of v1 and v2, and suggests that the strong feature v1 might inhibit
the learning of the weak feature v2, at least in the neural tangent kernel regime (Jacot et al., 2018).
A priori, one might expect that v1 would suppress the learning of v3 as well, but our work shows
empirically that this is not the case. Our initial attempts to extend the theory of (Pezeshki et al.,
2020) revealed that their framework cannot easily accommodate a notion of a “useless” feature, and
the linearity assumptions in the NTK regime might not explain the non-smooth behavior of deep
neural networks (see Appendix D). However, it is interesting to note that while the gradient starvation
work attempts to mitigate this and learn more features, our work in contrast attempts to discard
uninformative and redundant features.

7 CONCLUSION

In this work we introduced the concept of nullspace occupancy – namely when test data occupies the
nullspace of a low-rank feature space Vm that captures the training set variability – and connected it to
OoD generalization. We showed that with a careful choice of the basis Vm, systematic improvements
in OoD generalization can often be obtained by projecting out the remaining nullspace components
for test data points. We found this “optimized basis” by performing an optimization over orthogonal
matrices to identify a set of components that minimizes the area under the training loss curve for
different choices of rank m. On domain generalization experiments on RotatedMNIST, PACS and
TerraIncognita we found that this choice of basis has the potential to improve out-of-distribution
accuracy of ERMs. Finally, we also found that nullspace occupancy emerges in a setting where one
poisons the network to perform poorly on a predetermined test set. Together, these results hint at a
broader interplay between nullspace occupancy and generalization in deep learning. There is much to
explore to understand the ubiquity of this novel mode of generalization failure and further refine our
approach to mitigate it, and we hope the community works to address these issues in the future.
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We include the following appendices:

• Appendix A: We report per-domain domain generalization results for projection in all bases
on Rotated-MNIST, PACS, TerraIncognita, and DomainNet.

• Appendix B: We provide figures from the main text on additional datasets.
• Appendix C: We demonstrate that our reported oracle results are not an artifact of considering

the maximum of many models. To establish this, we compare achieved improvements against
the maximum performance achieved by a large set of models with the same accuracy as the
base ERM, equipped with randomness.

• Appendix D: We discuss the connection between nullspace components and the theoretical
framework of Gradient Starvation (Pezeshki et al., 2020).

• Appendix E: We include a formal discussion of weight decay and how it relates to the
nullspace phenomenon

• Appendix F: We report results for projection on in-distribution generalization for Rotated-
MNIST, PACS, TerraIncognita, and DomainNet.

• Appendix G: We report additional details for the data poisoning experiment.
• Appendix H: We interpolate between test datapoints ẑ (with components in the nullspace) to

the projected test datapoints ẑm and study how accuracy varies as we move between them
• Appendix I: We present the small convolutional architecture used for all experiments on

Rotated-MNIST.
• Appendix J: We include plots of out-of-distribution accuracies after projection into all the

different bases, for all networks we consider across every dataset.
• Appendix K: We study the extent to which the optimized basis can help defend against

adversarial attacks.
• Appendix L: We include pseudocode for computing the oracle and layer-oracle accuracies

reported in the paper.
• Appendix M: We include pseudocode for obtaining our optimized basis by optimizing

equation 3.

A PER-DOMAIN DOMAIN GENERALIZATION RESULTS

In this section, we show per-domain results of Table 2 from the main text. For each test domain, we
report the mean accuracy and SEM over three nets selected using DomainBed search protocols, after
projection into different low rank feature spaces.

Table 4: Per-domain oracle (o) and layer-oracle (lo) out-of-distribution classification accuracies for
different choices of bases on Rotated-MNIST.

Algorithm 0 15 30 45 60 75 Avg
ERM 100.0 ± 0.0 96.4 ± 0.0 79.1 ± 1.1 49.9 ± 1.8 31.6 ± 2.0 19.9 ± 1.0 62.8

Random (o) 100.0 ± 0.0 96.5 ± 0.0 79.7 ± 1.6 50.4 ± 1.6 32.1 ± 1.5 20.7 ± 2.1 63.2
Jacobian (o) 100.0 ± 0.0 96.7 ± 0.1 80.2 ± 1.4 50.8 ± 2.1 32.3 ± 1.9 22.0 ± 0.7 63.7
PCA (o) 100.0 ± 0.1 96.9 ± 0.1 80.9 ± 1.2 51.6 ± 1.4 34.6 ± 1.8 21.6 ± 0.5 64.3
Low Rank Wl+1 (o) 100.0 ± 0.0 96.7 ± 0.0 79.6 ± 1.1 50.3 ± 1.8 32.6 ± 1.5 21.4 ± 0.7 63.4
Optimized (o) 100.0 ± 0.0 97.0 ± 0.1 81.0 ± 1.2 52.4 ± 1.2 36.1 ± 1.6 22.0 ± 1.0 64.8
Random (lo) 100.0 ± 0.0 96.4 ± 0.0 79.1 ± 1.1 49.9 ± 1.8 31.6 ± 2.0 20.0 ± 1.0 62.8
Jacobian (lo) 99.9 ± 0.0 96.4 ± 0.0 79.3 ± 1.4 49.0 ± 2.2 31.8 ± 2.1 20.8 ± 1.2 62.9
PCA (lo) 99.9 ± 0.0 96.4 ± 0.1 79.2 ± 1.0 50.7 ± 1.2 31.7 ± 1.7 20.4 ± 0.8 63.0
Low Rank Wl+1 (lo) 100.0 ± 0.0 96.5 ± 0.0 79.0 ± 1.1 49.9 ± 2.0 31.3 ± 1.6 19.8 ± 1.0 63.4
Optimized (lo) 99.9 ± 0.0 96.4 ± 0.1 79.7 ± 1.1 49.4 ± 1.2 35.2 ± 1.3 20.3 ± 1.0 63.5

13



Published as a conference paper at ICLR 2023

Table 5: Per-domain oracle (o) and layer-oracle (lo) out-of-distribution classification accuracies for
different choices of bases on PACS.

Algorithm A C P S Avg
ERM 87.9 ± 1.2 81.4 ± 1.7 96.1 ± 0.5 78.0 ± 1.7 85.9

Random (o) 87.9 ± 1.2 81.8 ± 1.0 96.3 ± 0.6 79.7 ± 1.4 86.4
Jacobian (o) 88.6 ± 1.2 83.6 ± 1.6 96.4 ± 0.6 79.7 ± 1.6 87.1
PCA (o) 88.9 ± 0.9 83.7 ± 1.6 96.2 ± 0.5 80.7 ± 1.0 87.4
Low Rank Wl+1 (o) 88.5 ± 0.7 83.2 ± 1.6 96.1 ± 0.5 79.0 ± 2.2 86.7
Optimized (o) 89.1 ± 1.0 84.2 ± 1.8 96.7 ± 0.3 82.4 ± 0.3 88.1
Random (lo) 86.9 ± 1.1 81.0 ± 0.8 96.3 ± 0.6 78.1 ± 1.4 85.6
Jacobian (lo) 87.9 ± 1.1 82.9 ± 1.4 96.2 ± 0.6 79.4 ± 0.6 86.6
PCA (lo) 88.5 ± 1.0 82.9 ± 1.7 96.2 ± 0.5 80.1 ± 1.3 86.9
Low Rank Wl+1 (lo) 87.9 ± 1.2 81.4 ± 1.7 96.1 ± 0.5 78.3 ± 1.7 85.9
Optimized (lo) 88.0 ± 0.9 82.9 ± 1.9 96.5 ± 0.4 82.0 ± 0.5 87.4

Table 6: Per-domain oracle (o) and layer-oracle (lo) out-of-distribution classification accuracies for
different choices of bases on TerraIncognita.

Algorithm L100 L38 L43 L46 Avg
ERM 53.6 ± 3.5 43.9 ± 1.2 56.8 ± 1.5 40.4 ± 1.2 48.7

Random (o) 54.5 ± 3.7 44.7 ± 1.8 57.4 ± 1.9 40.7 ± 0.4 49.3
Jacobian (o) 56.9 ± 2.7 46.0 ± 1.0 57.8 ± 1.4 41.7 ± 1.2 50.6
PCA (o) 58.1 ± 2.1 47.6 ± 0.8 58.7 ± 1.7 41.9 ± 1.7 51.6
Low Rank Wl+1 (o) 55.8 ± 2.2 46.3 ± 1.0 57.0 ± 1.6 41.0 ± 1.8 50.0
Optimized (o) 58.6 ± 2.2 47.9 ± 2.4 59.3 ± 1.3 41.9 ± 1.1 51.9
Random (lo) 53.5 ± 0.3 44.3 ± 1.3 57.2 ± 2.1 39.9 ± 0.8 48.7
Jacobian (lo) 55.1 ± 3.1 44.2 ± 1.4 57.2 ± 1.5 41.0 ± 1.1 49.3
PCA (lo) 57.0 ± 2.0 45.4 ± 0.9 57.0 ± 1.6 41.1 ± 1.3 50.1
Low Rank Wl+1 (lo) 53.6 ± 3.6 44.0 ± 1.2 56.8 ± 1.5 40.4 ± 1.2 48.7
Optimized (lo) 56.1 ± 3.4 46.9 ± 2.0 57.6 ± 1.3 41.1 ± 1.1 50.5

B ADDITIONAL PLOTS

In this section, we present figures from the main paper evaluated on additional datasets.

In Figure 3 of the main paper, we show that nullspace accuracy relates to OOD failure by plotting
the improvement in OOD classification accuracy against the dimensionality of the subspace used for
many different bases for Rotated-MNIST, PACS, and TerraIncognita. Fig 5 shows the corresponding
plot for one randomly selected network from DomainNet.

In Figure 4 (right) of the main paper, we verify that the effect of projection is complementary
to that of weight decay by plotting the improvements obtained by projection along with the base
network accuracy for networks trained with different values of weight decay on Rotated-MNIST.
fig. 6 presents the corresponding result on PACS, where we again see that projection gives consistent
improvements across different buckets of weight decay, suggesting that weight decay and projection
are complementary to each other.

C COMPARISON WITH MAXIMUM PERFORMANCE OF A LARGE NUMBER OF
BASELINE MODELS EQUIPPED WITH RANDOMNESS

In the main text, we report oracle numbers that are obtained by maximizing over many choices m of
subspace dimensionality, and oracle layer L. These numbers are the maximum over many different
trials, raising the concern that they may not be significant because even a baseline model with the
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Table 7: Per-domain oracle (o) and layer-oracle (lo) out-of-distribution classification accuracies for
different choices of bases on DomainNet.

Algorithm clip info paint quick real sketch Avg
ERM 59.6 ± 0.8 19.9 ± 0.3 45.5 ± 0.9 12.2 ± 0.3 59.2 ± 0.6 49.2 ± 0.7 40.9

Random (o) 59.6 ± 0.8 19.9 ± 0.3 45.5 ± 0.9 12.2 ± 0.3 59.2 ± 0.6 49.2 ± 0.7 40.9
Jacobian (o) 60.3 ± 0.9 20.5 ± 0.4 46.3 ± 0.9 13.0 ± 0.1 59.9 ± 0.6 49.8 ± 0.5 41.6
PCA (o) 61.0 ± 0.9 21.0 ± 0.4 46.4 ± 0.9 13.8 ± 0.1 60.3 ± 0.6 50.8 ± 0.5 42.2
Low Rank Wl+1 (o) 59.9 ± 0.8 20.5 ± 0.4 45.8 ± 0.9 13.0 ± 0.2 59.8 ± 0.5 50.4 ± 0.7 41.6
Optimized (o) 61.1 ± 0.9 21.0 ± 0.4 47.0 ± 0.9 13.5 ± 0.1 61.1 ± 0.7 51.0 ± 0.8 42.4
Random (lo) 59.4 ± 0.7 19.7 ± 0.2 45.5 ± 0.5 12.0 ± 0.2 58.3 ± 0.2 49.2 ± 0.7 40.7
Jacobian (lo) 59.7 ± 0.9 20.0 ± 0.4 45.5 ± 0.9 12.5 ± 0.2 59.4 ± 0.6 49.3 ± 0.5 41.0
PCA (lo) 60.1 ± 1.0 20.2 ± 0.3 45.7 ± 1.0 12.7 ± 0.3 59.7 ± 0.6 49.9 ± 0.5 41.4
Low Rank Wl+1 (lo) 59.4 ± 0.8 20.1 ± 0.3 45.3 ± 0.9 12.5 ± 0.2 59.4 ± 0.5 49.6 ± 0.5 41.0
Optimized (lo) 60.7 ± 0.9 21.0 ± 0.4 45.8 ± 1.1 12.9 ± 0.3 59.6 ± 0.8 49.7 ± 0.8 41.6
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Figure 5: Nullspace occupancy relates to OOD failure: Projecting test OOD activations onto a
subspace of rank m (x-axis) improves OOD performance (y-axis). We randomly pick one of 18
networks trained on DomainNet and the layer which best explains the nullspace occupancy related
failure mode.

same accuracy as ERM equipped with randomness in labelling could achieve the same improvements
given m×L trials. In this section, we construct one reasonable choice of such a model, and compare
the improvements obtained via our oracle method with an upper bound of the improvement obtainable
via the random baseline model.

Let the base (ERM) model be M with classification accuracy x on the OOD test set. Let the number
of samples in the test set be n, the number of layers L, and the number of considered choices of
feature space dimensionality be m. In this setting, the effective number of experiments is d = L×m.
We therefore consider a set of non-deterministic models W1, . . . ,Wd, where each model Wi predicts
the label correctly for each test sample with probability x. Let the out-of-distribution accuracies of
models W1, . . . ,Wd be random variables x1, . . . , xd. It follows that E [xi] = x, and V [xi] =

x(1−x)
n .

We wish to compare the improvements obtained by our method with E
[
maxi∈[d]xi

]
. To obtain an

upper bound for this expectation, we assume that variables xi ∼ N (x, x(1−x)
n ). We then use the

following result:

Theorem 1 Orabona & Pál (2015) Let X1, . . . , Xd be independent Gaussian Random Variables
N(0, σ2). For any d ≥ 2,

σ
√

2 log d ≥ E
[
maxi∈[d]Xi

]
≥ σ

(
1− exp

(
−
√
ln d

6.35

))(
√
2 ln d− 2 ln ln d+

√
2

π

)
−
√

2

π
σ

This gives us the upper bound:

E
[
maxi∈[d]xi

]
≤ x+ σ

√
2 log d = x+

√
x(1− x)

n

√
2 log(mL)
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Figure 6: Oracle improvements (o) vs weight decay: For PACS, for each bin of weight decay values
and test domain, we train 15 networks and select the one that achieves highest validation accuracy.
We plot the OOD accuracy of selected networks averaged across test domains along with the average
oracle improvement on the selected networks. We observe our method give comparable performance
for all weight decay values.

We compare this upper bound with the oracle performance obtained via projection on the ImageNet-R
dataset, which offers a tight upper bound due availability of a large number of test samples. In
our experiments on ImageNet-R, we consider projections in L = 5 layers, and m = 32 choices
of dimensionality of feature subspace. The base accuracy of ERM is x = 36.1%, yielding an
upper bound of E

[
maxi∈[d]xi

]
− x ≤ 0.88%. In contrast, the oracle accuracies of our projection

method yield performance improvements of 1.3% when using the PC basis, and 2.3% when using
the optimized basis. These results suggest that our method provides a systematic improvement to
generalization performance, and is not an artifact of taking a maximum over a large number of
models.

Note that the baseline model we consider, constructed by using the maximum performance with a set
of models that achieve the same accuracy as the base model, is a very strong baseline. For reference,
if we consider a naive model equipped with randomness that starts with the base ERM and randomly
flips the prediction with probability p, it would achieve accuracy p · x+ (1− p) 1−p

#classes . This could
be significantly lower than x and the maximum of a large number of such models could still yield
performance less than x.

D CONNECTION TO GRADIENT STARVATION (PEZESHKI ET AL., 2020)

Consider our running example of a training set with 3 features {v1,v2,v3 = 1}, where feature v3

is a nullspace feature, and has a constant value of 1. Gradient Starvation (GS) considers the setting
where v1 is a "stronger" feature than v2, and suggests that the strong feature v1 inhibits the learning
of the weak feature v2. In the context of our work, one might expect that v1 would also inhibit
the learning of v3, thus potentially mitigating generalization failure due to nullspace occupancy.
However, our empirical results indicate that this is not the case.

To reconcile this discrepancy, we attempt to fit nullspace features within the theoretical framework of
Gradient Starvation. GS considers a setting with n data points X = [x1, . . . ,xn] ∈ Rn×m, labels
y = {−1, 1}n and Y = diag(y) ∈ Rn×n, and function output ŷ(X) = f(X) for neural network
f . GS looks at the NTK parameterization, in which the network output is approximated as a linear
model of the function of the parameters, near initial parameters θ0:

ŷ(X,θ) = ŷ(X,θ0) +Φ0θ (5)

where Φ0 = Φ(X,θ0) is the neural tangent random feature (NTRF) matrix at initialization, i.e.:
Φ(X,θ) = dŷ(X,θ)

dθ ∈ Rn×m. GS then seeks to characterize the response of the network to a training
example, where the response is defined as the deviation from its initial value:

r = Y(ŷ − ŷ0) = YΦ0θ. (6)

The theory studies features defined in terms of the singular value decomposition of the NTRF:

YΦ0 = USVT , (7)
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where (VT )j. is the jth feature, (S)jj is the singular value of that feature and (U).j are the weights
of the feature in each example adjusted according to the labels y. The network’s response to each
feature j can then be expressed as

z = UT r = SVTθ. (8)

To evaluate the prediction of the Gradient Starvation framework to nullspace features, our goal is to
look at the response to nullspace features, when they appear in a new out-of-distribution example xo.
Note first that features considered under the framework are obtained via singular value decomposition
of the NTRF, and the diagonal matrix of singular values S has rank n, i.e. all the singular values are
positive. Hence, the Gradient starvation framework does not include any features with singular value
zero (nullspace features), and can only explain suppression of features in the training subspace.

To attempt to extend the framework to include nullspace features, we extend the feature set obtained
via SVD of the NTRF, by extending the set of examples [x1, . . . ,xn,xo] ∈ R(n+1)×m, to now also
include sample xo, a out-of-distribution example that contains variation along some nullspace feature
vo. Looking at the response z = SVTθ, we note that S would now have an additional element,
leading to a nonzero singular value along vo. However, evaluation of training dynamics in GS looks at
optimizing θ in the assumed linear approximation from equation 5 via minimizing ridge-regularized
cross entropy loss, and any amount of ridge-regularization would make it such that the component
of θ along vo would go down to exactly zero. As a result, the response z = SVTθ along nullspace
feature j would have nonzero corresponding values in S and VT , but a coefficient of 0 in θ. Therefore,
this extension of the GS framework would predict a network response of zero along any nullspace
component, at odds with the empirical results we find in this work.

E WEIGHT DECAY AND PROJECTION: AN ANALYSIS

Let us consider the weight decay regularization and how that relates to the eigenvalues of the weight
matrices Wl ∈ Rm×K learnt in different layers l. Specifically, weight decay minimizes the Frobenius
norm ||W ||F , which can also be written as tr(W ·WT ). Consider the Singular Value Decomposition
(SVD) of W = UΣV T , a rank r for W , and let ui refer to a column of U . We can then write:

tr(W ·WT ) = tr(UΣV TV ΣUT ) (9)

= tr(UΣ2UT ) (10)

= tr(

r∑
i=1

σ2
i ui · uT

i ) (11)

=
r∑

i=1

σ2
i tr(ui · uT

i ) (12)

=

r∑
i=1

σ2
i (13)

Where in the first line we used the fact that V TV = I , then used the fact that tr (trace) is a linear
operation, and then used the fact that ||ui|| = 1.

Thus, adding weight decay to a network yields small singular values (in an L-2 sense). This, however
does not yield sparsity. Thus, in some sense, “full-rank” information can potentially pass through
multiple layers of a network with weight decay (this would not be possible if the rank r was really
small (or σi = 0) in contrast, for example.

This explains the complementary benefits of performing projection even in the presence of weight
decay (as shown in the main paper).

F IN-DISTRIBUTION GENERALIZATION RESULTS

In this section, we report the performance of layer-oracle and oracle projection methods on in-
distribution generalization in table table 8.
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Interestingly, we find that the optimized basis consistently outperforms the other choices of bases.
For example, on PACS, the optimized basis yields improvements of 0.9% as opposed to 0.3% for
say, the PCA basis. Comparing the IID to the OOD setting, we find that the PCA basis yields much
smaller improvements compared to the optimized basis. The ratio of the improvements in oracle
from PCA basis to the optimized basis (averaged across all datasets) is 0.42 for IID compared to
0.79 for OOD. This suggests that, consistent with our intuition, the OOD datasets have more features
occupying the nullspace in the PC basis and thus the PC basis performs better in OOD and worse in
IID. However, considering the impact of the downstream function in addition to the variance (which
our optimized basis does) can improve performance in IID setting as well.

G DATA-POISONING EXPERIMENT DETAILS

We perform our data poisoning experiments on the MNIST dataset. We split the MNIST dataset into
two halves: a clean training set and a poisoned test set. We train a network with 4 convolutional
layers, an average pooling layer, and 3 linear layers to perform well on the training set and poorly on
the test set. All convolutional layers have a kernel size of 3× 3, a padding of 1, and 64, 128, 128,
and 128 channels respectively. The second convolutional layer uses a stride of 2, while all others use
a stride of 1. Each convolution is followed by a ReLU nonlinearity, and a GroupNorm operation with
8 groups. After the convolutional layers, an average pooling layer with a kernel size of 1× 1 and a
stride of 1 is applied such that only a single value remains per channel. The resulting representation
is fed to 3 linear layers of sizes 128× 64, 64× 32, and 32× 10 respectively. Each linear layer save
for the last is followed by a ReLU nonlinearity, and a batch normalization layer. To train the network,
we use the Adam optimizer with β1 = 0.9, and β2 = 0.999. We train the network for 100 epochs
with a batch size of 64 and learning rate of 1e−3.

H HOW DO IMPROVEMENTS IN ACCURACY RELATE TO THE DISTANCE FROM
THE SUBSPACE?

Do the observed improvements occur because we project to the subspace or is some other perturbation
of the test data point x equally beneficial? To answer this, we consider an experiment where we
partially project down the features V ′

m. Formally speaking, each vx can be written as a sum of two
feature vectors vx = vx

1 + vx
2 such that vx

1 lies in subspace Vm and vx
2 lies in subspace V ′

m. For
λ ∈ [0, 1], we consider the partial projection to Vm as vx

m = vx
1 + λvx

2 . If λ = 1, we recover the
original feature vector (no projection) whereas λ = 0 yields the full projection to Vm (methods
discussed above).

fig. 7 shows the interpolation between λ and the fraction of OOD improvement. It contains the plots
for this experiment across the 12 best ERMs on PACS and TerraIncognita. Overall, we find that as we
project out the component of feature vector in V ′

m and thus increase the distance from the subspace
Vm, performance gradually decreases (roughly monotonically) for both the optimized basis as well

Table 8: Aggregate in-distribution generalization performance achieved by different bases on Ro-
tatedMNIST, PACS, TerraIncognita, and DomainNet. For each basis, we report the layer-oracle
accuracy (lo) and the overall oracle performance (o).

RotatedMNIST PACS TerraIncognita DomainNet

ERM 99.2 96.6 91.5 59.3

ERM + Different Low-Rank bases Vm:
RotatedMNIST PACS TerraIncognita DomainNet

lo o lo o lo o lo o
Random 99.2 99.2 96.7 96.8 91.6 91.7 59.4 59.4
Jacobian 99.2 99.3 96.6 97.0 91.9 92.2 59.6 60.3
PCA 99.1 99.3 96.8 97.0 91.8 92.2 59.7 60.4
Low Rank Wl+1 99.2 99.4 96.7 96.9 91.5 91.6 59.7 60.4
Optimized 99.1 99.4 96.9 97.5 92.6 93.3 60.8 62.2
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as the PCA basis. This suggests that improvements are likely due to the projection of the datapoints
to the subspace Vm as opposed to some other kind of structured perturbation.
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Figure 7: Fraction improvement vs distance from optimal subspace: For the optimal subspace
Vm (i.e. optimal layer and m), we project out 1− λ fraction of the component orthogonal to Vm. For
the resulting feature vector, we plot accuracy improvement divided by the optimal subspace accuracy
improvement (y-axis) vs fraction of distance from the optimal subspace, λ (x-axis). Solid lines show
the mean fraction improvement over 12 DomainBed ERMs on PACS (left) and TerraIncognita (right),
and shaded portions indicate the standard deviation.

I ARCHITECTURE FOR ROTATED-MNIST EXPERIMENTS

Following DomainBed, we use the ResNet-50 architecture for all experiments on PACS, TerraIncog-
nita, and DomainNet, and a small CNN for experiments on Rotated-MNIST. The architecture for the
small CNN consists of 4 convolutional layers, succeeded by global average pooling and one linear
layer. The convolutional layers are of kernel size 3x3 and “same” padding, with 64, 128, 128, and
128 channels each. Each convolution layer is followed by a ReLU activation and a GroupNorm layer
with 8 groups.

J ADDITIONAL PLOTS

In this section, we include plots of out-of-distribution accuracies after projection into all the different
bases, for all networks, across Rotated-MNIST (fig. 8), PACS (fig. 9), TerraIncognita (fig. 10), and
DomainBed (fig. 11). Following DomainBed methodology, we have three selected networks for each
OOD domain (one from each independent trial), and plot the out-of-distribution accuracies after
projection into different bases in the oracle layer of each network.
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Figure 8: Improvements in out-of-distribution classification relative to full network on Rotated-
MNIST. The x-axis is the rank of the subspace used for projection, while the y-axis is the improvement
in OOD classification accuracy relative to the base network. Each row of plots corresponds to a
different out-of-distribution test domain.
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Figure 9: Improvements in out-of-distribution classification relative to full network on PACS.
The x-axis is the rank of the subspace used for projection, while the y-axis is the improvement in
OOD classification accuracy relative to the base network. Each row of plots corresponds to a different
out-of-distribution test domain.
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Figure 10: Improvements in out-of-distribution classification relative to full network on Ter-
raIncognita. The x-axis is the rank of the subspace used for projection, while the y-axis is the
improvement in OOD classification accuracy relative to the base network. Each row of plots corre-
sponds to a different out-of-distribution test domain.
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Figure 11: Improvements in out-of-distribution classification relative to full network on Domain-
Net. The x-axis is the rank of the subspace used for projection, while the y-axis is the improvement
in OOD classification accuracy relative to the base network. Each row of plots corresponds to a
different out-of-distribution test domain.

K ROBUSTNESS TO ADVERSARIAL PERTURBATIONS

In the main paper, we showed how alleviating nullspace failure leads to improved OOD generalization.
Can we also improve performance on adversarial examples generated to fool the full network by
projecting to a limited number of components? To check this, we perform an experiment where we
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evaluate oracle performance after projection on adversarial examples generated using AutoAttack
(Croce & Hein, 2020), for a WideResNet-28-10 network trained on CIFAR-10. We consider attacks
with a maximum Linf norm of ϵ = 8/255. We report oracle accuracies for the PC and optimized
bases, as well as corresponding CIFAR-10 test set performance in table 9, and plot accuracies for
all choices of number of components in fig. 12. We additionally include in table 9 results for the
augmentation driven adversarial defense of Gowal et al. (2021), a representative state-of-the-art
method for this dataset and architecture. We find that both the PC basis and optimized basis recover a
meaningful amount of the network’s performance on the adversarial set.

Test set Adversarial set

ERM 94.29% 0%
PC basis 78.52% 46.48%
Optimized basis 84.77% 44.92%

Gowal et al. (2021) 87% 62%

Table 9: Oracle performance after projection on the adversarial set, along with corresponding clean
test set accuracies on CIFAR-10.
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Figure 12: Nullspace occupancy for adversarial
examples. Classification accuracy on CIFAR-10
test set and adversarial example set after projecting
to the top-m components of the PC and optimized
bases in layer 0, the oracle layer.
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L PSEUDOCODE FOR COMPUTING ORACLE AND LAYER-ORACLE ACCURACIES

In this section we present pseudocode for the procedure used to report oracle and layer-oracle
accuracies given the OoD and IID accuracies of a network for all choices of layer and number of
components.

Algorithm 1 Pseudocode for computing oracle and layer-oracle accuracies for one network given
OoD and IID accuracies for all considered numbers of components and layers

1: Input: Layers L = {0, . . . , l − 1}, OoD accuracy matrix A ∈ Rl×m, IID accuracy matrix
B ∈ Rl×m

2: Set oracle layer lo ← argmaxi∈L maxj∈{0,...,m−1} Aij

3: Set heuristic index k ← minj∈{0,...,m−1} j such that B[lo, j] ≥ 0.999×B[lo,m− 1]
4: Oracle accuracy o← maxj∈{0,...,m−1} A[lo, j]
5: Layer-oracle accuracy lo← A[lo, k]

M PSEUDOCODE FOR OPTIMIZING UNITARY MATRICES TO OBTAIN THE
OPTIMIZED BASIS

In this section we present pseudocode for optimizing the objective in equation 3 using the unitary
optimization procedure of Kiani et al. (2022).

Algorithm 2 Pseudocode for obtaining the optimized basis
1: Input: Encoder g to target layer, classifer f from target layer, training mini-batches {(xi,yi)}Ni=1,

training loss Ltrain, step size α, PC basis Vpc, µpc

2: Initialize basis V ← Vpc, µ← µpc

3: for i ∈ {1, . . . , N} do
4: Set loss l← 0
5: Get representation for target layer z← g(xi)
6: for number of components k ∈ {1, . . . ,m} do
7: Project representation using eq 1 to get ẑ, using z, V, and k components.
8: Classify projected representation ŷ ← f(ẑ)
9: l← l + Ltrain(ŷ, y)

10: end for
11: Grad g← ∇V l
12: Project gradient p← 0.5× (g − V gTV )
13: Update basis V ← V exp (−αV Tp)
14: end for
15: Return V, µ
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