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ABSTRACT

In recent years, automated medical report generation (MRG) has gained signif-
icant research value for its potential to reduce workload and prevent diagnostic
errors. However, generating accurate radiology reports remains challenging due
to the prevalence of normal regions in X-ray images and normal descriptions in
medical reports. Despite various efforts to address these issues, the definitions
of visual bias and textual bias remain unclear and there is still a lack of com-
prehensive analysis of how these biases affect model behavior. In this work, we
rigorously define and conduct an in-depth examination of visual and textual bi-
ases inherent in MRG datasets. Our analysis emphasizes that global patterns, such
as normal regions and findings, contribute to visual and textual bias. Further, we
discuss how these biases make MRG models especially prone to frequency bias,
where models tend to prioritize low-frequency signals that capture global pat-
terns, while neglecting high-frequency signals. To debiase the frequency bias, we
propose the high-frequency amplification layer (HAL), aimed at enhancing the
model’s perceptiveness to fine-grained details. Our extensive experiments show
that by amplifying high-frequency signals, HAL reduces both visual and textual
biases, leading to improved performance in MRG tasks.

1 INTRODUCTION

The automation of diagnosis and treatment using medical images has received growing attention
in both academia and industry (Wolleb et al., 2022; Manzari et al., 2023; Jiang et al., 2022). In
particular, medical report generation (MRG) is one of the most promising tasks as it can alleviate
the heavy burden of radiologists and reduce diagnostic errors. MRG aims to automatically generate
a free-text description given a medical image (e.g., chest X-ray), describing the detailed findings on
both normal and abnormal regions.

Generating diagnostically accurate and domain-specific radiology reports is challenging due to the
presence of severe visual and textual biases. From the perspective of data, most medical images are
dominated by normal regions, making it difficult to capture distinct features (see Figure 1a). Simi-
larly, medical reports primarily describe normal findings, complicating the explanation of abnormal
findings (see Figure 1b). Recently, several methods have been proposed to address visual and textual
biases (You et al., 2021; Liu et al., 2021a; Tanida et al., 2023; Zhang et al., 2020; Liu et al., 2021a;
Huang et al., 2023; Li et al., 2023). However, the definitions of visual bias and textual bias have not
been clearly established and there remains a lack of comprehensive analytical understanding of how
these biases affect model behavior.

Our work focuses on rigorously defining and identifying the fundamental challenges in MRG, an-
alyzing how visual and textual biases hinder model performance. Further, from the perspective of
the model, we relate these biases to frequency bias, where the model tends to capture low-frequency
signals, while neglecting high-frequency signals. In this context, we associate normal features with
low-frequency signals and abnormal features with high-frequency signals. In MRG, where trans-
formers are widely used, this issue is exacerbated by inherent visual and textual biases. To address
this fundamental challenge, we introduce a simple method called high-frequency amplification,
which amplifies high-frequency signals to better capture abnormal features. We demonstrate that
this simple approach effectively debiases frequency bias through extensive experiments, including
pseudo-spectrogram analysis, cross-attention analysis, and representation analysis. We evaluate our
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model on two benchmarks, MIMIC-CXR (Johnson et al., 2019) and IU X-ray (Demner-Fushman
et al., 2016). The contributions of our study can be summarized as follows:

• We precisely define visual bias and textual bias, which are crucial but underexplored chal-
lenges in MRG. Through comprehensive analysis, we empirically confirm the presence of
each bias and show how they exacerbate frequency bias. We emphasize that debiasing and
mitigating frequency bias is a fundamental challenge that must be addressed in MRG tasks.

• We introduce a simple yet effective method named high-frequency amplification, specif-
ically designed to mitigate the dominance of normal features in medical images and re-
ports. By amplifying high-frequency signals, which correspond to abnormal features, our
approach enables models to effectively capture both global and local patterns.

• We validate the effectiveness of our approach through extensive experiments, including
pseudo-spectrogram analysis, cross-attention analysis, and representation analysis. We
demonstrate our simple approach achieves performance superior or comparable to state-
of-the-art models across both natural language generation and clinical efficacy metrics.

2 RELATED WORKS

Most existing MRG methods follow standard image captioning approaches due to the similarities
between the two tasks. Despite remarkable success in image captioning models, MRG still faces
significant challenges due to severe visual and textual biases inherent in medical images and reports.

Medical images, often captured from consistent angles (e.g., frontal), tend to have similar appear-
ances but contain subtle, localized abnormal regions. To better identify these abnormal regions,
some studies enhanced the alignment between abnormal regions and corresponding disease tags
(You et al., 2021; Liu et al., 2021a), generating disease-grounded visual features. Liu et al. (2021b)
introduced a differentiated attention mechanism that subtracts common features from the input im-
age, enabling the model to better focus on abnormal regions. Tanida et al. (2023) utilized a scene
graph dataset to detect anatomical regions and describe corresponding abnormal regions, enhancing
the explainability of the model. All of these prior studies aimed to overcome the limitations of med-
ical images that are visually biased due to localized abnormal regions. However, none of them have
thoroughly analyzed or empirically shown the existence of visual bias.

Medical reports are relatively lengthy, comprising multiple sentences that describe both normal and
abnormal findings. Early approaches attempted to generate long reports by integrating relational
memory into transformers or incorporating memory matrices. (Chen et al., 2020; 2022). However,
these methods often struggled to accurately describe abnormal findings, as they prioritized generat-
ing extended narratives over capturing specific abnormalities. To improve the precision of abnormal
findings, more recent works have incorporated prior knowledge into MRG models using medical
knowledge graphs (Zhang et al., 2020; Liu et al., 2021a; Huang et al., 2023; Li et al., 2023). All
of these studies aimed to address so-called textual bias, which has been inconsistently defined—
sometimes based on text length and at other times on the articulation of abnormal findings. That is,
none of the previous works have provided a clear definition of textual bias.

In this paper, we establish precise definitions for visual bias and textual bias and rigorously confirm
the presence of each bias. We believe that this attempt will promote more focused and productive
discussions in future MRG research.

3 PRELIMINARIES

3.1 MEDICAL REPORT GENERATION

Advances in deep learning for computer vision (CV) and natural language processing (NLP) have
spurred progress in natural image captioning, which involves generating descriptive text given im-
ages (Lin et al., 2014). This success has been extended into the healthcare domain, particularly
through medical report generation (MRG). MRG aims to assist radiologists by automatically gen-
erating diagnostic reports from medical images. The goal of MRG is not only to ensure accurate
disease identification but also to generate context-rich reports.
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(a) X-ray images include a large
normal region with a small abnor-
mal region. The red bounding box
is the radiologist annotation.

(b) Each X-ray image is paired with
a medical report containing many
normal findings (NF) and few ab-
normal findings (AF).

(c) The upper image showcases a
negative sample (i.e., a normal case),
while the lower image displays a
case with multiple diseases.

Figure 1: Illustration of characteristics in the MRG dataset. (a) presents a typical example of a chest
X-ray image, highlighting localized abnormal regions. (b) visualizes the imbalanced ratio of normal
to abnormal findings. (c) shows two unusual cases where abnormal findings are absent or abundant.

3.2 TERMS AND NOTATIONS

X ∈ RW×H×C represents a medical image, specifically a chest X-ray as shown in Figure 1a, where
W , H , and C denote the width, height, and number of channels, respectively. Each medical image is
paired with a corresponding medical report Y = [y1, · · · , yt, · · · , yT ] ∈ {0, 1}|v|, where yt ∈ N+

0
represents the t-th token and |v| indicates the size of vocabulary. The (X,Y )-pair is provided along
with a disease label Z ∈ {0, 1}K in which K − 1 classes are disease-related and the rest one is a
non-disease class (i.e., normal class). Let X(z) and Y (z) represent the abnormal region and finding
in the (X,Y )-pair, with their respective size and amount denoted by |X(z)| and |Y (z)|, while X(−z)

and Y (−z) indicate the normal regions and findings, with their respective amount given by |X(−z)|
and |Y (−z)|. For the positive samples, i.e., Z|X = 1 and Z|Y = 1, the image and report are defined
as X = X(z)∪X(−z) and Y = Y (z)∪Y (−z), respectively. For the negative samples, i.e., Z|X = 0
and Z|Y = 0, each image and report is defined as X = X(−z) and Y = Y (−z), respectively.

4 PROBLEM STATEMENT

4.1 THREE IMBALANCES AND TWO BIASES IN MRG DATASET

Figure 1 illustrates three key imbalances in MRG datasets. First, X-ray images are mostly composed
of normal regions, with only a small portion representing abnormal areas. This visual imbalance
makes model performance heavily dependent on the normal regions, resulting in visual bias. Second,
medical reports are asymmetrically written, with far more sentences describing normal findings than
abnormal ones. This textual imbalance causes model performance to rely on the normal findings,
leading to textual bias. Finally, the distribution of disease labels is highly skewed; certain diseases
are common (e.g., cardiomegaly), while others are relatively rare (e.g., pneumothorax). Such a label
imbalance can further deteriorate model performance, but we do not explicitly address it given that
mitigating visual and textual biases will inherently resolve this issue. Formal definitions of visual
bias and textual bias are provided below.
Definition 4.1 (Visual Bias). Let fZ|X denote an image classifier trained to predict a disease label
Z given an X-ray image X . Given that the classification accuracy is highly sensitive to the size of the
abnormal region |X(z)|, the model exhibits a bias towards classifying images as normal. This bias
arises because normal regions typically represent global patterns, while abnormal ones are local.
Definition 4.2 (Textual Bias). Let fZ|Ŷ denote a text classifier trained to predict a disease label Z

from a generated report Ŷ ∼ GY |X(ŷt|Ŷ1:t−1, X) where GY |X is a report generator. Given that
the classification accuracy is highly sensitive to the number of abnormal findings |Y (z)|, the model
exhibits a bias towards classifying the generated report as normal. This bias arises because normal
findings typically represent global patterns, while abnormal ones are local.

3
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(a) Performance by the size of abnormal regions
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Figure 2: Evidence of visual bias

0.50
0.55

Precision
Negative Pred

Yes No
Trained w/ Negative Samples

0.00

0.13

1 2 3 4 5
Number of Diseases

0.00

0.50

Sc
or

e

Precision
F1

Sc
or

e

Ra
tio

(a) Performance by the number of abnormal findings

1 2 3 4
Number of Diseases

0

45

90

M
isc

la
ss

ifi
ca

tio
n

to
 N

eg
at

iv
e Count

0.30 0.50 0.70 0.90
Avg. F1 Trained w/ Negatives

0.50

0.75

1.00

F1
 Tr

ai
ne

d
w

/o
 N

eg
at

iv
es

> 0.5 Count
40
80
120
160
200

(b) Misclassification and correlation analyses

Figure 3: Evidence of textual bias

4.2 EXISTENCE OF VISUAL AND TEXTUAL BIASES

To demonstrate the existence of visual and textual biases, we analyzed IoU and classification accu-
racy (e.g., precision and F1) in relation to the size of abnormal regions and the number of abnormal
findings. The image encoder and text decoder, followed by fZ|X and fZ|Ŷ , were examined inde-
pendently to assess the impact of visual and textual biases, respectively. The IoU (Intersection-over-
Union) score quantifies the overlap between ground truth bounding boxes and predicted attention
regions, as identified by the Grad-CAM heatmap (Selvaraju et al., 2017; Li et al., 2021; Xiao et al.,
2023).1 This metric allows us to evaluate how well the model captures representations relevant to
MRG tasks. Classification accuracy measures the performance of the image and text classifiers,
fZ|X and fZ|Ŷ , with values ranging from 0 to 1. A higher score indicates that the image encoder or
text decoder has been effectively aligned with MRG tasks.

Figure 2 presents evidence of visual bias. Specifically, Figure 2a shows that as the size of the bound-
ing box (i.e., abnormal region) increases, both IoU and classification accuracy improve. This sug-
gests that as the proportion of normal regions in the X-ray increases, the image classifier fZ|X is
more likely to misclassify, indicating that the image encoder is influenced by visual bias. This find-
ing is further supported by Figure 2b. The left plot shows the number of samples misclassified as
negative,2 suggesting that smaller bounding boxes (i.e., larger normal regions) tend to trigger mis-
classification. The right plot shows a positive correlation between IoU and F1 scores, implying that
reduced attention to abnormal regions increases the likelihood of misclassification. This highlights
that the abnormal region size contributes to visual bias.

Figure 3 presents evidence of textual bias. The left plot in Figure 3a compares classification accuracy
before and after training GY |X , with and without the inclusion of negative samples. The results indi-
cate that the text classifier, fZ|Ŷ , is more prone to misclassification when negative samples dominate
the training data, where the number of abnormal findings is relatively low. The right plot further re-
inforces this observation: classification accuracy improves as the number of diseases increases. This
demonstrates that the number of abnormal findings significantly affects classification accuracy, em-
phasizing that the text decoder suffers from textual bias.3 Figure 3b confirms the presence of textual
bias. The left plot shows the number of samples misclassified as negative samples, suggesting that
fewer abnormal findings are more likely to trigger misclassification. The right plot shows a linear
correlation between classification accuracy with and without negative samples, with a slope greater
than 0.5.45 This indicates that excluding negative samples improves classification accuracy, further
highlighting that the number of abnormal findings is a significant factor contributing to textual bias.

1See Figure 8 in Appendix A.1.
2Negative samples indicate the cases with no documented abnormal regions and findings. The upper image

of Figure 1c showcases an example of a negative sample.
3More diseases typically correspond to more abnormal findings, making multi-disease cases easier to clas-

sify correctly. Refer to the lower image in Figure 1c for an example of a multi-disease case.
4For visual clarity, we grouped the F1 predictions by interval along the y-axis, where the bubble size repre-

sents the number of predictions in each group.
5Note that the x-axis denotes the group-wise average F1 predictions, and a slope greater than 0.5 indicates

that the negative samples are imposing a text bias on the model.
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4.3 FREQUENCY BIAS IN TRANSFORMER ARCHITECTURE

As discussed in previous sections, global patterns, such as normal regions and findings, contribute
to visual and textual biases. This bias towards global patterns has been extensively studied from the
model’s perspective, commonly known as frequency bias or spectral bias. Frequency bias refers to
the phenomenon where models tend to prioritize low-frequency signals that capture global patterns
across multiple samples, while neglecting high-frequency signals that represent local patterns unique
to each sample (Schwarz et al., 2021; Tian et al., 2023).

Transformers (Vaswani, 2017) are particularly vulnerable to frequency bias, as the self-attention
module functions as a low-pass filter, inherently paying more attention to low-frequencies than high-
frequencies (Wang et al., 2022; Park & Kim, 2022; Piao et al., 2024). This globality-seeking behavior
of the self-attention module has also been discussed in relation to Principal Component Analysis
(PCA) (Zhou et al., 2023; Teo & Nguyen, 2024). Given this, MRG models, where transformers are
dominantly used, are especially susceptible to frequency bias, because as described in §4.1 and §4.2,
the training data itself is inherently biased towards global patterns. Therefore, mitigating frequency
bias is an important and obvious challenge in MRG tasks. The following sections introduce our
simple yet powerful approach to addressing this issue.

5 METHOD

5.1 PRETRAINED ENCODER-DECODER NETWORK

Vision Transformer for Image Encoder Vision Transformer (ViT) (Dosovitskiy, 2020) was the
first to successfully apply the transformer architecture directly to image recognition tasks. ViT pro-
cesses images as sequences of patches, enabling it particularly effective for medical imaging, where
abnormalities may span large or subtle regions, such as in X-rays. Accordingly, we implemented
an image encoder using the ViT-B model pre-trained on ImageNet (Russakovsky et al., 2015), a
widely used approach for medical image encoders. The key ingredient of the ViT encoder is the
attention module, encoding each image by aggregating all patchified views. An image embedding,
U ∈ RN×|d|, processed by a ViT encoder is computed as:

U = Attention(Xp) = softmax
(
EWQ(EWK)T

√
d

)
EWV where E = XpWE . (1)

Here, Xp ∈ RN×(P 2×C) denotes a patchified image sequence with N , P and C as the number of
patches, the patch size, and the number of channels, respectively. WE ∈ R(P 2×C)×|d| represents
the weight matrix mapping each image to the embedding vector. WQ ∈ R|d|×|dq|, WK ∈ R|d|×|dk|,
WV ∈ R|d|×|d| are the query, key, and value weights, respectively, and

√
d is a scaling factor.

Biomedical GPT for Text Decoder Pre-training models on domain-specific data, such as biomed-
ical text, has been shown to significantly enhance downstream task performance (Peng et al., 2019;
Lee et al., 2020; Beltagy et al., 2019). Following this approach, we used a biomedical GPT model as
the text decoder. Specifically, we initialized the weights of the text decoder based on Papanikolaou
& Pierleoni (2020), which fine-tuned the GPT model using biomedical relations extracted from the
PubMed corpus. By doing so, the text decoder can better capture domain-specific details or knowl-
edge and is expected to improve the quality and fluency of medical reports accordingly.

Cross-Attention Module The cross-attention module aligns the image embedding with the text
embedding. Specifically, the query vector is derived from the text decoder, while the key and value
vectors are sourced from the image encoder. As shown in Eq. (2), the cross-attention mechanism
computes attention weights, obtained via the softmax(·) function, by aligning the text embedding
V with the image embedding U . These attention weights are then used to re-weight the image
embedding, allowing the model to aggregate visual features based on their relevance to the textual
context. As a result, the aligned representation A ∈ RT×|d| is generated, representing the fused
information of both image and text embeddings in a unified space:

A = Attention(U, V ) = softmax
(
VWQ(UWK)T

√
d

)
UWV . (2)
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5.2 HIGH-FREQUENCY AMPLIFICATION LAYER

As described in §4.3, the attention module introduces an inductive bias, so-called the frequency bias,
having transformer-based models less focused on local patterns. To address this, we introduce a high-
frequency amplification layer (HAL), wherein Fourier transform, high-pass filtering, and inverse
Fourier transform are applied subsequently. This layer enhances the model’s ability to capture fine-
grained details, thereby mitigating its bias towards global patterns.

Fourier Transform The Fourier transform decomposes a function into its constituent frequencies
using sinusoids as basis functions (Heckbert, 1995). Since both patches and tokens are discrete data,
we applied the discrete Fourier Transform (DFT) which is denoted as an operator T :

T : A→ F where Fc =

T−1∑
t=0

Ate
− 2πi

T tc , 0 ≤ c ≤ T − 1 .

Here, Fc is the c-th frequency component, xt is the t-th time-domain signal, and i is the imagi-
nary unit. Computing the DFT directly has a complexity of O(T 2), which is inefficient for large
datasets. To overcome this, the Fast Fourier Transform (FFT) was proposed, reducing the com-
plexity to O(T log T ) (Cooley & Tukey, 1965; Brigham, 1988). We apply the FFT to the aligned
representation A ∈ RT×|d| using a two-dimensional DFT: one 1D DFT along the time axis, Ttime,
and another along the feature axis, Tfeature, as in (Lee-Thorp et al., 2021; Lee & Lee, 2024). This
yields the frequency of the aligned representation denoted as F ∈ CT×|d|:

F = T ◦A = Ttime(Tfeature(A)) .

High-Pass Filtering and Inverse FFT The frequency representation, F , consists of low and high
frequencies, corresponding to global and local patterns, respectively. In our context, global patterns
capture normal regions and findings across (X,Y )-pairs, while local patterns represent abnormal
ones unique to each pair. High-pass filtering (HPF) is applied to emphasize these local patterns
by removing low-frequency components, thus enabling the model to focus on fine-grained details
(Pollack, 1948; Costen et al., 1996; Tamkin et al., 2020). Specifically, HPF eliminates frequency
components below a certain threshold α by setting Fc,d ← 0 for all c, d ≤ α.6 This operation is
implemented using a binary mask FHPF = F ⊙M , where M = {mc,d | mc,d ∈ {0, 1}, 0 ≤ c ≤
T − 1, 1 ≤ d ≤ |d|}, with mc,d = 1 for high-frequency components and mc,d = 0 otherwise.
Finally, the original representation A is reconstructed by transforming FHPF back to the original
domain through an inverse FFT (iFFT):

AHPF = T −1 ◦ FHPF = T −1
feature(T

−1
time(FHPF)) .

6 EXPERIMENTAL SETUP

Dataset We evaluate our model on two widely used medical report generation benchmarks, i.e.,
MIMIC-CXR and IU X-ray. 1) MIMIC-CXR is the largest radiography dataset with 377,110 chest
X-ray images and 227,827 reports from 65,379 patients. We followed the data split and prepro-
cessing steps from (Chen et al., 2020), and used only frontal view images and reports with more
than three tokens, resulting in 153,130 images for the training set, 1,201 for the validation set, and
2,193 for the test set. 2) IU-Xray is a relatively small public radiography dataset that comprises
7,470 chest X-ray images and 3,955 reports from a total of 3,955 patients. Following the approach
of (Chen et al., 2020; Li et al., 2023), we used the dataset only when both frontal and lateral view
images were available for each report, resulting in 2,069 images for the training set, 296 for the
validation set, and 590 for the test set.

Baselines We compare our model with state-of-the-art models on two benchmark datasets. R2Gen
(Chen et al., 2020), R2GenCMN (Chen et al., 2022) have been widely used as baseline MRG models.

6α represents the distance from the origin within the 2D frequency space F ∈ CT×|d|. In this domain,
components closer to the center represent lower frequencies, while those further from the center represent
higher frequencies. Therefore, a lower α removes only a small number of low-frequency components near the
origin, whereas a higher α eliminates components up to relatively higher frequencies, farther from the origin.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

AlignTransformer (You et al., 2021), CA (Liu et al., 2021b), RGRG (Tanida et al., 2023) are pro-
posed to address visual bias, while PPKED (Liu et al., 2021a), KiUT (Huang et al., 2023), DCL (Li
et al., 2023) are designed to address textual bias. Additionally, we include R2GenGPT (Wang et al.,
2023b), METransformer (Wang et al., 2023a), and PromptMRG (Jin et al., 2024) which are widely
regarded as SOTA models. For the IU X-ray dataset, we include two additional baselines, CVT2Dis
(Nicolson et al., 2023), and M2KT (Yang et al., 2023) which have been used for comparing clinical
efficacy performance.

Evaluation Metrics To measure the fluency and quality of the generated reports, we evaluate
them using natural language generation (NLG) metrics, including BLEU (Papineni et al., 2002),
METEOR (Denkowski & Lavie, 2011), and ROUGE-L (Lin, 2004).7 For the clinical efficacy (CE),
we include metrics such as precision, recall, and F1. The CheXbert labeling tool (Smit et al., 2020)
is used to convert each report into 14 disease classification labels.

Implementation Details For the MIMIC-CXR dataset, we use a single frontal view image, while
for the IU X-ray dataset, we utilize a pair of images captured from different views of the patient as
input. To ensure compatibility across both datasets, all images are resized to 224 and transformed
into visual tokens. For the IU X-ray dataset, an additional step is performed where the paired images
are concatenated along the embedding dimension and projected back to the original embedding
dimension. The hyperparameter α for the HPF is set to 8, and the sensitivity to α is analyzed in
Figure 4. We use AdamW optimizer (Loshchilov, 2017) with a learning rate of 5e-6 and a weight
decay of 0.05. The learning rate is scheduled using a cosine annealing scheduler, with warm restarts
every 5 iterations. The model is trained on an A100 GPU with a batch size of 64 for 39 epochs.

7 RESULTS

The results discussed in this section are primarily based on our model trained on the MIMIC-CXR
dataset. In §7.3, we provide an additional evaluation conducted on the IU-Xray dataset. We hypoth-
esize that the results will generalize well to other MRG datasets.

7.1 GENERALIZATION ASSESSMENT
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Figure 4: Training and validation performance ac-
cording to different α.

As discussed in §5.2, HAL reconstructs the
original feature representation, A, using a lim-
ited number of filtered high-frequency compo-
nents, FHPF. Since high-frequency components
capture fine-grained local details of the input
signals, the reconstructed representation, AHPF,
may be more prone to overfitting. To assess
this risk, we computed the average accuracies
and losses and analyzed their trends across both
training and validation sets. Figure 4 illustrates
the training and validation performance accord-
ing to different α over 20 epochs. We calculated
hit accuracy and categorical cross-entropy loss
between the ground truth and predicted tokens.
The results indicate that applying HPF with a
higher α does not lead to overfitting but con-
sistently improves generalization. We attribute
this outcome to the balancing effect between
the low-frequency bias inherent in the model
and the high-frequency bias introduced by HAL, which allows the model to learn balanced rep-
resentations that enhance its emergent generalizability. Based on this result, the default setting for
the analyses in the following sections is fixed at α = 8.

7https://github.com/tylin/coco-caption
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Figure 7: Comparison of T-SNE embeddings before and after HAL (α = 8)

7.2 ABLATION STUDIES

In this section, we present a comprehensive analysis of the impact of HAL on internal model dy-
namics, focusing on key aspects such as neuron activation patterns, cross-attention distributions, and
representation topology.

Pseudo-spectrogram Analysis A spectrogram provides a visual representation of how frequency
components evolve over time, typically depicting frequency on the x-axis and time on the y-axis,
with color indicating the intensity of each frequency component. Inspired by this approach, we con-
ducted a pseudo-spectrogram analysis of neuron activation. Figure 5 compares the neuron activation
intensity before and after HAL, where the x-axis represents the top 30 neurons ranked by activation
level and the y-axis denotes the temporal sequence of tokens. The figure shows that in the layer
before HAL, only a subset of neurons are strongly activated, with most neurons remaining inactive.
Furthermore, those few active neurons exhibit uniform activation across all tokens in the sequence,
suggesting an indistinguishable activation pattern. In contrast, there is a rich and non-uniform acti-
vation after HAL. An activation spectrum indicates that HAL allows the model to effectively cap-
ture fine-grained details by amplifying high-frequency signals, which might otherwise be ignored.
Consequently, HAL produces a richer representation so that neuron activation forms a spectrum,
ultimately improving the model’s discriminative perceptiveness.

Cross-attention Analysis HAL is placed after the cross-attention layer, making it highly depen-
dent on the influence of HAL. Therefore, comparing the cross-attention map with and without HAL
helps illustrate how it has affected the image-to-text alignment. Figure 6 shows a comparison of the
cross-attention distributions across (224 × 224) images for models trained with and without HAL.
The results reveal clear advantages of using HAL. In the model without HAL, cross-attention tends
to focus on the periphery, especially the mid-abdominal part, which contains little information about
chest disease. This may be due to the “common” appearance of grey areas around the abdomen on
most X-ray images (see Figures 1 and 8), representing a global pattern across all samples regard-
less of disease type. On the other hand, the model trained with HAL shows that the image-to-text
cross-attention is concentrated around the center of the image (i.e., the upper-mid-thoracic region),
typically containing the “specific” information of chest disease. This may be understood as evidence

8
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Table 1: The comparison of model performance on MIMIC-CXR dataset. Note that bold numbers
highlight the best performance, underlined numbers indicate the second-best performance, and as-
terisked (∗) numbers denote the third-best performance, respectively.

NLG Metrics CE MetricsBaselines BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L Precision Recall F1
R2Gen 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276
R2GenCMN 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278
AlignTransformer 0.378 0.235 0.156 0.112 0.158 0.283 - - -
CA 0.350 0.219 0.152 0.109 0.151 0.283 0.352 0.298 0.303
RGRG 0.373 0.249 0.175* 0.126* 0.168 0.264 0.461* 0.475 0.447
PPKED 0.360 0.224 0.149 0.106 0.149 0.284 - - -
KiUT 0.393 0.243 0.159 0.113 0.160* 0.285 0.371 0.318 0.321
DCL - - - 0.109 0.150 0.284 0.471 0.352 0.373
R2GenGPT 0.411 0.267 0.186 0.134 0.160* 0.297 0.392 0.387 0.389
METransformer 0.386 0.250* 0.169 0.124 0.152 0.291* 0.364 0.309 0.311
PromptMRG 0.398* - - 0.112 0.157 0.268 0.501 0.509 0.476
Ours (HAL) 0.399 0.264 0.189 0.143 0.170 0.299 0.434 0.410* 0.392*

Table 2: The comparison of model performance on IU-Xray dataset. Note that bold numbers high-
light the best performance, underlined numbers indicate the second-best performance, and asterisked
(∗) numbers denote the third-best performance, respectively.

NLG Metrics CE MetricsBaselines BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L Precision Recall F1
R2Gen 0.470 0.304 0.219 0.165 0.187 0.371 0.141 0.136 0.136
R2GenCMN 0.475 0.309 0.222 0.170 0.191 0.375 - - -
AlignTransformer 0.484 0.313 0.225 0.173 0.204 0.379 - - -
CA 0.492 0.314 0.222 0.169 0.193 0.381 - - -
RGRG - - - - - - 0.183* 0.187* 0.180*
PPKED 0.483 0.315 0.224 0.168 0.190 0.376 - - -
KiUT 0.525 0.360 0.251 0.185 0.242 0.409 - - -
DCL - - - 0.163 0.193 0.383 0.168 0.167 0.162
R2GenGPT 0.488 0.316 0.228 0.173 0.211* 0.377 - - -
METransformer 0.483 0.322* 0.228 0.172 0.192 0.38 - - -
PromptMRG 0.401 - - 0.098 0.160 0.281 0.213 0.229 0.211
CVT2Dis 0.473 0.304 0.224 0.175* 0.200 0.376 0.174 0.172 0.168
M2KT 0.497* 0.319 0.230* 0.174 - 0.399* 0.153 0.145 0.145
Ours (HAL) 0.521 0.425 0.371 0.336 0.263 0.507 0.418 0.415 0.414

that HAL enhances robustness to the frequency bias. In summary, Figure 6 demonstrates that HAL
improved the model to attend to diagnostically significant regions by mitigating the frequency bias.

Representation Analysis Comparing the topology of representation before and after a specific
layer provides an intuitive explanation of how it works as an operator, and proves the utility it yields
from the perspective of representation quality. In this regard, we performed the T-SNE embedding
(Van der Maaten & Hinton, 2008) and visualized representation for both single-disease and multi-
disease cases, as shown in Figure 7. For single-disease cases (see Figure 7a), which encompass 12
distinct diseases, the embedding vector before HAL produces entangled clusters, indicating poor
feature discrimination by diseases. In contrast, the embeddings after HAL form well-separated clus-
ters, suggesting a marked improvement in representation quality. This improvement is likely due to
HAL, where amplified high-frequency signals highlight the local patterns unique to each sample,
but erase the global patterns shared across samples, which contribute to entangled representations.

For multi-disease cases (see Figure 7b), we cannot conduct cluster analysis as T-SNE embeddings
fail to build distinguishable representations due to the high complexity of disease combinations—the
complex nature of these combinations results in highly entangled feature representations—making
it challenging to achieve well-separated clusters.8 Instead, we can do scatter analysis to demonstrate
whether HAL makes a dispersed representation—the larger dispersion means that the model treats
each point more uniquely. Before HAL, the T-SNE embeddings show compact representation, except
for the |Z| = 4 case that exhibits dispersed representation. This dispersion is likely due to the

8In multi-disease cases, there are many samples that have the same disease in common. In these cases,
the overlapping diseases among samples dilute or mix the distinctive local patterns. That is, the local patterns
become nothing but noise, and only the global patterns survive. As a result, the frequency bias in models
becomes more pronounced compared to single-disease scenarios, making it challenging to do cluster analysis.
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reduced influence of normal findings, as illustrated in Figure 1c, enabling clearer differentiation
between samples. After HAL, the embeddings appear to spread more dispersely, implying that each
sample is embedded finely enough to be distinguishable. That is, the scatter analysis suggests that
HAL increases the model’s perceptiveness to the local details and thus mitigates frequency bias.

7.3 PERFORMANCE COMPARISON

Through the previous sections has it been shown that HAL is an effective tool for addressing fre-
quency bias, especially crucial in MRG tasks where visual and textual biases are already prevalent.
Nevertheless, one might argue that HAL, due to its simplicity, may not be competitive against exist-
ing methods for MRG. To address this concern, this section presents a comparative evaluation on two
MRG benchmark datasets: MIMIC-CXR and IU-Xray. Tables 1 and 2 summarize the performance
of MRG models using both NLG and CE metrics, illustrating that our model performs competi-
tively against other baselines. Specifically, our model outperforms baseline models on NLG metrics,
demonstrating its ability to generate high-quality reports containing featured medical terminology
found in real-world clinical texts. Furthermore, when comparing the top-3 ranks for each metric, our
model ranks consistently high across almost all metrics. This balanced achievement across diverse
metrics suggests that HAL not only enhances the overall quality of generated reports but also pro-
vides robustness in capturing key clinical concepts, making it a reliable tool for MRG tasks. Note
that the performance of baselines was taken directly from the results reported in the original papers.9

8 LIMITATIONS AND FUTURE WORK

It is important to note that our current results were obtained without extensive hyperparameter op-
timization. We believe that a systematic exploration of hyperparameters could further enhance the
model’s performance and stability, providing stronger evidence of HAL’s effectiveness. The primary
goal of HAL is to reduce the impact of global patterns by amplifying high-frequency signals. How-
ever, this approach may be less effective if the training data is either insufficient or contains too much
randomness, making it difficult for dominant global patterns to emerge. In such cases, HAL might
even introduce a bias towards local patterns instead. Accordingly, future research should explore
methods to balance global and local patterns, especially when training data is limited or noisy. In
addition, while this study empirically links visual and textual biases with frequency bias, additional
theoretical grounding is needed to strengthen those empirical findings. We hope that future research
will further explore this area. Meanwhile, further improvements could also be explored in the pre-
training phase. We anticipate that pre-training the encoder or decoder models on chest X-ray data
would yield greater performance.

9 CONCLUSION

In this work, we demonstrated the existence of visual and textual biases in the MRG dataset (§4.1)
and discussed how these biases make MRG models especially prone to frequency bias, with a ten-
dency to prioritize low-frequency components. To counter this vulnerability, we introduced the high-
frequency amplification layer (HAL) (§5.2), designed to mitigate the model’s predisposition towards
such biases. Our results showed that HAL significantly enhances various aspects, including neuron
activation, cross-attention map, and representation quality, as detailed in ablation studies (§7.2). De-
spite its simplicity, HAL exhibited outstanding performance in comparative evaluations (§7.3). All
these findings strongly support our arguments that: (1) debiasing is a fundamental issue for improv-
ing MRG tasks, and (2) mitigating frequency bias is crucial for enabling models to capture both
global and local patterns of medical images more effectively. We believe this work will pave the
way for more robust MRG models that are better equipped to handle the complexities of real-world
medical data, ultimately contributing to advanced medical imaging tasks.

9It is important to note that only Jin et al. (2024) reported CE performance on the IU-Xray dataset. There-
fore, the CE metrics presented in Table 2 are all borrowed from the results reported in Jin et al. (2024). Unlike
the NLG metrics, the CE metrics were evaluated in a zero-shot setting, where the models were not trained on
the IU-Xray dataset. This context explains why the baseline models exhibit relatively lower CE performance
compared to our model.
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A APPENDIX

A.1 VISUAL BIAS EXPERIMENTS

According to existing studies (Liu et al., 2021b; You et al., 2021; Tanida et al., 2023), localized ab-
normal regions are difficult to capture. In this experiment, we investigated several potential factors
that may affect visual bias, including the bounding box size. We used VinDr-CXR dataset which
provides 18,000 chest X-ray images annotated with bounding box information for disease regions
and 23 disease labels.10 We utilized ViT-S pre-trained on 510K X-ray images for this section (Xiao
et al., 2023). To evaluate the model’s ability to capture disease-relevant regions, we employed IoU
(Intersection-over-Union) metric. Specifically, we utilized the IoU Multiple metric, which compares
all actual bounding boxes to all predicted bounding boxes, and the IoU Largest metric, which com-
pares the largest actual bounding box and the largest predicted bounding box. Classification perfor-
mance was assessed using precision and F1.11

Grad-CAM in ViTs In this paragraph, we briefly explain how we calculated the IoU score based
on Grad-CAM. Grad-CAM (Selvaraju et al., 2017) is a method for generating visual explanations
to identify which parts of the input image have the most influence on a given class prediction.
It was originally proposed for CNN architecture and is now applicable to ViTs as well. Similar
to CNN-based models, which extract feature maps from the last convolutional layer, Grad-CAM
for ViTs extracts feature maps from the norm1 layer of the final block. These feature maps have
the shape of f ∈ RN×(P 2×C), where N , P , and C represent the number of patches, the patch
size, and the number of channels, respectively. The feature maps are then projected back into the
original image space by reversing the patchification process, allowing for spatial interpretation. In
this experiment, we extracted activation maps based on the ground truth disease label. To generate
predicted bounding boxes, we retained only the regions of the activation maps that exceed 75% of the
maximum activation value. We then utilized OpenCV’s findContours function to detect the contours
of these regions, followed by the minAreaRect function to generate the minimum area bounding
rectangles that enclose each contour (see Figure 8).

GT bbox Pred bbox GT bbox Pred bbox

Figure 8: Bounding box generation from Grad-CAM visualizations

Results In §4.2, we demonstrated that as the (1) bounding box size (i.e., abnormal regions) de-
creases, both the ability to capture abnormal regions and accuracy of disease classification deterio-
rate. Additionally, the number of positive samples misclassified as negative increases, highlighting
the presence of visual bias. We then analyzed the effect of (2) biased distribution of diseases on
the model performance. In Figure 9a, the IoU and classification scores of the vanilla classification
model for different diseases are sorted in ascending order based on the number of training samples.
Notably, disease ID 22 represents the negative samples. While classification performance tends to
improve with an increasing number of training samples, the IoU score does not consistently reflect
the classification accuracy. To examine potential correlations, we plotted a regression using boot-
strapped samples, ensuring a minimum of 100 samples per class and down-weighting outliers. As
shown in Figure 9b, the regression plot reveals no significant correlation between IoU and classifi-
cation performance. The above analysis is consistently observed when comparing performance by
the (3) number of diseases per image, as shown in Figure 10. For cases where medical images
contain multiple diseases (excluding classes with fewer than 30 samples), the results show that as
the number of diseases per sample increases, the classification performance improves, while the IoU

10https://physionet.org/content/vindr-cxr/1.0.0/
11In this analysis, precision is calculated by considering only the top-k predicted labels as the predicted

disease, where k corresponds to the number of ground truth disease labels for each sample.
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Figure 9: Biased distribution of diseases
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Figure 10: Number of diseases
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Figure 11: Location of bounding boxes
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Figure 12: Scatterness of bounding boxes

scores remain unaffected. We further analyzed whether the (4) location of bounding box might
influence the model performance. The image is divided into nine areas (3× 3 grid) where the y-axis
represents upper, middle, and lower regions, and the x-axis represents left, center, and right regions.
In Figure 11b, a weak positive correlation is observed due to outliers, but in Figure 11a, the upper
center (UC), middle center (MC), and lower right (LR) areas show significant differences in IoU
performance, despite having nearly identical classification performance. This implies there is little
correlation between these two metrics. Additionally, no significant patterns were identified when
analyzing the (5) scatterness of bounding box based on the number of differently located bounding
boxes, as shown in Figure 12. This experiment confirmed that the primary factor influencing visual
bias is the size of the bounding box.

A.2 TEXTUAL BIAS EXPERIMENTS

In this experiment, we investigated several potential factors that may contribute to textual bias in
MRG, including the number of abnormal findings. We used the MIMIC-CXR dataset and the base-
line MRG model without any HPF. We prepared ground truth labels using CheXbert labeling tool
(Smit et al., 2020) for the analysis, but the “support devices” label was excluded as it does not repre-
sent an actual disease. The results were evaluated using precision and F1 score for CE metrics, and
BLEU-4, METEOR, and ROUGE-L for NLG metrics.

Results In §4.2, we demonstrate that as the (1) number of abnormal findings decreases, the
model’s diagnostic performance degrades. In other words, the model exhibits a textual bias towards
dominant normal findings. This is further supported by the increasing misclassification tendency
as negative samples dominate the training data. Additionally, we analyzed the effect of (2) biased
distribution of diseases. As shown in Figure 13a, the NLG and CE scores of MRG model for
different diseases are sorted in ascending order based on the number of training samples, with disease
label 13 representing negative samples. In contrast to the visual bias experiment, both NLG and
CE metrics showed no significant differences for abnormal diseases, except in the case of negative
samples. Additionally, Figure 13b does not appear to have a strong correlation. Next, we analyzed
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Figure 13: Biased distribution of diseases
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Figure 14: Length of reports

the impact of the (3) report length, categorizing reports as short (20 words or less), medium (up to
50 words), long (up to 80 words), and extra long (more than 80 words) given the max length is 100.
As shown in Figure 14a, short to medium-length generated reports tend to perform better on both
NLG and CE metrics. However, the scores do not show any clear upward or downward trend based
on the generated length, suggesting that the results may not be statistically significant. Figure 14b
shows a positive correlation between the NLG score and CE score. This experiment confirmed that
the primary factor influencing textual bias is the number of abnormal findings.

A.3 VIT OUTPERFORMS RESNET IN MEDICAL IMAGING TASKS

Convolutional Neural Networks (CNNs) have been widely used in various computer vision tasks.
After the advent of Vision Transformers (ViTs), ViTs have shown its potential as a competitive
alternative to CNNs. Since CNNs and ViTs each exhibit distinct advantages and limitations, it is
general to choose the appropriate backbone model based on the downstream tasks. For instance,
CNNs possess a high inductive bias, while ViTs effectively capture long-range dependencies. Al-
though CNN-based models might seem suitable for the localized nature of abnormalities in medical
images, numerous studies have demonstrated the effectiveness of ViTs in automated medical image
diagnosis, ranging from medical image segmentation (Karimi et al., 2021), medical image classifi-
cation (Matsoukas et al., 2021), and medical image reconstruction (Zhang et al., 2021), especially
when pre-trained on ImageNet. Since diagnosis often requires consideration of distant organs and
tissues, the long-range dependencies captured by ViTs are particularly advantageous in the medical
domain. In medical images, abnormal regions may span large or subtle regions. Unlike CNNs, which
focus on local features in the lower layers and global features in the higher layers, ViTs capture
both local and global features at every layer, preserving fine-grained details and contextual relation-
ships (Raghu et al., 2021). Additionally, sparse attention mechanisms in ViTs are known to enhance
robustness against noise (Zhou et al., 2022). ViTs perform particularly well when pre-trained on
large-scale datasets or via self-supervision.

This finding is further validated through our simple experiment. Specifically, we compared the clas-
sification performance of ResNet-50 (He et al., 2016) and ViT-S (Dosovitskiy, 2020), both pre-
trained on ImageNet and fine-tuned on the Vindr-CXR dataset for 50 epochs. The results demon-
strated that ViT-S outperformed ResNet-50, despite the latter having a slightly higher number of
parameters (See Table 3).

Table 3: Comparison of image encoder backbone models

Model Params F1 Hit@k
ResNet-50 23.9M 0.682 0.546
ViT-S 22.2M 0.699 0.624
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