

EFFICIENT TESTING FOR CORRELATION CLUSTERING: IMPROVED ALGORITHMS AND OPTIMAL BOUNDS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
EFFICIENT TESTING FOR CORRELATION CLUSTERING:
IMPROVED ALGORITHMS AND OPTIMAL BOUNDS

ABSTRACT

Correlation clustering is an important unsupervised learning problem with broad applications. In this problem, we are given a labeled complete graph $G = (V, E^+ \cup E^-)$, and the optimal clustering is defined as a partition of the vertices that minimizes the $+$ edges between clusters and $-$ edges within clusters. We investigate efficient algorithms to test the *cost* of correlation clustering: here, we want to know whether the graph could be (nearly) perfectly clustered (with 0 or low cost) or is far away from admitting any perfect clustering. The problem has attracted significant attention aimed at modern large-scale applications, and the state-of-the-art results use $\tilde{O}(1/\varepsilon^7)$ queries and time (up to log factors) to decide whether a graph is perfectly clusterable or needs to flip labels of $\varepsilon \binom{n}{2}$ edges to become clusterable. In this paper, we improve this bound significantly by designing an algorithm that uses $O(1/\varepsilon^2)$ queries and time. Furthermore, we derive the first algorithm that tests the cost for the special setting of correlation clustering with k clusters with $O(1/\varepsilon^4)$ queries and time for constant k . Finally, for the special case of $k = 2$, which corresponds to the strong structure balance problem in social networks, we obtain tight bounds of $\Theta(1/\varepsilon)$ queries – the first set of *tight* bounds in these problems. We conduct experiments on simulated and real-world datasets, and empirical results demonstrate the advantages of our algorithms.

1 INTRODUCTION

Correlation clustering is a fundamental unsupervised problem that has been studied extensively in the literature of theoretical computer science and machine learning. At a high level, the problem asks to partition the datasets based on *qualitative* information, i.e., whether two data points are similar. More formally, the dataset is represented as a labeled complete graph $G = (V, E^+ \cup E^-)$, where each vertex $v \in V$ represents a data point, and each vertex pair (u, v) contains an edge with label $(+)$ or $(-)$ denoting “similarity” and “dissimilarity”. The cost of a clustering is defined as the total number of $(+)$ edges crossing clusters and the number of $(-)$ edges inside the same clusters.

Correlation clustering has a broad range of applications, including document summarization Bansal et al. (2002), image segmentation Kim et al. (2011); Yarkony et al. (2012), bioinformatics Hou et al. (2016), and community detection Veldt et al. (2018); Shi et al. (2021). Notably, correlation clustering corresponds to naturally emerging structures in signed social networks, where edges are classified as “friendly” and “hostile” relationships. In this setting, structural balance theory, which is well established in sociology, characterizes the “stability” of triangles in signed networks Heider (1946; 1982); Cartwright & Harary (1956); Davis (1967). With strong structural balance, only two types of triangles are stable — with all three edges as positive or with two negative and one positive edge (“the enemy of your enemy is your friend”). The local stability condition also implies global alignment. The vertices in a stable signed network can be partitioned into two groups with all $(+)$ (friendly) edges inside each group and all $(-)$ (hostile) edges in between. Mathematically, this is precisely the case of a *perfect (zero-cost) clustering* with two clusters. In addition, a weaker version of structural balance also allows triangles of all three negative edges. Globally, a weakly balanced signed network corresponds to multiple clusters with only positive intra-cluster edges and negative inter-cluster edges. That is, the network has a zero cost correlation clustering where the number of clusters can be flexible. In the remainder of this paper, such a network with a zero cost correlation

054 clustering is called *clusterable* (with any number of clusters), *k-clusterable* if the number of clusters
 055 is fixed to be k . A (strongly) balanced network is 2-clusterable.
 056

057 Most of the work in correlation clustering (resp. structural balance) aims to find or approximate
 058 the best *clustering*, i.e., output a partition of the vertices (see, e.g. Bansal et al. (2002); Ailon et al.
 059 (2008); Chawla et al. (2015); Cohen-Addad et al. (2021); Assadi & Wang (2022); Cohen-Addad
 060 et al. (2022; 2023); Dalirrooyfard et al. (2024); Cohen-Addad et al. (2024a;b); Cao et al. (2024);
 061 Dalirrooyfard et al. (2025), and references therein). For an n -vertex graph, simply outputting the
 062 partition requires $\Omega(n)$ time. There are efficient algorithms that converge in near-optimal $\tilde{O}(n)$
 063 time¹ Assadi & Wang (2022); Cao et al. (2024; 2025). Nevertheless, in applications with massive
 064 datasets, we might want to learn the *cost* of correlation clustering using $o(n)$ time. For instance,
 065 in the structural balance problem, we might be interested in knowing whether the graph is close to
 066 or far away from being balanced without knowing the entire network structure. A graph that is far
 067 from a balanced state may indicate high level of volatility. Additionally, we might want to use the
 clustering cost to determine whether the graph is *worthy of clustering* without paying $\Omega(n)$ time.
 068

069 The above question is closely related to the realm of *property testing*, in which we are often interested
 070 in obtaining statistics of the data with only a very limited number of queries. For correlation
 071 clustering, a handful of existing results have explored this direction. For instance, Bonchi, García-
 072 Soriano, and Kutzkov Bonchi et al. (2013) designed an algorithm that computes a data structure that
 073 supports cluster membership query in $O(1/\varepsilon^2)$ time, and the underlying solution is a $3\text{OPT} + \varepsilon n^2$
 074 approximation². Subsequently, Assadi et al. (2023) and Ashvinkumar et al. (2023) studied the prob-
 075 lem of testing for the cost of correlation clustering and structural balance in the *streaming* model,
 076 where the edges arrive one-by-one in a stream. There, the goal was to obtain an approximation of
 the optimal clustering cost with $o(n)$ space.
 077

078 To the best of our knowledge, the work closest to the problem for sublinear *time* is Adriaens &
 079 Apers (2023) (see also Chen et al. (2024) for the quantum setting), where they designed an algo-
 080 rithm requiring $\tilde{O}(1/\varepsilon^7)$ queries, to test whether a graph is $\varepsilon/10$ -close-to-clusterable vs. ε -far from
 081 being clusterable. With a stronger technique by Sohler (2012), one can use $\tilde{O}(1/\varepsilon^2)$ queries to test
 082 whether a graph is balanced vs. ε -far from being balanced, for the special case of structural balance.
 083 Throughout, ε -far indicates at least $\varepsilon \binom{n}{2}$ edge labels need to be flipped to make the graph balanced
 084 or admit a perfect clustering. To date, there are no matching lower bounds to show the tightness
 085 of these results, and we do *not* have knowledge on testing correlation clustering cost with k (which
 086 is given) clusters for general k . Therefore, getting improved bounds, and ideally tight bounds, for
 087 testing correlation clustering and structural balance remains important open problems.
 088

1.1 OUR CONTRIBUTIONS

090 We make substantial progress towards the open problems in this paper. We consider the model
 091 where one can issue queries for the label of any edge (u, v) and we minimize the number of queries
 092 used to evaluate or approximate the cost of correlation clustering for the graph. In particular, Our
 093 contributions are summarized in the following settings.
 094

- 095 • We propose an algorithm to test whether the correlation clustering cost is at most $O(\varepsilon^2 \binom{n}{2})$ or at
 096 least $\varepsilon \binom{n}{2}$ using $O(1/\varepsilon^2)$ queries.
- 097 • We give an algorithm to test whether the correlation clustering cost with k clusters for any constant
 098 k is $O(\frac{\varepsilon^4}{k^4 \ln^4 k} \binom{n}{2})$ or at least $\varepsilon \binom{n}{2}$ using $O(1/\varepsilon^4)$ queries.
- 099 • For the case of $k = 2$, which corresponds to structural balance, we devise an algorithm that
 100 tests if the graph is at most $\varepsilon/900$ -close to being balanced or at least ε -far from being balanced
 101 using $O(1/\varepsilon)$ queries. We complement the upper bound by an $\Omega(1/\varepsilon)$ lower bound, showing the
 102 tightness of the proposed algorithm.

103 Note that all algorithms are efficient in time complexity as well: it is proportional to the query
 104 complexity. Table 1 shows comparison of results. Prior results are from Adriaens & Apers (2023).
 105

106 ¹Unless specified otherwise, we use $\tilde{O}(\cdot)$ to hide poly-logarithmic terms.
 107 ²Unless specified otherwise, the notation OPT denotes the optimal clustering cost for correlation clustering.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
Table 1: Comparison of Results on Query Complexity.

Task	Previous Best Bound	Our U.B.	Our L.B.	Remark
Structural Balance	$\tilde{O}(1/\varepsilon^2)$	$O(1/\varepsilon)$	$\Omega(1/\varepsilon)$	—
Correlation Clustering	$\tilde{O}(1/\varepsilon^7)$	$O(1/\varepsilon^2)$	$\Omega(1/\varepsilon)$	—
Correlation Clustering (fixed k)	—	$O(1/\varepsilon^4)$	$\Omega(1/\varepsilon)$	$O(\frac{k^4 \ln^4 k}{\varepsilon^4})$ for general k

We now discuss the formal statements for these algorithmic results. We start with the results for testing clusterability for general correlation clustering, which is our main technical result.

Theorem 1. *Fix $\varepsilon \in (0, 1)$. There exists a randomized algorithm that given a labeled complete graph $G = (V, E^+ \cup E^-)$ and a parameter ε answers with the following rules*

- *If G is clusterable, the algorithm always answers “YES”;*
- *If G is at least ε -far from being clusterable, the algorithm answers “NO” with probability ≥ 0.9 ;*
- *If G is $C \cdot \varepsilon^2$ -close to being clusterable for some small constant C , the algorithm answers “YES” with probability ≥ 0.9 .*

The algorithm queries at most $O(1/\varepsilon^2)$ edges of G and runs in $O(1/\varepsilon^2)$ time.

Compared to the results in Adriaens & Apers (2023), our results improve the query complexity from $\tilde{O}(1/\varepsilon^7)$ to $O(1/\varepsilon^2)$. Ignoring the constant factors, for $\varepsilon = 0.01$, the algorithm of Adriaens & Apers (2023) takes 10^{14} operations, while our algorithm takes 10^4 operations. Assuming a machine that takes 10^{-10} seconds to process one operation, the running time difference between their algorithm and ours is > 2.5 hours vs. less than one second.

Our algorithm is straightforward: we uniformly sample $O(1/\varepsilon)$ vertices and test on their induced subgraph. The analysis rests on a key insight: if a graph is ε -far from being clusterable, this property will be evident even in a small, random sample. We achieve this by introducing Janson’s inequality from the random graph theory, which is novel in analyzing property testing algorithms. The proof of Theorem 1 can be found in Appendix E.

We note that our contribution primarily lies in the analysis rather than the design of the algorithm. Results in the literature have shown that property testing problems for graph problems inherently admit relatively simple algorithms Goldreich & Trevisan (2003). Therefore, the crucial and non-trivial part is to conduct better analysis to improve the sample complexity, which is exactly what we did in our paper.

We then investigate the test of clusterability for graphs with k clusters for any integer $k \geq 2$. We obtain the following result.

Theorem 2. *Fix $k \geq 2$ and $\varepsilon \in (0, 1)$. There exists a randomized algorithm that given a labeled complete graph $G = (V, E^+ \cup E^-)$ and a parameter ε answers the following*

- *If G is k -clusterable, the algorithm always answers “YES”;*
- *If G is at least ε -far from being k -clusterable, the algorithm answers “NO” with probability ≥ 0.9 ;*
- *In addition, if G is $(\frac{\varepsilon^4}{10^{26} k^4 \ln^4 k})$ -close-to- k -clusterable, the algorithm answers “YES” with probability ≥ 0.9 .*

The algorithm queries at most $O(\frac{k^4 \ln^4 k}{\varepsilon^4})$ edges of G and runs in $O(\frac{k^4 \ln^4 k}{\varepsilon^4})$ time.

When k is a constant, the above gives an $O(1/\varepsilon^4)$ algorithm for testing k -clusterability.

As far as we are aware, Theorem 2 is the first nontrivial algorithm that tests the clusterability for correlation clustering with k clusters. The dependency of k is polynomial in Theorem 2. By a common observation (see, e.g. Bansal et al. (2002); Adriaens & Apers (2023)), the optimal correlation clustering cost could always be approximated by the optimal solution with at most $O(1/\varepsilon)$ clusters

162 with $O(\varepsilon n^2)$ additive error. Therefore, Theorem 2 also implies testing algorithms with $1/\text{poly}(\varepsilon)$
 163 queries for any meaningful choices of k .

164 Our algorithm for Theorem 2 is a combination of two algorithms: the algorithm used in Theorem 1,
 165 and a new algorithm that distinguishes whether a *clusterable* graph is k -clusterable or ε -far from
 166 k -clusterable. We show that the second algorithm works even when the input graph is close enough
 167 to be clusterable. Specifically, when the input graph is ε^2 -close to a clusterable one, our second
 168 algorithm ignores its deviation from its closest clusterable graph with high probability. We prove
 169 Theorem 2 formally at Section 3.

170 We now move on to the special case of $k = 2$, which is mathematically equivalent to the structural
 171 balance problem.

172 **Theorem 3.** *Fix $\varepsilon \in (0, 1)$. There exists a randomized algorithm that given a labeled complete
 173 graph $G = (V, E^+ \cup E^-)$ and a parameter ε answers the following*

- 175 • *If G is balanced, the algorithm always answers “YES”;*
- 176 • *If G is at least ε -far from being balanced, the algorithm answers “NO” with probability ≥ 0.9 .*

177 *The algorithm queries at most $O(1/\varepsilon)$ edges of G and runs in $O(1/\varepsilon)$ time.*

178 Theorem 3 uses algorithmic procedures that are fairly different from the subroutines in Theorem 1
 179 and Theorem 2. Here, instead of sampling a subset of vertices and their induced subgraph, we sample
 180 *triangles* directly. This in particular avoids the quadratic blow-up in Theorem 1 and Theorem 2.

181 Similar to our results for general clusterability, our techniques for Theorem 3 extend to *tolerant testing*.
 182 However, for structural balance, we obtain stronger guarantees: while the previous algorithms
 183 require the graph to be $O(\varepsilon^2)$ -close to clusterable, here we can distinguish graphs that are δ -close
 184 from being balanced (where $\delta \approx O(\varepsilon)$) versus graphs that are ε -far. We refer to Appendix F and
 185 Appendix G for the formal proof.

186 **Theorem 4.** *Fix $\varepsilon \in (0, 1)$ such that $\delta \leq \varepsilon/900$. There exists a randomized algorithm that given a
 187 labeled complete graph $G = (V, E^+ \cup E^-)$ and parameters ε, δ answers the following*

- 188 • *If G is at most δ -close from being balanced, the algorithm answers “YES” with probability \geq
 189 0.99;*
- 190 • *If G is at least ε -far from being balanced, the algorithm answers “NO” with probability ≥ 0.99 .*

191 *The algorithm queries at most $O(1/\varepsilon)$ edges of G and runs in $O(1/\varepsilon)$ time.*

192 Finally, we present a lower bound result, showing that $\Omega(1/\varepsilon)$ queries are *necessary* to distinguish
 193 graphs that are balanced (resp. clusterable) vs. ε -far from being balanced (resp. clusterable).

194 **Theorem 5.** *Any (possibly randomized) algorithm that given a complete labeled graph $G =$
 195 $(V, E^+ \cup E^-)$, with probability at least $2/3$ answers correctly whether G is balanced or at least
 196 ε -far from being balanced requires at least $\Omega(1/\varepsilon)$ edge queries to the graph.*

197 *Furthermore, the lower bound extends to testing clusterability (for both general k and fixed k).*

198 Theorem 5 indicates that our results for Theorem 3 and Theorem 4 are asymptotically *tight*. To the
 199 best of our knowledge, this is the first result that obtained tight bounds in the related literature. The
 200 proof can be found at Appendix H.

201 **Experiments.** We implement the proposed algorithms and evaluate them on synthetic and real-
 202 world datasets. Our algorithms demonstrate favorable efficiency in both the query complexity and
 203 the running time. For structural balance testing on graphs of size 1000, our algorithm shows a
 204 reduction factor of 15 on query complexity and roughly 10^4 on the running time, comparing to
 205 Adriaens & Apers (2023). Our implementation is available on Anonymous Github³.

206 **Further Comparison with Related Work.** In addition to the adjacency matrix query model, Adriaens
 207 & Apers (2023) studied another query model based on bounded-degree graphs⁴. In this model,

208 ³<https://anonymous.4open.science/r/Correlation-Clustering-Property-Testing-3EC0/>

209 ⁴In their paper, the adjacency matrix query model is called the “dense graph model” and the adjacency list
 210 query model is called “bounded degree model”.

216 the adjacency list cannot directly query neighbors. Instead, they only allow queries in the form of
 217 tuples (u, i) , where i is an integer in $[n]$. The answer is the i -th neighbor if $i \leq \deg(u)$, or \perp otherwise.
 218 The queries in that model are inherently harder, and their query bounds are $\tilde{O}(\sqrt{n}/\text{poly}(\varepsilon))$.
 219 While there are interesting applications in the bounded-degree model, these results are not directly
 220 comparable to ours.

221 The bulk of the literature in structural balance and correlation clustering has focused on computing
 222 the *clustering*, i.e., the partition of vertices. To this end, there are several popular techniques, including
 223 linear programming (Chawla et al. (2015); Cohen-Addad et al. (2022; 2023); Cao et al. (2024)),
 224 pivot-based algorithms (Ailon et al. (2008); Makarychev & Chakrabarty (2023); Dalirrooyfard et al.
 225 (2024); Cambus et al. (2024); Dalirrooyfard et al. (2025)), and agreement decomposition (Cohen-
 226 Addad et al. (2021); Assadi & Wang (2022); Cohen-Addad et al. (2024a)). However, all of these
 227 techniques would need $\Omega(n)$ time to write down the formulation or the solution, which is much
 228 slower than our algorithms. Assadi et al. (2023) made an attempt to combine sampling and some of
 229 the above techniques to test the cost of correlation clustering with *small space*. Their algorithm can
 230 be used for our application as well with $\text{poly}(\log n/\varepsilon)$ time, which is worse than ours.

232 2 PRELIMINARIES

233 We introduce the definitions and standard techniques related to the results in this section.

234 **Notation.** We use $G = (V, E)$ to denote a graph, where V is the set of n vertices and E is a set of
 235 m edges. We focus on a labeled complete graph, defined below.

236 **Definition 1** (Labeled Complete Graphs). We say $G = (V, E^+ \cup E^-)$ is a labeled complete graph
 237 if there exists exactly one edge between each vertex pair (u, v) , with a label of either $(+)$ or $(-)$.

238 We assume access to *labeled adjacency matrix* of the graph, defined as follows.

239 **Definition 2** (Labeled Adjacency Matrix). We say a matrix $\mathbf{A} \in \{-1, 1\}^{n \times n}$ is a labeled adjacency
 240 matrix of a n -vertex labeled complete graph $G = (V, E^+ \cup E^-)$ where $\mathbf{A}_{u,v} = 1$ if (u, v) is a $(+)$
 241 edge; and $\mathbf{A}_{u,v} = -1$ if (u, v) is a $(-)$ edge.

242 We assume we could query any entry of the adjacency matrix in $O(1)$ time. In particular, this also
 243 allows us to query neighbors, sample edges, and sample triangles in $O(1)$ time.

244 **Correlation clustering and structural balance.** On a complete labeled graph, we are able to define
 245 the problem of *(min-disagreement) correlation clustering* and *structural balance* as follows.

246 **Definition 3** (Correlation Clustering). Let $G = (V, E^+ \cup E^-)$ be a labeled complete graph and let
 247 $\mathcal{C} = (C_1, C_2, \dots)$ be a clustering, i.e., partition of the vertices of V into disjoint vertex sets. We
 248 define the cost of correlation clustering, $\text{cost}(G, \mathcal{C})$, as the summation of the number of $(+)$ edges
 249 crossing different clusters and the number of $(-)$ edges in the same clusters:

$$250 \text{cost}(G, \mathcal{C}) := |\{(u, v) \in E^+ \mid u \in C_i, v \in C_j, i \neq j\}| + |\{(u, v) \in E^- \mid u, v \in C_i \text{ for some } i\}|.$$

251 We say that G is *(perfectly) clusterable* if and only if there exists an optimal clustering \mathcal{C}^* that
 252 induces 0 cost. Besides, we say G is *(perfectly) k -clusterable* if and only if there exists an optimal
 253 clustering $\mathcal{C}^* = (C_1, \dots, C_k)$ of *exactly k* (possibly empty) clusters and induces 0 cost. (In other
 254 words, \mathcal{C}^* has at most k non-empty clusters.) Note that a clusterable graph does *not* restrict the
 255 number of clusters, i.e., we can use any number of clusters to minimize the cost. In contrast, a
 256 k -clusterable graph must have a perfect clustering with $\leq k$ clusters.

257 **Structural balance** is a special case of correlation clustering where $k = 2$. More formally, we say
 258 that G is *(perfectly) balanced* if and only if there exists a perfect optimal clustering with 2 clusters
 259 that induces 0 correlation clustering cost.

260 **Property Testing for Graphs Close and Far from being Clusterable (Balanced).** Similar to
 261 typical algorithms in property testing, we allow some “slackness” between the cases: in typical
 262 property testing, the algorithm should return “YES” when the property holds, and “NO” if there
 263 is a *sufficient degree of violations* to the property. In between the cases, the algorithm is typically
 264 allowed to return anything. To the above end, we introduce the notion of the *distance* for a graph
 265 from being balanced.

270 **Definition 4** (ε -far/close from being clusterable (k -clusterable/balanced)). Let $G = (V, E^+ \cup E^-)$
 271 be a labeled complete graph. We say that G is at least ε -far (resp., at most ε -close) from being
 272 clusterable if we have to flip the labels of at least $\varepsilon \cdot \binom{n}{2}$ (resp., at most $\varepsilon \cdot \binom{n}{2}$) edges to make the
 273 graph clusterable.

274 In our work, the above definition of distance also apply to the other two distinct properties: k -
 275 clusterability and structural balance.
 276

277 With the above terminologies, a graph is at most 0-far from being clusterable if and only if it is
 278 clusterable. For a graph that is ε -far from being clusterable (resp., balanced), we also call an edge
 279 $e = (u, v)$ a *false edge* if e needs to be flipped in the solution that flips the minimum number of
 280 edges to make the graph clusterable (resp., balanced). **We also define a *bad triangle* as a triangle that**
 281 **contains two (+) edges and one (-) edge.**

282 We will also use the following standard form of Chernoff bound in our proofs.
 283

284 **Proposition 2.1** (Chernoff bound; c.f. Alon & Spencer (2016)). *Let X_1, X_2, \dots, X_n be independent*
 285 *random variables such that $X_i \in [0, 1]$. Let $X = \sum_{i=1}^n X_i$. Then, for every $\delta > 0$,*

$$286 \Pr[|X - \mathbb{E}[X]| \geq \delta \cdot \mathbb{E}[X]] \leq 2 \cdot \exp\left(-\frac{\delta^2}{2 + \delta} \cdot \mathbb{E}[X]\right)$$

289 **We will also use Janson's inequality Janson et al. (2011) from random graph analysis, to prove our**
 290 **Theorem 1. Please refer to Appendix D for its formal statement and a brief explanation.**

292 3 UPPER BOUND FOR TESTING k -CLUSTERABILITY

294 We showcase our algorithm results by presenting the upper bound for testing k -clusterability, there-
 295 fore proving Theorem 2.

297 Our algorithm for k -clusterability utilizes the algorithm for testing clusterability in Appendix E in a
 298 black-box way; and is self-contained. In fact, our proof implies that given *any* algorithm for testing
 299 clusterability running in $t(\varepsilon) \geq 1/\sqrt{\varepsilon}$ time, there is an algorithm for testing k -clusterability running
 300 in $O(t(\varepsilon^2))$ time, for every constant k .

301 **Theorem 2.** *Fix $k \geq 2$ and $\varepsilon \in (0, 1)$. There exists a randomized algorithm that given a labeled*
 302 *complete graph $G = (V, E^+ \cup E^-)$ and a parameter ε answers the following*

- 303 • *If G is k -clusterable, the algorithm always answers “YES”;*
- 304 • *If G is at least ε -far from being k -clusterable, the algorithm answers “NO” with probability*
 305 *≥ 0.9 ;*
- 306 • *In addition, if G is $\left(\frac{\varepsilon^4}{10^{26}k^4 \ln^4 k}\right)$ -close-to- k -clusterable, the algorithm answers “YES” with prob-*
 307 *ability ≥ 0.9 .*

310 *The algorithm queries at most $O\left(\frac{k^4 \ln^4 k}{\varepsilon^4}\right)$ edges of G and runs in $O\left(\frac{k^4 \ln^4 k}{\varepsilon^4}\right)$ time.*

313 Our algorithm is a combination of two one-sided-error algorithms, one for testing whether the graph
 314 is clusterable (Algorithm 3), another for testing whether a close-to-clusterable graph is k -clusterable.
 315 When the input graph is ε -far from k -clusterable, at least one of the two algorithms will output “NO”
 316 with high probability.

317 We start by introducing and analyzing the second algorithm under the assumption that the input
 318 graph is clusterable. Then we show that the algorithm also works for graphs that are close enough
 319 to be clusterable.

321 **Algorithm 1. An algorithm that distinguishes clusterable graphs from k -clusterable graphs**

322 **Input:** A labeled complete graph $G = (V, E^+ \cup E^-)$ that is clusterable,^a

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339

1. Sample a subset S of $s = \min(100 \frac{k \ln k}{\varepsilon}, n)$ vertices from V uniformly at random (with replacement).
2. Maintain k subsets S_1, \dots, S_k of S . Initially, all the sets are empty.
3. For each vertex $u \in S$ and each $i \in \{1, \dots, k\}$, query if $(u, v) \in E^+$ where v is an arbitrary vertex from S_i .
4. For the first time when a positive edge is discovered between u and a vertex v in S_i , add u to S_i .
5. If u has no positive edge to any of the subsets S_i , add u to an empty subset S_j . In addition, if there is no empty subset that u can add to, return “NO”.
6. After iterating all the vertices in S , return “YES”.

^aWe assume for now that G is clusterable. And we will show that with high probability a random subgraph of G will still be clusterable when G is close-enough-to-clusterable; and the algorithm cannot distinguish the two cases. See Lemma 3.2 for details.

340 **Lemma 3.1.** *Fix parameters $k \geq 2$ and $\varepsilon \in (0, 1)$. Given a labeled complete graph $G = (V, E^+ \cup E^-)$, Algorithm 1 answers as follows*

- *If G is k -clusterable, the algorithm always answers “YES”;*
- *If G is clusterable but is at least ε -far from being k -clusterable, the algorithm answers “NO” with probability $\geq 9/10$;*
- *In addition, if G is $(\frac{\varepsilon^2}{10^6 k^2 \ln^2 k})$ -close-to- k -clusterable, the algorithm answers “YES” with probability $\geq 99/100$.*

350 *Besides, Algorithm 1 queries at most $O(\frac{k^2 \ln k}{\varepsilon})$ edges of G and runs in $\tilde{O}(\frac{k^2 \ln k}{\varepsilon})$ time.*

351 We defer the proof to Lemma 3.1 to Appendix C. Our analysis relies on the fact that the input
 352 graph is clusterable. However, we will show that when the input graph is $(\delta := \frac{\varepsilon^2}{10^6 k^2 \ln^2 k})$ -close
 353 to clusterable but ε -far from k -clusterable, the above algorithm still works with high probability.
 354 Intuitively, when the input graph is guaranteed to be δ -close to clusterable, a random $\Theta(\frac{k \ln k}{\varepsilon})$ -size
 355 subgraph will not contain any false edge with high probability. This observation is formalized as the
 356 following lemma.
 357

358 **Lemma 3.2.** *Fix $\delta \in (0, 1)$. Given labeled complete graphs $G = (V, E^+ \cup E^-)$ and $G' = (V, E^+ \cup E^-)$ such that G' is obtained by flipping at most $\delta \binom{n}{2}$ edges from G . Let S a subset of s vertices from V selected uniformly at random (with replacement). Let G_S, G'_S denote the induced subgraph by the sampled vertices. If $s \leq \frac{1}{10\sqrt{\delta}}$,*

$$\Pr_S[G_S = G'_S] \geq 99/100.$$

365 *Proof.* We show by union bound that with $\geq 99/100$ probability the sampled subgraph does not
 366 contain any edge in $G - G'$, the edges with labels flipped in G to obtain G' .

368 For every single edge in $G - G'$, this edge is sampled with probability at most

$$\sum_{1 \leq i < j \leq s} 2 \cdot \frac{1}{n^2} \leq s^2/n^2.$$

372 where the factor of 2 counts for the same edge (u, v) of different orders (u is sampled at the i -th
 373 place, v is sampled at the j -th place; or vice versa). Summing over all the $\leq \delta \binom{n}{2}$ edges in $G - G'$,
 374 the probability that any of the edges from $G - G'$ is sampled is at most

$$\delta \binom{n}{2} \cdot \frac{s^2}{n^2} \leq 1/100.$$

□

378 Now we formally give and analyze the algorithm that combines Algorithm 3 and Algorithm 1 together.
 379
 380

381
Algorithm 2. An algorithm for testing k -clusterability

382 **Input:** A labeled complete graph $G = (V, E^+ \cup E^-)$; a parameter ε .
 383

384 1. Independently run Algorithm 3 with parameter $\delta := \frac{\varepsilon^2}{10^6 k^2 \ln^2 k}$ twice. If Algorithm 3 ever
 385 answers “NO”, return “NO”;
 386 2. Independently run Algorithm 1 with parameter $\varepsilon/2$ twice. If Algorithm 1 ever answers
 387 “NO”, return “NO”;
 388 3. If all the above simulations answer “YES”, return “YES”.
 389

390
 391
 392 *Proof to Theorem 2.* We claim that Algorithm 2 is the desired algorithm that distinguishes whether
 393 a graph is k -clusterable or ε -far from k -clusterable.
 394

395 The query complexity and the time complexity of Algorithm 2 are dominated by calling Algorithm 3
 396 twice, which costs $O(\frac{k^4 \ln^4 k}{\varepsilon^4})$ queries and time.

397 Given a graph that is k -clusterable, by Theorem 1 and Lemma 3.1, the algorithm will always an-
 398 swer “YES”. In addition, by Lemma 3.2, for a graph G that is $(\frac{\varepsilon^4}{10^{26} k^4 \ln^4 k})$ -close-to- k -clusterable,
 400 Algorithm 1 (sampled $200 \frac{k \ln k}{\varepsilon}$ vertices) and Algorithm 3 (sampled $\frac{10^{12} k^2 \ln^2 k}{\varepsilon^2}$ vertices) will return
 401 “YES” with probability $\geq 99/100$. By a union bound, the final output is “YES” with probability
 402 ≥ 0.9 .

403 If the graph is δ -far from clusterable, Theorem 1 guarantees that the answer will be “NO” with
 404 $\geq 9/10$ probability. The remaining case is when the input graph G is δ -close-to-clusterable but
 405 ε -far-from- k -clusterable. Assume G' to be the clusterable graph obtained by flipping at most $\delta \cdot \binom{n}{2}$
 406 edges of G . By Lemma 3.2, Algorithm 1 returns the testing answer of G' with $\geq 99/100$ probability.
 407 By Lemma 3.1, Algorithm 1 returns “NO” with probability $\geq 89/100$ given G .

408 In this case, the probability that all the tests fail is at most $\leq 0.11^2 < 0.1$. Therefore, Algorithm 2
 409 outputs “NO” with $\geq 9/10$ probability when the input is ε -far from being k -clusterable. \square
 410

411
4 EXPERIMENTS

412 We assess the empirical performance of testing correlation clustering with three proposed algo-
 413 rithms: Algorithm 3 for clustering with general k , Algorithm 2 for clustering with fixed k , and
 414 Algorithm 4 for structural balance. The evaluation metrics include query complexity, running time
 415 and testing accuracy in practice. There exists only one baseline from prior work Adriaens & Apers
 416 (2023), where the tester for structural balance in the adjacency matrix query model is implemented.

417 **Setup.** Since the CC problem is NP-hard, obtaining the ground-truth ε -farness becomes a challenge.
 418 To address this, we generate **synthetic graphs** based on 6 different perturbation schemes to the
 419 well-clustered signed graph such that the optimal cost and the number of clusters are tractable. We
 420 explain them in Appendix B. Together with the balanced/0-cost case, we use these synthetic graphs
 421 of 7 scenarios (in total 140 instances) for experiments. Some basic statistics are shown in Table 2.
 422 For structural balance experiments, we set $n = 1000$ and $k = 2$. To facilitate testing on **real-world**
 423 graphs, we use the spectral frustration index to obtain an approximation of the ground truth ε -farness
 424 with respect to testing structural balance. We also demonstrate the spectrum of testing outcome as ε
 425 increases from 0.05 to 0.5, for both structural balance and general CC testing.
 426

427 Table 2: Synthetic Signed Graphs and Ground Truth ε used in CC testing experiments
 428

429

Model	Pure	Uniform-noise	Hetero-noise	Cycle	Half-flip	Cluster-swap	Mixed-flip	size n	k
ε Range	0	0.32 ~ 0.49	0.28 ~ 0.42	0.30	0.30 ~ 0.38	0.25	0.4	5000	5

432 4.1 TESTING ON SYNTHETIC GRAPHS
433

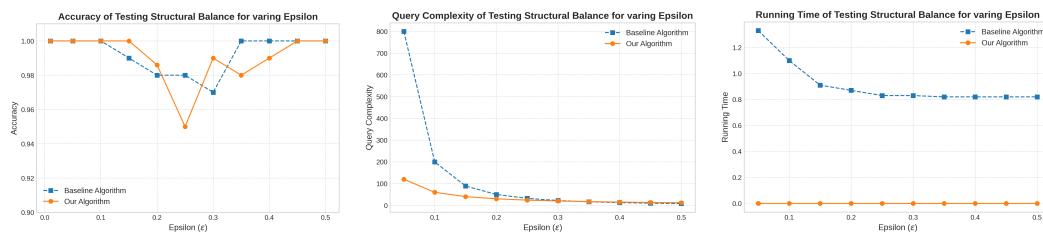
434 With ground truth ε , we are able to report the testing accuracy for synthetic graphs. All of our testers
435 are one-sided, therefore the accuracy is defined as the percentage of the correct output of “YES/No”
436 corresponding to the label of balance or not. Note that our algorithms use large constants for the
437 convenience of proof, in practice we only make it at most 3 unless mentioned otherwise.

438 Table 3: Testing Performance with $\varepsilon = 0.1$
439

Algorithm	Accuracy	Query Complexity (# sampled edges)	Running Time (s/graph)
Test CC (general k), Algorithm 3	1.0	10000	23.8
Test CC (fixed k) ⁵ , Algorithm 1	1.0	1610	22.5
Test Structural Balance, Algorithm 4	1.0	60	1.3×10^{-4}
Test Structural Balance, Adriaens & Apers (2023)	1.0	900	1.1

440
441
442
443
444 Table 3 shows that our algorithms for testing CC and structural balance yield favorable efficiency on
445 query complexity and running time. For testing structural balance, comparing to Adriaens & Apers
446 (2023), our algorithm requires significantly smaller sampling size and runtime. For testing CC with
447 fixed k , we collect results for $k = 3, 4, 5$ on “pure” model graphs. Finally, all algorithms give testing
448 accuracy 1, showing the effectiveness of the algorithms, thus corroborate with the theoretical results.
449

450 We next demonstrate the performance on the same set of metrics as ε increases from 0.05 to 0.5 for
451 structural balance in Figure 1. Two algorithms are similar on accuracy, which has small fluctuations
452 but remains higher than 0.95. But for efficiency, we observe that Algorithm 4 outperforms the
453 baseline algorithm by a large margin, especially when ε is small.

461 Figure 1: Performance on structural balance testing with varying ε .
462

463 **Scalability.** The theoretical results show that the query complexity does not involve n , the size
464 of graph. Therefore it is conceivable that the algorithms are scalable. We examine this issue in
465 practice, by showcasing the performance of Algorithm 3 for testing CC as n scales up to 50000.
466 Table 4 demonstrates that the testing algorithm itself still executes efficiently, however the entire
467 program involving processes such as sampling, may become prohibitive in practice as n scales.
468

469 Table 4: Running Time of CC testing with $\varepsilon = 0.1$
470

Graph size	10000	20000	30000	40000	50000
Testing Algorithm Runtime	0.011	0.013	0.015	0.017	0.020
Total Runtime (log)	4.51	6.36	7.81	9.89	12.03

474 4.2 TESTING ON REAL-WORLD GRAPHS
475

476 We move forward to evaluating Algorithm 3 and Algorithm 4 on 6 real-world graphs selected from
477 the SNAP project⁶. The datasets encompass social, financial, collaboration and communication
478 networks, with varying sizes between 500 and 10000. In the experiments with real-world graphs,
479 we treat the edges in the graphs as (+) edges and the non-edge vertex pairs as (-) edges. The
480 reduction suits well for our datasets, where the (-) relationships (e.g., no message exchanges) can
481 be directly inferred from the (+) relationships (e.g., has message exchanges). We illustrate the
482 spectrum of the testing output for both tasks, as ε increases from 0.05 to 0.5 in Figure 2. Although
483 the labels are missing, we are able to approximate the structural balance frustration index using the
484

485 ⁵For practicability we test the scenario: the input graph is clusterable but not clear if k -clusterable

486 ⁶<https://snap.stanford.edu/data/>

smallest eigenvalue of the signed Laplacian matrix Kunegis et al. (2010). We then obtain an ε' as a lower bound of the ground truth ε , which is a signal of the testing correctness.

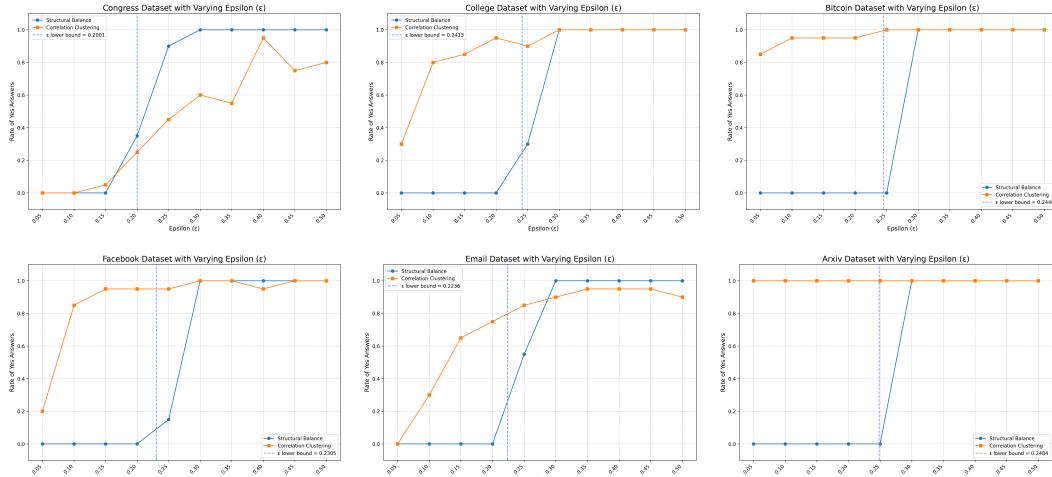


Figure 2: Testing output for all real-world graphs. Results are averaged on 20 repeated runs. The dotted light blue vertical line shows the lower bound of the true ε .

First, we observe from Figure 2 that all testing results transits from “NO” to “YES”. Structural balance has a clearer phase transition structure than correlation clustering, and the transition happens right after the estimated ε lower bound, which is supporting evidence of the testing accuracy. **In other words, initially, both algorithms report “not balanced” (resp. “not clusterable”) due to the fact that ε value is very small, and the condition to pass the test is very stringent. As we increase the value ε , the algorithm demonstrates a “tolerate test” property such that it allows the graph to be report as “balanced” (resp. “clusterable”) when the graphs are relatively close to being balanced (resp. clusterable) with the given ε parameter.**

All experiments take a very short time ($< 0.1s$), showing the potential of our algorithms in real-world applications. Another interesting observation is that many (in our case, all) real-world graphs have ε -farness with $\varepsilon \leq 0.3$.

5 DISCUSSION AND CONCLUSION

While our testing algorithm for structural balance is tight, our algorithms for testing clusterability do not yet match the lower bounds. It remains an intriguing open problem to determine the correct complexity of testing clusterability. Notably, our proof suggests that improving the testing algorithm for clusterability will also yield a better algorithm for testing k -clusterability. **We also remark that if more efficient algorithms for testing clusterability exist, it must be a substantially different algorithm than ours**, because our analysis of Algorithm 3 is tight. More concretely, one can construct input graphs where the algorithm must sample $\Omega(1/\varepsilon)$ vertices to observe a non-clusterable local structure, which requires $\Omega(1/\varepsilon^2)$ queries.

Our analysis of using Janson’s inequality may also be of independent interest. It outperforms the classic analysis using the graph removal lemma in the labeled graphs, and provides a more fine-grained way of analyzing subgraph testing algorithms. Our proof technique may find broader applications in analyzing property testing algorithms.

Another future direction would be to generalize our results to *general labeled graphs*, where only a subset of all $\binom{n}{2}$ edges are labeled. This setting is more aligned with real-world applications, but it poses a significant challenge: our algorithms fundamentally rely on detecting local patterns, such as inconsistent triangles. In a sparse graph, a graph that is globally far from being clusterable may not contain any such local witnesses, rendering our current approach ineffective.

540
541 **USAGE OF GENAI**542 We use GenAI to check the typos in the paper, only regarding to writing.
543544
545 **REFERENCES**

546 Florian Adriaens and Simon Apers. Testing cluster properties of signed graphs. In Ying Ding, Jie
547 Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and Geert-Jan Houben (eds.), *Proceedings of
548 the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023*, pp.
549 49–59. ACM, 2023. doi: 10.1145/3543507.3583213. URL <https://doi.org/10.1145/3543507.3583213>.

551 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Ranking
552 and clustering. *J. ACM*, 55(5):23:1–23:27, 2008. doi: 10.1145/1411509.1411513. URL <https://doi.org/10.1145/1411509.1411513>.

554 Noga Alon and Joel H Spencer. *The probabilistic method*. John Wiley & Sons, 2016.

556 Noga Alon, W Fernandez De La Vega, Ravi Kannan, and Marek Karpinski. Random sampling and
557 approximation of MAX-CSPs. *Journal of computer and system sciences*, 67(2):212–243, 2003.

558 Gunnar Andersson and Lars Engebretsen. Property testers for dense constraint satisfaction programs
559 on finite domains. *Random Structures & Algorithms*, 21(1):14–32, 2002.

561 Vikrant Ashvinkumar, Sepehr Assadi, Chengyuan Deng, Jie Gao, and Chen Wang. Evaluating
562 stability in massive social networks: Efficient streaming algorithms for structural balance. In
563 Nicole Megow and Adam D. Smith (eds.), *Approximation, Randomization, and Combinatorial
564 Optimization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13, 2023,
565 Atlanta, Georgia, USA*, volume 275 of *LIPICS*, pp. 58:1–58:23. Schloss Dagstuhl - Leibniz-
566 Zentrum für Informatik, 2023. doi: 10.4230/LIPICS.APPROX/RANDOM.2023.58. URL
567 <https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.58>.

568 Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation clustering via
569 sparse-dense decompositions. In Mark Braverman (ed.), *13th Innovations in Theoretical Com-
570 puter Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA*, vol-
571 umne 215 of *LIPICS*, pp. 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
572 doi: 10.4230/LIPICS.ITCS.2022.10. URL <https://doi.org/10.4230/LIPICS.ITCS.2022.10>.

574 Sepehr Assadi, Vihan Shah, and Chen Wang. Streaming algorithms and lower bounds
575 for estimating correlation clustering cost. In Alice Oh, Tristan Naumann, Amir
576 Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neu-
577 ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
578 cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
579 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/eel1alecc92f35702b5c29dad3dc909ea-Abstract-Conference.html.

581 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. In *43rd Symposium on
582 Foundations of Computer Science, FOCS 2002, Vancouver, BC, Canada, November 16-19, 2002,
583 Proceedings*, pp. 238. IEEE Computer Society, 2002. doi: 10.1109/SFCS.2002.1181947. URL
584 <https://doi.org/10.1109/SFCS.2002.1181947>.

585 Eric Blais, Clément L. Canonne, Talya Eden, Amit Levi, and Dana Ron. Tolerant junta testing and
586 the connection to submodular optimization and function isomorphism. *ACM Trans. Comput. The-
587 ory*, 11(4):24:1–24:33, 2019. doi: 10.1145/3337789. URL <https://doi.org/10.1145/3337789>.

589 Francesco Bonchi, David García-Soriano, and Konstantin Kutzkov. Local correlation clustering.
590 *CoRR*, abs/1312.5105, 2013. URL <http://arxiv.org/abs/1312.5105>.

592 Nader H Bshouty and Oded Goldreich. On properties that are non-trivial to test. In *Computational
593 Complexity and Local Algorithms: On the Interplay Between Randomness and Computation*, pp.
383–387. Springer, 2025.

594 Mélanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, and Jara Uitto. A $(3 + \varepsilon)$ -approximate
 595 correlation clustering algorithm in dynamic streams. In David P. Woodruff (ed.), *Proceedings*
 596 *of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA,*
 597 *January 7-10, 2024*, pp. 2861–2880. SIAM, 2024. doi: 10.1137/1.9781611977912.101. URL
 598 <https://doi.org/10.1137/1.9781611977912.101>.

599 Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl. Un-
 600 derstanding the cluster linear program for correlation clustering. In Bojan Mohar, Igor Shinkar,
 601 and Ryan O’Donnell (eds.), *Proceedings of the 56th Annual ACM Symposium on Theory of Com-
 602 puting, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024*, pp. 1605–1616. ACM, 2024. doi:
 603 10.1145/3618260.3649749. URL <https://doi.org/10.1145/3618260.3649749>.

604 Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, David Rasmussen Lolck, Alantha New-
 605 man, Mikkel Thorup, Lukas Vogl, Shuyi Yan, and Hanwen Zhang. Solving the correlation
 606 cluster LP in sublinear time. In Michal Koucký and Nikhil Bansal (eds.), *Proceedings of the*
 607 *57th Annual ACM Symposium on Theory of Computing, STOC 2025, Prague, Czechia, June*
 608 *23-27, 2025*, pp. 1154–1165. ACM, 2025. doi: 10.1145/3717823.3718181. URL <https://doi.org/10.1145/3717823.3718181>.

609 Dorwin Cartwright and Frank Harary. Structural balance: a generalization of Heider’s theory. *Psy-
 610 chol. Rev.*, 63(5):277–293, September 1956.

611 Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near optimal
 612 LP rounding algorithm for correlation clustering on complete and complete k -partite graphs. In
 613 Rocco A. Servedio and Ronitt Rubinfeld (eds.), *Proceedings of the Forty-Seventh Annual ACM*
 614 *on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015*,
 615 pp. 219–228. ACM, 2015. doi: 10.1145/2746539.2746604. URL <https://doi.org/10.1145/2746539.2746604>.

616 Kuo-Chin Chen, Simon Apers, and Min-Hsiu Hsieh. (quantum) complexity of testing signed
 617 graph clusterability. In Frédéric Magniez and Alex Bredariol Grilo (eds.), *19th Conference on*
 618 *the Theory of Quantum Computation, Communication and Cryptography, TQC 2024, Septem-
 619 ber 9-13, 2024, Okinawa, Japan*, volume 310 of *LIPICS*, pp. 8:1–8:16. Schloss Dagstuhl -
 620 Leibniz-Zentrum für Informatik, 2024. doi: 10.4230/LIPIcs.TQC.2024.8. URL <https://doi.org/10.4230/LIPIcs.TQC.2024.8>.

621 Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parotsidis,
 622 and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In Marina Meila
 623 and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning,
 624 ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning
 625 Research*, pp. 2069–2078. PMLR, 2021. URL <http://proceedings.mlr.press/v139/cohen-addad21b.html>.

626 Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with Sherali-
 627 Adams. In *63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022,
 628 Denver, CO, USA, October 31 - November 3, 2022*, pp. 651–661. IEEE, 2022. doi: 10.
 629 1109/FOCS54457.2022.00068. URL <https://doi.org/10.1109/FOCS54457.2022.00068>.

630 Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated rounding
 631 error via preclustering: A 1.73-approximation for correlation clustering. In *64th IEEE Annual*
 632 *Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November*
 633 *6-9, 2023*, pp. 1082–1104. IEEE, 2023. doi: 10.1109/FOCS57990.2023.00065. URL <https://doi.org/10.1109/FOCS57990.2023.00065>.

634 Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Dynamic cor-
 635 relation clustering in sublinear update time. In *Forty-first International Conference on Ma-
 636 chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024a. URL
 637 <https://openreview.net/forum?id=3YG55Lbcnr>.

638 Vincent Cohen-Addad, David Rasmussen Lolck, Marcin Pilipczuk, Mikkel Thorup, Shuyi Yan, and
 639 Hanwen Zhang. Combinatorial correlation clustering. In Bojan Mohar, Igor Shinkar, and Ryan

648 O'Donnell (eds.), *Proceedings of the 56th Annual ACM Symposium on Theory of Computing, 649 STOC 2024, Vancouver, BC, Canada, June 24-28, 2024*, pp. 1617–1628. ACM, 2024b. doi: 650 10.1145/3618260.3649712. URL <https://doi.org/10.1145/3618260.3649712>.

651

652 Mina Dalirrooyfard, Konstantin Makarychev, and Slobodan Mitrovic. Pruned pivot: Correlation 653 clustering algorithm for dynamic, parallel, and local computation models. In *Forty-first Interna- 654 tional Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. Open- 655 Review.net, 2024. URL <https://openreview.net/forum?id=saP7s0ZgYE>.

656 Mina Dalirrooyfard, Konstantin Makarychev, and Slobodan Mitrović. Sparse-pivot: Dynamic 657 correlation clustering for node insertions. In *Forty-second International Conference on Machine 658 Learning (ICML)*, 2025.

659

660 James A Davis. Clustering and structural balance in graphs. *Human relations*, 20(2):181–187, 1967.

661 Eldar Fischer. A basic lower bound for property testing. *CoRR*, abs/2403.04999, 2024. doi: 10. 662 48550/ARXIV.2403.04999. URL <https://doi.org/10.48550/arXiv.2403.04999>.

663

664 Jacob Fox. A new proof of the graph removal lemma. *Annals of Mathematics*, pp. 561–579, 2011.

665 Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph properties. *Random 666 Structures & Algorithms*, 23(1):23–57, 2003.

667

668 Fritz Heider. Attitudes and cognitive organization. *J. Psychol.*, 21:107–112, January 1946.

669

670 Fritz Heider. *The Psychology of Interpersonal Relations*. Psychology Press, 1982.

671

672 Jack P. Hou, Amin Emad, Gregory J. Puleo, Jian Ma, and Olgica Milenkovic. A new correlation clus- 673 tering method for cancer mutation analysis. *Bioinform.*, 32(24):3717–3728, 2016. doi: 10.1093/ 674 BIOINFORMATICS/BTW546. URL <https://doi.org/10.1093/bioinformatics/btw546>.

675

676 Svante Janson, Tomasz Luczak, and Andrzej Rucinski. *Random graphs*. John Wiley & Sons, 2011.

677

678 Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Dong Yoo. Higher-order 679 correlation clustering for image segmentation. In John Shawe-Taylor, Richard S. Zemel, Pe- 680 ter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Weinberger (eds.), *Advances in Neural 681 Information Processing Systems 24: 25th Annual Conference on Neural Information Process- 682 ing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain*, pp. 683 1530–1538, 2011. URL <https://proceedings.neurips.cc/paper/2011/hash/98d6f58ab0dafbb86b083a001561bb34-Abstract.html>.

684

685 Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Ernesto W De Luca, and 686 Sahin Albayrak. Spectral analysis of signed graphs for clustering, prediction and visualization. 687 In *Proceedings of the 2010 SIAM international conference on data mining*, pp. 559–570. SIAM, 2010.

688

689 Konstantin Makarychev and Sayak Chakrabarty. Single-pass pivot algorithm for corre- 690 lation clustering, keep it simple! In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, 691 Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Infor- 692 mation Processing Systems 36: Annual Conference on Neural Information Pro- 693 cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 694 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/149ad6e32c08b73a3ecc3d11977fcc47-Abstract-Conference.html.

695

696 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance approxi- 697 mation. *J. Comput. Syst. Sci.*, 72(6):1012–1042, 2006. doi: 10.1016/J.JCSS.2006.03.002. URL 698 <https://doi.org/10.1016/j.jcss.2006.03.002>.

699

700 Dana Ron. Algorithmic and analysis techniques in property testing. *Found. Trends Theor. Comput. 701 Sci.*, 5(2):73–205, 2009. doi: 10.1561/0400000029. URL <https://doi.org/10.1561/0400000029>.

702 Imre Z Ruzsa and Endre Szemerédi. Triple systems with no six points carrying three triangles.
 703 *Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai*, 18(939-945):2, 1978.
 704

705 Jessica Shi, Laxman Dhulipala, David Eisenstat, Jakub Lacki, and Vahab S. Mirrokni. Scalable
 706 community detection via parallel correlation clustering. *Proc. VLDB Endow.*, 14(11):2305–2313,
 707 2021. doi: 10.14778/3476249.3476282. URL <http://www.vldb.org/pvldb/vol14/p2305-shi.pdf>.

709 Christian Sohler. Almost optimal canonical property testers for satisfiability. In *53rd Annual IEEE
 710 Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October
 711 20-23, 2012*, pp. 541–550. IEEE Computer Society, 2012. doi: 10.1109/FOCS.2012.59. URL
 712 <https://doi.org/10.1109/FOCS.2012.59>.

713 Nate Veldt, David F. Gleich, and Anthony Wirth. A correlation clustering framework for community
 714 detection. In Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis
 715 (eds.), *Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018,
 716 Lyon, France, April 23-27, 2018*, pp. 439–448. ACM, 2018. doi: 10.1145/3178876.3186110.
 717 URL <https://doi.org/10.1145/3178876.3186110>.

718 Julian Yarkony, Alexander Ihler, and Charless C. Fowlkes. Fast planar correlation clustering for im-
 719 age segmentation. In Andrew W. Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and
 720 Cordelia Schmid (eds.), *Computer Vision - ECCV 2012 - 12th European Conference on Computer
 721 Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI*, volume 7577 of *Lecture Notes
 722 in Computer Science*, pp. 568–581. Springer, 2012. doi: 10.1007/978-3-642-33783-3_41. URL
 723 https://doi.org/10.1007/978-3-642-33783-3_41.

725 A MORE DISCUSSIONS ON RELATED WORK

726 As discussed, the bulk of the literature in structural balance and correlation clustering has focused
 727 on computing the *clustering*, i.e., the partition of vertices. To this end, there are several popular
 728 techniques, including linear programming (Chawla et al. (2015); Cohen-Addad et al. (2022; 2023);
 729 Cao et al. (2024), pivot-based algorithms (Ailon et al. (2008); Makarychev & Chakrabarty (2023);
 730 Dalirrooyfard et al. (2024); Cambus et al. (2024); Dalirrooyfard et al. (2025)), and agreement de-
 731 composition (Cohen-Addad et al. (2021); Assadi & Wang (2022); Cohen-Addad et al. (2024a)).
 732 However, all of these technique would need $\Omega(n)$ time to write down the formulation or the solution,
 733 which is much slower than our algorithms. Assadi et al. (2023) made an attempt to combine
 734 sampling and some of the above techniques to test the cost of correlation clustering with *small space*.
 735 Their algorithm can be used for our application as well with $\text{poly}(\log n/\varepsilon)$ time, which is worse than
 736 ours.

737 The problem of testing whether a graph is clusterable (resp. balanced) is related to the MAX-CSP
 738 formulation. In the generic r -MAX-CSP problem, we are given m boolean functions, and each
 739 of the function uses at most r variables. Alon et al. (2003) provided a generic framework that
 740 approximates the number of satisfiable functions by querying $O(\frac{\log 1/\varepsilon}{\varepsilon^4})$ variables. In the problem
 741 of testing structural balance and clusterability, we define a Boolean variable for each vertex, and for
 742 each edge $e = (u, v) \in E$ we define a function f_e that encodes the “right assignment” of the vertex
 743 variables with respect to the label of the edge: f is satisfied if $(u, v) \in E^+$ and u, v are in the same
 744 cluster or $(u, v) \in E^-$ and u, v are in different clusters. It is easy to see for this application, we have
 745 $r = 2$, which induces additive error of εn^2 : this satisfies the definition of ε -far from being balanced
 746 and/or clusterable. However, such a strategy leads to the algorithm in Adriaens & Apers (2023),
 747 which gives suboptimal bounds.

749 B MORE DETAILS ON EXPERIMENTS

750 All of our experiments are implemented with Intel Core i9 CPU of 32GB memory, no GPU is
 751 required. Now we introduce the synthetic graph generation models. For the “good” case, the gen-
 752 eration is straightforward: create k clusters first, put every edge inside each cluster with positive sign
 753 and vice versa. Below shows the perturbation for graphs in the potential “bad” case, namely the
 754 optimal cost is large.

- **Uniform Noise:** Each sign is flipped with a uniform probability $p \in [0.3, 0.5]$.
- **Heterogeneous Noise:** The signs of intra-cluster edges (+1) are flipped with probability $p_{in} \in [0.2, 0.4]$, while the signs of inter-cluster edges (-1) are flipped with probability $p_{out} \in [0.3, 0.5]$.
- **Cycle:** The k clusters are arranged in a cycle. Ideal edges are set to +1 if they are within a cluster or between adjacent clusters in the cycle, and -1 otherwise. All edge signs are then flipped with a 30% probability.
- **Half Flip:** One cluster is chosen at random. The sign of every edge incident to this chosen cluster is then flipped with a 50% probability.
- **Cluster Swap:** One cluster is chosen at random, for half of its nodes, the signs of all edges connecting them to any node outside the original cluster are flipped.
- **Mixed Flip:** flip 40% edge signs inside each cluster, and 40% across clusters

Signed Laplacian and spectral approximation of frustration. Denote the *frustration index* as $f(G)$. Let $W \in \mathbb{R}^{n \times n}$ denote the signed adjacency matrix of a graph on n nodes, where $w_{ij} \in \{-1, 0, +1\}$ (or more generally real weights, but not in our context). Define the *absolute degree* $d_i = \sum_j |w_{ij}|$, and let $D = \text{diag}(d_1, \dots, d_n)$. The *signed Laplacian* is

$$L = D - W.$$

For any assignment $x \in \{\pm 1\}^n$ one has the identity

$$x^\top L x = \sum_{i < j} |w_{ij}| (x_i - \text{sign}(w_{ij}) x_j)^2.$$

When $w_{ij} \in \{\pm 1\}$ this reduces to

$$x^\top L x = 4 \cdot (\# \text{ of frustrated edges under assignment } x).$$

Thus minimizing $x^\top L x$ over $\{\pm 1\}^n$ is equivalent to computing $f(G)$. By the Rayleigh–Ritz principle,

$$\lambda_{\min}(L) = \min_{y \neq 0} \frac{y^\top L y}{y^\top y}.$$

For any $\{\pm 1\}$ vector x , since $\|x\|^2 = n$, we obtain

$$\frac{x^\top L x}{x^\top x} = \frac{4f(x)}{n},$$

where $f(x)$ is the number of frustrated edges under x . Minimizing over all x yields

$$\lambda_{\min}(L) \leq \frac{4f(G)}{n}.$$

Equivalently,

$$f(G) \geq \frac{n}{4} \lambda_{\min}(L).$$

Hence the scaled smallest eigenvalue $\frac{n}{4} \lambda_{\min}(L)$ provides a computable spectral lower bound on the frustration index. This is known as the *spectral approximation of the frustration index*, and it has been used as a tractable proxy for quantifying balance in signed networks Kunegis et al. (2010).

C MISSING PROOF TO LEMMA 3.1

Proof to Lemma 3.1. The time and query complexity of Algorithm 1 is clear. It samples $O(\frac{k \ln k}{\varepsilon})$ vertices. For each iterated vertex u , it will perform at most k queries. The total number of queries is $O(\frac{k^2 \ln k}{\varepsilon})$. In addition, maintaining the subsets costs time $\tilde{O}(\frac{k^2 \ln k}{\varepsilon})$.

Given a k -clusterable graph G . Any induced subgraph of G can be partitioned into at most k clusters. Algorithm 1 will always output “YES”. Given a $\left(\frac{\varepsilon^2}{10^6 k^2 \ln^2 k}\right)$ -close-to- k clusterable graph, by Lemma 3.2, Algorithm 1 will output “YES” with probability $\geq 99/100$.

Given a graph G that is clusterable but ε -far from k -clusterable. Let t be the number of clusters in G . G can be characterized by a list of cluster sizes (s_1, \dots, s_t) where $\sum_{i=1}^t s_i = n$. Without loss of generality, we assume

$$s_1 \geq s_2 \geq \dots \geq s_t.$$

In addition, we may assume that $t > k$, since otherwise a graph of t clusters is also k -clusterable, by appending $k - t$ empty clusters.

Let $r = n - \sum_{i=1}^k s_i$. Then $r \geq \varepsilon n/2$, or otherwise we can make G a k -clusterable graph by merging the last $t - k$ clusters into the first cluster, which costs $< r(n - r) < \varepsilon \binom{n}{2}$ flips.

When $s_k \geq \frac{\varepsilon n}{20k}$, the largest k clusters are large enough, and the subset S contains vertices from all the largest k clusters and a vertex from the last $t - k$ clusters with high probability. Formally, by union bound, the probability that any of the first k clusters or the union of the last r vertices does not have vertices in S is at most

$$\sum_{i=1}^k \left(1 - \frac{\varepsilon}{20k}\right)^s + (1 - \varepsilon)^s \leq \sum_{i=1}^{k+1} \left(1 - \frac{\varepsilon}{20k}\right)^s \leq \sum_{i=1}^{k+1} \exp\left(-\frac{\varepsilon s}{20k}\right) \leq (k+1) \exp(-5 \ln k) \leq 1/10.$$

In this case, with $\geq 9/10$ probability the sampled subset contains an independent set (i.e., with no positive edges in between) of size $\geq k + 1$ and the algorithm outputs “NO”.

When $s_k < \frac{\varepsilon n}{20k}$, we know $s_j \leq s_k < \frac{\varepsilon n}{20k}$ for any $j \geq k$ since the clusters are sorted in decreasing order of size. In this case we call all clusters but the largest k as small clusters. Since $r \geq \varepsilon n/2$, the number of small clusters is at least $\frac{r}{s_k} \geq 10k$. We show that with high probability the sample set S includes vertices from $\geq k + 1$ different small clusters.

Let $X_1, \dots, X_s \in \{0, 1\}$ be random bits indicating whether each sample covers a small cluster that is never sampled in its previous samples, and let $X = \sum_{i=1}^s X_i$ be their sum. For every $i \in \{1, \dots, s\}$, we have

$$\Pr\left[X_i = 1 \left| \sum_{j=1}^{i-1} X_j \leq k\right.\right] \geq \frac{r - k \cdot \frac{\varepsilon n}{10k}}{n} \geq 0.4\varepsilon.$$

Let $Y_1, \dots, Y_s \in \{0, 1\}$ be independent random bits where $\Pr[Y_i = 1] = 0.4\varepsilon$ for each Y_i , and Y their sum. Then the sum of (X_i) is dominated by the sum of (Y_i) .⁷ Note that $\mathbb{E}[Y] = 0.4\varepsilon s = 40k \ln k$. By applying the Chernoff bound (Proposition 2.1) and setting $\delta = 1 - \frac{1}{40 \ln k}$, we have

$$\Pr[X \leq k] \leq \Pr[Y \leq k] \leq 2 \cdot \exp\left(-\frac{\delta^2}{2 + \delta} \cdot \mathbb{E}[Y]\right) < 2 \cdot \exp(-12k \ln k) < 1/10.$$

To conclude, in both cases, Algorithm 1 can sample an independent set of size $\geq k + 1$ and output “NO” with high probability. \square

D PRELIMINARIES ON JANSON’S INEQUALITY

In this section, we briefly review Janson’s inequality, a fundamental tool from the probabilistic method. We employ this inequality in our analysis (Lemma E.2 and the proof of Theorem 1) to bound the probability that a sum of dependent yet structured indicator random variables equals zero. While the standard Chernoff bound applies to sums of *independent* random variables, Janson’s inequality provides strong bounds for sums of variables that exhibit local dependencies.

Lemma D.1. (Janson’s inequality; c.f. Janson et al. (2011)) *Let $n \geq 1$ be an integer. Let Γ be a random subset of $[n]$ such that for each $i \in [n]$, $i \in \Gamma$ with independent probability p_i .*

Let R be a family of subsets of $[n]$. For every $A \in R$, let I_A be the indicator random variable such that $I_A = 1$ if and only if $A \subseteq \Gamma$, and $I_A = 0$ otherwise. Let X be the random variable denoting the number of sets in R that are subsets of Γ . Then

$$\Pr[X = 0] \leq \exp\left(\min\left(-\lambda + \Delta, -\frac{\lambda^2}{\lambda + 2\Delta}\right)\right),$$

where $\lambda = \mathbb{E}[X]$ and $\Delta = \frac{1}{2} \sum_{A, B \in R: A \neq B, A \cap B \neq \emptyset} \mathbb{E}[I_A I_B]$.

⁷This can also be shown by a standard coupling argument.

864

865

866

Relevance to our analysis. In our proofs, we frequently search for a “witness” structure (such as a negative edge connected by a positive path) within the induced subgraph of sampled vertices. Since multiple potential witnesses may share vertices, their appearances are not independent. Janson’s inequality allows us to lower-bound the probability of finding at least one such witness by controlling the overlapping term Δ . Specifically, when Δ is small relative to λ , the bound behaves similarly to the Chernoff bound ($\approx e^{-\lambda}$); when correlations are high ($\Delta > \lambda$), the probability decays as $\approx e^{-\lambda^2/2\Delta}$.

873

874

E AN IMPROVED ALGORITHM FOR TESTING CLUSTERABILITY

875

876

We present the algorithm for testing general clusterability using $O(1/\varepsilon^2)$ time and queries in this section. We first recall the statement of the result.

879

880

Theorem 1. *Fix $\varepsilon \in (0, 1)$. There exists a randomized algorithm that given a labeled complete graph $G = (V, E^+ \cup E^-)$ and a parameter ε answers with the following rules*

881

- *If G is clusterable, the algorithm always answers “YES”;*
- *If G is at least ε -far from being clusterable, the algorithm answers “NO” with probability ≥ 0.9 ;*
- *If G is $C \cdot \varepsilon^2$ -close to being clusterable for some small constant C , the algorithm answers “YES” with probability ≥ 0.9 .*

887

The algorithm queries at most $O(1/\varepsilon^2)$ edges of G and runs in $O(1/\varepsilon^2)$ time.

888

889

While standard combinatorial arguments often use the graph removal lemma, a direct application of Fox’s colored graph removal lemma only yields an upper bound of $\tilde{O}(\text{tower}(\log(1/\varepsilon)))$ for testing bad-triangle-freeness Ruzsa & Szemerédi (1978); Fox (2011); Adriaens & Apers (2023).⁸ Besides, a reduction to the MAX-CSP problem also gives a two-sided error algorithm of $\tilde{O}(1/\varepsilon^7)$ query complexity and $\exp(\tilde{O}(1/\varepsilon^3))$ running time Andersson & Engebretsen (2002); Adriaens & Apers (2023).

890

891

We overcome this limitation by employing Janson’s inequality, a classic tool from random graph theory, to constructively demonstrate the existence of *bad triangles* in a small sample, which we will define later. To the best of our knowledge, this is also the first time Janson’s inequality is used in analyzing property testing algorithms. Our proof may be of independent interest. Compared to the algorithm in Adriaens & Apers (2023), our work provides a one-sided error algorithm, drastically improving both the query complexity and the running time to $O(1/\varepsilon^2)$.

902

903

Our algorithm is simple: we sample $O(1/\varepsilon)$ vertices, query their induced subgraph, and check whether there is any inconsistency.

904

905

906

Algorithm 3. An algorithm for testing clusterability

907

Input: A labeled complete graph $G = (V, E^+ \cup E^-)$; a parameter ε .

908

909

1. Sample a subset S of $s = \min(10^6/\varepsilon, n)$ vertices from V uniformly at random (without replacement).
2. Let G_S be the complete subgraph induced by the sampled vertices.
3. Run breadth-first search (BFS) to check whether G_S contains bad triangles, i.e., a triangle $(u, v), (v, w), (u, w)$ among which exactly two edges are (+) and one edge is (-). If G_S contains no bad triangle, return “YES”. Otherwise, return “NO”.

910

911

912

913

914

915

916

917

⁸The towering function $\text{tower}(x)$ denotes a tower of 2’s of height x , i.e., 2-to-the-2-to-the-...-to-the-2, x times. Thus, $\tilde{O}(\text{tower}(\log(1/\varepsilon)))$ is much larger than $1/\text{poly}(\varepsilon)$. In fact, $\text{tower}(6)$ is more than the estimated number of elementary particles in the observable universe.

918 Specifically, we run BFS on the positive edges of the subgraph G_S and check if they form a set of
 919 vertex-disjoint complete subgraphs, which costs $O(1/\varepsilon^2)$ time.
 920

921 For clusterable graphs, by proposition E.1, the algorithm will always output “YES”. We show that
 922 for every graph that is ε -far from being clusterable, the algorithm will output “NO” with $\geq 9/10$
 923 probability. In addition, instead of showing that the algorithm can find bad triangles with high
 924 probability, we analyze a similar pattern of subgraphs, which will simplify our analysis.

925 **Proposition E.1.** *Given a complete labeled graph $G = (V, E^+ \cup E^-)$. The following three condi-
 926 tions are equivalent.*

- 927 1. *G is clusterable;*
- 928 2. *G does not contain any bad triangle.*
- 929 3. *There does not exist an edge $(u, v) \in E^-$ that is connected in $G' = (V, E^+)$.*

930 We call the path in G' that connects u and v a *positive path* between u and v .
 931

932 *Proof.* Let us first show that G is clusterable if and only if it does not contain any bad triangle.
 933 Given a clusterable graph G , by the definition of clusterable graphs, there exists a clustering \mathcal{C} of G
 934 with a cost of 0. If there is a bad triangle $(u, v), (v, w) \in E^+$ and $(u, w) \in E^-$, u, v (resp., v, w)
 935 must belong to the same cluster. However, $(u, w) \in E^-$ implies that u, w cannot belong to the same
 936 cluster. This contradiction implies that graphs with bad triangles cannot be clusterable.
 937

938 Now, we argue that graph G that is not clusterable must contain at least one bad triangle. Let $S \subset V$
 939 be a subset of vertices, and $u \notin S$ a vertex, such that the induced subgraph G_S over S is clusterable,
 940 but $G_{S \cup \{u\}}$ is not clusterable. By the definition, there exists a clustering $\mathcal{C} = (C_1, C_2, \dots)$ of G_S
 941 with a 0 cost. We discuss three different cases. When u connects to all the vertices in S by $(-)$
 942 edges, the clustering $\mathcal{C}' = (\{u\}, C_1, C_2, \dots)$ will have 0 cost, contradicting to the assumption that
 943 G is not clusterable. When u has $(+)$ edges only to one of the clusters (without loss of generality,
 944 we assume it is C_1), there must exist a vertex $w \in C_1$ such that $(u, w) \in E^-$. Otherwise $\mathcal{C}' =$
 945 $(\{u\} \cup C_1, C_2, \dots)$ will have 0 cost. In addition, we assume $v \in S$ is one of the vertices such that
 946 $(u, v) \in E^+$. By the fact that $v, w \in S, (v, w) \in E^+$, (u, v, w) forms a bad triangle. Lastly, when
 947 u has $(+)$ edges to multiple clusters in \mathcal{C} , we assume $(u, v), (u, w) \in E^+$ where v, w belong to
 948 different clusters. Then $(v, w) \notin E^-$ and (u, v, w) forms a bad triangle.
 949

950 What is remained is to show that G contains a bad triangle if and only if it contains a positive path
 951 enclosed by a negative edge.
 952

953 Since a bad triangle itself is such a cycle, we only need to prove the “if” direction. Given a negative
 954 edge (u, v) and a positive path $P = u \rightarrow w_1 \rightarrow \dots \rightarrow w_t \rightarrow v$ connecting u and v . For
 955 simplicity, we denote $w_0 = u$ and $w_{t+1} = v$. Suppose for the sake of contradiction that G does not
 956 contain any bad triangle. We show by induction that for every $d \geq 2$ and every $i \in [0, t+1-d]$,
 957 $(w_i, w_{i+d}) \in E^+$, which is a contradiction to $(u, v) \in E^-$.
 958

959 The base case is when $d = 2$, for every $i \in [0, t-1]$, $(w_i, w_{i+2}) \in E^+$ or otherwise (w_i, w_{i+1}, w_{i+2})
 960 form a bad triangle. Suppose the above is true for every $d < d_0$. For every $i \in [0, t+1-d_0]$,
 961 $(w_i, w_{i+d-1}) \in E^+$ by our inductive hypothesis. Then, (w_i, w_{i+d}) must be positive or otherwise
 962 $(w_i, w_{i+d-1}, w_{i+d})$ will form a bad triangle. \square
 963

964 Our proof of correctness discusses three different types of graphs in the “NO” case. Before we delve
 965 into the proof details, below are necessary definitions and lemmas that will be used in our proof.
 966

967 **Definition 5.** Given the labeled graph $G = (V, E^+ \cup E^-)$, we let $\mathcal{C} = (C_1, C_2, \dots, C_k)$ be an
 968 optimal correlation clustering of G . If there are multiple optimal clusterings, we fix an arbitrary
 969 minimal optimal clustering, i.e., for every cluster $C \in \mathcal{C}$, splitting C into two non-empty clusters
 970 will always increase the clustering cost.

971 The clustering \mathcal{C} defines an equivalence of the vertex set. We use $u \sim_C v$ or simply $u \sim v$ to denote
 972 that $u, v \in V$ belong to the same cluster of \mathcal{C} . We call edges $(u, v) \in E^-$ but $u \sim v$ as *false negative
 973 edges*. And we call edges $(u, v) \in E^+$ but $u \not\sim v$ as *false positive edges*.
 974

Denote by clusters in \mathcal{C} of $\geq \varepsilon n/20$ vertices as *large clusters*, and those of size $< \varepsilon n/20$ *small clusters*. Let $F = F_N \cup F_P$ denote the set of false edges, i.e., flipping edges in F will yield a clusterable graph, where F_P and F_N refer to the set of false positive edges and false negative edges respectively. In addition, we split F_P into two disjoint subsets $F_P = F_{P,L} \cup F_{P,S}$. $F_{P,L}$ indicates the set of false positive edges (u, v) where *at least one* of u, v belong to large clusters. And $F_{P,S}$ indicates the set of false positive edges (u, v) whose both endpoints belong to small clusters.

We will use different proof strategies to prove the correctness of our algorithm in the following three cases.

- Case 1: $|F_N| \geq |F_P|$.
- Case 2: $|F_N| < |F_P|$ and $|F_{P,L}| \geq |F_{P,S}|$.
- Case 3: $|F_N| < |F_P|$ and $|F_{P,L}| < |F_{P,S}|$.

Our proof repeatedly uses Janson's inequality, which helps us connect the number of vertices sampled and the probability of including a bad triangle in the queried subgraph. We do not directly analyze the number of bad triangles in the sampled subgraph using Janson's inequality, because we do not even know how many bad triangles are there in an arbitrary graph from the NO case. Instead, we find a negative edge and a positive path connecting it, where the existence of each vertex of such a path will be guaranteed by Janson's inequality.

Both our proofs to Case 1 and Case 2 use the following lemma as a subroutine, which is built on Janson's inequality.

Lemma E.2. *Let $n \geq 1$ be a large enough integer and $G = (V, E^+ \cup E^-)$ be an arbitrary labeled graph of n vertices. Let $\varepsilon \in (0, 1)$ be a fixed parameter, and $c \in [0.01, 1]$, $c' \in [0.25, 1]$ be arbitrary fixed constants. Fix a minimal optimal clustering \mathcal{C} of G . Let T be a random subset of V such that each vertex is included in T with independent probability $p := \min(\frac{2 \cdot 10^5}{\varepsilon n}, 1)$. Fix a cluster C in \mathcal{C} of size $\geq c \cdot \varepsilon n$, a vertex $u \in C$, and a set $C' \subseteq C$ such that $|C'| \geq c' \cdot |C|$. With $\geq 99/100$ probability there exists a vertex $v \in C'$ such that the induced subgraph over $T \cup \{u\}$ contains a positive path between u and v .*

Proof. Our key observation is a win-win argument. Let $N_C(u)$ denote the set of neighbors of u connected by positive edges in C . Notice that $|N_C(u)| > (|C| - 1)/2$ or otherwise splitting u out from C will not decrease the clustering cost, contradicting to our assumption that \mathcal{C} is the minimum optimal clustering. Since $|N_C(u)|$ is an integer, equivalently $|N_C(u)| \geq |C|/2$. At a high-level, when $|N_C(u) \cap C'| = \Omega(\varepsilon n)$, with high probability the set T contains a vertex in $N_C(u) \cap C'$. When $|N_C(u) \cap C'|$ is small, the number of (+) edges between $N_C(u)$ and C' should still be $\Omega(\varepsilon^2 n^2)$ or otherwise splitting C' out from the cluster C will yield a better clustering, which contradicts the optimality of \mathcal{C} . Such an edge will be sampled with high probability by applying Janson's inequality. For the special case where C' is the set of positive neighbors of a vertex $v \in C$, we refer to Figure 3 for an illustration of our ideas.

Specifically, when $|N_C(u) \cap C'| \geq 0.1c'|C|$, the probability that none of these vertices are sampled in T is at most

$$(1 - p)^{0.1c'|C|} \leq e^{-0.1c'p|C|} < 1/100$$

Hence T contains a vertex in C' that is connected to u by a positive edge with high probability.

Now we assume $|N_C(u) \cap C'| < 0.1c'|C|$. Then $|C' - N_C(u)| > 0.9c'|C|$. By our assumption that \mathcal{C} is a minimal optimal correlation clustering, the number of positive edges between $C' - N_C(u)$ and $C - (C' - N_C(u))$ is larger than $|C' - N_C(u)| \cdot |C - (C' - N_C(u))|/2$. This implies that, in average, every vertex in $C' - N_C(u)$ should have positive edges to more than half of vertices in $C - (C' - N_C(u))$. Observe that the size of $C - (C' - N_C(u))$ is at most $|C| - 0.9c'|C| = (1 - 0.9c')|C|$, in which at least $0.5|C|$ vertices belong to $N_C(u)$. Because $0.5|C|$ is at least $0.45c'|C|$ more than half of $|C - (C' - N_C(u))| \leq (1 - 0.9c')|C|$, every vertex in $C' - N_C(u)$ has $\geq 0.45c'|C|$ neighbors in $N_C(u)$ in average. Since $|C' - N_C(u)| > 0.9c'|C|$, the total number of edges between $C' - N_C(u)$ and $N_C(u)$ is at least $0.405(c')^2|C|^2 \geq 0.025|C|^2$. We then apply Janson's inequality to show that at least one of such edges will be sampled in T with high probability.

Let R be the set of positive edges between $C' - N_C(u)$ and $N_C(u)$ where $|R| \geq 0.025|C|^2 \geq 2.5 \cdot 10^{-6}\varepsilon^2 n^2$. By setting the family of subsets to be R , X to be the number of positive edges

1026 $(v, w) \in R$ where both $v, w \in T$, we have $\lambda = \mathbb{E}[X] = |R| \cdot p^2$ and $\Delta \leq \frac{1}{2}|C| \cdot |R| \cdot p^3$. By
 1027 applying Janson's inequality, we get

$$1028 \Pr[\forall v, w \in T, (v, w) \notin R] \leq \exp\left(-\frac{\lambda^2}{\lambda + 2\Delta}\right)$$

1029 When $\lambda > 2\Delta$,

$$1030 \Pr[\forall v, w \in T, (v, w) \notin R] \leq \exp(-\lambda/2) \leq \exp(-|R| \cdot p^2/2) \leq 1/100$$

1031 When $\lambda \leq 2\Delta$, because $|R| \geq 0.025|C|^2$,

$$1032 \Pr[\forall v, w \in T, (v, w) \notin R] \leq \exp\left(-\frac{\lambda^2}{4\Delta}\right) \leq \exp\left(-\frac{|R|^2 p^4}{2|C||R|p^3}\right) \leq \exp(-0.0125p|C|) \leq 1/100$$

1033 Thus, with high probability there exists $w \in N_C(u) \cap T$ and $v \in C' \cap T$ such that $u \rightarrow w \rightarrow v$ is
 1034 the desired positive path. \square

1035 *Proof to Theorem 1.* By Lemma E.1, Algorithm 3 always returns “YES” if G is clusterable. In
 1036 addition, by Lemma 3.2, Algorithm 3 returns “YES” with probability $\geq 99/100$ if G is $(\varepsilon^2/10^{14})$ -
 1037 close-to-clusterable. What is remained is to show that Algorithm 3 will output “NO” with high
 1038 probability when G is far from clusterable.

1039 To accommodate Janson's inequality, instead of working on the algorithm of sampling a fixed num-
 1040 ber of vertices, we introduce and analyze an intermediate algorithm where each vertex is included
 1041 in the sample set with *independent* probability.

1042 Let algorithm Π follow the same step 2 and 3 as Algorithm 3. For step 1, Π instead samples a
 1043 set of vertices $S = S_1 \cup S_2 \cup S_3$, where each vertex is included in S_1, S_2, S_3 independently with
 1044 probability $p := \min(\frac{2 \cdot 10^5}{\varepsilon n}, 1)$.

1045 By the standard Chernoff bound and a union bound, with $\leq 1/100$ probability any of S_1, S_2, S_3
 1046 has a size $\geq 10^6/(3\varepsilon)$ for every $\varepsilon \in (0, 1)$. Therefore, only with $\leq 1/100$ probability Algorithm 3
 1047 samples less vertices than Algorithm Π . We instead show that Algorithm Π has success probability
 1048 $\geq 91/100$ given a graph that is ε -far from being clusterable.

1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

(a) (u, v) is a false negative edge sampled in S_1 , in a large cluster C . If u, v share a large proportion of positive neighbors in C , with high probability S_2 can sample at least one of such vertices. Any of those vertices together with u, v form a bad triangle.

(b) Both u, v have at least half of positive neighbors in C (due to the optimality of C). When the positive neighbors of u and v have a small intersection, the neighbors of u and v roughly form a partition to C . A large proportion of edges between the two parts should be positive; or otherwise splitting C into two parts will decrease the cost of C . With high probability at least one of such positive edges will be sampled in S_2 , which forms a positive path between u and v .

Figure 3: Two subcases of Case 1. (Formalized at Lemma E.2.)

1080 **Case 1** ($|F_N| \geq |F_P|$). $|F_N| \geq |F_P|$ implies that $|F_N| \geq \varepsilon \binom{n}{2}/2$, and the total number of (both
 1081 positive and negative) edges in all the clusters
 1082

$$1083 \quad 1084 \quad \sum_{i=1}^k \binom{|C_i|}{2} > 2|F_N| \geq \varepsilon \binom{n}{2}. \\ 1085 \quad 1086$$

1087 Because the density of (+) edges inside the clusters of the optimal clustering \mathcal{C} is always $> 1/2$. Or
 1088 otherwise we can always further partition \mathcal{C} into smaller clusters without increasing the cost.
 1089

1090 Among these edges, at least $0.225(\varepsilon n^2 - n) > 0.224\varepsilon n^2$ of false negative edges are belonging
 1091 to clusters of $\geq \frac{\varepsilon n}{20}$ vertices, since the total number of edges in clusters of small size is at most
 1092 $\frac{1}{2} \cdot n \cdot \frac{\varepsilon n - 1}{20}$. We will show that the sampled vertex set S_1 contains at least one false negative edges
 1093 (u, v) with high probability; and, in addition, the induced subgraph over $S_2 \cup \{u, v\}$ contains a
 1094 positive path between u and v with high probability. We denote by $F'_N \subseteq F_N$ the subset of false
 1095 negative edges with at least one endpoint in large clusters. Since the two probabilities are dependent,
 1096 we will rewrite the probability as the summation of two independent probabilities. Let $\mathcal{E}_{u,v}$ denote
 1097 the event that “ u, v are not connected by a positive path in the induced subgraph over $S_2 \cup \{u, v\}$ ”.
 1098 We have
 1099

$$1100 \quad \Pr[\forall u, v \in S, (u, v) \notin F'_N \vee \mathcal{E}_{u,v}] \\ 1101 \quad \leq \Pr[\forall u, v \in S_1, (u, v) \notin F'_N \vee \mathcal{E}_{u,v}] \\ 1102 \quad \leq \Pr[\forall u, v \in S_1, (u, v) \notin F'_N] + \max_{\substack{S_1 \subseteq V, u, v \in S_1: \\ (u, v) \in F'_N}} \Pr[\mathcal{E}_{u,v}]. \quad (1) \\ 1103 \\ 1104$$

1105 1106 The first half can be bounded using Janson’s inequality. By setting the family of subsets to be F'_N , X
 1107 1108 to be the number of pairs $(u, v) \in F'_N$ from S_1 , we have $\lambda = \mathbb{E}[X] = |F'_N| \cdot p^2$ and $\Delta \leq \frac{1}{2} \cdot n |F'_N| \cdot p^3$.
 1109 By applying Janson’s inequality, we get
 1110

$$1111 \quad \Pr[\forall u, v \in S_1, (u, v) \notin F'_N] = \Pr[X = 0] \\ 1112 \quad \leq \exp\left(-\frac{\lambda^2}{\lambda + 2\Delta}\right) \\ 1113 \quad \leq \exp\left(-\frac{|F'_N|^2 \cdot p^4}{1.1n |F'_N| \cdot p^3}\right) \\ 1114 \quad \leq \exp\left(-\frac{0.224\varepsilon p n}{1.1}\right) \\ 1115 \quad < 1/100 \quad (2) \\ 1116 \\ 1117 \\ 1118 \\ 1119 \\ 1120$$

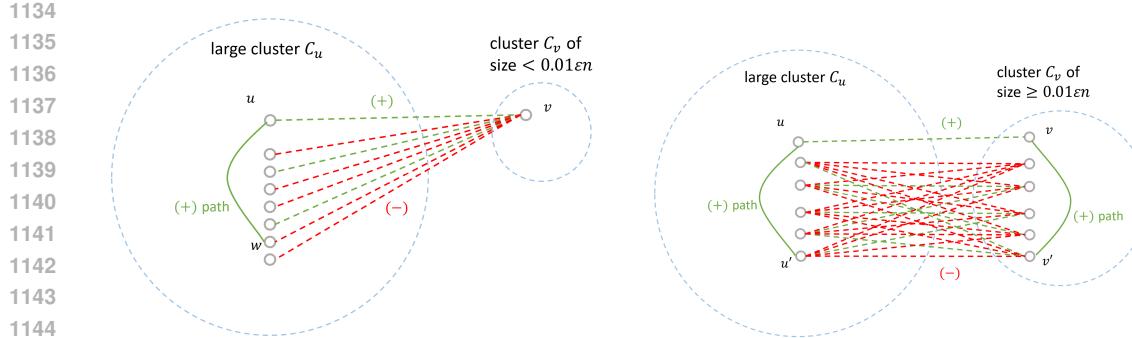
1121 1122 where the third inequality is by the fact that $\frac{1}{2} \cdot n |F'_N| \cdot p^3 \gg \lambda$, and the fourth inequality is due to
 1123 $|F'_N| \geq 0.224\varepsilon n^2$.
 1124

1125 The second probability in the last line of (1) is bounded by applying Lemma E.2. When we set C'
 1126 1127 to be $N_C(v)$ whose size is at least $|C|/2$, we obtain that with $\geq 99/100$ probability u and v are
 1128 connected in the induced subgraph of G over $S_2 \cup \{u, v\}$.
 1129

1130 Therefore, for every $(u, v) \in F'_N$ and every S_1 that contain u, v , the probability that u, v are not
 1131 connected by a path in G_S is at most $1/100$. By (1) and (2)
 1132

$$1133 \quad \Pr[\forall u, v \in S, (u, v) \notin F'_N \vee u, v \text{ are not connected in } G_S] \leq 2/100$$

1134 and the probability that Algorithm 3 succeeds is at least $9/10$.
 1135



(a) (u, v) is a false positive edge sampled in S_1 . In the subcase where $|C_v| < 0.01\epsilon n$, u belongs to a large cluster C_u and v belongs to a small cluster C_v . Then v will have a large number of negative edges connected to C_u ; or moving v from C_v to C_u will decrease the clustering cost. By a similar argument as in Figure 3 (formalized in Lemma E.2), with high probability in S_2 a vertex w where (w, v) is negative and a positive path from u to w are sampled. Here (v, w) is the negative edge connected by a positive path $v \rightarrow u \rightarrow \dots \rightarrow w$.

(b) For the case the cluster size of C_v is $\Omega(\epsilon n)$, at least half of edges between C_u and C_v are negative; or otherwise combining C_u and C_v will decrease the clustering cost. Reusing Lemma E.2, with high probability we sample a positive path from u to u' in S_2 , and a positive path from v to v' in S_3 , such that (u', v') is negative. In this way, we find a negative edge (u', v') connected by a positive path $u' \rightarrow \dots \rightarrow u \rightarrow v \rightarrow \dots \rightarrow v'$.

Figure 4: Two subcases of Case 2.

Case 2 ($|F_N| < |F_P|$ and $|F_{P,L}| \geq |F_{P,S}|$). By our conditions, $|F_{P,L}| \geq \epsilon \binom{n}{2} / 4$. Our proof idea to this case is similar to case 1. Through S_1 we will fix an edge (u, v) from $F_{P,L}$, by using Janson's inequality in exactly the same way as (2). Let C_u, C_v respectively denote the cluster of u and v in \mathcal{C} . Without loss of generality we assume $|C_u| \geq |C_v|$. By the definition of $F_{P,L}$, $|C_u| \geq \epsilon n / 20$. There are two subcases on whether C_v is large or small.

Consider the case $|C_v| < 0.01\epsilon n$. Let $C' := \{w \in C_u : (v, w) \in E^-\}$. Then $|C'| \geq |C_u|/10$, or otherwise moving v from C_v to C_u will decrease the cost. By Lemma E.2, with at least $\geq 99/100$ probability the induced subgraph of G over $\{u, v\} \cup S_2$ contains a path between v and a vertex $w \in C_u \cap S_2$ such that $(v, w) \in E^-$.

Now we turn to the case $|C_v| \geq 0.01\epsilon n$. Let $R_{u,v} := \{(u', v') \in E^- : u' \in C_u, v' \in C_v\}$. By the optimality of \mathcal{C} , $|R_{u,v}| \geq |C_u| \cdot |C_v|/2$, or otherwise combining C_u and C_v into a single cluster will decrease the cost. Let $Q_u \subseteq C_u$ be the set of vertices that has $\geq \frac{|C_v|}{4}$ negative neighbors in C_v . Then $|Q_u| \geq \frac{|C_u|}{3}$ since otherwise $|R_{u,v}| < |C_u| \cdot |C_v|/2$. By applying Lemma E.2, the induced subgraph over $S_2 \cup \{u\}$ contains a positive path from u to Q_u with $\geq 99/100$ probability. Fix the vertex sampled in Q_u as u' , we denote $Q_v \subseteq C_v$ as the subset of C_v whose vertices have negative edges to u' . By our definition to Q_u , $|Q_v| \geq \frac{|C_v|}{4}$. Again by applying Lemma E.2, the induced subgraph over $S_3 \cup \{v\}$ contains a positive path from v to Q_v with $\geq 99/100$ probability. We denote by v' the vertex sampled in Q_v .

Therefore, with probability $\geq 97/100$ there exists a negative edge (u', v') where $u', v' \in S$ such that u', v' are connected by a positive path

$$u' \rightarrow \dots \rightarrow u \rightarrow v \rightarrow \dots \rightarrow v'$$

in the induced subgraph over S . Therefore, Algorithm 3 is correct with high probability.

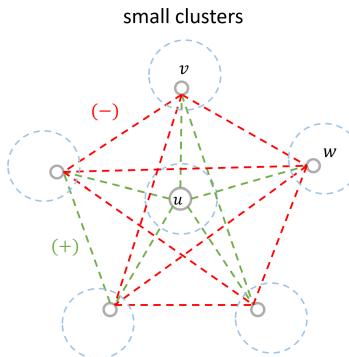


Figure 5: In Case 3, with high probability, the sample set S_1 contains a vertex u that belongs to a small cluster, and is connected to $\Omega(\varepsilon n)$ vertices of small clusters by positive edges. The induced subgraph over all such positive neighbors of u must contain a bounded proportion (≤ 0.94) of positive edges, or otherwise forming these vertices into a single cluster will decrease the total cost. Therefore, with high probability a negative edge (v, w) will be sampled in S_2 , which forms a bad triangle (u, v, w) .

Case 3 ($|F_N| < |F_P|$ and $|F_{P,L}| < |F_{P,S}|$). By our conditions, $|F_{P,S}| > \varepsilon \binom{n}{2}/4$. There are at least $0.01\varepsilon n$ vertices that are incident to $\geq 0.23\varepsilon n$ edges from $|F_{P,S}|$. By Chernoff bound, at least one of such vertices u is sampled in S_1 with $\geq 99/100$ probability. Define

$$N_{u,S} := \{v : (u, v) \in E^+, u \not\sim v, \text{ and } v \text{ belongs to a cluster of size } (< \varepsilon n/20)\}.$$

Then $|N_{u,S}| \geq 0.23\varepsilon n$. We will show that the density of positive edges in the induced subgraph of G over $N_{u,S}$ is small, or otherwise $N_{u,S}$ can form a cluster with smaller cost.

Since all the vertices in $N_{u,S} \cup \{u\}$ belong to clusters of size at most $\varepsilon n/20$, splitting all these vertices from their clusters will at most increase $(|N_{u,S}| + 1) \cdot \varepsilon n/20$ cost. Thus, the total number of negative edges inside $N_{u,S} \cup \{u\}$ is at least

$$\frac{1}{2} \binom{|N_{u,S}| + 1}{2} - (|N_{u,S}| + 1) \cdot \varepsilon n/20 = (|N_{u,S}| + 1) \cdot \frac{5|N_{u,S}| \cdot \varepsilon n}{20} > \frac{|N_{u,S}| \cdot \varepsilon n}{31}.$$

Otherwise, making $N_{u,S} \cup \{u\}$ a cluster will decrease the cost of \mathcal{C} by calculating its relative cost.

We will again use Janson's inequality to show that at least one of such non-edges (v, w) will be sampled in S_2 with high-probability. Since $(u, v), (u, w) \in E$ but $(v, w) \in E^-$, a bad triangle is observed.

Let R be the set of these non-edges, where $|R| > |N_{u,S}| \cdot \varepsilon n/31$. Let X be the random variable denoting the number of non-edges in R that are included in G_{S_2} . Let $\lambda = \mathbb{E}[X] = |R| \cdot p^2$. Let $\Delta = \frac{1}{2}|N_{u,S}| \cdot |R| \cdot p^3$. By Janson's inequality, we have

$$\Pr[X = 0] \leq \exp\left(-\frac{|R| \cdot p}{1.1 \cdot |N_{u,S}|}\right) \leq 1/100.$$

Therefore, with $\geq 98/100$ probability one can observe vertices $v, w \in S_2$ and $u \in S_1$ such that $(v, w) \notin E$ but $(u, v), (u, w) \in E$ in this case.

To summarize, in all of the above three cases, one can always observe a bad triangle with probability $\geq 9/10$ probability when the graph is ε -far from being clusterable. Algorithm 3 outputs correctly with probability $\geq 9/10$.

□

F OPTIMAL STRUCTURAL BALANCE TESTING FOR COMPLETE GRAPHS

We now discuss our results for structural balance, i.e., the case of $k = 2$ for correlation clustering with a fixed number of clusters. Recall that the main theorem statement is as follows.

1242 **Theorem 3.** Fix $\varepsilon \in (0, 1)$. There exists a randomized algorithm that given a labeled complete
 1243 graph $G = (V, E^+ \cup E^-)$ and a parameter ε answers the following
 1244

- 1245 • If G is balanced, the algorithm always answers “YES”;
- 1246 • If G is at least ε -far from being balanced, the algorithm answers “NO” with probability ≥ 0.9 .

1248 The algorithm queries at most $O(1/\varepsilon)$ edges of G and runs in $O(1/\varepsilon)$ time.
 1249

1250 The algorithm for Theorem 3 uses a different approach compared to Theorem 2: we sample $O(1/\varepsilon)$
 1251 triangles, take the graph G' induced by the edges (the graph might *not* be complete), and check
 1252 whether G' has any unbalanced triangle. The formal algorithm could be described as follows.
 1253

1254 **Algorithm 4. An algorithm for structural balance property testing**

1255 **Input:** A labeled complete graph $G = (V, E^+ \cup E^-)$; a parameter ε .

1256 1. Sample $300/\varepsilon$ triangles $(u, v, w) \in V^3$ uniformly at random (with replacement).
 1257 2. Check if any of the sampled triangles is unbalanced.

1260 We first observe that Algorithm 4 uses $O(1/\varepsilon)$ queries and time, and the algorithm always returns
 1261 “balanced” if G is indeed balanced.
 1262

1263 **Lemma F.1.** Algorithm 4 makes $O(1/\varepsilon)$ queries to G with $O(1/\varepsilon)$ computation time.

1264 *Proof.* The algorithm only samples $O(1/\varepsilon)$ edges and triangles, where we use $O(1)$ time for each
 1265 triangle to check whether it is balanced or not. \square
 1266

1267 **Lemma F.2.** If $G = (V, E^+ \cup E^-)$ is balanced, then Algorithm 4 always returns “balanced”.
 1268

1269 *Proof.* By a simple observation, any subgraph of a (strongly) balanced graph does not contain any
 1270 unbalanced triangle. Therefore, the algorithm will *not* detect any unbalanced triangle and will al-
 1271 ways return “balanced”. \square
 1272

1273 We now proceed with the proof of the soundness of the algorithm. At a high level, we aim to demon-
 1274 strate that if the number of disagreement edges is high, then the number of unbalanced triangles has
 1275 a similar lower bound. Proving the statement, however, is not entirely straightforward since the
 1276 number of unbalanced triangles is not necessarily monotone w.r.t. the number of flipped edges – it
 1277 depends on the structure of the graph. Consider, for instance, a graph of n vertices with exactly two
 1278 false edges. If the two edges are not incident to each other, the total number of unbalanced triangles
 1279 is $2(n - 2)$, $n - 2$ unbalanced triangles induced by each false edge and each other vertex. But if the
 1280 two edges are incident to each other, the triangle including both edges will be balanced, and the total
 1281 number of unbalanced triangles decrease to $2(n - 3)$. We give a clean proof to the desired statement
 1282 using three different random sampling processes, avoiding discussions to the structure of the graph.
 1283

1284 **Lemma F.3.** If $G = (V, E^+ \cup E^-)$ is at least ε -far from being balanced, then Algorithm 4 returns
 1285 “not balanced” with probability at least $99/100$.

1286 *Proof.* Let $\mathcal{X}_{\text{unbalanced}}$ be the set of unbalanced triangles in G , and let $E_{\text{unbalanced}}$ be the set of false
 1287 edges induced by (L^*, R^*) , which is the optimal partition that minimizes the frustration index of the
 1288 graph. For each unbalanced triangle $\Delta \in \mathcal{X}_{\text{unbalanced}}$. We define the following sampling process for
 1289 triangles.
 1290

1291 **Process 1:** a random sampling process for triangles.

1292 • Sample a triangle uniformly at random from G .
 1293

1294 Let X_Δ be the indicator random variable for the unbalanced triangle $\Delta \in \mathcal{X}_{\text{unbalanced}}$ to be sampled
 1295 by *Process 1*.

1296 We now consider another sampling process in which we uniformly sample an edge.
 1297

1298 **Process 2:** a random sampling process for edges.
 1299

1300 • Sample an edge uniformly at random from G .
 1301

1302 For each false edge $e \in E_{\text{unbalanced}}$, we let Y_e be the indicator random variable for the edge to be
 1303 sampled. Our technical claim is as follows.
 1304

1305 **Claim F.4.** *On each time of sampling with Process 1 and Process 2, we have that*

1306
$$\Pr(\Delta \in \mathcal{X}_{\text{unbalanced}} \text{ is sampled by Process 1}) \geq \frac{1}{3} \Pr(e \in E_{\text{unbalanced}} \text{ is sampled by Process 2}).$$

 1307

1309 *Proof.* We consider the following sampling process:
 1310

1311 **Process 3:** a “bridge” sampling process.
 1312

1313 • Sample a vertex $v \in V$ uniformly at random;
 1314
 1315 • Sample an edge $e' \not\ni v$ uniformly at random.

1316 We let (L^v, R^v) be the partition obtained by the following rules: we arrange all the (+) neighbors
 1317 of v in L^v . The set of the rest of the vertices, namely $V \setminus L^v$, is therefore defined as R^v . Let
 1318 $E_{\text{unbalanced}}(v)$ be the set of false edges induced by (L^v, R^v) . Since (L^*, R^*) is the optimal partition
 1319 that minimizes the frustration index, for any $v \in V$, we have that
 1320

1321
$$|E_{\text{unbalanced}}(v)| \geq |E_{\text{unbalanced}}|.$$

1322 Therefore, conditioning on the sampling of any fixed v , we have that
 1323

1324
$$\Pr(e \in E_{\text{unbalanced}} \text{ is sampled by Process 2}) \leq \Pr(e \in E_{\text{unbalanced}}(v) \text{ is sampled by Process 3}).$$

1325 On the other hand, for any fixed v , let $\mathcal{X}_{\text{unbalanced}}(v)$ be the set of unbalanced triangles with one
 1326 endpoint as v and one edge in $E_{\text{unbalanced}}(v)$. Note that each unbalanced triangle will at most be
 1327 counted 3 times, which happens only when all the three edges of the triangle are false edges. As
 1328 such, we have that
 1329

1330
$$3 |\mathcal{X}_{\text{unbalanced}}| \geq \sum_{v \in V} |\mathcal{X}_{\text{unbalanced}}(v)|.$$

 1331

1332 Therefore, we could lower bound the probability of sampling an unbalanced triangle as

1333
$$\begin{aligned} & \Pr(\Delta \in \mathcal{X}_{\text{unbalanced}} \text{ is sampled by Process 1}) \\ 1334 & \geq \frac{1}{3} \sum_{v \in V} \Pr(v \text{ is sampled and } \Delta \in \mathcal{X}_{\text{unbalanced}}(v) \text{ is sampled by Process 3}) \\ 1335 & = \frac{1}{3} \sum_{v \in V} \Pr(v \text{ is sampled by Process 3}) \cdot \Pr(e \in E_{\text{unbalanced}}(v) \text{ is sampled by Process 3}). \end{aligned}$$

1336 Observe that each vertex has $1/n$ probability to be sampled in Process 3. Therefore, we have

1337
$$\begin{aligned} & \Pr(\Delta \in \mathcal{X}_{\text{unbalanced}} \text{ is sampled by Process 1}) \\ 1338 & \geq \frac{1}{3} \sum_{v \in V} \frac{1}{n} \cdot \Pr(e \in E_{\text{unbalanced}}(v) \text{ is sampled by Process 3}) \\ 1339 & \geq \frac{1}{3} \sum_{v \in V} \frac{1}{n} \cdot \Pr(e \in E_{\text{unbalanced}} \text{ is sampled by Process 2}) \\ 1340 & = \frac{1}{3} \Pr(e \in E_{\text{unbalanced}} \text{ is sampled by Process 2}), \end{aligned}$$

1341 which is as desired by the statement. Lemma F.4 \square
 1342

1350 Since the graph is at least ε -far from being balanced, we have that
 1351

$$1352 \quad \Pr(e \in E_{\text{unbalanced}} \text{ is sampled by Process 2}) \geq \varepsilon.$$

1353 Therefore, by Lemma F.4, for each time of sampling in Algorithm 4, we have that
 1354

$$1355 \quad \Pr(X_\Delta = 1 \text{ for some } \Delta \in \mathcal{X}_{\text{unbalanced}}) \geq \varepsilon/3.$$

1356 Since we sample triangles without replacement, the sampling at each time is independent. Therefore,
 1357 the probability for us to not sample any unbalanced triangle with $100/\varepsilon$ samples is at most $(1 -$
 1358 $\varepsilon/3)^{300/\varepsilon} \leq 1/100$, as desired by the lemma statement. Lemma F.3 \square
 1359

1360 Combining Lemma F.1, Lemma F.2, and Lemma F.3 gives the full proof of Theorem 3.
 1361

1362 G EXTENSION TO STRUCTURAL BALANCE TOLERANT TESTING

1363 We now discuss generalizing our structural balance testing algorithm to allow graphs that are *nearly*
 1364 *balanced* acceptable by the tester. This falls into the regime of *tolerant testing* Parnas et al. (2006);
 1365 Ron (2009); Blais et al. (2019), in which we want instances that *nearly* satisfied the desired property
 1366 to also pass the test. For structural balance, a testing algorithm as such has strong practical motivations:
 1367 real-world graphs are often *not perfectly balanced* yet *close to being balanced*. Therefore, a
 1368 tolerant testing algorithm could have a much broader impact on testing read-world graphs.
 1369

1370 Recall that main theorem for the tolerant testing algorithm is as follows.
 1371

1372 **Theorem 4.** Fix $\varepsilon \in (0, 1)$ such that $\delta \leq \varepsilon/900$. There exists a randomized algorithm that given a
 1373 labeled complete graph $G = (V, E^+ \cup E^-)$ and parameters ε, δ answers the following

- 1374 • If G is at most δ -close from being balanced, the algorithm answers “YES” with probability \geq
 1375 0.99;
- 1377 • If G is at least ε -far from being balanced, the algorithm answers “NO” with probability ≥ 0.99 .

1379 The algorithm queries at most $O(1/\varepsilon)$ edges of G and runs in $O(1/\varepsilon)$ time.

1380 The algorithm for Theorem 4 is similar to Algorithm 4, albeit we use a *threshold* to determine
 1381 whether the graph is balanced. The algorithm could be described as follows.
 1382

1383 **Algorithm 5. An algorithm for structural balance tolerant testing**

1384 **Input:** A labeled complete graph $G = (V, E^+ \cup E^-)$, parameters ε, δ such that $\delta \leq \varepsilon/900$.

- 1386 1. Sample $300/\varepsilon$ triangles $(u, v, w) \in V^3$ uniformly at random (with replacement).
- 1387 2. If at most 10 out of $300/\varepsilon$ sampled triangles are unbalanced, return “balanced”. Otherwise,
 1388 return “not balanced”.

1390 The efficiency of the algorithm follows directly from the argument as in Lemma F.1, and we write
 1391 the corresponding lemma without proof.

1392 **Lemma G.1.** Algorithm 5 makes $O(1/\varepsilon)$ queries to G and converges in $O(1/\varepsilon)$ time.
 1393

1394 We first analyze the *soundness* of the algorithm, for which we could use the conclusion in
 1395 Lemma F.4. The main lemma is as follows.

1396 **Lemma G.2.** If $G = (V, E^+ \cup E^-)$ is at least ε -far from being balanced, then Algorithm 5 returns
 1397 “not balanced” with probability at least $199/200$.
 1398

1399 *Proof.* Let X_Δ be the indicator random variable for an unbalanced triangle Δ to be sampled for
 1400 one sampling step in Algorithm 5, and let $X = \sum X_\Delta$ be the total number of unbalanced triangles
 1401 sampled by Algorithm 5. By Lemma F.4, we have that
 1402

$$1403 \quad \mathbb{E}[X] = \frac{300}{\varepsilon} \cdot \Pr(X_\Delta = 1 \text{ for some } \Delta \in \mathcal{X}_{\text{unbalanced}}) \geq 100.$$

1404 Since X is a summation of independent indicator random variables, we could apply Chernoff bound,
 1405 and show that

$$\begin{aligned} \Pr(X \leq 10) &\leq \Pr(X \leq (1 - 0.9) \cdot \mathbb{E}[X]) \\ &\leq \exp\left(-\frac{0.9^2 \cdot 100}{2}\right) \leq 1/200, \end{aligned}$$

1410 as desired. □

1412 We now proceed to show the completeness of the algorithm, i.e., δn^2 -close instances are also to
 1413 pass the test and result in a “balanced” outcome. The proof of the lemma will use a “reversed”
 1414 probability calculation as in Lemma F.4.

1415 **Lemma G.3.** *If $G = (V, E^+ \cup E^-)$ is at most δ -far from being balanced for some $\delta \leq \varepsilon/900$, then
 1416 Algorithm 4 returns “balanced” with probability at least 199/200.*

1418 *Proof.* Similar to the proof of Lemma F.3, we let $\mathcal{X}_{\text{unbalanced}}$ be the set of unbalanced triangles, and
 1419 $E_{\text{unbalanced}}$ be the set of disagreement edges induced by the optimal partition (L^*, R^*) . We now
 1420 define the following processes.

1422 **Process 4:** a random sampling process for edges.

- 1424 • Sample a triangle Δ uniformly at random from G , then sample an edge from Δ .

1426 Also, we will use the random Process 1 which samples a triangle uniformly at random from the
 1427 graph (see the proof of Lemma F.3 for the full description). We have the following technical claim.

1428 **Claim G.4.** *On each time of sampling with Process 1 and Process 4, we have that*

$$\Pr(\Delta \in \mathcal{X}_{\text{unbalanced}} \text{ is sampled by Process 1}) \leq 3 \cdot \Pr(e \in E_{\text{unbalanced}} \text{ is sampled by Process 4}).$$

1432 *Proof.* The claim follows from the fact that for each $\Delta \in \mathcal{X}_{\text{unbalanced}}$, there must be at least one edge
 1433 $e \in E_{\text{unbalanced}}$ by definition. Therefore, we have that

$$\begin{aligned} \Pr(e \in E_{\text{unbalanced}} \text{ is sampled by Process 4}) \\ &\geq \Pr(\text{sampling } e \in E_{\text{unbalanced}} \text{ from } \Delta \in \mathcal{X}_{\text{unbalanced}}) \cdot \Pr(\Delta \in \mathcal{X}_{\text{unbalanced}} \text{ is sampled by Process 1}) \\ &\geq \frac{1}{3} \cdot \Pr(\Delta \in \mathcal{X}_{\text{unbalanced}} \text{ is sampled by Process 1}), \end{aligned}$$

1439 which leads to the desired statement. Lemma G.4 □

1440 For a graph that is at most δ -far from being balanced, which means it is at most $(\varepsilon/900)$ -far from
 1441 being balanced, we have that

$$\Pr(e \in E_{\text{unbalanced}} \text{ is sampled by Process 2}) \leq \frac{\varepsilon}{900}.$$

1445 Let $X = \sum X_\Delta$ be the total number of unbalanced triangles sampled by Algorithm 5. By
 1446 Lemma G.4, we have that

$$\begin{aligned} \mathbb{E}[X] &= \frac{300}{\varepsilon} \cdot \Pr(X_\Delta = 1 \text{ for some } \Delta \in \mathcal{X}_{\text{unbalanced}}) \\ &\leq \frac{900}{\varepsilon} \cdot \Pr(e \in E_{\text{unbalanced}} \text{ is sampled by Process 2}) \leq 1. \end{aligned}$$

1451 If $X < 1$, then Algorithm 5 deterministically returns “balanced”. As such, we assume w.log. that
 1452 $X \geq 1$. Since X is a summation of independent indicator random variables, we could apply the
 1453 Chernoff bound, and we get

$$\begin{aligned} \Pr(X \geq 10) &\leq \Pr(X \leq (1 + 9) \cdot \mathbb{E}[X]) \\ &\leq \exp\left(-\frac{81 \cdot 1}{11}\right) \leq 1/200, \end{aligned}$$

1457 as desired. □

1458 Combining Lemma G.1, Lemma G.2 and Lemma G.3 with a union bound gives the desired statement
 1459 of Theorem 4.
 1460

1461 H A LOWER BOUND FOR TESTING CLUSTERABILITY AND STRUCTURAL 1462 BALANCE 1463

1464 We give a lower bound for testing structural balance in complete graphs in this section. Our lower
 1465 bound shows that any algorithm that separates a graph from being balanced vs. ε -far from being
 1466 balanced requires at least $\Omega(1/\varepsilon)$ queries to the graph. This implies our algorithms in Theorem 3
 1467 and Theorem 4 are asymptotically optimal.
 1468

1469 Recall that our statement for the lower bound is as follows.

1470 **Theorem 5.** *Any (possibly randomized) algorithm that given a complete labeled graph $G =$
 1471 $(V, E^+ \cup E^-)$, with probability at least $2/3$ answers correctly whether G is balanced or at least
 1472 ε -far from being balanced requires at least $\Omega(1/\varepsilon)$ edge queries to the graph.*

1473 *Furthermore, the lower bound extends to testing clusterability (for both general k and fixed k).*

1474 *Proof.* We use the following result from a recent paper to prove our lower bound.

1475 **Proposition H.1** (Fischer (2024), rephrased; cf. Bshouty & Goldreich (2025)). *Let Σ be an arbitrary alphabet for an length- m input, and let Σ^m be the set of all possible inputs. Let $\mathcal{P} \subseteq \Sigma^m$ be the set of inputs that satisfy a property. Suppose there exists an instance $U \notin \mathcal{P}$ such that at least $\alpha \cdot m$ elements need to be modified to satisfy the property prescribed by \mathcal{P} . Then, any algorithm that with probability at least $2/3$ correctly distinguishes whether an input $S \in \Sigma^m$ is in \mathcal{P} or needs to modify at least $\beta \cdot m$ bits to satisfy property of \mathcal{P} requires $\Omega(\alpha/\beta)$ queries to S .*

1476 We apply Lemma H.1 with $\Sigma = \{(+), (-)\}$ and $m = \binom{n}{2}$. The instances with structural balance
 1477 are \mathcal{P} . Here, we only need to find an instance $U \notin \mathcal{P}$ at least α -far from being balanced for some
 1478 $\alpha = \Omega(1)$. We consider a graph with all $(-)$ edges as such an instance: the graph has $\binom{n}{3}$ bad
 1479 triangles, and each flip of the label could reduce the number of bad triangles by at most $n - 1$. As
 1480 such, the graph is at least α -far from being balanced for some $\alpha = \Omega(1)$. Applying Lemma H.1
 1481 leads to the desired $\Omega(1/\varepsilon)$ query lower bound. \square
 1482

1483 Note that since each query takes $O(1)$ time, our algorithms are also asymptotically optimal in terms
 1484 of the time complexity.
 1485

1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511