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Abstract

The lack of interpretability in the field of medical image analysis has significant eth-
ical and legal implications. Existing interpretable methods in this domain encounter
several challenges, including dependency on specific models, difficulties in under-
standing and visualization, as well as issues related to efficiency. To address these
limitations, we propose a novel framework called Med-MICN (Medical Multi-
dimensional Interpretable Concept Network). Med-MICN provides interpretability
alignment for various angles, including neural symbolic reasoning, concept se-
mantics, and saliency maps, which are superior to current interpretable methods.
Its advantages include high prediction accuracy, interpretability across multiple
dimensions, and automation through an end-to-end concept labeling process that re-
duces the need for extensive human training effort when working with new datasets.
To demonstrate the effectiveness and interpretability of Med-MICN, we apply it
to four benchmark datasets and compare it with baselines. The results clearly
demonstrate the superior performance and interpretability of our Med-MICN.

1 Introduction

The field of medical image analysis has witnessed remarkable advancements, especially for the deep
learning models. Deep learning models have exhibited exceptional performance in various tasks,
such as image recognition and disease diagnosis [31, 46, 1], with an opaque decision process and
intricate network. However, this lack of transparency is particularly problematic in the medical
domain, making it challenging for physicians and clinical professionals to trust the predictions made
by these deep models. Thus, there is an urgent need for the interpretability of model decisions in the
medical domain [43, 13, 57].

The medical field has strict trust requirements. It not only demands high-performing models but
also emphasizes comprehensibility and earning the trust of practitioners [20]. Thus, Explainable
Artificial Intelligence (XAI) has emerged as a prominent research area in this field. It aims to enhance
the transparency and comprehensibility of decision-making processes in deep learning models and
large language models by incorporating interpretability [65, 21, 22, 64, 63, 25, 8]. Various methods
have been proposed to achieve interpretability, including attention mechanisms [56, 61, 27, 26, 24],
saliency maps [70, 16], DeepLIFT and Shapley values [38, 4], influence functions [34, 55]. These
methods strive to provide users with visual explanations that shed light on the decision-making
process of the model. However, while these post-hoc explanatory methods offer valuable information,
there is still a gap between their explanations and the model decisions [42]. Moreover, these post-hoc
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Figure 1: Med-MICN demonstrates multidimensional interpretability, encompassing concept score
prediction, concept reasoning rules, and saliency maps, achieving alignment within the interpretative
framework. The ’Peripheral ground-glass opacities’ is c0, and along the y-axis, it sequentially
becomes c1, . . . , c7.

explanations are generated after the model training and cannot actively contribute to the model
fine-tuning process, hindering them from being a faithful explanation tool.

Thus, there is increasing interest among researchers in developing self-explanatory methods. Among
these, concept-based methods have garnered significant attention [50, 2, 35]. Concept Bottleneck
Model (CBM) [35] initially predicts a set of pre-determined intermediate concepts and subsequently
utilizes these concepts to make predictions for the final output, which are easily understandable to
humans. Concept-based explanations provided by inherently interpretable methods are generally
more comprehensible than post-hoc approaches. However, most existing methods treat concept
features alone as the determination of the predictions. This approach overlooks the intrinsic feature
embeddings present within medical images, thus degrading accuracy [44]. Moreover, while these
concepts are human-understandable, they lack semantic meanings, thus questioning the faithfulness
of their interpretability [39]. To improve further human trust, several recent works [3] aim to leverage
syntactic rule structures to concept embeddings. However, there are still several potential issues.
First, unlike CBMs, current concept models with logical rules mainly focus on the supervised concept
case, which is quite strict for biomedical images as concept annotation is expensive. Second, while
current concept models (with logical rules) provide interpretations via concepts, we found that the
importance of these concepts is misaligned with other explanations, especially the explanation given
by saliency maps [70, 16]. This will lead to a possible reduction in human trust when using these
models.

To address these challenges, we introduce a new and innovative end-to-end concept-based framework
called the Med-MICN (Medical Multi-dimensional Interpretable Concept Network), as illustrated
in Figure 3. As shown in Figure 2, Med-MICN is an end-to-end framework that leverages Large
Multimodals (LMMs) to generate concept sets and perform auto-annotation for medical images,
thereby aligning concept labels with images to overcome the high cost associated with medical
concepts annotation. In contrast to typical concept-based models, our interpretation is notably more
diverse and precise (shown in Figure 1). Specifically, we map the image features extracted by the
backbone through a concept encoder to obtain concept prediction and concept embeddings, which are
then input into the neural symbolic layers for interpretation. This also establishes alignment between
image information and concept embeddings by utilizing a concept encoder, leading to the derivation
of predictive concept scores. Furthermore, we align concept semantics with concept embeddings
by incorporating neural symbolic layers. Thus, we effectively align image information with con-
cept semantics and concept saliency maps, achieving comprehensive multidimensional alignment.
Additionally, unlike most concept-based methods, we use concept embeddings to complement the
original image features, which enhances classification accuracy without any post-process. Our main
contributions can be summarized as follows:
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• We proposed an end-to-end framework called Med-MICN, which leverages the strength of
different XAI methods such as concept-based models, neural symbolic methods, saliency
maps, and concept semantics. Moreover, Med-MICN generates rules and utilizes concept
embeddings to complement the intrinsic medical image features, which improves accuracy.

• Med-MICN offers an alignment strategy that includes text and image information, saliency
maps, and concept semantics. It is model-agnostic and can easily transfer to other models.
Our outputs are interpreted in multiple dimensions, including concept prediction, saliency
maps, and concept reasoning rules, making it easier for experts to identify and correct errors.

• Through extensive experiments on four benchmark datasets, Med-MICN demonstrates
superior performance and interpretability compared with other concept-based models and
the black-box model baselines.

2 Related Work

Concept Bottleneck Model. The Concept Bottleneck Model (CBM) [35] has emerged as an in-
novative deep-learning approach for image classification and visual reasoning by incorporating a
concept bottleneck layer into deep neural networks. However, CBM faces two significant chal-
lenges. Firstly, its performance often falls short of the original models without the concept bottleneck
layer, attributed to incomplete information extraction from the original data to bottleneck features.
Secondly, CBM extensively depends on meticulous dataset annotation. To solve these problems,
researchers have delved into potential solutions. For example, [7] have extended CBM into interactive
prediction settings by introducing an interaction policy to determine which concepts to label, ulti-
mately improving the final predictions. Additionally, [41] has addressed the limitations of CBM by
proposing a novel framework called Label-free CBM, which offers promising alternatives. Post-hoc
Concept Bottleneck models [66] can be applied to various neural networks without compromising
model performance, preserving interpretability advantages. Despite much research in the image field
[18, 33, 32, 45, 47, 36, 28, 23, 37], concept-based method for the medical field remains less explored,
which requires more precise results and faithful interpretation. [9] used a conceptual alignment
deep autoencoder to analyze tongue images representing different body constituent types based on
traditional Chinese medicine principles. [35] introduced CBM for osteoarthritis grading and used ten
clinical concepts such as joint space narrowing, bone spurs, calcification, etc.

However, previous research heavily relies on expert annotation datasets or often focuses solely
on concept features to make predictions while overlooking the intrinsic feature embeddings within
images. Furthermore, while the concept neural-symbolic model has been explored in the graph domain
[3], its application to images, particularly in the medical domain, has been largely absent. Additionally,
our work addresses these gaps by proposing an end-to-end framework with an alignment strategy that
leverages various explainable methods, including concept-based models, neural-symbolic methods,
saliency maps, and concept semantics, to provide comprehensive solutions to these challenges.

Explanation in Medical Image. Research on the interpretability of deep learning in medical
image processing provides an effective and interactive approach to enhancing medical knowledge
and assisting in disease diagnosis. User studies involving physicians have revealed that doctors
often seek explanations to understand AI results, especially when the outcomes are related to their
own hypotheses or differential diagnoses [60]. They also turn to explanations to resolve conflicts
when their judgments differ from those of AI [6], thereby enhancing the intelligence of medical
models. Previous studies have visualized lesion areas through methods such as heatmaps [59]
and attention visualization [12], aiding in the identification of lesion regions and providing visual
evidence. Additionally, utilizing language model-based methods like LLM or LMM to generate
medical reports complements the interpretation of model results (ChatCAD [58], XrayGPT [52],
Med-PaLM [49]). Saliency maps have emerged as the most common and clinically user-friendly
explanation for medical imaging tasks [53, 68, 69]. Recent research underscores the importance
of understanding the pivotal features influencing AI predictions, particularly when clinicians must
compare AI decisions with their own clinical assessments in cases of decision incongruity [54]. In
addition to the image’s intrinsic feature recognition, assisted discrimination methods based on concept
injection are widely employed in assisted medical diagnosis [35, 7]. Compared to relying solely
on self-supervised training, conceptual feature-based supplementation integrates expert knowledge,
offering more accurate assistance for interpreting detection results.
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However, previous research on medical images relies on single-dimensional explanations, potentially
lacking sufficient decision information for physicians. Furthermore, erroneous single-dimensional
explanations could significantly impact physicians’ judgments. Thus, there is a pressing need for a
multi-dimensional explanatory framework where explanations across various dimensions complement
each other. In instances of incorrect explanations, physicians can turn to explanations in alternative
dimensions to aid their judgment.

Figure 2: (a) module, output rich dimensional interpretable conceptual information for the specified
disease through the multimodal model and convert the conceptual information into text vectors
through the text embedding module; (b) module, access the image to the image embedder to get the
image features, and then match with the conceptual textual information to get the relevant attention
region. Then, we get the influence score of the relevant region information through pooling, and
finally send it to the filter to sieve out the concept information with weak relevance to get the disease
concept of image information.

3 Preliminaries

Concept Bottleneck Models. To introduce the original Concept Bottleneck Models, we adopt
the notations used by [35]. We consider a classification task with a concept set denoted as C =
C1, C2, . . . , CNand a training dataset represented as {(xi, yi, ci)}Mi=1. Here, for i ∈ [M ], xi ∈ Rd

represents the feature vector, yi ∈ Rdz denotes the label (with dz corresponding to the number of
classes), and ci ∈ Rdc represents the concept vector. In this context, the j-th entry of ci represents
the weight of the concept pj . In CBMs, our goal is to learn two representations: one that transforms
the input space to the concept space, denoted as g : Rd → Rdc , and another that maps the concept
space to the prediction space, denoted as f : Rdc → Rdz . For any input x, we aim to ensure that
its predicted concept vector ĉ = g(x) and prediction ŷ = f(g(x)) are close to their underlying
counterparts, thus capturing the essence of the original CBMs.

Fuzzy Logic Rules. As described by [17, 3], continuous fuzzy logic extends upon traditional Boolean
logic by introducing a more nuanced approach to truth values. Rather than being confined to the
discrete values of either 0 or 1, truth values are represented as degrees within the continuous range
of {0, 1}. Conventional Boolean connectives including t-norm ∧ : [0, 1]× [0, 1] 7→ [0, 1], t-conorm
∨ : [0, 1]×[0, 1] 7→ [0, 1], negation ¬x = 1−x. The logical connectives, including ¬,∨,∧,⇒,⇐,⇔,
are utilized to convey the logical relationships between concepts and their representations. For
example, consider the problem of deciding whether an X-ray lung image has COVID, given the
vocabulary of concepts "ground-glass opacities (GO)," "Localized or diffuse presentation (LDP),"
and "lobar consolidation (LC)." A simple decision rule can be y ⇔ cGO ∧ ¬cLC . From this rule, we
can deduce that (1) Having both "no LC" and "GO" is relevant to having COVID. (2) Having LDP is
irrelevant to deciding whether COVID exists.
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Figure 3: Overview of the Med-MICN Framework. The Med-MICN framework consists of four pri-
mary modules: (1) Feature Extraction Module: In the initial step, image features are extracted using
a backbone network to obtain pixel-level features. (2) Concept Embedding Module: The extracted
features are fed into the concept embedding module. This module outputs concept embeddings while
passing through a category classification linkage layer to obtain predicted category information. (3)
Concept Semantic Alignment: Concurrently, a Vision-Language Model (VLM) is used to annotate
the image features, generating concept category annotations aligned with the predicted categories. (4)
Neural Symbolic Layer: After obtaining the concept embeddings, they are input into the Neural
Symbolic layer to derive conceptual rules. Finally, the concept embeddings obtained from module (2)
are concatenated with the original image embeddings and fed into the final category prediction layer
to produce the ultimate prediction results.

4 Medical Multi-dimensional Interpretable Concept Network

Here, we present Med-MICN (Figure 3), a novel framework that constructs a model in an automated,
interpretable, and efficient manner. (i) In traditional CBMs, the concept set is typically generated
through annotations by human experts. When there is no concept set and concept labels, we first
introduce the automated concept labeling alignment process (Figure 2). (ii) Then, the concept set
(output by LLMs such as GPT4-V) is fed into the text encoder to obtain word embedding vectors.
Our method utilizes Vision-Language Models (VLMs) to encode the images and calculate cosine
distances to generate heatmaps. We apply average pooling to these heatmaps to obtain a similarity
score aligned with the concept set through a threshold to obtain concept labels. (iii) Next, we extract
image features using a feature extraction network and then map them through a concept encoder to
obtain concept embeddings. (iv) We finally use these concept embeddings as input into the neural
symbolic layers to generate concept reasoning rules and incorporate them as complementary features
to the intrinsic spatial features for predictions, proving multi-dimensional interpretation alignment.
We provide details for each component of Med-MICN as follows.

4.1 Concept Set Generation and Filtering
Given Mc classes of target diseases or pathology, the first step of our paradigm is to acquire a set of
useful concepts related to the classes. A typical workflow in the medical domain is to seek help from
experts. Inspired by the recent work, which suggests that instruction-following large language models
present a new alternative to automatically generate concepts throughout the entire process [41, 40].
We propose to generate a concept set using LMMs, such as GPT-4V, which has extensive domain
knowledge in both visual and language, to identify the crucial concepts for medical classification.
Figure 2 (a) illustrates the framework for concept set generation. Details are in Appendix A.

4.2 VLMs-Med-based Concept Alignment
Generating Concept Heatmaps. Suppose we have a set of N useful concepts C =
{C1, C2, . . . , CN} obtained from GPT-4V. Then, the next step is to generate pseudo-(concept)
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labels for each image in the dataset corresponding to its concept set. Inspired by the satisfactory
performance in concept recognition within the medical field demonstrated by VLMs [62], we use
BioViL [5] to generate the pseudo-labels for the concepts of each image. Figure 2 (b) illustrates the
detailed automatic annotation process of concepts.

Given an image x and a concept set, its feature map V ∈ RH×W×D and the text embedding ti ∈ RD

for each concept are extracted as follows:

V = ΘV (x), ti = ΘT (ci), i = 1, . . . , N

where ΘV and ΘT are the visual and text encoders, ti is the embedding of the i-th concept in the
concept pool, H and W are the height and width of the feature map.

Given V and ti, we can obtain a heatmap Pi, i.e., a similarity matrix that measures the similarity
between the concept and the image can be obtained by computing their cosine distance:

Ph,w,i =
tTi Vh,w

||ti|| · ||Vh,w||
, h = 1, . . . ,H, w = 1, . . . ,W

where h,w are the h-th and w-th positions in the heatmaps, and Ph,w,i represents a local similarity
score between V and ti. Then, we derived heatmaps for all concepts, denoted as {P1, P2, . . . , PN}.

Calculating Concept Scores. As average pooling performs better in downstream medical classi-
fication tasks [62], we apply average pooling to the heatmaps to deduce the connection between
the image and concepts: si = 1

H·W
∑H

h=1

∑W
w=1 Hh,w,i. Intuitively, si is the refined similarity

score between the image and concept ci. Thus, a concept vector e can be obtained, representing the
similarity between an image input x and a set of concepts: e = (s1, . . . , sN )T .

Alignment of Image and Concept Labels. To align images with concept labels, we determine the
presence of a concept attribute in an image based on a threshold value derived from an experiment. If
the value si exceeds this threshold, we consider the image to possess that specific concept attribute
and set the concept label to be True. We can obtain concept labels for all images c = {c1, . . . , cM},
where Ci ∈ {0, 1}N is the concept label for the i-th sample. Finally, to ensure the truthfulness of
concepts, we discard all concepts for which the similarity across all images is below 0.45. To achieve
higher annotation accuracy, we only annotated 20% of the data for fine-tuning the model to adapt to
different datasets. We sampled 10% of the pseudo-labels generated and compared them with expert
annotations [11]. It is notable that in the case where the concept set and concept labels are given, we
can directly skip Section 4.1 and 4.2.

4.3 Multi-dimensional Alignment
In Section 4.2, we get the concept labels for all input images. However, as we mentioned in the
introduction, such representation might significantly degrade task accuracy [39, 67]. To overcome
this issue, recently [67] propose using concept embeddings, which increase the task accuracy of
concept-based models while weakening their interpretability. Motivated by this, we use these concept
embeddings to increase the accuracy and leverage our concept label to enhance interpretability. In the
following, we provide details.

Concept Embeddings. For the training data X = {(xm, ym)}Mm=1, we use a backbone network
(e.g., ResNet50) to extract features F = {f(xm)}Mm=1. Then, for each feature, it passes through a
concept encoder [67] to obtain feature embeddings fc(xm) and concept embeddings ĉm. The specific
process can be represented by the following expression:

f(xm) = Θb(xm), fc(xm), Ĉm = Θc(f(xm)) for m ∈ [M ],

where Θb and Θc represent the backbone and concept encoder, respectively.

To enhance the interpretability of concept embeddings, we utilize binary cross-entropy to optimize
the accuracy of concept extraction by computing Lc based on ĉ = {ĉm}Mm=1 and concept labels c in
Section 4.2:

Lc = BCE(ĉ, c). (1)

Neural-Symbolic Layer. Our next goal is to use concept embedding to learn concept rules for
prediction, which is motivated by [3]. We aim to generate rules involving the utilization of two sets
of feed-forward neural networks: Φ(·) and Ψ(·). The output of Φ(·) signifies the assigned role of
each concept, determining whether it is positive or negative (such as “no LC” and “GO”). On the
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other hand, the output of Ψ(·) represents the relevance of each concept, indicating whether it is
useful within the context of the sample feature (such as “LDP”). The overall process can be divided
into three distinct parts: (i) Learning the role (positive or negative) of each concept called Concept
Polarity. For each prediction class j, there exists a neural network Φj(·). This network takes each
concept embedding as input and produces a soft indicator, a scalar value in the [0, 1] range. This soft
indicator represents the role of the concept within the formula; (ii) Learning the relevance of each
concept called Concept Relevance. Similar to concept polarity, for each prediction class j, a neural
network Ψj(·) is utilized; (iii) Output the logical reasoning rules of the concept and the contribution
scores of concepts. For each class j, we combine the previous concept polarity vector Io,j and the
concept relevance vector Ir,j to obtain the logical inference output. This is achieved by the following
expression (Details are in Appendix B):

ŷj = ∧N
i=1(¬Io,i,j ∨ Ir,i,j) = min

i∈[N ]
{max{1− Io,i,j , Ir,i,j}}. (2)

4.4 Final Objective
In this section, we will discuss how we derive the class of medical images and the process of
network optimization. First, we have the loss Lc in (1) for enhancing the interpretability of concept
embeddings. Also, as the concept embeddings are input into the neural-symbolic layer to output
logical reasoning rules of the concept and prediction ŷneural,m in (2) for xm, we also have a
loss between the predictions given by concept rule and ground truth, which corresponds to the
interpretability of our neural-symbolic layers. In the context of binary classification tasks, we employ
binary cross-entropy (BCE) as our loss function. For multi-class classification tasks, we use cross-
entropy as the measure. Using binary classification as an example, we calculate the loss Lneural by
comparing the output ŷ from the neural-symbolic layer to the label y as follows:

Lneural = BCE(ŷneural,y), (3)

Classification Loss. Note that as Lneural in (3) is purely dependent on the concept rules rather than
feature embeddings, we still need a loss for final prediction performance. In a typical classification
network, the process involves obtaining the feature f(xm) and passing it through a classification
head to generate the classification results. What sets our approach apart is that we fuse the previously
extracted fc(xm) with the f(xm) using a fusion module as input to the classification ahead. This can
be expressed using the following formula:

ỹm = WF · Concat(f(xm), fc(xm)),

Note that WF represents a fully connected neural network. For training our classification model, we
use categorical cross-entropy loss, which is defined as follows:

Ltask = CE(ỹ,y),

Formally, the overall loss function of our approach can be formulated as:

L = Ltask + λ1 · Lc + λ2 · Lneural,

where λ1, λ2 are hyperparameters for the trade-off between interpretability and accuracy.

5 Experiment

In this section, we introduce the experimental settings, present our superior performance, and
showcase the interpretability of our network. Due to the space limit, additional experimental details
and results are in the appendix C.

5.1 Experimental Setting

Datasets. We consider four benchmark medical datasets: COVID-CT [29] for CT images, DDI [10]
for dermatology images, Chest X-Ray [14], and Fitzpatrick17k [15] for a dermatological dataset with
skin colors.

Baselines. We compared our model with other state-of-the-art interpretable models, such as Label-free
CBM[41] and DCR[3], to highlight the robustness of our interpretability capabilities. Furthermore,
we conducted comparisons with black-box models, such as SSSD-COVID [51].
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Evaluation Metrics. In this study, we concentrate on medical image classification. To comprehen-
sively evaluate our classification model, we employ a range of key metrics, including binary accuracy,
precision, recall, F1-Score, and AUC value. Specifically, we calculate each metric for positive
and negative samples in each dataset, alongside utilizing AUC for further insight into classification
performance.

Experimental Setup. We employed three different models as our backbones: ResNet-50 [19],
VGG19 [48], and DenseNet169 [30]. To demonstrate the superiority of our method, we use the
same backbones without any additional processing. For the concept encoder, we utilized the same
structure as described in [35]. Before training, we obtained pseudo-labels for the concepts in each
image using the automatic labeling process. Although previous work has shown that operations
like super-resolution reconstruction can improve model accuracy on our dataset, to demonstrate the
superiority of our method, we used the original images as our input. During training, we adopted
the Adam optimizer with a learning rate of 5e-5 throughout the training stages. For hyperparameter
selection, we set λ1 = λ2 = 0.1.

Method Backbone COVID-CT DDI Chest X-Ray Fitzpatrick17k Interpretability
Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%)

Baseline

ResNet50 81.36 81.67 77.27 72.77 75.64 71.72 80.79 80.79 ×
VGG19 79.60 79.88 76.52 70.12 81.41 77.56 75.37 75.37 ×
DenseNet169 85.59 85.59 78.03 69.51 69.55 61.66 76.85 76.83 ×
SSSD-COVID 81.76 80.00 - - - - - - ×
Label Free CBM 69.49 69.21 70.34 69.21 71.21 70.84 75.24 75.41 ✓
DCR 55.93 51.41 76.52 65.32 62.02 41.33 68.05 66.12 ✓

Ours
ResNet50 84.75 84.75 81.82 76.33 78.37 74.42 82.76 83.03 ✓
VGG19 83.05 84.37 82.58 78.07 88.30 88.16 77.34 77.53 ✓
DenseNet169 86.44 87.15 79.55 69.79 73.88 65.70 80.79 81.11 ✓

Table 1: Utility results. We conducted ten repeated experiments and calculated the average results for
each metric. Red and blue indicate the best and the second-best result. Our approach outperforms
the baseline backbone models while also providing interpretability. Our model exhibits significantly
higher accuracy compared to other state-of-the-art interpretable models.

5.2 Model Utility Analysis

Med-MICN delivers superior performance. In Table 1, our method achieved different improve-
ments on various backbones for the COVID-CT dataset. Taking Acc as an example, it increased by
3.39% with ResNet50 and by 3.45% with VGG compared to backbones. Compared to SSSD-COVID,
our method outperforms in terms of Acc and F1, with improvements of 4.68% and 7.15%, demonstrat-
ing the superiority of our method in enhancing model accuracy. Additionally, our method possesses
interpretability, which is not achievable by SSSD-COVID. On the other hand, our method achieved
significant improvements on different backbones for the DDI dataset. For instance, Acc increased by
6.01% with VGG. Despite the significant differences between the two datasets in terms of modality,
our method demonstrated significant effects on both datasets, indicating its good generalizability.
Details are shown in Table 4, 5, 6, and 7 in Appendix.

Meanwhile, when compared to existing well-performing interpretable models, our approach demon-
strates significant advantages in terms of accuracy and other metrics across different datasets. This
indicates that our joint prediction of image categories using both concept and image feature spaces
outperforms predictions based solely on a limited concept space.

5.3 Model Interpretability Analysis

Explanation across multiple dimensions. In our approach, we discover and generate concept rea-
soning rules based on the neural-symbolic layer. Analyzing these rules enhances the interpretability of
our network. In addition, our approach derives concept prediction scores through the concept encoder,
and during evaluation, it also produces saliency maps. Through multi-dimensional explanations, we
can observe the basis for the model decision from different perspectives. In concept score prediction,
we can observe how the model maps data to concept dimensions, allowing doctors to observe and
correct concept results, thereby rectifying prediction errors caused by incorrect concept predictions.
In concept reasoning rules, we can deduce the model classification criteria, further explaining the
model decisions. Additionally, during the evaluation process, we can generate saliency maps for the

8



Dataset Ablation Setting Metrics
Lc Lneural ACC.(%) Precision(%) Recall(%) F1(%) AUC.(%) Interpretability

COVID-CT

82.20 82.92 82.21 82.55 82.64
✓ 83.05 83.62 83.16 83.01 83.16

✓ 81.36 82.11 81.38 81.70 81.81
✓ ✓ 84.75 84.77 84.88 84.75 84.77 ✓

DDI

78.03 74.97 66.88 69.24 67.41
✓ 79.55 75.36 71.47 72.73 71.20

✓ 78.79 76.38 66.29 68.69 67.64
✓ ✓ 81.82 76.56 76.17 76.33 76.12 ✓

Chest X-Ray

68.59 69.63 61.11 61.02 62.05
✓ 72.28 77.63 64.15 63.72 64.15

✓ 70.03 73.83 61.84 61.25 62.39
✓ ✓ 78.37 80.38 73.12 74.42 73.12 ✓

Fitzpatrick17k

78.33 79.50 78.32 78.91 79.06
✓ 79.80 80.60 79.81 80.20 80.31

✓ 80.79 81.28 80.82 81.28 81.07
✓ ✓ 82.76 82.84 83.23 83.03 82.99 ✓

Table 2: Experimental results from ablation studies on each loss function demonstrate that each loss
function is indispensable for both accuracy and interpretability.

data, providing an intuitive understanding of how pixels in the image influence the image classification
result aligned with semantic concepts. Compared to traditional concept-based models, our model
interpretation offers advantages in richness and accuracy. Additional visualization examples can be
found in Appendix D.2.

Figure 4: Comparison of single-dimensional and multi-dimensional interpretability methods.

As shown in Figure 4, it is evident that relying solely on single-dimensional interpretable strategies,
such as saliency maps or concept embedding enhancements, does not furnish adequate interpretability
to effectively address the problem. However, by integrating multi-dimensional strategies, the model
can align the information of each dimension, thus obtaining more comprehensive interpretable
information and ultimately yielding more correct prediction results. Specifically, when feature
extraction is solely reliant on saliency maps, obtaining accurate attention in the feature region
often proves challenging, and conceptual information tends to be unstable when supplemented
solely by concepts. In contrast, our proposed multi-dimensional interpretable strategy transcends
dependence on a single interpretable strategy, opting instead for a more generalized multi-dimensional
augmentation approach. This approach enables the model to complement the single-dimensional
methods and achieve heightened accuracy.

5.4 Ablation Study
The ablation experiments presented in Table 2, conducted with Resnet50 as the backbone, reveal sig-
nificant contributions from both Lc and Lneural to the classification result. To illustrate, considering
the comprehensive index AUC in the DDI dataset, utilizing only Lc yeilds a 3.79% improvement,
while relying solely on Lneural does not notably enhance performance. However, employing both
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simultaneously leads to an 8.71% improvement. This observation underscores the complementary
nature of concept and neural logic rules in enhancing model performance. Besides, additional ablation
studies investigating the effect of concept filters and comparing VLMs labeling methods with other
Med-CLIP approaches are provided in Appendix D.3. Additionally, we conducted a sensitivity
analysis for both baselines and Med-MICN on the DDI dataset, as depicted in Figure 14 in the
appendix, showcasing the robustness of our model against perturbations. Furthermore, computational
cost analysis (presented in Table 9 in the appendix) was conducted. Experimental findings indicate
that Med-MICN incurs minimal computational cost compared to the baseline model while achieving
improvements in both accuracy and interpretability.

6 Conclusion

This paper proposes a novel end-to-end interpretable concept-based model called Med-MICN. Com-
bining medical image classification, neural symbolic solving, and concept semantics, Med-MICN
achieves superior accuracy and multi-dimensional interpretability. Our comprehensive experiments
demonstrate consistent enhancements over other baselines, highlighting its potential as a generalized
and faithful interpretation model for medical images.
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A Concept Set Generation and Filtering

A.1 Concept Generation with GPT-4V

In this section, we will explain our process for generating concept sets using GPT-4V. Specifically,
we ask GPT-4V the following:

[User]:
• List the useful visual attributes to recognize {class} in a {type} in this {image}:
• List the things most commonly seen around a {class} in this {image}:
• List in bullet points with no extra context.

Note that the image here refers to the images we random sample from the dataset, and type represents
the modality of medical image (e.g. X-rays, CT). Full prompts and example outputs are illustrated
in the appendix D.2. Combining the concepts received from different classes and images gives us
a large, somewhat noisy set of initial concepts, which we further improve by filtering. We found
using GPT-4V to generate initial concepts to perform better than using GPT-3, which was used in
Label-free CBM [41]. We initiate the procedure with the following conversation:

[User]: List the useful visual attributes to recognize COVID in a CT in this image.
[GPT-4V]: When assessing CT images for signs of COVID-19, radiologists often look for
certain visual attributes that can suggest the presence of the disease. Here are some of the key
visual attributes they may look for:

1. Ground-glass opacities (GGOs): These are hazy areas that do not obscure the
underlying lung structures. They are called "ground-glass" because they resemble
the appearance of frosted glass.

2. Consolidation: ...

In addition, we can proceed with the following question:

[User]: List the things most commonly seen around COVID in this image.
[GPT-4V]: Based on the image you have provided and considering the common radiological
findings associated with COVID-19, here are the things that might be commonly seen:

1. Possible consolidation areas.
2. Absence of significant pleural effusions.
3. ......

Then, we can use the following inquiry to structure the output from GPT-4V:

[User]: List in bullet points with no extra context.
[GPT-4V]:

• Ground-Glass Opacities (GGOs)

• Bilateral and Multifocal Lesions

• Crazy-Paving Pattern

• Reverse Halo or Atoll Sign

• Absence of Pleural Effusion

• Septal Thickening

• Rare Lymphadenopathy

• Vascular Enlargement

• Traction Bronchiectasis
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After obtaining the initial concept set following the filtering process, our rules and concepts on
COVID-CT and DDI datasets are as follows (see Table 3).

Rules COVID-CT DDI
c0 Peripheral ground-glass opacities Vesicle
c1 Bilateral involvement Papule
c2 Multilobar distribution Exudate
c3 Crazy-paving pattern Fissure
c4 Absence of lobar consolidation Xerosis
c5 Localized or diffuse persentation Warty
c6 lncreased density in the lung Brown
c7 Ground-glass appearance Translucent
c8 - White
c9 - Erythema
c10 - Wheal
c11 - Pigmented
c12 - Cyst

Table 3: We have recorded the concept set generated through GPT-4V and subsequently cleaned it
through filtering. This concept set will be used in our training process.

A.2 Concept Set Filtering

After concept set generation, a concept set with some noise can be obtained. The following filters are
set to enhance the quality of the concept :

1. The length of concept: To keep concepts simple and avoid unnecessary complication, We
remove concepts longer than 30 characters in length.

2. Similarity: We measure this with cosine similarity in a text embedding space. We removed
concepts too similar to classes or each other. The former conflicts with our interpretability
goals, while the latter leads to redundancy in concepts. We set the thresholds for these two
filters at 0.85 and 0.9, respectively, ensuring that their similarities are below our threshold.

3. Remove concepts we cannot project accurately: Remove neurons that are not interpretable
from the BioViL [5]. This step is actually described in section 4.2.

B Neural-symbolic Layer

We give the details with examples for neural-symbolic layer [3].

Concept Polarity. For each prediction class j, there exists a neural network Φj(·). This network
takes each concept embedding as input and produces a soft indicator, a scalar value in the [0, 1]
range. This soft indicator represents the role of the concept within the formula. As an illustration,
consider a specific concept like “Crazy-paving pattern”. If its value after passing through Φj(·) is 0.8,
it indicates that the “Crazy-paving pattern” has a positive role with a score of 0.8 for class j. We use
the notation Io,i,j to represent the soft indicator for concept ci.

Concept Relevance. For each prediction class j, a neural network Ψj(·) is utilized. This network
takes each concept embedding as input and produces a soft indicator, a scalar value within the range
of [0, 1], representing the relevance score within the formula. To illustrate, let us consider a specific
concept such as “Multilobar distribution”. If its value after passing through Ψj(·) is 0.2, it implies
that the relevance score of “Multilobar distribution” in the inference of class j is 0.2. We denote the
soft indicator for concept ci as Ir,i,j .

Prediction via Concept Rules. Finally, for each class j, we combine the previous concept polarity
vector Io,j and the concept relevance vector Ir,j to obtain the logical inference output. This is
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achieved by the following expression:

ŷj = ∧N
i=1(¬Io,i,j ∨ Ir,i,j)

= min
i∈[N ]

{max{1− Io,i,j , Ir,i,j}},

Intuitively, the aforementioned concept reasoning rules allow us to determine the relevance of each
concept and whether a concept has a positive or negative role in predicting the label as class j.
Intuitively ¬Io,i,j ∨ Ir,i,j means if it is irrelevant, then we set it to 1, and if it is relevant, then
we set it to be the relevance score. It is strange at first glance. However, since finally we will
take the conjunction (or minimum) for all concepts to get ŷj , so we will filter the i-th concept if
¬Io,i,j ∨ Ir,i,j = 1, i.e., if it is irrelevant. Thus, we take the neg here. Since we need to consider each
concept for the final prediction, we finally use ∧ for all concepts.

C More Experimental Setup

C.1 Training Setting

Our model exhibits remarkable efficiency in its training process. We utilized only a single GeForce
RTX 4090 GPU, and the training duration did not exceed half an hour. We configured the model to
run for 100 epochs with a learning rate set at 5e-5. Additionally, all images were resized to a uniform
dimension of (256, 256).

C.2 Datasets

COVID-CT. The COVID-CT dataset was obtained from [29] and comprises 746 CT images,
consisting of two classes (349 COVID and 397 NonCOVID). We divided this dataset into a training
set and a test set with an 8:2 ratio, and the data were split accordingly.

DDI. DDI [10] is a dataset comprising diverse dermatology images designed to assess the model’s
ability to correctly identify skin diseases. It consists of a total of 656 images, including 485 benign
lesion images and 171 malignant lesion images. These images are divided into training and test sets,
with an 80% and 20% split, respectively.

Chest X-Ray. The Chest X-Ray [14] dataset comprises 2D chest X-ray images of both healthy
and infected populations. It aims to support researchers in developing artificial intelligence models
capable of distinguishing between chest X-ray images of healthy individuals and those with infections.
The dataset includes 5933 images, divided into 5309 training images and 624 testing images.

Fitzpatrick17k. Fitzpatrick17k [15] dataset is a dermatological dataset that includes a wide range
of skin colors. In order to better compare the model performance, we filtered the malignant and
nonmalignant classes in 3230 images that have been relabeled by SkinCon [11]. And we divided the
training and test set according to an 8:2 ratio.

C.3 Baseline Models

SSSD-COVID. SSSD-COVID incorporates a Masked Autoencoder (MAE) for direct pre-training
and fine-tuning on a small-scale target dataset. It leverages self-supervised learning and self-
distillation techniques for COVID-19 medical image classification, achieving performance levels
surpassing many baseline models. Our method is trained exclusively on the COVID-CT dataset
without considering the effects of introducing knowledge from other datasets. Notably, our approach
outperforms SSSD-COVID in terms of performance. Furthermore, SSSD-COVID falls under the
category of black-box models, indicating that our method, to some extent, overcomes the accuracy
degradation issue introduced by the incorporation of concepts.

Label-free CBM. Label-free CBM is a fully automated and scalable method for generating concept
bottleneck models. It has demonstrated outstanding performance on datasets like ImageNet. In
our comparisons, our model outperforms this model significantly in terms of accuracy. Regarding
interpretability, our model not only possesses the same level of interpretability as this model but also
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provides explanations in multiple dimensions, such as concept reasoning and saliency maps. This
helps doctors gain a more diverse and precise understanding of the model’s decision-making process
when using our model.

DCR. Deep Concept Reasoner (DCR), a concept-based model combining neural-symbolic meth-
ods, has demonstrated promising interpretability performance on simple datasets such as XOR,
Trigonometry, and MNIST-Addition. However, its performance tends to degrade on more complex or
challenging datasets.

C.4 Definition of Metrics

Accuracy is the ratio of the number of correctly categorized samples to the total number of samples:

Acc =
TP + TN

TP + TN + FP + FN
.

Where TP denotes true positive, TN denotes true negative, FP represents false negative, and FN
represents false negative.

The precision is the proportion of all samples classified as positive categories that are actually positive
categories:

Precision =
TP

TP + FP
.

Recall is the proportion of samples that are correctly categorized as positive out of all samples that
are actually positive categories:

Recall =
TP

TP + FN
.

The F1 score is the reconciled mean of precision and recall:

F1 =
2× Precision × Recall

Precision + Recall
.

AUC denotes the area under the ROC curve, which is a curve with True Positive Rate (Recall Rate)
as the vertical axis and False Positive Rate (False Positive Rate) as the horizontal axis.

D More Experimental Results

D.1 Utility Evaluation

We provide our detailed utility evaluation for four datasets in Table 4, 5, 6, and 7.

Method Backbone Acc.(%) Precision(%) Recall(%) F1(%) AUC.(%) Interpretability

Baseline

ResNet50 81.36 82.28 81.44 81.67 81.85 ×
VGG19 79.60 81.82 78.93 79.88 80.26 ×
DenseNet169 85.59 85.60 85.60 85.59 85.60 ×
SSSD-COVID 81.76 81.82 78.26 80.00 88.21 ×
Label Free CBM 69.49 68.62 69.82 69.21 64.84 ✓
DCR 55.93 58.38 55.43 51.41 55.43 ✓

Ours
ResNet50 84.75 84.77 84.88 84.75 84.77 ✓
VGG19 83.05 86.74 82.93 84.37 84.26 ✓
DenseNet169 86.44 87.27 86.41 87.15 87.92 ✓

Table 4: Results for COVID-CT. We conducted ten repeated experiments and calculated the average
results for each metric. Red and blue indicate the best and the second-best result. Our approach
outperforms the baseline backbone models while also providing interpretability. When compared to
other state-of-the-art interpretable models, our model exhibits significantly higher accuracy.
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Method Backbone Acc.(%) Precision(%) Recall(%) F1(%) AUC.(%) Interpretability

Baseline

ResNet50 77.27 72.37 73.19 72.77 72.51 ×
VGG19 76.52 72.92 68.54 70.12 68.80 ×
DenseNet169 78.03 74.37 67.41 69.51 68.76 ×
Label Free CBM 70.34 68.62 69.82 69.21 69.49 ✓
DCR 76.52 71.79 63.88 65.32 63.88 ✓

Ours
ResNet50 81.82 76.56 76.17 76.33 76.12 ✓
VGG19 82.58 81.59 76.05 78.07 75.63 ✓
DenseNet169 79.55 77.68 67.64 69.79 67.64 ✓

Table 5: Results for DDI. We conducted ten repeated experiments and calculated the average results
for each metric. Red and blue indicate the best and the second-best result. Our approach outperforms
the baseline backbone models while also providing interpretability. When compared to other state-of-
the-art interpretable models, our model exhibits significantly higher accuracy.

Method Backbone Acc.(%) Precision(%) Recall(%) F1(%) AUC.(%) Interpretability

Baseline

ResNet50 75.64 75.01 70.77 71.72 70.88 ×
VGG19 81.41 88.56 75.51 77.56 75.94 ×
DenseNet169 69.55 70.37 62.05 61.66 62.12 ×
Label Free CBM 71.21 71.89 71.45 70.84 74.12 ✓
DCR 62.02 66.25 51.50 41.33 50.56 ✓

Ours
ResNet50 78.37 80.38 73.12 74.42 73.12 ✓
VGG19 88.30 92.59 85.43 88.16 87.09 ✓
DenseNet169 73.88 81.24 65.85 65.70 66.28 ✓

Table 6: Results for Chest X-Ray. We conducted ten repeated experiments and calculated the average
results for each metric. Red and blue indicate the best and the second-best result. Our approach
outperforms the baseline backbone models while also providing interpretability. When compared to
other state-of-the-art interpretable models, our model exhibits significantly higher accuracy.

Method Backbone Acc.(%) Precision(%) Recall(%) F1(%) AUC.(%) Interpretability

Baseline

ResNet50 80.79 80.81 80.81 80.79 80.81 ×
VGG19 75.37 75.40 75.34 75.37 75.39 ×
DenseNet169 76.85 77.05 76.91 76.83 76.91 ×
Label Free CBM 75.24 75.15 74.92 75.41 75.02 ✓
DCR 68.05 67.55 65.33 66.12 67.01 ✓

Ours
ResNet50 82.76 82.84 83.23 83.03 82.99 ✓
VGG19 77.34 77.72 77.33 77.53 77.58 ✓
DenseNet169 80.79 82.12 80.89 81.11 81.38 ✓

Table 7: Results for Fitzpatrick17k. We conducted ten repeated experiments and calculated the
average results for each metric. Red and blue indicate the best and the second-best result. Our
approach outperforms the baseline backbone models while also providing interpretability. When
compared to other state-of-the-art interpretable models, our model exhibits significantly higher
accuracy.

19



D.2 Visualization of Concept Predictions

More samples of instance-level predictions for COVID-CT and DDI datasets are visualized in Figure
5, 6, 7, 8, 9, 10, 11, and 12. We also append the corresponding rules to it, which can reflect the
multi-dimensional interpretation better. Taking the COVID-CT sample as an example, it can be found
that the model predicts the concept score prediction accurately, and for the COVID samples, the
correlation of the first three concepts is greater, which leads to a higher prediction score of their
concepts, thus generating real concept rules, and then assists the model judgment. This can also be
reflected in the saliency map of the model in the inference stage, where the phenomena described
by the relevant concepts can get higher attention in the saliency map, thus further reflecting the
multidimensional interpretation of Med-MICN.

D.3 Ablation Study: Effect of Concept Filters

In this section, we will discuss how each step in our proposed concept filtering affects the results of our
method. In general, our utilization of filters has two main goals: First, improving the interpretability
of our models. Second, improving computational efficiency and complexity by reducing the number
of concepts.

Although our initial goal was not to improve model accuracy (a model with more concepts is generally
larger and more powerful [41]), the more precise concepts after filtering make the concatenated
features more effective for classification and slightly improve the accuracy. To evaluate the impact
of each filter, we trained our models separately on COVID-CT and DDI while removing one filter
at a time and one without using any filter at all. The results are shown in the Table 8. From Table
8, it is noticeable that our model’s accuracy does not exhibit high sensitivity to the choice of filters.
On the COVID-CT dataset, the accuracy of our model remains largely unaffected by the choice of
filters. Furthermore, employing filters on the DDI dataset results in improved model accuracy. This
phenomenon arises due to the relatively sparse nature of concepts within the DDI dataset images,
where increasing the number of concepts did not yield superior solutions.

Filters COVID-CT DDI
Accuracy(%) #concept Accuracy(%) #concept

All filters 86.44 8 82.58 13
No length filter 86.32 9 82.53 16
No similarity filter 86.43 22 82.46 26
No projection filter 86.21 11 81.68 15
No filters at all 86.19 34 81.60 49

Table 8: Effect of our individual concept filters on the final accuracy and number of concepts utilized
by our models.

D.4 Sensitivity Analysis

We also performed a sensitivity analysis for baselines and Med-MICN in the DDI dataset. we
set various attacks under δ ∈ 4/255, 6/255, 8/255, 10/255, 12/255 and attack radius ρa ∈
{0, 2/255, 4/255, 6/255, 8/255, 10/255}. in Figure 14, the results show that our model consists of
stronger robustness against perturbation. This is evidenced by the marginal decrease in test accuracy
as the attack radius increases. The model’s detection performance fluctuates slightly at ρa of 4/255,
with this variability diminishing as the perturbation level rises, underscoring the robustness of our
model against significant disturbances.

D.5 Computational Cost

We conducted a computational cost analysis for Med-MICN and the baseline models. By inputting a
random tensor of size (1, 3, 244, 224) into the model and computing the FLOPs and parameters, the
results are presented in Table 9. Experimental evidence demonstrates that Med-MICN incurs only
negligible computational cost compared to the baseline models while it achieves improvements in
accuracy and interpretability.
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Figure 5: Samples classified as NonCOVID.

Figure 6: Samples classified as COVID.
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Figure 7: Samples classified as NonCOVID.

Figure 8: Samples classified as COVID.

Method Flops(M) Params(M)
ResNet50 4133.74 25.56
VGG16 15470.31 138.36
DenseNet169 3436.12 14.15

Med-ICNS(ResNet50) 4134.79 26.60
Med-ICNS(VGG16) 15471.36 139.40
Med-ICNS(DenseNet169) 3436.32 14.35

Table 9: Computational costs. Results indicate that Med-MICN incurs minimal computational cost
compared to the baseline model while achieving improvements in both accuracy and interpretability.
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Figure 9: Samples classified as NonMalignant.

Figure 10: Samples classified as Malignant.
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Figure 11: Samples classified as NonMalignant.

Figure 12: Samples classified as Malignant.
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Figure 13: Interpretation of learned linear weights for COVID-CT (left) and DDI (right) dataset. The
model can discover concepts that are crucial for classification.

Figure 14: Sensitivity analysis.

E Limitation

In the case of the "neural symbolic" method, additional acceleration techniques may be required
when dealing with large sample sizes. However, it is worth noting that medical datasets tend to be
relatively small.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction accurately reflect
the paper’s contributions and scope. We proposed an end-to-end framework called Med-
MICN, which leverages the strengths of various XAI methods such as concept-based models,
neural symbolic methods, saliency maps, and concept semantics. In Section 1 and Abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: in Section E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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address problems of privacy and fairness.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided a comprehensive exposition of our network architecture,
encompassing experimental parameter details. Additionally, our dataset is publicly available.
Thus, our methodology exhibits reproducibility. In Section C and Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Answer: Code [Yes] DATA [No]
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for download by anyone. In Section C and Section 5.1.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All detailed specifications are presented in the experimental section. In Section
C and Section 5.1.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conducted ten repeated experiments and calculated the average results for
each metric. In Section C and Section 5.1.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
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of Normality of errors is not verified.
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We detailed this in Section C.1 and Section D.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics. We have
carefully reviewed and ensured adherence to all relevant standards.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We pointed out the positive role our model will play in assisting doctors in
making decisions regarding diseases in the future. In Section 1 and Section E.
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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that a generic algorithm for optimizing neural networks could enable people to train
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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datasets, provided the version information and URLs when possible, and included the name
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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