SeedPrints: Fingerprints Can Even Tell Which Seed
Your Large Language Model Was Trained From

Yao Tong'* Haonan Wang'* Siquan Li'’ Kenji Kawaguchi’ Tianyang Hu?'
! National University of Singapore 2 The Chinese University of Hong Kong, Shenzhen

Abstract

Fingerprinting Large Language Models (LLMs) is essential for provenance verifica-
tion and model attribution. Existing methods typically extract post-hoc signatures
based on training dynamics, data exposure, or hyperparameters—properties that
only emerge after training begins. In contrast, we propose a stronger and more in-
trinsic notion of LLM fingerprinting: SeedPrints, a method that leverages random
initialization biases as persistent, seed-dependent identifiers present even before
training. We show that untrained models exhibit reproducible token selection biases
conditioned solely on their parameters at initialization. These biases are stable and
measurable throughout training, enabling our statistical detection method to recover
a model’s lineage with high confidence. Unlike prior techniques, unreliable before
convergence and vulnerable to distribution shifts, SeedPrints remains effective
across all training stages and robust under domain shifts or parameter modifica-
tions. Experiments on LLaMA-style and Qwen-style models show that SeedPrints
achieves seed-level distinguishability and can provide birth-to-lifecycle identity
verification akin to a biometric fingerprint. Evaluations on large-scale pretrained
models further confirm its effectiveness under practical deployment scenarios.
These results suggest that initialization itself imprints a unique and persistent
identity on neural language models, forming a true “Galtonian” fingerprint.

1 Introduction

LLM fingerprints have recently been proposed as a tool to identify, attribute, and trace LLMs by
examining their observable behaviors [} 22| 3} 4, 15]. Such methods aim to provide model owners with
a verifiable link between a suspicious model and its putative original, enabling detection of model
theft or unauthorized reuse [3}16].

Much of this literature explicitly borrows the metaphor of biological fingerprints from Francis
Galton’s Finger Prints (1892) [7]]:

“A fingerprint is the pattern formed by friction-ridge skin on the fingertips;
this ridge configuration is individually unique and essentially permanent across an
individual’s lifetime.”

The analogy suggests that an effective fingerprint should be both unique and persistent, present from
the very moment of a model’s “birth” at initialization. Yet most existing so-called fingerprinting
approaches fall short of this standard [[1} 2, 13} 14,15, 16} 8} 9L [10]. They are defined only after models
have been fully trained and converged (finish pretaining), e.g., extracting patterns from parameters or
generated text, and thus capture traits that emerge as the model “grows up” through exposure to data
and optimization. In other words, the separability these methods can achieve is less a birthmark of

*Equal contribution.
TCorrespondence to Tianyang Hu. Email: hutianyang @cuhk.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Lock-LLM Workshop.

the model itself than an imprint of its training history: data signatures, optimization dynamics, or
hyperparameters. Such methods, therefore, function more as post hoc identifiers than as Galtonian
fingerprints—those innate, immutable marks that accompany a model from its very beginning.

In this work, we propose a stricter notion of an LLM fingerprint: an intrinsic property present
at random initialization and detectable in any time of the subsequent training. We observe that
untrained models already exhibit seed-dependent preferences in token selection. The same prompt
induces subtle but reproducible biases in next-token probabilities, and that these preferences remain
measurable. Building on this observation, we introduce the evaluation method SeedPrints, designed
to isolate initialization-borne fingerprints from confounds arising from data distribution, training
duration, optimization noise, or objective choice. Under this lens, many existing “fingerprint”
methods collapse (see Section[5.1)): their discriminative signal weakens or disappears when models
are examined from the early stage of training, or when descendants undergo severe distribution shifts
in their training data, indicating that they capture signal related to the subtle training attribute, such as
data distribution and hyperparameters, rather than intrinsic marks.

In contrast, extensive experiments in Section[5.1]show that our method can even distinguish between
models that differ only in their initialization seed, despite an identical training pipeline and data order.
Our method reliably detects the lineage of early-stage models with high confidence (e.g., p-values
ranging from 1073 to 1071Y), whereas all prevailing baselines fail to separate them. Moreover, our
fingerprint remains persistent under continual training on diverse datasets, while prior baselines
merely track the training data distribution and are easily misled by suspicious models that have been
continuously trained on very different corpora (Section[5.T)). Finally, when evaluated under standard
pretrained foundation model scenarios, our method successfully passes all tests (Section[5.2).

2 Related Work

LLM fingerprinting broadly falls into two families: (i) watermarking / active methods that insert an
identifiable signature into a model or its outputs [2,[11,19], and (ii) passive methods that extract a
signature from a model’s pre-existing behaviors without modifying it [3} 4} [10, [1, [12].

Watermarking and Active Fingerprinting Active approaches deliberately implant a verifiable
identifier for later ownership checks. Two common forms are: fext watermarks, in which biased or
predefined text are generated to deliver a secret information [2} [11]; and model weight watermarks,
which embed identifiers into parameters or tie them to a secret trigger via fine-tuning [8]]. Although,
backdoor-style fingerprints are straightforward and can persist through moderate fine-tuning; those
invasive schemes require control over training, making them unsuitable for retroactively marking
third-party models.

Passive LLM Fingerprinting In contrast, passive fingerprinting identifies models by analyzing
their intrinsic properties without any modification. Passive fingerprinting techniques vary by model
access. With white-box access, signatures are extracted from model weights, leveraging intrinsic
properties like the distribution of attention matrices [3l], the kernel alignment of internal representa-
tions [4]], or the stable direction of parameter vectors. In the black-box setting, fingerprinting relies on
analyzing input-output behavior. These methods use crafted queries [[1], unique prompt-response pairs
[9], or stylometry [10] to identify a model, though they can be less robust to fine-tuning. However,
these methods define their signatures post hoc. Specifically, they identify emergent properties from
a completed training process, rather than the innate, “Galtonian™ fingerprints present from random
initialization that our work seeks to discover.

3 Biases Originating from Initialization in Language Models Persist After
Training

In this section, we present our key observation that language models exhibit strong token-level biases
originating from the random initialization seed. Remarkably, such biases are stable and persistent,
remaining detectable even after training.

Initialization creates token-level biases In Figure|l|(left), we examine a LLaMA-2—style model
initialized with seed 123. We evaluate 10,000 random input sequences, each 1,024 tokens long with
tokens drawn uniformly at random from the vocabulary. Surprisingly, despite the uniform inputs, the
initialized model exhibits strong token-selection bias: it does not predict the next token (the 10,001st

Rank Correlation Analysis Across Training Steps

= min
W max 0.006

44
0.004
i 0.002
=@~ Top Tokens
ll | [| 0.000 =l Bottom Tokens
«e" «0‘? Q /\e? &QQ ,\0«2 ,\0«2 i

Token Concentration Analysis

N
Rank Correlation

Average Count per Token

o

R e e e B B S L A R --- Baseline (-0.0003) -

&OQ B S

100 - N v?’ & f.9 < «#’ ©§‘ ©‘b‘l‘ & @,\6*‘ @,@*‘ @,,/&l‘ ,L%‘l‘ (-;il‘
£ m— min BE:/ se_z%_l "'O@Q %@Q R R R R R R
€ — max | 4% . 2 2 2 2 2 2
80 -
o I .
°© | : Top-3 Least Probable Tokens (Min)
O 604 s4.4%542% | Seed=123:
N | : * Token: né, Count: 10
Q N
2 401 o7 4%37.6% : | Token: ervation, Count: 6
2 | I Token: adopted, Count:6
E ! Seed=1000
, N 11.1%11.3% 1 eed= N .
3 17% 18% gﬁm 1 ! Token: ni, Count:9
0 - = . .
Top Top Top Top Top : Tp | Token: sans, Count: 8
0.1% 05% % 5% 0% 20% Token: David, Count: 6
Token Percentiles

Figure 1: Initialization-born token bias persists through training. Upper Left: With uniform
random inputs, a randomly initialized LLaMA-2-style model assigns highly non-uniform next-token
probabilities, concentrating on a subset of tokens. Lower Left: An 80/20 coverage pattern: roughly
20% of tokens are selected for the next-token of 80% inputs. Upper Right: During training, these
within-set preference remain aligned with initialization; rank correlations between checkpoints and
the initial model stay above a random baseline. Lower Right: The set of preferred (biased) tokens
depends on the initialization seed.

token following the inputs) uniformly at random; instead, certain tokens receive substantially higher
probability than expected. To broaden this observation, we repeat the experiment with different
initialization seeds and across different GPU types, and observe the same phenomenon: the overall
magnitude of bias is consistent, and for a fixed seed the set of most biased tokens remains stable.
However, the particular tokens that are favored (or disfavored) depend on the seed, as shown in the
lower-right panel of Figure[I] Notably, an analogous pattern holds for the least-probable tokens (i.e.,
the argmin of next token probability). We refer to these high- and low-bias tokens as identity tokens,
as they provide the strongest seed-specific signature at initialization.

Training reshapes but does not erase those seed-specific token-level preferences However,
naively measuring bias by frequency is unreliable throughout the training, as the training will severely
changes the next-token prediction behaviors. We ask whether identity tokens retain bias profiles
that are deeply embedded in the model across training, like a lifelong fingerprint. To investigate, we
examine the prediction distribution of each biased token over random sequences. Our expectation is
that, since biased tokens each have specific random sequences where they are particularly likely or
unlikely to be predicted, the relative preferences among tokens within such identity token set will
persist to some extent across all offspring models. For example, if a token is much less preferred than
other fingerprint tokens for a given random sequence, it will likely remain less preferred even after
training. To test this, in Figure[I] (upper-right), for each checkpoint, we feed the same 10,000 random
sequences as in the Figure[I] (left). For every identity token, we extract the within-set probability
assigned to that token across these 10,000 random trials. We then compute the rank-based correlation
between the probability vector from the initialized model and that from a checkpoint model trained
from it. We report the average correlation across each selected token set. Across all token sets, we
observe that although the absolute correlation values are small (= 0.006) because training mostly
reshapes token probabilities, the correlation remains consistently above the random baseline. It will
converge to a stable value rather than decay to the random baseline. This indicates that initialization
leaves weak but statistically reliable, idiosyncratic fingerprints (on the prediction distribution of each
biased token over random sequences).

4 Algorithm

To bridge the gap between the observed token-level bias and the “Galtonian” LLM fingerprints, we
propose a statistical detection algorithm grounded in the observations of Section[3} Specifically, we

(i) extract the set of identity indices based the model outputs; and (ii) assess whether the preference
distributions on these identity indices between a base model and a suspicious model are correlated
or not, by comparing with an uncorrelated baseline. The design is in order to reflect the premise:
token-level biases on random inputs encode an intrinsic model-specific signature.

Extract identity indices To obtain stable identity indices, we randomly select n newly added
tokens whose corresponding token vectors are freshly initialized. This differs slightly from sampling
tokens from the existing vocabulary to form input sequences. The advantage is that it eliminates
cases where the training data, by coincidence or design, contains pieces or subsequences of the test
inputs—situations in which the model may recall memorized text and bias the generated tokens.

We treat each input as a next-token prediction trial and extract the identity indices, i.e., the output
dimensions that consistently receive the lowest scores across random trials. Let X = {z;}_,, where
each z; € R**? is a simulated embedding sequence of length ¢ in a d-dimensional embedding space.
For any model g, define the mean output vector g = % Z?:l g(z;) € R where g is either the
base model f or the suspect model f/, and dy, denotes the output dimensionality (vocabulary size
for logits, or hidden size for the final hidden state)E] We extract the m coordinates with the smallest
mean values as the identity indices. Formally,

M= arg min Zgj, 1)

Jg{17"‘5d0ul}7 ‘J‘:m ieJ

so M contains exactly the indices of the m smallest entries of g. Although both the most- and
least-preferred dimensions (respectively, argmax and argmin) can be informative in Figure|l} cross-
entropy training typically increases the probability mass on the true class while decreasing it on
non-true classes. Averaged over random inputs, the down-weighted (non-true) dimensions therefore
exhibit more stable behavior. We thus focus on the most unwilling indices (the argmin set) to obtain
more stable and reliable detections.

Distribution correlation test A naive way to compare a base model f and a suspect model f’ is to
measure the overlap of their identity—index sets, but this throws away magnitude/ranking information
and is brittle to extraction noise. Motivated by Figure/[I] (right)—which shows that relative preferences
over identity indices persist after training—we instead test whether the two models exhibit correlated
preferences on these indices across random inputs.

Let T = M;N My ={t1,...,t,} be the intersection of their identity—index sets. For each input
x; and index t;, record the (logit or hidden) output as Pi(jj) = [f (z4)]¢; and Pi(jf) = [f'(24)]¢,. This
forms two output matrices P(f), P(f) e R"**_ For each t;, we compute a rank-based (Kendall-Tau)

correlation p; = KendallTau(P:g), P(;c)), yielding £ empirical correlation observations. If
these correlations are consistently significant relative to a null of no association (tested against an
uncorrelated baseline), we deem f’ to be derived from f. We declare significance at p < 0.01; further
details are given in Algorithm [T}

Design choices in algorithm We next explain several design decisions in Algorithm T} including
the use of softmax, the correlation measure, and the hypothesis test. Since model outputs can vary
substantially across different training stages, and our focus is only on the relative probabilities over
the identity index set, we apply a softmax normalization in lines 8 and 13 to preserve the relative
probability relationships. For the correlation measure, we use the standard Kendall-Tau correlation, a
commonly used rank-based measure. This is a natural choice because absolute probability values
are less reliable across models, whereas the bias profiles are mainly characterized by the pairwise
concordance and discordance of rankings. Finally, regarding the hypothesis test, we found our method
to be robust to the specific choice of test. In Section[5] we report results using both the one-sided
t-test and the Mann—Whitney U-test.

3Using the final hidden representation instead of logits avoids detokenization noise and is more robust to the
rare case that a random sequence appears in the training data.

Table 1: Comparison of fingerprint behaviors Table 2: Trained models share the same fingerprint
between models initialized with different seeds. behaviors as their initialization (p-value < 0.01).

Logits Output Hidden State Logits Output Hidden State

Model Pair
t-test U-test t-test U-test t-test U-test t-test U-test

542 VS. 83000 0.404 0456 0357 0532 siBivs. s49%¢ 3.33e-31.02e-3 2.20e-8 6.28¢-8
5123 VS. S42 0214 0295 0.678 0.565 sii vs. s495¢ 2.06e-37.33e-3 7.09¢e-6 1.37e-5
S1000 VS S123 0219 0.246 0363 0.335 siPU vs. s4a5¢ 2. 44e-3 4.14e-3 5.58e-4 2.81e-3
$2000 VS S1000 0.282 0.291 0434 0481 sipi vs. sbise 5.63e-3 6.76e-3 4.00e-10 1.27e-9

Seed Pair

S Experiments

We evaluate our fingerprint verification in two ways: (1) it identifies genuine, biometric-like finger-
prints at the seed level, whereas prior methods primarily track training-data distributions; and (2) it
remains verifiable throughout all training stages. We report results using both logits and hidden-state
outputs, and we test with a one-sided ¢-test and the Mann—Whitney U test.

Baselines We consider four passive fingerprinting baselines (weight- or representation-based).
Intrinsic fingerprint [3]] compares models via the similarity of the layerwise standard-deviation
profiles of attention parameters. REEF [4] computes centered-kernel-alignment (CKA) similarity
between feature representations from the same samples across two models. PCS and ICS [5] are
weight-similarity methods: PCS flattens all parameters and measures cosine similarity; ICS forms
invariant terms from the weights and measures cosine similarity on those invariants. Following [4],
we use a 0.8 similarity threshold for binary decisions.

Note, in the experiment tables, the cell color indicates whether two models originate from the same
initialization seed. For example, s3% vs. s5%*¢ compares a model initialized with seed 42 and its
counterpart after pretraining; since both share the same initialization, the cell is shaded green. In
contrast, st vs. shase compares models initialized with different seeds, and is therefore shaded red
to indicate different sources. Additionally, v denotes a correct detection, while x denotes an error.

5.1 Seed-level differentiation and reliability

We train 12-layer, 12-head LLaMA-style models [[13] with RoPE [14] from scratch. Because
the baselines are stochastic, we report p-values averaged over 10 independent trials and adopt a
significance level of « = 0.01. Note, the absolute magnitude of extremely small p-values is not
comparable: once p falls below numerical noise (e.g., < 1072°), values like 107260 should not be
interpreted as stronger evidence than 10~2°—both decisively reject the null.

Different initialization seeds produce distinct fingerprints Table [I]reports p-values from our
correlation tests between pairs of models initialized with different random seeds. Across all pairs,
p > 0.01, meaning we do not detect correlation in their preference profiles. Thus, different seeds
yield distinct fingerprint behaviors, and our method separates models “at birth.”

107 Table 3: The same dataset and training order do not
o shape fingerprint behaviors to be identical across
05 | different initializations.

g '10441 4 =@~ Hidden State - T-test =¥~ Logits - Mann-Whitney U

© Hidden State - Mann-Whitney U~ — = a=0.01 . o

2 o] o e e Model Pair Logits Output Hidden State
107 t-test U-test t-test U-test

\ sAI vs. sU85S 0.484 0.500 0.385 0.486
(st vs. shase 0946 0.956 0.035 0.096
o

& & & simitys, shase 0508 0.589 0.426 0.337

Checkpoint Index anit base
Figure 2: Fingerprint verifies lineage at every Sai0o V8- 83" 0-756 0.781 0.388 0.287

checkpoint (p-values < 0.01).

RO

G

Table 4: Fingerprint persistence under continual training on diverse datasets (base model: seed 1000,
corpus openwebtext). U test refers to the Mann—Whitney U test.

Setting QOurs (logits) Ours (hidden) Baselines

Continual corpus (seed) t test u test t test utest Intrinsic REEF PCS ICS
TinyStoriesV2_cleaned (1000) 0¥ 0” 0¥ 7.77e-89" 1.000" 0.759* 0.999* 0.996"
TinyStoriesV2_cleaned (123) 1.000¥ 1.00" 10.943" 0.902" 0.950% 0.658* 0.332" 0.012"
the_stack (1000) 0" 1.73e-2877 0" 3.o9e-69“ 0.489% 0.557* 0.585" 0.123"
the_stack (123) 0.616 0.479Y 0.732" 0.831" 0.445" 0.580" 0.301" 0.026"

Training preserves the initialization fingerprint. Table[2]compares each initialization model with
its descendant trained on OpenWebText (= 10B tokens). Here, p < 0.01 consistently, indicating a
strong correlation between their preference profiles and, hence, common lineage. In short, the trained
model inherits the same fingerprint as its initialization. We also evaluate baseline methods (Table 6));
without exception, they fail to distinguish across seeds, which in turn suggests their separability stems
from training-induced artifacts rather than initialization.

Identical data and order do not make fingerprints converge In Table 3| all four “suspicious”
models sﬁ-’“se for ¢ € {42,123,100,2000} are trained on exactly the same corpus (OpenWebText)
and in the same data order (we fix the training seed to lock the data order); the only difference lies
in their initialization seeds ¢. Across all cross-seed pairs, p-values remain consistently > 0.01, in
sharp contrast to the near-zero values in Table [2} That is, fingerprints remain seed-specific even under
identical data and curriculum.

Continual training on diverse datasets does not confound the fingerprint A natural concern
is that fingerprint detection might reflect data distribution rather than model lineage, and thus
fail after further training on very different corpora. We therefore continue training on two starkly
different datasets—TinyStories [15] (synthetic children’s stories) and The Stack [16] (permissively
licensed GitHub code). Starting from a base model pretrained on OpenWebText [[17] (seed 1000),
we compare: (i) a descendant obtained by further training the base on each corpus, versus (ii) a
distractor descendant initialized with a different seed (123) and data order on OpenWebText [17]],
then continued on the same corpus. The question is whether attribution methods can identify which
descendant truly shares lineage with the base. In Table 4] we find that prior baselines frequently fail
under the code setting (The Stack), incorrectly signaling common lineage—indicating they largely
track domain similarity rather than real identity. In contrast, our method correctly attributes lineage
across both corpora, consistently yielding p < 0.01. Hence, the fingerprint is not a proxy for data
distribution: it survives substantial domain shift and persists beyond the initial pretraining stage.

5.2 All-stage verifiable fingerprints

Our fingerprint enables verification at any training stage (Figure [2). We treat each intermediate
checkpoint of a model trained on OpenWebText as the base and test whether our method can reliably
identify its offspring. All variants consistently recognize the suspect model as belonging to the same
lineage, with p-values remaining below the 0.01 threshold.

We further compare our method with existing baselines under standard evaluation for pretrained
foundation models. In particular, we test suspect models that undergo additional training on increasing
numbers of tokens (reported as #Tokens). As shown in Table E], our method maintains p < 0.01
across all settings.

Table 5: Fingerprinting results vs. LLaMA-2-7B. Each row compares a target model against LLaMA-
2-7B. U-test p reports the p-value from our hidden-state correlation test (< 0.01 indicates a strong
signal). Intrinsic, REEF, PCS, and ICS report similarity scores (higher = better).

Model # Tokens U-testp (< 0.01) Intrinsict REEF (1) PCS (1) ICS (1)
Llama-2-finance-7B [18] 5M 1.34 x 1074 1.0000" 0.9950" 0.9979Y 0.9952
Vicuna-1.5-7B [19] 370M 1.49 x 10796 1.0000" 0.9985" 0.9985" 0.9949"
Wizardmath-7B [20] 1.8B 4.09 x 1071°° 1.0000¥ 0.9979" 1.0000" 0.9994
Meditron-7B [21] 48B 5.212 x 107*7 0.9990" 0.9978" 1.0000¥ 0.9817"
CodeLlama-7B [22] 500B 2.008 x 1073¥ 0.9480" 0.9947" 0.6863% 0.3369*

References

[1] Dario Pasquini, Evgenios M Kornaropoulos, and Giuseppe Ateniese. Limmap: Fingerprinting
for large language models. arXiv preprint arXiv:2407.15847, 2024.

[2] Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen.
Instructional fingerprinting of large language models. arXiv preprint arXiv:2401.12255, 2024.

[3] Do-hyeon Yoon, Minsoo Chun, Thomas Allen, Hans Miiller, Min Wang, and Rajesh Sharma.
Intrinsic fingerprint of llms: Continue training is not all you need to steal a model! arXiv
preprint arXiv:2507.03014, 2025.

[4] Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang, Yong Liu, Yu Qiao, and Jing Shao.
Reef: Representation encoding fingerprints for large language models. arXiv preprint
arXiv:2410.14273, 2024.

[5] Boyi Zeng, Lizheng Wang, Yuncong Hu, Yi Xu, Chenghu Zhou, Xinbing Wang, Yu Yu, and
Zhouhan Lin. Huref: Human-readable fingerprint for large language models. Advances in
Neural Information Processing Systems, 37:126332-126362, 2024.

[6] Ruichong Zhang. Matrix-driven instant review: Confident detection and reconstruction of llm
plagiarism on pc. arXiv preprint arXiv:2508.06309, 2025.

[7] Francis Galton. Finger prints. Number 57490-57492. Cosimo Classics, 1892.

[8] Xiaokun Luan, Zeming Wei, Yihao Zhang, and Meng Sun. Robust and efficient watermarking
of large language models using error correction codes. Proceedings on Privacy Enhancing
Technologies, 2025.

[9] Yun-Yun Tsai, Chuan Guo, Junfeng Yang, and Laurens van der Maaten. Rofl: Robust finger-
printing of language models. arXiv preprint arXiv:2505.12682, 2025.

[10] Saeif Alhazbi, Ahmed Hussain, Gabriele Oligeri, and Panos Papadimitratos. LIms have rhythm:
Fingerprinting large language models using inter-token times and network traffic analysis. IEEE
Open Journal of the Communications Society, 2025.

[11] Anshul Nasery, Jonathan Hayase, Creston Brooks, Peiyao Sheng, Himanshu Tyagi, Pramod
Viswanath, and Sewoong Oh. Scalable fingerprinting of large language models. In ICLR 2025
Workshop on Building Trust in Language Models and Applications.

[12] Teppei Suzuki, Ryokan Ri, and Sho Takase. Natural fingerprints of large language models.
arXiv preprint arXiv:2504.14871, 2025.

[13] Al@Meta. Llama 3 model card. 2024.

[14] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. In Proceedings of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages 115-124. Association for Computational
Linguistics, 2021.

[15] Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

[16] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Mufioz Fer-
randis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau,
Leandro von Werra, and Harm de Vries. The stack: 3 tb of permissively licensed source code.
Transactions on Machine Learning Research (TMLR), Preprint, 2022.

[17] Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus.
http://Skylion007.github.io/OpenWebTextCorpus, 2019.

[18] Collin Heenan. Llama2-7b-finance (hugging face model). https://huggingface.co/
cxllin/Llama2-7b-Finance, 2023. Fine-tuned from NousResearch/Llama-2-7b-hf; MIT
License; accessed 2025-09-02.

http://Skylion007.github.io/OpenWebTextCorpus
https://huggingface.co/cxllin/Llama2-7b-Finance
https://huggingface.co/cxllin/Llama2-7b-Finance

[19]

[20]

[21]

[22]

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical rea-
soning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Zeming Chen, Alejandro Herndndez-Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Kopf, Amirkeivan Mohtashami,
Alexandre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit, Axel
Marmet, Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi, and Antoine Bosselut. Meditron-
70b: Scaling medical pretraining for large language models, 2023.

Meta Al. Codellama-7b-hf: Code llama base 7b model (hugging face). https://
huggingface.co/codellama/CodeLlama-7b-hf, 2024. Base 7 billion-parameter Code
Llama model for code synthesis and understanding; trained between January and July 2023;
licensed under Meta Llama 2 license; accessed 2025-09-02.

https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/codellama/CodeLlama-7b-hf

A

Appendix

A.1 Algorithm Details

Algorithm 1 Distribution Correlation Test on identity indices

Require: base model f, suspicious model f’; random input X = {z;}";; fingerprint size m;

I N T

10:

11:
12:

13:
14:

15:

16:

significance level oo = 0.01
Extract m indices with the smallest average model output value as identity indices set

: for model g € {f, f'} do

9(X) < lg(@1), ..., g(zn)]" € R™Xdou) (get model outputs on all random inputs)
(/i\/é(g) cargmingc gy, 171=m 2 Ji (Equation (T)).
. end for

Get intersection of the two identity indices sets

: T(—M(f) ﬂ./\/l(fl) = {tl,...,tk}

Retrieve model outputs on this intersection

:forge{f,f'} do
Z\9) « g(X)[T] € R™*F (restrict outputs to T")
P9) « softmax(Z(9)) € R*** (compute the relative probability over T')
: end for

Compute the per-index correlation between models
T + {KendallTau (P(f ’), P(jf)) i=1,..., k:} (rank-based correlation)
Build an uncorrelated random baseline T,
for g € {1,2} do
Randomly sample Z'9) . ~ N(0, I;)™<F

rand
P9 softmaX(Z(g)) € RPXF (row-wise)

rand rand
end for

Taull {KendallTau(P(l) r?) cj=1,...,k}

rand,:,j’ * rand,:,j
Perform a one-sided hypothesis test
Ho:T =T, Hi:T > T
Return Samelineage + 1(p-value < «)

A.2 More Experimental Results

Table 6: Full results of methods evaluating fingerprints at initialization and after subsequent training.

Logits Output Hidden State Baselines

t u t u Intrinsic REEF PCS ICS
s3It vs. sh3%€ 3.33e-3Y 1.02e-37 2.20e-8 6.28e-8Y -0.021* 0.375* 0.580* 0.196*
sias vs. s795° 2.06e-3* 7.33e-3* 7.09¢-6 1.37e-57 0.149% 0.369° 0.581* 0.188*
sinit vs, sbase 2 44e-3Y 4.14e-37 5.58e-4” 2.81e-3Y -0.252* 0.381* 0.581% 0.188*
sinit v, shase 5.63e-37 6.76e-37 4.00e-107 1.27e-9¥ -0.337* 0.331* 0.581% 0.188*

Model Pair

	Introduction
	Related Work
	Biases Originating from Initialization in Language Models Persist After Training
	Algorithm
	Experiments
	Seed-level differentiation and reliability
	All-stage verifiable fingerprints

	Appendix
	Algorithm Details
	More Experimental Results

