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Abstract

Humans move nimbly and with ease, capable of effortlessly grasping items of1

many shapes and qualities. Over millions of years, the musculoskeletal structure,2

central and peripheral neural systems have evolved together to provide this3

capacity. Understanding the underlying mechanisms of this complex system helps4

translate benefits to other fields, from robot locomotion to rehabilitation. To illicit5

new insights into the generation of diverse movements and precise control as well6

as foster collaboration between the biomechanics and the ML community, the7

MyoChallenge at the NeurIPS 2023 Competition featured two tracks: Manipulation8

and Locomotion. Manipulation involved precisely manoeuvering an object of9

varying shape by controlling a 63-musculoskeletal arm model and generating stable10

grasps. Locomotion involved the combination of abstract reasoning and low-level11

control, as agents have to chase or evade from a moving object by controlling12

an 80-musculoskeletal model of human legs. These tasks best highlighted our13

overarching theme of dexterity and agility, requiring the generation of skilled14

and efficient movements with realistic human limbs. The Myosuite framework15

enabled the challenge through a realistic, contact-rich and computation-efficient16

virtual neuromusculoskeletal model of the human arm and legs. This was the17

second iteration of the MyoChallenge with 59 teams participating, and over 50018

submissions. Each task involved two phases, increasing in difficulty over time.19

While many teams achieved high performance in phase 1 for the Manipulation20

track, locomotion showed variable performance across participants. In phase21

two, scores for all teams dropped significantly as the focus shifted towards22

generalization under uncertain conditions, highlighting the need for stronger23

generalization in agents In future challenges, we will continue to pursue the24

generalizability in dexterous manipulation and agile locomotion, which is crucial25

for understanding motor constructs in humans.26

Challenge Webpage: https://sites.google.com/view/myochallenge27
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1 Introduction29

The excellence of humans in performing complex and highly agile movements is fundamentally30

linked to the nuanced and simultaneous control of various muscle groups. Our musculoskeletal31

system, composed of bones of differing lengths connected by an array of skeletal muscles, tendons32

and other types of connective tissue, is an extremely complex biological system, resulting from33

millions of years of evolution. The neuromuscular structure that governs this system operates within34

a high-dimensional space, involving approximately 600 muscles coordinating around 300 joints [1].35

This system’s redundancy, where multiple muscles can act on a single joint, and its multi-articular36

nature, where a single muscle may influence multiple joints, are critical for the versatility and37

efficiency of our movements. However, this complexity comes at a cost: it is still not understood how38

the brain controls all aspects of the neuro-musculoskeletal system39

Modeling human motor control poses a significant scientific challenge with wide-reaching implica-40

tions across numerous fields, including neuroscience, biomechanics, ergonomics, assistive robotics,41

and rehabilitation medicine. The development of various models has been instrumental in under-42

standing motion control, yet many remain abstract and do not fully capture the complexities of how43

movements are generated [2, 3, 4]. Moreover, musculoskeletal models are typically designed for44

specific tasks, which restricts their applicability and scalability to more complex or diverse actions.45

Furthermore, while neuromechanics models and simulations serve as vital platforms for testing46

control theories and illustrating motion production through physiologically plausible musculoskeletal47

dynamics, there remains a significant gap in creating models that are versatile, adaptable, and gener-48

alizable for both manipulation and locomotion domains. Bridging this gap is crucial for advancing49

our understanding and enhancing the practical applications of human motor intelligence, aiming to50

develop models that accurately reflect the sophisticated nature of human movement.51

In recent years, significant advancements in the fields of biomechanics, machine learning [5, 6, 7],52

neuroscience, and physics simulators [8, 9, 10, 11] have been observed. However, these disciplines53

have largely evolved independently. In order to leverage new developments in algorithmic control and54

complex learning architectures to further our understanding of human motor control, MyoChallenge55

was launched while seeing an opportunity to bring together experts from these varied fields to56

enhance understanding of human motor control. This renewed approach was motivated by the desire57

to leverage state-of-the-art simulators and machine learning techniques. The aim is to address the58

existing gap by creating models that are not only versatile and adaptable but also generalizable across59

both manipulation and locomotion domains, thus pushing the boundaries of what is currently possible60

in modeling human movement. Specifically, the question that we want to address with this challenge61

is: Can we match human level dexterity and agility with physiological digital twins?62

Building on the NeurIPS 2022: MyoChallenge’s success [12], MyoChallenge 2023 proposes two63

unique challenges, one: to control a realistic musculoskeletal arm model for a more complex64

manipulation task, and two: to control a musculoskeletal leg model in a chase/evade task, inspired by65

the ChaseTag game [13].66

To handle the above complexity, MyoChallenge leverages MyoSuite2 - an open-source framework67

that implements highly efficient computational biomechanical models and allows muscle-driven68

simulations of these models to solve skilled tasks [14]. MyoSuite offers physiologically accurate69

musculoskeletal full hand models [15] in a framework that is several orders of magnitude (up to70

4000x) (see Figure 7 in [11]) faster than the state of art musculoskeletal simulators [16, 17] used in71

previous challenges. MyoSuite also support full contact dynamics, which most competing alternatives72

lack, to enable contact rich manipulation behaviors.73

2https://sites.google.com/view/myosuite
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2 MyoChallenge 23’: Task and evaluations74

Modeling human motor control to produce human-like, versatile, adaptable, and generalizable ma-75

nipulation and locomotion has far-reaching implications in neuroscience, biomechanics, assistive76

robotics, and rehabilitation medicine. However, a significant gap still exists between current neu-77

romechanical simulations and biomimetic behaviors. Extending from MyoChallenge 22’, we present78

a competition track in MyoChallenge 23’ that requires control of full arm movement with multiple-79

object manipulations and lower-limb locomotion tasks. Here, we present the rationale behind the80

tasks (Sec. 2.1), the MyoArm and MyoLeg model (Sec. 2.2), and finally the tasks proposed (Sec. 2.3).81

2.1 Design philosophy82

Figure 1: Two tracks of MyoChallenge 2023: A. the manipulation track where a full musculoskeletal
arm model will be reaching, grasping, controlling, and moving a real object to achieve a goal and B.
the locomotion track, where a bilateral musculoskeletal leg model will be controlling a human body
to chase or evade a moving target.

This year’s MyoChallenge consists of two distinct tracks focusing on manipulation and locomotion.83

1. Manipulation Track (Fig.1-A), presents a task of reaching to grasp and properly maneuver an84

object to move it to a target location of the workspace. This task entails the high complexity of single85

arm-hand dexterity to manipulate the surrounding objects to achieve the goals of moving and placing.86

2. Locomotion track (Fig.1-B), represents the locomotion task to chase or evade a moving goal with87

a musculoskeletal model of the lower limbs. The complexity of this task is within the nimble and88

agile dynamic control and decision-making in the lower body.89

2.2 Musculoskeletal Arm and Leg Models90

The manipulation track uses the MyoArm, a neuromusculoskeletal model representing the torso and91

the right arm consisting of 63 muscles and 27 internal DOFs. The locomotion track uses MyoLeg to92

present the whole body with articulated legs, consisting of 80 muscles and 16 internal DOFs. This93

model is based on [18] and follows its definitions and conventions. Both models feature a skin layer94

that enables full contact with the environment.95

2.3 Tasks96

The participants could participate in either track, consisting each of two phases with increasing97

difficulties and randomization.98

2.3.1 Manipulation Tasks99

In this track, the participants were asked to develop a general manipulation policy capable of100

interacting with common household objects, such as children’s toys. The action space consists of a101
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63-dimensional vector representing the muscle stimulation signals of the MyoArm. The observation102

state space is a vector containing the kinematic and muscle states of MyoArm and the object state.103

In Phase 1, the task focuses on training a policy capable of picking up a specific object and manip-104

ulating it toward a receptacle bin with randomized orientation and position. Goals were randomly105

sampled to assess the generalization capabilities of the acquired behaviors. The second phase involved106

applying the policy to objects with new geometries and physical properties (e.g., mass and friction).107

Additionally, the object and MyoArm’s initial configuration were randomized.108

Task - Phase Position
[mm]

Orientation
[rad]

Size (L,W,H) [m] Mass [kg] Friction Coeffi-
cient

Relocate - 1 ± 10 ± 1.57 (0.0284, 0.0284,
0.0284)

0.18 (1.0, 0.005, 0.0001)

Relocate - 2 ± 20 ± 3.14 (0.02, 0.02, 0.02) ±
0.005

0.175 ± 0.125 ± (0.2, 0.001,
0.00002)

Table 1: Summary of task variations for Manipulation track

2.3.2 Locomotion Tasks109

The task for locomotion resembled the World Chase Tag competition, the MyoLeg musculoskeletal110

model is required to chase or evade an opponent in a 12 x 12-meter arena, known as the Quad.111

The participants were asked to develop policies that control the MyoLeg to efficiently navigate the112

environment to avoid or pursue an opponent during each 20-second round. The action space is an113

80-dimensional vector representing the muscle control signals of the MyoLeg and the observation114

state consists of information on kinematic, ground reaction force, and muscle states of the MyoLeg,115

the opponent’s location information, and the Quad map.116

In Phase 1, the task focuses on training the agent to pursue an opponent within a 20-second timeframe117

on a plain Quad. The opponent’s behavior varied from remaining stationary to actively running118

away from the agent across different rounds. During the second phase, the agent alternated between119

chasing and evading the opponent and the terrain of the arena changed randomly into uneven grounds.120

In the evading task, the agent had to avoid the opponent as long as possible without leaving the arena.121

Task - Phase Task
[Prob]

Terrain Height
[m]

Opponent
behavior [Prob]

Opponent velocity
range [m/s]

Chasetag - 1 Chase [1] Flat [0] Stationary [0.55]
Random [0.45]

Stationary [0]
Random [0 ± 2]

Chasetag - 2 Chase [0.5]
Evade [0.5]

Flat [0]
Hills [0.13 ± 0.1]
Steps [0.2 ± 0.1]
Rough [0.075 ± 0.025]

Stationary [0.45]
Random [0.35]
Repeller [0.2]

Stationary [0]
Random [0 ± 2]
Repeller [0.65 ± 0.35]

Table 2: Summary of task variations for Locomotion track

2.4 Submissions and Evaluation122

In order to succeed, participants needed to obtain the highest success (in terms of goal achievement)123

with the minimum effort (in terms of lowest overall muscle activation) for manipulation. In locomo-124

tion, the participants are ranked based on both chase duration (in seconds) and highest success. The125

EvalAI platform (https://eval.ai) was used for hosting the challenge and to run the evaluation.126

Evaluation Metrics. The manipulation task used a negative distance error Dt=H = −|Xt −Xgoal|127

at the end of the task horizon as a performance metric. Additionally, a physiological metric calculated128

from the total muscle activation was used to estimate metabolic power. The teams scoring above129

90% 3 were instead ranked based on the physiological effort to encourage less muscle activations.130

The locomotion tasks used a score based on chase/evade duration (in seconds): s = 1− t
T /s = t

T .131

3Note that this threshold changes to 30% during the second phase
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Additionally, another performance metric Points was used based on the number of successful tags132

over 100 evaluation episodes.133

For quantitative evaluations of the submissions, participants were asked to upload their behavior134

policies to Eval AI which automatically evaluated them and updated results on a score-board. Final135

scores were averaged over multiple seeds and task variations.136

3 Solution strategies137

In this section, we describe the methods employed by the top three participating teams in each track.138

Imitating movements from a dataset is one of the common training paradigm for the Locomotion track,139

where all winning teams trained their policies using datasets of human-like movement to produce140

gait. Curriculum learning is also commonly observed in both tracks, as teams used this method to141

shape the way their policies learn. In this Challenge, we noticed a novel method to constrain policy142

exploration, which allowed one team to clinch the top place in the Manipulation track.143

3.1 Manipulation Track Approach144

3.1.1 Team Lattice (FIRST)145

Figure 2: Curriculum steps (Lattice - Manipulation).

Team Lattice comprising Alberto146

Chiappa, Alessandro Marin Vargas,147

and Alexander Mathis from EPFL,148

emerged as the first-place winners.149

Their solution was the result of four150

key ingredients: on-policy reinforce-151

ment learning with Recurrent PPO152

([19, 20]), latent exploration via Lat-153

tice ([21]), curriculum learning and domain randomization ([22]). Code is available at 4.154

Network architecture. To address the partial observability of the environment, the team included155

an LSTM layer ([23]) before the two fully-connected layers of the policy network. In this way, the156

policy had the potential to keep in memory the inaccessible features of the environment, such as the157

shape of the object, inferring them from the transition dynamics.158

Lattice exploration. To improve exploration, the stochastic policy followed a Lattice distribution,159

a multivariate Gaussian whose covariance depends on the learnt policy weights. In contrast to the160

original implementation of the exploration method ([21]), the exploration was modified for this161

challenge to sample actions in a state-independent manner, improving computational efficiency.162

Curriculum learning. The agent was trained via a curriculum of task of increasing complexity163

(Figure 2). First, the agent learnt how to grasp the object with all the fingers. Second, the agent learnt164

to lift the object after grasping it. Third, the target was positioned above the receptacle. Fourth, the165

target was positioned inside the receptacle.166

Domain randomization. To improve the robustness of the policy to unknown object shapes and167

environment conditions, the team widened the range of values from which the environment parameters168

(object size, mass and friction) could be sampled.169

Finally, the team designed an early stopping criterion after which the agent would output minimum170

muscle activation thereby limiting the energy consumption. The early stopping criterion was designed171

to identify when the object has already reached the target location or when there is no hope to172

successfully place the object in the receptacle in time.173

3.1.2 Team GaitNet (SECOND)174

4https://github.com/amathislab/myochallenge-lattice
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Figure 3: Training methods (Gait-
Net - Manipulation).

The second place in the Manipulation Track is Team GaitNet,175

with members consisting of Jungnam Park and Jungdam Won176

from Seoul National University. They used deep reinforcement177

learning (DRL) to train a controller with proximal policy opti-178

mization (PPO) [19] to move the MyoArm to desired locations.179

By looking at the object’s initial position, goal position, and180

relative orientation, Team GaitNet proposed an object trajec-181

tory generator. By defining four initial key positions (blue182

circles in Figure 3), the generator produces the object’s position183

p̂(t) as a function of time (red circles in Figure 3). The agent184

is then rewarded for correctly following the predefined target185

trajectory at each time step. Additionally, their reward function186

differentiates conditions between objects within and outside the187

box to encourage grasping and releasing the object at appropriate timesteps. The episode is truncated188

if the reward value doesn’t meet a specific threshold value for learning efficiency, as proposed by [24].189

3.1.3 Team CarbonSiliconAI (THIRD)190

Figure 4: Curriculum steps (CarbonSiliconAI Manipulation)

The third place in the Manipulation track is Team CarbonSiliconAI, a team from CarbonSilicon AI191

Technology Co. Ltd. in Beijing, China. The team utilized Proximal Policy Optimization (PPO)[19]192

for curriculum learning, gradually increasing the difficulty of the task. As depicted in Figure 4,193

they aligned the model from the first phase environment to the second phase environment through194

multi-step curriculum learning, enabling a smoother transfer of prior experiences. It is worth noting195

that in the Phase 2 environment, objects are initialized in the air, which presents a more challenge196

for learning compared to alterations in shapes or physical parameters. To address this, they initialize197

the objects in the air and ensure that the palm is sufficiently close to the object before aligning to198

the Phase 2 environment, resulting in a more easily achievable pre-grasp posture. Additionally, they199

intensified the task difficulty based on the second phase environment by expanding the range of object200

properties (object location, size, and mass), resulting in improved performance of the model on edge201

cases.202

3.2 Locomotion Track Approach203

3.2.1 Team GaitNet (FIRST)204

Figure 5: Desired velocity generation for the Chase
task (Left) and the Evade task (Right).

The winner of the Locomotion track is Team205

GaitNet, from Seoul National University, Korea,206

comprising of two members, Jungnam Park and207

Jungdam Won. The team employed a three-stage208

approach to train their policy. Proximal Policy209

Optimization (PPO) [19] was used to train their210

policies.211

First stage. The goal was to mimic walking212

mocap data in various directions. They selected213

eight motion clips from the Mixamo dataset [25],214

which include walking at 45-degree rotation intervals. Their controller was trained on three rewards,215
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given by r = rimit × rvel × ract, where rimit denotes how well the policy matches the joint angles and216

relative feet positions from the center-of-mass, rvel denotes how well the policy matches a desired217

velocity, and ract rewards the policy for avoiding large changes in actions. The training was performed218

over all the terrain types provided by MyoChallenge.219

Second stage. The goal is to move towards any given velocity. In this stage, they removed rimit from220

the reward function used in the first stage and added rface to align the agent’s velocity and facing221

direction with the desired values. This allowed the controller to learn a variety of walking motions222

unrestricted by mocap data. They reported that the controller learned agile turns and other movements223

not presented in the mocap data during this stage.224

Third stage. For the Chase task, the desired velocity was computed using the direction from the agent225

to the opponent as shown in Figure 5. For the Evade task, candidate velocities were first generated226

at 2-degree intervals from the agent, excluding velocities that move towards the boundaries or the227

opponent (see the red arrows in Figure 5). They then evaluated the value function (from the stage 2)228

for all the remaining velocities and selected the velocity with the highest value as the desired velocity.229

3.2.2 Team MSKBioDyn (SECOND)230

Figure 6: Model observations on the global and local refer-
ence frames. (MSKBioDyn)

The second place in the Locomotion231

track comes from Team MSKBioDyn,232

a team from KAIST, comprising Gun-233

woo Park, Beomsoo Shin, Minseung234

Kim, and Seungbum Koo. Their strat-235

egy involved training two multi-layer236

perceptron policy networks with PPO237

[19], one dedicated to chasing and the238

other to evading. Initially, only task239

rewards, calculated from the model’s240

heading direction and velocity, were241

applied. However, the team noticed that the model could not walk robustly or realistically without242

prior knowledge of human motion. Accordingly, the style reward from adversarial motion priors [26]243

was applied to guide the agent in generating motion within the database. The comprehensive dataset244

required for the task comprised human motion clips of walking, running, and standing from the [27].245

This data was converted into generalized coordinates for the MyoLeg model using inverse kinematics246

calculations in the OpenSim software [28]. The given observations for the global frame (red) were247

transformed into data for the local frame (blue) to reduce redundancy in learning (Figure 6). Since the248

team considered that kinematics and kinetics of the skeletal model would include information about249

muscle variables, muscle observations were not used for training. Although the agent could achieve250

some tasks without rewards based on muscle activation, the effect of activation minimization was not251

tested. Lastly, the agent was trained on tasks with increasing difficulties, from the level surface to252

full-scale terrain, via curriculum learning [29].253

3.2.3 Team CarbonSiliconAI (THIRD)254

Figure 7: Two-stage framework (CarbonSiliconAI)

The third place in the Locomotion255

track is Team CarbonSiliconAI, a256

team from CarbonSilicon AI Technol-257

ogy Co. Ltd. in Beijing, China. The258

team applied the two-stage framework259

(pre-training and task training) to the260

MyoChallenge Locomotion task. Dur-261

ing Pre-training, a low-level policy262

comprised of 3 hidden layers with263

[1024, 1024, 512] units, which could264

produce actions based on the current state and a latent variable representing a specific skill depicted265
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in human motion clips (including turn left, turn right, walk forward, walk backwards, slow down,266

speed up ...), and a discriminator that evaluated the realism of a motion were trained using PPO [19]267

and Adversarial Skill Embeddings (ASE) [30].268

In consideration of the distinct skeleton differences between the MyoLeg and humans, the human269

walking clips provided by Adversarial Motion Priors ([26]) and Control-VAE ([31]), around 4 minutes,270

were retargeted to the MyoLeg’s framework by straightforwardly mapping local joint rotations, root’s271

scaled translation and orientation onto the MyoLeg’s skeleton. After the low-level policy had the272

ability to perform life-like actions according to latent skills, a high-level policy was modeled using273

fully-connected network with 2 hidden layers of [1024, 512] units that took as input the current274

state and goal information, then specified latent to change the behaviors of the low-level policy to275

accomplish goals of chasing or evading. The high-level policy is trained using PPO [19] to satisfy a276

task reward while also trying to fool the discriminator by perform realistic behaviours that resemble277

motions shown in the human walking data. The state describes the configuration of MyoLeg, includes278

internal qpos, internal qvel, ground reaction force, torso angle, root position, root velocity, muscle279

length, muscle velocity, muscle force and action in the last time step. The goal information was280

comprised of task type (chase or evade), opponent linear speed, opponent rotation velocities, opponent281

position and opponent face direction in the MyoLeg’s local frame.282

4 Results283

For phase 2, we computed standard deviations over 5000 episodes to differentiate potentially close284

scores.285

4.1 Manipulation Track Results286

During the first phase, Team Lattice obtained a score of 95.9% with their methods in 3.1.1. During287

the second phase, Team lattice secure the winning place with a success rate of 33.5%± 3%288

The second place Team GaitNet achieves a perfect score (100%) using the methods described in 3.1.2.289

In the second phase, GaitNet held the top spot on the leaderboard for a period, before achieving a290

final score of 32.3%± 1%291

In the first phase, Team CarbonSiliconAI obtained a score rate of 97%, with a final score of 21.5%±292

2% in the second phase, with the methods described in 3.1.3293

4.2 Locomotion Track Results294

In the first phase, the winning team GaitNet obtained first place, with a success rate of 97%. They295

maintained their lead in the second phase, with a final score of 62.7%± 4%, using the methods in296

3.2.1297

During the first phase, Team MSKBioDyn secured the second spot with a success rate of 61% and298

49% in score. In the second phase, Team MSKBioDyn maintains its advantage by having a final299

score of 21.2%± 3%, with the methods in 3.2.2300

In the first phase, Team CarbonSiliconAI obtained a success rate of 36% maintaining their position at301

3rd place, with a final score of 13%± 3% in the second phase, using the methods described in 3.2.3302

5 Discussions303

5.1 Impact and Participation304

This year’s MyoChallenge had a total participation of 59 teams from over 15 countries. Across both305

phases, we had a total of 536 submissions. This widespread competition has also yielded remarkable306

results for MyoSuite, with over 6,000 total downloads during the competition phase, underlining its307

growing impact in the field. Additionally, 70% of the participants this year were newcomers, with308
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16.7% postgraduate researchers 50% graduate students, and one-third of master-level students. To309

promote diversity in science, we started a special DEI award for participants from an underrepresented310

population. We also have a Student award to promote participation among undergraduate students.311

This competition was associated with a workshop at the NeurIPS 23 conference: MyoSymposium5.312

The MyoSymposium allowed us to bring together scholars and experts in the fields of biomechanics,313

ML, neuroscience, and health care.314

5.2 Limitations and Lessons Learnt315

Lack of physiological accuracy. Although we have seen great advancements in the use of machine316

learning to achieve both agility and dexterity in this edition of MyoChallenge, there is a lack of317

solutions arising from the biomechanical experts. All proposed solutions were based on reinforcement318

learning, which, while strong solutions, are limited due to their mismatch with human motor control319

mechanisms. Solutions inspired by fields other than machine learning could also help solve muscu-320

loskeletal control tasks. For example in lower-limb control, reflexes [32], sensorimotor connectivity321

priors [33] or central pattern generator [34] are simple yet extremely powerful solutions and they322

can create stable locomotion. Given the current reliance on imitating existing datasets of human323

movement, encouraging the creation of cross-disciplinary teams (biomechanics, neuroscience, and324

machine learning) that could facilitate the development of hybrid solutions is important for future325

challenges. One possible way to inspire such collaborations could be to provide biologically realistic326

sensory feedback, for example, with muscle spindles [35, 36], which might suffer from delays and327

incomplete information. This will bring us closer to the goal of understanding the human neurological328

control system.329

Underrepresented participation. Another limitation was the small participation of an underrep-330

resented population. For example, no participants came from South America or Africa in the past331

two challenges. Additionally, the involvement of women is low, with no winning teams containing332

women.333

5.3 Future Challenges334

Promote participation in students. Organizing such a large-scale event comes with numerous335

challenges requiring both technical e.g. setting up a website, helper code, infrastructure set-up and336

management, and logistical e.g. advertising and finding sponsors. Future challenges will promote the337

participation of students to help with different aspects of the technical and logistical planning and338

execution.339

Promote participation in underrepresented groups. Additionally, we hope to lower the barriers340

to include researchers from underrepresented groups, underdeveloped countries, and students of341

all levels (e.g., high school, undergraduate, and master’s). Efforts to achieve those goals include342

providing workshops and Q&A sessions throughout the challenge period and offering detailed343

tutorials and baseline code for newcomers of MyoSuite and MyoChallenge.344

Promote representation for people with limb loss. Future editions of the MyoChallenge will be345

centered around the incorporation of bionic prosthetic limbs (both lower and upper) as part of a346

controller for dexterous motor tasks. Those topics would help explore how symbiotic human-robotic347

interaction needs to be coordinated to produce agile and dexterous behaviors. We hope to explore the348

opportunity to regain mobility and functionality for bionic limb human users and reclaim aspects of349

their former motor abilities.350

5https://sites.google.com/view/myosuite/myochallenge/myochallenge-2023
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