
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT TESTING FOR CORRELATION CLUSTERING:
IMPROVED ALGORITHMS AND OPTIMAL BOUNDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Correlation clustering is an important unsupervised learning problem with broad
applications. In this problem, we are given a labeled complete graph G =
(V,E+ ∪ E−), and the optimal clustering is defined as a partition of the ver-
tices that minimizes the + edges between clusters and − edges within clusters.
We investigate efficient algorithms to test the cost of correlation clustering: here,
we want to know whether the graph could be (nearly) perfectly clustered (with 0
or low cost) or is far away from admitting any perfect clustering. The problem has
attracted significant attention aimed at modern large-scale applications, and the
state-of-the-art results use Õ(1/ε7) queries and time (up to log factors) to decide
whether a graph is perfectly clusterable or needs to flip labels of ε

(
n
2

)
edges to be-

come clusterable. In this paper, we improve this bound significantly by designing
an algorithm that uses O(1/ε2) queries and time. Furthermore, we derive the first
algorithm that tests the cost for the special setting of correlation clustering with
k clusters with O(1/ε4) queries and time for constant k. Finally, for the special
case of k = 2, which corresponds to the strong structure balance problem in social
networks, we obtain tight bounds of Θ(1/ε) queries – the first set of tight bounds
in these problems. We conduct experiments on simulated and real-world datasets,
and empirical results demonstrate the advantages of our algorithms.

1 INTRODUCTION

Correlation clustering is a fundamental unsupervised problem that has been studied extensively in
the literature of theoretical computer science and machine learning. At a high level, the problem asks
to partition the datasets based on qualitative information, i.e., whether two data points are similar.
More formally, the dataset is represented as a labeled complete graph G = (V,E+ ∪ E−), where
each vertex v ∈ V represents a data point, and each vertex pair (u, v) contains an edge with label
(+) or (−) denoting “similarity” and “dissimilarity”. The cost of a clustering is defined as the total
number of (+) edges crossing clusters and the number of (−) edges inside the same clusters.

Correlation clustering has a broad range of applications, including document summarization Bansal
et al. (2002), image segmentation Kim et al. (2011); Yarkony et al. (2012), bioinformatics Hou
et al. (2016), and community detection Veldt et al. (2018); Shi et al. (2021). Notably, correlation
clustering corresponds to naturally emerging structures in signed social networks, where edges are
classified as “friendly” and “hostile” relationships. In this setting, structural balance theory, which
is well established in sociology, characterizes the “stability” of triangles in signed networks Heider
(1946; 1982); Cartwright & Harary (1956); Davis (1967). With strong structural balance, only two
types of triangles are stable — with all three edges as positive or with two negative and one positive
edge (“the enemy of your enemy is your friend”). The local stability condition also implies global
alignment. The vertices in a stable signed network can be partitioned into two groups with all (+)
(friendly) edges inside each group and all (−) (hostile) edges in between. Mathematically, this is
precisely the case of a perfect (zero-cost) clustering with two clusters. In addition, a weaker version
of structural balance also allows triangles of all three negative edges. Globally, a weakly balanced
signed network corresponds to multiple clusters with only positive intra-cluster edges and negative
inter-cluster edges. That is, the network has a zero cost correlation clustering where the number of
clusters can be flexible. In the remainder of this paper, such a network with a zero cost correlation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

clustering is called clusterable (with any number of clusters), k-clusterable if the number of clusters
is fixed to be k. A (strongly) balanced network is 2-clusterable.

Most of the work in correlation clustering (resp. structural balance) aims to find or approximate
the best clustering, i.e., output a partition of the vertices (see, e.g. Bansal et al. (2002); Ailon et al.
(2008); Chawla et al. (2015); Cohen-Addad et al. (2021); Assadi & Wang (2022); Cohen-Addad
et al. (2022; 2023); Dalirrooyfard et al. (2024); Cohen-Addad et al. (2024a;b); Cao et al. (2024);
Dalirrooyfard et al. (2025), and references therein). For an n-vertex graph, simply outputting the
partition requires Ω(n) time. There are efficient algorithms that converge in near-optimal Õ(n)
time1 Assadi & Wang (2022); Cao et al. (2024; 2025). Nevertheless, in applications with massive
datasets, we might want to learn the cost of correlation clustering using o(n) time. For instance,
in the structural balance problem, we might be interested in knowing whether the graph is close to
or far away from being balanced without knowing the entire network structure. A graph that is far
from a balanced state may indicate high level of volatility. Additionally, we might want to use the
clustering cost to determine whether the graph is worthy of clustering without paying Ω(n) time.

The above question is closely related to the realm of property testing, in which we are often inter-
ested in obtaining statistics of the data with only a very limited number of queries. For correlation
clustering, a handful of existing results have explored this direction. For instance, Bonchi, Garcı́a-
Soriano, and Kutzkov Bonchi et al. (2013) designed an algorithm that computes a data structure that
supports cluster membership query in O(1/ε2) time, and the underlying solution is a 3OPT + εn2

approximation2. Subsequently, Assadi et al. (2023) and Ashvinkumar et al. (2023) studied the prob-
lem of testing for the cost of correlation clustering and structural balance in the streaming model,
where the edges arrive one-by-one in a stream. There, the goal was to obtain an approximation of
the optimal clustering cost with o(n) space.

To the best of our knowledge, the work closest to the problem for sublinear time is Adriaens &
Apers (2023) (see also Chen et al. (2024) for the quantum setting), where they designed an algo-
rithm requiring Õ(1/ε7) queries, to test whether a graph is ε/10-close-to-clusterable vs. ε-far from
being clusterable. With a stronger technique by Sohler (2012), one can use Õ(1/ε2) queries to test
whether a graph is balanced vs. ε-far from being balanced, for the special case of structural balance.
Throughout, ε-far indicates at least ε

(
n
2

)
edge labels need to be flipped to make the graph balanced

or admit a perfect clustering. To date, there are no matching lower bounds to show the tightness
of these results, and we do not have knowledge on testing correlation clustering cost with k (which
is given) clusters for general k. Therefore, getting improved bounds, and ideally tight bounds, for
testing correlation clustering and structural balance remains important open problems.

1.1 OUR CONTRIBUTIONS

We make substantial progress towards the open problems in this paper. We consider the model
where one can issue queries for the label of any edge (u, v) and we minimize the number of queries
used to evaluate or approximate the cost of correlation clustering for the graph. In particular, Our
contributions are summarized in the following settings.

• We propose an algorithm to test whether the correlation clustering cost is at most O(ε2
(
n
2

)
) or at

least ε
(
n
2

)
using O(1/ε2) queries.

• We give an algorithm to test whether the correlation clustering cost with k clusters for any constant
k is O(ε4

k4 ln4 k

(
n
2

)
) or at least ε

(
n
2

)
using O(1/ε4) queries.

• For the case of k = 2, which corresponds to structural balance, we devise an algorithm that
tests if the graph is at most ε/900-close to being balanced or at least ε-far from being balanced
using O(1/ε) queries. We complement the upper bound by an Ω(1/ε) lower bound, showing the
tightness of the proposed algorithm.

Note that all algorithms are efficient in time complexity as well: it is proportional to the query
complexity. Table 1 shows comparison of results. Prior results are from Adriaens & Apers (2023).

1Unless specified otherwise, we use Õ(·) to hide poly-logarithmic terms.
2Unless specified otherwise, the notation OPT denotes the optimal clustering cost for correlation clustering.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Results on Query Complexity.

Task Previous Best Bound Our U.B. Our L.B. Remark
Structural Balance Õ(1/ε2) O(1/ε) Ω(1/ε) —

Correlation Clustering Õ(1/ε7) O(1/ε2) Ω(1/ε) —
Correlation Clustering (fixed k) — O(1/ε4) Ω(1/ε) O(k

4 ln4 k
ε4) for general k

We now discuss the formal statements for these algorithmic results. We start with the results for
testing clusterability for general correlation clustering, which is our main technical result.
Theorem 1. Fix ε ∈ (0, 1). There exists a randomized algorithm that given a labeled complete
graph G = (V,E+ ∪ E−) and a parameter ε answers with the following rules

• If G is clusterable, the algorithm always answers “YES”;

• If G is at least ε-far from being clusterable, the algorithm answers “NO” with probability ≥ 0.9;

• If G is C · ε2-close to being clusterable for some small constant C, the algorithm answers “YES”
with probability ≥ 0.9.

The algorithm queries at most O(1/ε2) edges of G and runs in O(1/ε2) time.

Compared to the results in Adriaens & Apers (2023), our results improve the query complexity from
Õ(1/ε7) to O(1/ε2). Ignoring the constant factors, for ε = 0.01, the algorithm of Adriaens & Apers
(2023) takes 1014 operations, while our algorithm takes 104 operations. Assuming a machine that
takes 10−10 seconds to process one operation, the running time difference between their algorithm
and ours is > 2.5 hours vs. less than one second.

Our algorithm is straightforward: we uniformly sample O(1/ε) vertices and test on their induced
subgraph. The analysis rests on a key insight: if a graph is ε-far from being clusterable, this property
will be evident even in a small, random sample. We achieve this by introducing Janson’s inequality
from the random graph theory, which is novel in analyzing property testing algorithms. The proof
of Theorem 1 can be found in Appendix E.

We note that our contribution primarily lies in the analysis rather than the design of the algorithm.
Results in the literature have shown that property testing problems for graph problems inherently
admit relatively simple algorithms Goldreich & Trevisan (2003). Therefore, the crucial and non-
trivial part is to conduct better analysis to improve the sample complexity, which is exactly what we
did in our paper.

We then investigate the test of clusterability for graphs with k clusters for any integer k ≥ 2. We
obtain the following result.
Theorem 2. Fix k ≥ 2 and ε ∈ (0, 1). There exists a randomized algorithm that given a labeled
complete graph G = (V,E+ ∪ E−) and a parameter ε answers the following

• If G is k-clusterable, the algorithm always answers “YES”;

• If G is at least ε-far from being k-clusterable, the algorithm answers “NO” with probability
≥ 0.9;

• In addition, if G is
(

ε4

1026k4 ln4 k

)
-close-to-k-clusterable, the algorithm answers “YES” with prob-

ability ≥ 0.9.

The algorithm queries at most O(k
4 ln4 k
ε4) edges of G and runs in O(k

4 ln4 k
ε4) time.

When k is a constant, the above gives an O(1/ε4) algorithm for testing k-clusterability.

As far as we are aware, Theorem 2 is the first nontrivial algorithm that tests the clusterability for
correlation clustering with k clusters. The dependency of k is polynomial in Theorem 2. By a com-
mon observation (see, e.g. Bansal et al. (2002); Adriaens & Apers (2023)), the optimal correlation
clustering cost could always be approximated by the optimal solution with at most O(1/ε) clusters

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

with O(εn2) additive error. Therefore, Theorem 2 also implies testing algorithms with 1/poly(ε)
queries for any meaningful choices of k.

Our algorithm for Theorem 2 is a combination of two algorithms: the algorithm used in Theorem 1,
and a new algorithm that distinguishes whether a clusterable graph is k-clusterable or ε-far from
k-clusterable. We show that the second algorithm works even when the input graph is close enough
to be clusterable. Specifically, when the input graph is ε2-close to a clusterable one, our second
algorithm ignores its deviation from its closest clusterable graph with high probability. We prove
Theorem 2 formally at Section 3.

We now move on to the special case of k = 2, which is mathematically equivalent to the structural
balance problem.
Theorem 3. Fix ε ∈ (0, 1). There exists a randomized algorithm that given a labeled complete
graph G = (V,E+ ∪ E−) and a parameter ε answers the following

• If G is balanced, the algorithm always answers “YES”;

• If G is at least ε-far from being balanced, the algorithm answers “NO” with probability ≥ 0.9.

The algorithm queries at most O(1/ε) edges of G and runs in O(1/ε) time.

Theorem 3 uses algorithmic procedures that are fairly different from the subroutines in Theorem 1
and Theorem 2. Here, instead of sampling a subset of vertices and their induced subgraph, we sample
triangles directly. This in particular avoids the quadratic blow-up in Theorem 1 and Theorem 2.

Similar to our results for general clusterability, our techniques for Theorem 3 extend to tolerant test-
ing. However, for structural balance, we obtain stronger guarantees: while the previous algorithms
require the graph to be O(ε2)-close to clusterable, here we can distinguish graphs that are δ-close
from being balanced (where δ ≈ O(ε)) versus graphs that are ε-far. We refer to Appendix F and
Appendix G for the formal proof.
Theorem 4. Fix ε ∈ (0, 1) such that δ ≤ ε/900. There exists a randomized algorithm that given a
labeled complete graph G = (V,E+ ∪ E−) and parameters ε, δ answers the following

• If G is at most δ-close from being balanced, the algorithm answers “YES” with probability ≥
0.99;

• If G is at least ε-far from being balanced, the algorithm answers “NO” with probability ≥ 0.99.

The algorithm queries at most O(1/ε) edges of G and runs in O(1/ε) time.

Finally, we present a lower bound result, showing that Ω(1/ε) queries are necessary to distinguish
graphs that are balanced (resp. clusterable) vs. ε-far from being balanced (resp. clusterable).
Theorem 5. Any (possibly randomized) algorithm that given a complete labeled graph G =
(V,E+ ∪ E−), with probability at least 2/3 answers correctly whether G is balanced or at least
ε-far from being balanced requires at least Ω(1/ε) edge queries to the graph.

Furthmore, the lower bound extends to testing clusterability (for both general k and fixed k).

Theorem 5 indicates that our results for Theorem 3 and Theorem 4 are asymptotically tight. To the
best of our knowledge, this is the first result that obtained tight bounds in the related literature. The
proof can be found at Appendix H.

Experiments. We implement the proposed algorithms and evaluate them on synthetic and real-
world datasets. Our algorithms demonstrate favorable efficiency in both the query complexity and
the running time. For structural balance testing on graphs of size 1000, our algorithm shows a
reduction factor of 15 on query complexity and roughly 104 on the running time, comparing to
Adriaens & Apers (2023). Our implementation is available on Anonymous Github3.

Further Comparison with Related Work. In addition to the adjacency matrix query model, Adri-
aens & Apers (2023) studied another query model based on bounded-degree graphs 4. In this model,

3https://anonymous.4open.science/r/Correlation-Clustering-Property-Testing-3EC0/
4In their paper, the adjacency matrix query model is called the “dense graph model” and the adjacency list

query model is called “bounded degree model”.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the adjacency list cannot directly query neighbors. Instead, they only allow queries in the form of
tuples (u, i), where i is an integer in [n]. The answer is the i-th neighbor if i ≤ deg(u), or ⊥ other-
wise. The queries in that model are inherently harder, and their query bounds are Õ(

√
n/poly(ε)).

While there are interesting applications in the bounded-degree model, these results are not directly
comparable to ours.

The bulk of the literature in structural balance and correlation clustering has focused on computing
the clustering, i.e., the partition of vertices. To this end, there are several popular techniques, includ-
ing linear programming (Chawla et al. (2015); Cohen-Addad et al. (2022; 2023); Cao et al. (2024),
pivot-based algorithms (Ailon et al. (2008); Makarychev & Chakrabarty (2023); Dalirrooyfard et al.
(2024); Cambus et al. (2024); Dalirrooyfard et al. (2025)), and agreement decomposition (Cohen-
Addad et al. (2021); Assadi & Wang (2022); Cohen-Addad et al. (2024a)). However, all of these
techniques would need Ω(n) time to write down the formulation or the solution, which is much
slower than our algorithms. Assadi et al. (2023) made an attempt to combine sampling and some of
the above techniques to test the cost of correlation clustering with small space. Their algorithm can
be used for our application as well with poly(logn/ε) time, which is worse than ours.

2 PRELIMINARIES

We introduce the definitions and standard techniques related to the results in this section.

Notation. We use G = (V,E) to denote a graph, where V is the set of n vertices and E is a set of
m edges. We focus on a labeled complete graph, defined below.
Definition 1 (Labeled Complete Graphs). We say G = (V,E+ ∪ E−) is a labeled complete graph
if there exists exactly one edge between each vertex pair (u, v), with a label of either (+) or (−).

We assume access to labeled adjacency matrix of the graph, defined as follows.
Definition 2 (Labeled Adjacency Matrix). We say a matrix A ∈ {−1, 1}n×n is a labeled adjacency
matrix of a n-vertex labeled complete graph G = (V,E+ ∪ E−) where Au,v = 1 if (u, v) is a (+)
edge; and Au,v = −1 if (u, v) is a (−) edge.

We assume we could query any entry of the adjacency matrix in O(1) time. In particular, this also
allows us to query neighbors, sample edges, and sample triangles in O(1) time.

Correlation clustering and structural balance. On a complete labeled graph, we are able to define
the problem of (min-disagreement) correlation clustering and structural balance as follows.
Definition 3 (Correlation Clustering). Let G = (V,E+ ∪ E−) be a labeled complete graph and let
C = (C1, C2, · · ·) be a clustering, i.e., partition of the vertices of V into disjoint vertex sets. We
define the cost of correlation clustering, cost(G, C), as the summation of the number of (+) edges
crossing different clusters and the number of (−) edges in the same clusters:

cost(G, C) :=
∣∣{(u, v) ∈ E+ | u ∈ Ci, v ∈ Cj , i ̸= j

}∣∣+ ∣∣{(u, v) ∈ E− | u, v ∈ Ci for some i
}∣∣ .

We say that G is (perfectly) clusterable if and only if there exists an optimal clustering C∗ that
induces 0 cost. Besides, we say G is (perfectly) k-clusterable if and only if there exists an optimal
clustering C∗ = (C1, . . . , Ck) of exactly k (possibly empty) clusters and induces 0 cost. (In other
words, C∗ has at most k non-empty clusters.) Note that a clusterable graph does not restrict the
number of clusters, i.e., we can use any number of clusters to minimize the cost. In contrast, a
k-clusterable graph must have a perfect clustering with ≤ k clusters.

Structural balance is a special case of correlation clustering where k = 2. More formally, we say
that G is (perfectly) balanced if and only if there exists a perfect optimal clustering with 2 clusters
that induces 0 correlation clustering cost.

Property Testing for Graphs Close and Far from being Clusterable (Balanced). Similar to
typical algorithms in property testing, we allow some “slackness” between the cases: in typical
property testing, the algorithm should return “YES” when the property holds, and “NO” if there
is a sufficient degree of violations to the property. In between the cases, the algorithm is typically
allowed to return anything. To the above end, we introduce the notion of the distance for a graph
from being balanced.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 4 (ε-far/close from being clusterable (k-clusterable/balanced)). Let G = (V,E+ ∪ E−)
be a labeled complete graph. We say that G is at least ε-far (resp., at most ε-close) from being
clusterable if we have to flip the labels of at least ε ·

(
n
2

)
(resp., at most ε ·

(
n
2

)
) edges to make the

graph clusterable.

In our work, the above definition of distance also apply to the other two distinct properties: k-
clusterability and structural balance.

With the above terminologies, a graph is at most 0-far from being clusterable if and only if it is
clusterable. For a graph that is ε-far from being clusterable (resp., balanced), we also call an edge
e = (u, v) a false edge if e needs to be flipped in the solution that flips the minimum number of
edges to make the graph cluterable (resp., balanced). We also define a bad triangle as a triangle that
contains two (+) edges and one (−) edge.

We will also use the following standard form of Chernoff bound in our proofs.
Proposition 2.1 (Chernoff bound; c.f. Alon & Spencer (2016)). Let X1, X2, . . . , Xn be independent
random variables such that Xi ∈ [0, 1]. Let X =

∑n
i=1 Xi. Then, for every δ > 0,

Pr[|X − E[X]| ≥ δ · E[X]] ≤ 2 · exp
(
− δ2

2 + δ
· E[X]

)
We will also use Janson’s inequality Janson et al. (2011) from random graph analysis, to prove our
Theorem 1. Please refer to Appendix D for its formal statement and a brief explanation.

3 UPPER BOUND FOR TESTING k-CLUSTERABILITY

We showcase our algorithm results by presenting the upper bound for testing k-clusterability, there-
fore proving Theorem 2.

Our algorithm for k-clusterability utilizes the algorithm for testing clusterability in Appendix E in a
black-box way; and is self-contained. In fact, our proof implies that given any algorithm for testing
clusterability running in t(ε) ≥ 1/

√
ε time, there is an algorithm for testing k-clusterability running

in O(t(ε2)) time, for every constant k.
Theorem 2. Fix k ≥ 2 and ε ∈ (0, 1). There exists a randomized algorithm that given a labeled
complete graph G = (V,E+ ∪ E−) and a parameter ε answers the following

• If G is k-clusterable, the algorithm always answers “YES”;

• If G is at least ε-far from being k-clusterable, the algorithm answers “NO” with probability
≥ 0.9;

• In addition, if G is
(

ε4

1026k4 ln4 k

)
-close-to-k-clusterable, the algorithm answers “YES” with prob-

ability ≥ 0.9.

The algorithm queries at most O(k
4 ln4 k
ε4) edges of G and runs in O(k

4 ln4 k
ε4) time.

Our algorithm is a combination of two one-sided-error algorithms, one for testing whether the graph
is clusterable (Algorithm 3), another for testing whether a close-to-clusterable graph is k-clusterable.
When the input graph is ε-far from k-clusterable, at least one of the two algorithms will output “NO”
with high probability.

We start by introducing and analyzing the second algorithm under the assumption that the input
graph is clusterable. Then we show that the algorithm also works for graphs that are close enough
to be clusterable.

Algorithm 1. An algorithm that distinguishes clusterable graphs from k-clusterable graphs
Input: A labeled complete graph G = (V,E+ ∪ E−) that is clusterable;a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1. Sample a subset S of s = min
(
100k ln k

ε , n
)

vertices from V uniformly at random (with
replacement).

2. Maintain k subsets S1, . . . , Sk of S. Initially, all the sets are empty.
3. For each vertex u ∈ S and each i ∈ {1, . . . , k}, query if (u, v) ∈ E+ where v is an arbitrary

vertex from Si.
4. For the first time when a positive edge is discovered between u and a vertex v in Si, add u
to Si.

5. If u has no positive edge to any of the subsets Si, add u to an empty subset Sj . In addition,
if there is no empty subset that u can add to, return “NO”.

6. After iterating all the vertices in S, return “YES”.
aWe assume for now that G is clusterable. And we will show that with high probability a random

subgraph of G will still be clusterable when G is close-enough-to-clusterable; and the algorithm cannot
distinguish the two cases. See Lemma 3.2 for details.

Lemma 3.1. Fix parameters k ≥ 2 and ε ∈ (0, 1). Given a labeled complete graph G = (V,E+ ∪
E−), Algorithm 1 answers as follows

• If G is k-clusterable, the algorithm always answers “YES”;

• If G is clusterable but is at least ε-far from being k-clusterable, the algorithm answers “NO” with
probability ≥ 9/10;

• In addition, if G is
(

ε2

106k2 ln2 k

)
-close-to-k-clusterable, the algorithm answers “YES” with prob-

ability ≥ 99/100.

Besides, Algorithm 1 queries at most O(k
2 ln k
ε) edges of G and runs in Õ(k

2 ln k
ε) time.

We defer the proof to Lemma 3.1 to Appendix C. Our analysis relies on the fact that the input
graph is clusterable. However, we will show that when the input graph is

(
δ := ε2

106k2 ln2 k

)
-close

to clusterable but ε-far from k-clusterable, the above algorithm still works with high probability.
Intuitively, when the input graph is guaranteed to be δ-close to clusterable, a random Θ(k ln k

ε)-size
subgraph will not contain any false edge with high probability. This observation is formalized as the
following lemma.
Lemma 3.2. Fix δ ∈ (0, 1). Given labeled complete graphs G = (V,E+ ∪ E−) and G′ =
(V,E+ ∪ E−) such that G′ is obtained by flipping at most δ

(
n
2

)
edges from G. Let S a subset of s

vertices from V selected uniformly at random (with replacement). Let GS , G
′
S denote the induced

subgraph by the sampled vertices. If s ≤ 1
10

√
δ

,

Pr
S
[GS = G′

S] ≥ 99/100.

Proof. We show by union bound that with ≥ 99/100 probability the sampled subgraph does not
contain any edge in G−G′, the edges with labels flipped in G to obtain G′.

For every single edge in G−G′, this edge is sampled with probability at most∑
1≤i<j≤s

2 · 1

n2
≤ s2/n2.

where the factor of 2 counts for the same edge (u, v) of different orders (u is sampled at the i-th
place, v is sampled at the j-th place; or vice versa). Summing over all the ≤ δ

(
n
2

)
edges in G−G′,

the probability that any of the edges from G−G′ is sampled is at most

δ

(
n

2

)
· s

2

n2
≤ 1/100.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Now we formally give and analyze the algorithm that combines Algorithm 3 and Algorithm 1 to-
gether.

Algorithm 2. An algorithm for testing k-clusterability
Input: A labeled complete graph G = (V,E+ ∪ E−); a parameter ε.

1. Independently run Algorithm 3 with parameter δ := ε2

106k2 ln2 k
twice. If Algorithm 3 ever

answers “NO”, return “NO”;
2. Independently run Algorithm 1 with parameter ε/2 twice. If Algorithm 1 ever answers

“NO”, return “NO”;
3. If all the above simulations answer “YES”, return “YES”.

Proof to Theorem 2. We claim that Algorithm 2 is the desired algorithm that distinguishes whether
a graph is k-clusterable or ε-far from k-clusterable.

The query complexity and the time complexity of Algorithm 2 are dominated by calling Algorithm 3
twice, which costs O(k

4 ln4 k
ε4) queries and time.

Given a graph that is k-clusterable, by Theorem 1 and Lemma 3.1, the algorithm will always an-
swer “YES”. In addition, by Lemma 3.2, for a graph G that is

(
ε4

1026k4 ln4 k

)
-close-to-k-clusterable,

Algorithm 1 (sampled 200k ln k
ε vertices) and Algorithm 3 (sampled 1012k2 ln2 k

ε2 vertices) will return
“YES” with probability ≥ 99/100. By a union bound, the final output is “YES” with probability
≥ 0.9.

If the graph is δ-far from clusterable, Theorem 1 guarantees that the answer will be “NO” with
≥ 9/10 probability. The remaining case is when the input graph G is δ-close-to-clusterable but
ε-far-from-k-clusterable. Assume G′ to be the clusterable graph obtained by flipping at most δ ·

(
n
2

)
edges of G. By Lemma 3.2, Algorithm 1 returns the testing answer of G′ with ≥ 99/100 probability.
By Lemma 3.1, Algorithm 1 returns “NO” with probability ≥ 89/100 given G.

In this case, the probability that all the tests fail is at most ≤ 0.112 < 0.1. Therefore, Algorithm 2
outputs “NO” with ≥ 9/10 probability when the input is ε-far from being k-clusterable.

4 EXPERIMENTS

We assess the empirical performance of testing correlation clustering with three proposed algo-
rithms: Algorithm 3 for clustering with general k, Algorithm 2 for clustering with fixed k, and
Algorithm 4 for structural balance. The evaluation metrics include query complexity, running time
and testing accuracy in practice. There exists only one baseline from prior work Adriaens & Apers
(2023), where the tester for structural balance in the adjacency matrix query model is implemented.

Setup. Since the CC problem is NP-hard, obtaining the ground-truth ε-farness becomes a challenge.
To address this, we generate synthetic graphs based on 6 different perturbation schemes to the
well-clustered signed graph such that the optimal cost and the number of clusters are tractable. We
explain them in Appendix B. Together with the balanced/0-cost case, we use these synthetic graphs
of 7 scenarios (in total 140 instances) for experiments. Some basic statistics are shown in Table 2.
For structural balance experiments, we set n = 1000 and k = 2. To facilitate testing on real-world
graphs, we use the spectral frustration index to obtain an approximation of the ground truth ε-farness
with respect to testing structural balance. We also demonstrate the spectrum of testing outcome as ε
increases from 0.05 to 0.5, for both structural balance and general CC testing.

Table 2: Synthetic Signed Graphs and Ground Truth ε used in CC testing experiments

Model Pure Uniform-noise Hetero-noise Cycle Half-flip Cluster-swap Mixed-flip size n k

ε Range 0 0.32 ∼ 0.49 0.28 ∼ 0.42 0.30 0.30 ∼ 0.38 0.25 0.4 5000 5

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.1 TESTING ON SYNTHETIC GRAPHS

With ground truth ε, we are able to report the testing accuracy for synthetic graphs. All of our testers
are one-sided, therefore the accuracy is defined as the percentage of the correct output of “YES/No”
corresponding to the label of balance or not. Note that our algorithms use large constants for the
convenience of proof, in practice we only make it at most 3 unless mentioned otherwise.

Table 3: Testing Performance with ε = 0.1

Algorithm Accuracy Query Complexity (# sampled edges) Running Time (s/graph)
Test CC (general k), Algorithm 3 1.0 10000 23.8
Test CC (fixed k)5, Algorithm 1 1.0 1610 22.5

Test Structural Balance, Algorithm 4 1.0 60 1.3× 10−4

Test Structural Balance, Adriaens & Apers (2023) 1.0 900 1.1

Table 3 shows that our algorithms for testing CC and structural balance yield favorable efficiency on
query complexity and running time. For testing structural balance, comparing to Adriaens & Apers
(2023), our algorithm requires significantly smaller sampling size and runtime. For testing CC with
fixed k, we collect results for k = 3, 4, 5 on ”pure” model graphs. Finally, all algorithms give testing
accuracy 1, showing the effectiveness of the algorithms, thus corroborate with the theoretical results.

We next demonstrate the performance on the same set of metrics as ε increases from 0.05 to 0.5 for
structural balance in Figure 1. Two algorithms are similar on accuracy, which has small fluctuations
but remains higher than 0.95. But for efficiency, we observe that Algorithm 4 outperforms the
baseline algorithm by a large margin, especially when ε is small.

Figure 1: Performance on structural balance testing with varying ε.

Scalability. The theoretical results show that the query complexity does not involve n, the size
of graph. Therefore it is conceivable that the algorithms are scalable. We examine this issue in
practice, by showcasing the performance of Algorithm 3 for testing CC as n scales up to 50000.
Table 4 demonstrates that the testing algorithm itself still executes efficiently, however the entire
program involving processes such as sampling, may become prohibitive in practice as n scales.

Table 4: Running Time of CC testing with ε = 0.1

Graph size 10000 20000 30000 40000 50000
Testing Algorithm Runtime 0.011 0.013 0.015 0.17 0.20

Total Runtime (log) 4.51 6.36 7.81 9.89 12.03

4.2 TESTING ON REAL-WORLD GRAPHS

We move forward to evaluating Algorithm 3 and Algorithm 4 on 6 real-world graphs selected from
the SNAP project6. The datasets encompass social, financial, collaboration and communication
networks, with varying sizes between 500 and 10000. In the experiments with real-world graphs,
we treat the edges in the graphs as (+) edges and the non-edge vertex pairs as (−) edges. The
reduction suits well for our datasets, where the (−) relationships (e.g., no message exchanges) can
be directly inferred from the (+) relationships (e.g., has message exchanges). We illustrate the
spectrum of the testing output for both tasks, as ε increases from 0.05 to 0.5 in Figure 2. Although
the labels are missing, we are able to approximate the structural balance frustration index using the

5For practicability we test the scenario: the input graph is clusterable but not clear if k-clusterable
6https://snap.stanford.edu/data/

9

https://snap.stanford.edu/data/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

smallest eigenvalue of the signed Laplacian matrix Kunegis et al. (2010). We then obtain an ε′ as a
lower bound of the ground truth ε, which is a signal of the testing correctness.

Figure 2: Testing output for all real-world graphs. Results are averaged on 20 repeated runs. The
dotted light blue vertical line shows the lower bound of the true ε.

First, we observe from Figure 2 that all testing results transits from “NO” to “YES”. Structural
balance has a clearer phase transition structure than correlation clustering, and the transition happens
right after the estimated ε lower bound, which is supporting evidence of the testing accuracy. In other
words, initially, both algorithms report “not balanced” (resp. “not clusterable”) due to the fact that
ε value is very small, and the condition to pass the test is very stringent. As we increase the value
ε, the algorithm demonstrates a “tolerate test” property such that it allows the graph to be report
as “balanced” (resp. “clusterable”) when the graphs are relatively close to being balanced (resp.
clusterable) with the given ε parameter.

All experiments take a very short time (< 0.1s), showing the potential of our algorithms in real-
world applications. Another interesting observation is that many (in our case, all) real-world graphs
have ε-farness with ε ≤ 0.3.

5 DISCUSSION AND CONCLUSION

While our testing algorithm for structural balance is tight, our algorithms for testing clusterability
do not yet match the lower bounds. It remains an intriguing open problem to determine the correct
complexity of testing clusterability. Notably, our proof suggests that improving the testing algorithm
for clusterability will also yield a better algorithm for testing k-clusterability. We also remark that
if more efficient algorithms for testing clusterability exist, it must be a substaintially different algo-
rithm than ours, because our analysis of Algorithm 3 is tight. More concretely, one can construct
input graphs where the algorithm must sample Ω(1/ε) vertices to observe a non-clusterable local
structure, which requires Ω(1/ε2) queries.

Our analysis of using Janson’s inequality may also be of independent interest. It outperforms the
classic analysis using the graph removal lemma in the labeled graphs, and provides a more fine-
grained way of analyzing subgraph testing algorithms. Our proof technique may find broader appli-
cations in analyzing property testing algorithms.

Another future direction would be to generalize our results to general labeled graphs, where only a
subset of all

(
n
2

)
edges are labeled. This setting is more aligned with real-world applications, but it

poses a significant challenge: our algorithms fundamentally rely on detecting local patterns, such as
inconsistent triangles. In a sparse graph, a graph that is globally far from being clusterable may not
contain any such local witnesses, rendering our current approach ineffective.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

USAGE OF GENAI

We use GenAI to check the typos in the paper, only regarding to writing.

REFERENCES

Florian Adriaens and Simon Apers. Testing cluster properties of signed graphs. In Ying Ding, Jie
Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and Geert-Jan Houben (eds.), Proceedings of
the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023, pp.
49–59. ACM, 2023. doi: 10.1145/3543507.3583213. URL https://doi.org/10.1145/
3543507.3583213.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Ranking
and clustering. J. ACM, 55(5):23:1–23:27, 2008. doi: 10.1145/1411509.1411513. URL https:
//doi.org/10.1145/1411509.1411513.

Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.

Noga Alon, W Fernandez De La Vega, Ravi Kannan, and Marek Karpinski. Random sampling and
approximation of MAX-CSPs. Journal of computer and system sciences, 67(2):212–243, 2003.

Gunnar Andersson and Lars Engebretsen. Property testers for dense constraint satisfaction programs
on finite domains. Random Structures & Algorithms, 21(1):14–32, 2002.

Vikrant Ashvinkumar, Sepehr Assadi, Chengyuan Deng, Jie Gao, and Chen Wang. Evaluating
stability in massive social networks: Efficient streaming algorithms for structural balance. In
Nicole Megow and Adam D. Smith (eds.), Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13, 2023,
Atlanta, Georgia, USA, volume 275 of LIPIcs, pp. 58:1–58:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023. doi: 10.4230/LIPICS.APPROX/RANDOM.2023.58. URL
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.58.

Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation clustering via
sparse-dense decompositions. In Mark Braverman (ed.), 13th Innovations in Theoretical Com-
puter Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, vol-
ume 215 of LIPIcs, pp. 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi: 10.4230/LIPICS.ITCS.2022.10. URL https://doi.org/10.4230/LIPIcs.ITCS.
2022.10.

Sepehr Assadi, Vihan Shah, and Chen Wang. Streaming algorithms and lower bounds
for estimating correlation clustering cost. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ee1a1ecc92f35702b5c29dad3dc909ea-Abstract-Conference.html.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. In 43rd Symposium on
Foundations of Computer Science, FOCS 2002, Vancouver, BC, Canada, November 16-19, 2002,
Proceedings, pp. 238. IEEE Computer Society, 2002. doi: 10.1109/SFCS.2002.1181947. URL
https://doi.org/10.1109/SFCS.2002.1181947.

Eric Blais, Clément L. Canonne, Talya Eden, Amit Levi, and Dana Ron. Tolerant junta testing and
the connection to submodular optimization and function isomorphism. ACM Trans. Comput. The-
ory, 11(4):24:1–24:33, 2019. doi: 10.1145/3337789. URL https://doi.org/10.1145/
3337789.

Francesco Bonchi, David Garcı́a-Soriano, and Konstantin Kutzkov. Local correlation clustering.
CoRR, abs/1312.5105, 2013. URL http://arxiv.org/abs/1312.5105.

Nader H Bshouty and Oded Goldreich. On properties that are non-trivial to test. In Computational
Complexity and Local Algorithms: On the Interplay Between Randomness and Computation, pp.
383–387. Springer, 2025.

11

https://doi.org/10.1145/3543507.3583213
https://doi.org/10.1145/3543507.3583213
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.58
https://doi.org/10.4230/LIPIcs.ITCS.2022.10
https://doi.org/10.4230/LIPIcs.ITCS.2022.10
http://papers.nips.cc/paper_files/paper/2023/hash/ee1a1ecc92f35702b5c29dad3dc909ea-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ee1a1ecc92f35702b5c29dad3dc909ea-Abstract-Conference.html
https://doi.org/10.1109/SFCS.2002.1181947
https://doi.org/10.1145/3337789
https://doi.org/10.1145/3337789
http://arxiv.org/abs/1312.5105

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mélanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, and Jara Uitto. A (3 + ε)-approximate
correlation clustering algorithm in dynamic streams. In David P. Woodruff (ed.), Proceedings
of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA,
January 7-10, 2024, pp. 2861–2880. SIAM, 2024. doi: 10.1137/1.9781611977912.101. URL
https://doi.org/10.1137/1.9781611977912.101.

Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl. Un-
derstanding the cluster linear program for correlation clustering. In Bojan Mohar, Igor Shinkar,
and Ryan O’Donnell (eds.), Proceedings of the 56th Annual ACM Symposium on Theory of Com-
puting, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pp. 1605–1616. ACM, 2024. doi:
10.1145/3618260.3649749. URL https://doi.org/10.1145/3618260.3649749.

Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, David Rasmussen Lolck, Alantha New-
man, Mikkel Thorup, Lukas Vogl, Shuyi Yan, and Hanwen Zhang. Solving the correlation
cluster LP in sublinear time. In Michal Koucký and Nikhil Bansal (eds.), Proceedings of the
57th Annual ACM Symposium on Theory of Computing, STOC 2025, Prague, Czechia, June
23-27, 2025, pp. 1154–1165. ACM, 2025. doi: 10.1145/3717823.3718181. URL https:
//doi.org/10.1145/3717823.3718181.

Dorwin Cartwright and Frank Harary. Structural balance: a generalization of Heider’s theory. Psy-
chol. Rev., 63(5):277–293, September 1956.

Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near optimal
LP rounding algorithm for correlation clustering on complete and complete k-partite graphs. In
Rocco A. Servedio and Ronitt Rubinfeld (eds.), Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pp. 219–228. ACM, 2015. doi: 10.1145/2746539.2746604. URL https://doi.org/10.
1145/2746539.2746604.

Kuo-Chin Chen, Simon Apers, and Min-Hsiu Hsieh. (quantum) complexity of testing signed
graph clusterability. In Frédéric Magniez and Alex Bredariol Grilo (eds.), 19th Conference on
the Theory of Quantum Computation, Communication and Cryptography, TQC 2024, Septem-
ber 9-13, 2024, Okinawa, Japan, volume 310 of LIPIcs, pp. 8:1–8:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2024. doi: 10.4230/LIPICS.TQC.2024.8. URL https:
//doi.org/10.4230/LIPIcs.TQC.2024.8.

Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parotsidis,
and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pp. 2069–2078. PMLR, 2021. URL http://proceedings.mlr.press/v139/
cohen-addad21b.html.

Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with Sherali-
Adams. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022,
Denver, CO, USA, October 31 - November 3, 2022, pp. 651–661. IEEE, 2022. doi: 10.
1109/FOCS54457.2022.00068. URL https://doi.org/10.1109/FOCS54457.2022.
00068.

Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated rounding
error via preclustering: A 1.73-approximation for correlation clustering. In 64th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November
6-9, 2023, pp. 1082–1104. IEEE, 2023. doi: 10.1109/FOCS57990.2023.00065. URL https:
//doi.org/10.1109/FOCS57990.2023.00065.

Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Dynamic cor-
relation clustering in sublinear update time. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024a. URL
https://openreview.net/forum?id=3YG55Lbcnr.

Vincent Cohen-Addad, David Rasmussen Lolck, Marcin Pilipczuk, Mikkel Thorup, Shuyi Yan, and
Hanwen Zhang. Combinatorial correlation clustering. In Bojan Mohar, Igor Shinkar, and Ryan

12

https://doi.org/10.1137/1.9781611977912.101
https://doi.org/10.1145/3618260.3649749
https://doi.org/10.1145/3717823.3718181
https://doi.org/10.1145/3717823.3718181
https://doi.org/10.1145/2746539.2746604
https://doi.org/10.1145/2746539.2746604
https://doi.org/10.4230/LIPIcs.TQC.2024.8
https://doi.org/10.4230/LIPIcs.TQC.2024.8
http://proceedings.mlr.press/v139/cohen-addad21b.html
http://proceedings.mlr.press/v139/cohen-addad21b.html
https://doi.org/10.1109/FOCS54457.2022.00068
https://doi.org/10.1109/FOCS54457.2022.00068
https://doi.org/10.1109/FOCS57990.2023.00065
https://doi.org/10.1109/FOCS57990.2023.00065
https://openreview.net/forum?id=3YG55Lbcnr

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

O’Donnell (eds.), Proceedings of the 56th Annual ACM Symposium on Theory of Computing,
STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pp. 1617–1628. ACM, 2024b. doi:
10.1145/3618260.3649712. URL https://doi.org/10.1145/3618260.3649712.

Mina Dalirrooyfard, Konstantin Makarychev, and Slobodan Mitrovic. Pruned pivot: Correlation
clustering algorithm for dynamic, parallel, and local computation models. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024. URL https://openreview.net/forum?id=saP7s0ZgYE.

Mina Dalirrooyfard, Konstantin Makarychev, and Slobodan Mitrović. Sparse-pivot: Dynamic cor-
relation clustering for node insertions. In Forty-second International Conference on Machine
Learning (ICML), 2025.

James A Davis. Clustering and structural balance in graphs. Human relations, 20(2):181–187, 1967.

Eldar Fischer. A basic lower bound for property testing. CoRR, abs/2403.04999, 2024. doi: 10.
48550/ARXIV.2403.04999. URL https://doi.org/10.48550/arXiv.2403.04999.

Jacob Fox. A new proof of the graph removal lemma. Annals of Mathematics, pp. 561–579, 2011.

Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph properties. Random
Structures & Algorithms, 23(1):23–57, 2003.

Fritz Heider. Attitudes and cognitive organization. J. Psychol., 21:107–112, January 1946.

Fritz Heider. The Psychology of Interpersonal Relations. Psychology Press, 1982.

Jack P. Hou, Amin Emad, Gregory J. Puleo, Jian Ma, and Olgica Milenkovic. A new correlation clus-
tering method for cancer mutation analysis. Bioinform., 32(24):3717–3728, 2016. doi: 10.1093/
BIOINFORMATICS/BTW546. URL https://doi.org/10.1093/bioinformatics/
btw546.

Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random graphs. John Wiley & Sons, 2011.

Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Dong Yoo. Higher-order
correlation clustering for image segmentation. In John Shawe-Taylor, Richard S. Zemel, Pe-
ter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Weinberger (eds.), Advances in Neural
Information Processing Systems 24: 25th Annual Conference on Neural Information Process-
ing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain, pp.
1530–1538, 2011. URL https://proceedings.neurips.cc/paper/2011/hash/
98d6f58ab0dafbb86b083a001561bb34-Abstract.html.

Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Ernesto W De Luca, and
Sahin Albayrak. Spectral analysis of signed graphs for clustering, prediction and visualization.
In Proceedings of the 2010 SIAM international conference on data mining, pp. 559–570. SIAM,
2010.

Konstantin Makarychev and Sayak Chakrabarty. Single-pass pivot algorithm for corre-
lation clustering. keep it simple! In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
149ad6e32c08b73a3ecc3d11977fcc47-Abstract-Conference.html.

Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance approxi-
mation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006. doi: 10.1016/J.JCSS.2006.03.002. URL
https://doi.org/10.1016/j.jcss.2006.03.002.

Dana Ron. Algorithmic and analysis techniques in property testing. Found. Trends Theor. Comput.
Sci., 5(2):73–205, 2009. doi: 10.1561/0400000029. URL https://doi.org/10.1561/
0400000029.

13

https://doi.org/10.1145/3618260.3649712
https://openreview.net/forum?id=saP7s0ZgYE
https://doi.org/10.48550/arXiv.2403.04999
https://doi.org/10.1093/bioinformatics/btw546
https://doi.org/10.1093/bioinformatics/btw546
https://proceedings.neurips.cc/paper/2011/hash/98d6f58ab0dafbb86b083a001561bb34-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/98d6f58ab0dafbb86b083a001561bb34-Abstract.html
http://papers.nips.cc/paper_files/paper/2023/hash/149ad6e32c08b73a3ecc3d11977fcc47-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/149ad6e32c08b73a3ecc3d11977fcc47-Abstract-Conference.html
https://doi.org/10.1016/j.jcss.2006.03.002
https://doi.org/10.1561/0400000029
https://doi.org/10.1561/0400000029

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Imre Z Ruzsa and Endre Szemerédi. Triple systems with no six points carrying three triangles.
Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18(939-945):2, 1978.

Jessica Shi, Laxman Dhulipala, David Eisenstat, Jakub Lacki, and Vahab S. Mirrokni. Scalable
community detection via parallel correlation clustering. Proc. VLDB Endow., 14(11):2305–2313,
2021. doi: 10.14778/3476249.3476282. URL http://www.vldb.org/pvldb/vol14/
p2305-shi.pdf.

Christian Sohler. Almost optimal canonical property testers for satisfiability. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October
20-23, 2012, pp. 541–550. IEEE Computer Society, 2012. doi: 10.1109/FOCS.2012.59. URL
https://doi.org/10.1109/FOCS.2012.59.

Nate Veldt, David F. Gleich, and Anthony Wirth. A correlation clustering framework for community
detection. In Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeiro-
tis (eds.), Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018,
Lyon, France, April 23-27, 2018, pp. 439–448. ACM, 2018. doi: 10.1145/3178876.3186110.
URL https://doi.org/10.1145/3178876.3186110.

Julian Yarkony, Alexander Ihler, and Charless C. Fowlkes. Fast planar correlation clustering for im-
age segmentation. In Andrew W. Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and
Cordelia Schmid (eds.), Computer Vision - ECCV 2012 - 12th European Conference on Computer
Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI, volume 7577 of Lecture Notes
in Computer Science, pp. 568–581. Springer, 2012. doi: 10.1007/978-3-642-33783-3\ 41. URL
https://doi.org/10.1007/978-3-642-33783-3_41.

A MORE DISCUSSIONS ON RELATED WORK

As discussed, the bulk of the literature in structural balance and correlation clustering has focused
on computing the clustering, i.e., the partition of vertices. To this end, there are several popular
techniques, including linear programming (Chawla et al. (2015); Cohen-Addad et al. (2022; 2023);
Cao et al. (2024), pivot-based algorithms (Ailon et al. (2008); Makarychev & Chakrabarty (2023);
Dalirrooyfard et al. (2024); Cambus et al. (2024); Dalirrooyfard et al. (2025)), and agreement de-
composition (Cohen-Addad et al. (2021); Assadi & Wang (2022); Cohen-Addad et al. (2024a)).
However, all of these technique would need Ω(n) time to write down the formulation or the solu-
tion, which is much slower than our algorithms. Assadi et al. (2023) made an attempt to combine
sampling and some of the above techniques to test the cost of correlation clustering with small space.
Their algorithm can be used for our application as well with poly(log n/ε) time, which is worse than
ours.

The problem of testing whether a graph is clusterable (resp. balanced) is related to the MAX-CSP
formulation. In the generic r-MAX-CSP problem, we are given m boolean functions, and each
of the function uses at most r variables. Alon et al. (2003) provided a generic framework that
approximates the number of satisfiable functions by querying O(log 1/ε

ε4) variables. In the problem
of testing structural balance and clusterability, we define a Boolean variable for each vertex, and for
each edge e = (u, v) ∈ E we define a function fe that encodes the “right assignment” of the vertex
variables with respect to the label of the edge: f is satisfied if (u, v) ∈ E+ and u, v are in the same
cluster or (u, v) ∈ E− and u, v are in different clusters. It is easy to see for this application, we have
r = 2, which induces additive error of εn2: this satisfies the definition of ε-far from being balanced
and/or clusterable. However, such a strategy leads to the algorithm in Adriaens & Apers (2023),
which gives suboptimal bounds.

B MORE DETAILS ON EXPERIMENTS

All of our experiments are implemented with Intel Core i9 CPU of 32GB memory, no GPU is
required. Now we introduce the synthetic graph generation models. For the ”good” case, the gener-
ation is straightforward: create k clusters first, put every edge inside each cluster with positive sign
and vice versa. Below shows the perturbation for graphs in the potential ”bad” case, namely the
optimal cost is large.

14

http://www.vldb.org/pvldb/vol14/p2305-shi.pdf
http://www.vldb.org/pvldb/vol14/p2305-shi.pdf
https://doi.org/10.1109/FOCS.2012.59
https://doi.org/10.1145/3178876.3186110
https://doi.org/10.1007/978-3-642-33783-3_41

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Uniform Noise: Each sign is flipped with a uniform probability p ∈ [0.3, 0.5].
• Heterogeneous Noise: The signs of intra-cluster edges (+1) are flipped with probability
pin ∈ [0.2, 0.4], while the signs of inter-cluster edges (-1) are flipped with probability
pout ∈ [0.3, 0.5].

• Cycle: The k clusters are arranged in a cycle. Ideal edges are set to +1 if they are within a
cluster or between adjacent clusters in the cycle, and -1 otherwise. All edge signs are then
flipped with a 30% probability.

• Half Flip: One cluster is chosen at random. The sign of every edge incident to this chosen
cluster is then flipped with a 50% probability.

• Cluster Swap: One cluster is chosen at random, for half of its nodes, the signs of all edges
connecting them to any node outside the original cluster are flipped.

• Mixed Flip: flip 40% edge signs inside each cluster, and 40% across clusters

Signed Laplacian and spectral approximation of frustration. Denote the frustration index as
f(G). Let W ∈ Rn×n denote the signed adjacency matrix of a graph on n nodes, where wij ∈
{−1, 0,+1} (or more generally real weights, but not in our context). Define the absolute degree
di =

∑
j |wij |, and let D = diag(d1, . . . , dn). The signed Laplacian is

L = D −W.

For any assignment x ∈ {±1}n one has the identity

x⊤Lx =
∑
i<j

|wij | (xi − sign(wij)xj)
2.

When wij ∈ {±1} this reduces to

x⊤Lx = 4 ·
(
of frustrated edges under assignment x

)
.

Thus minimizing x⊤Lx over {±1}n is equivalent to computing f(G). By the Rayleigh–Ritz prin-
ciple,

λmin(L) = min
y ̸=0

y⊤Ly

y⊤y
.

For any {±1} vector x, since ∥x∥2 = n, we obtain

x⊤Lx

x⊤x
=

4f(x)

n
,

where f(x) is the number of frustrated edges under x. Minimizing over all x yields

λmin(L) ≤ 4f(G)

n
.

Equivalently,
f(G) ≥ n

4
λmin(L).

Hence the scaled smallest eigenvalue n
4λmin(L) provides a computable spectral lower bound on the

frustration index. This is known as the spectral approximation of the frustration index, and it has
been used as a tractable proxy for quantifying balance in signed networks Kunegis et al. (2010).

C MISSING PROOF TO LEMMA 3.1

Proof to Lemma 3.1. The time and query complexity of Algorithm 1 is clear. It samples O(k ln k
ε)

vertices. For each iterated vertex u, it will perform at most k queries. The total number of queries is
O(k

2 ln k
ε). In addition, maintaining the subsets costs time Õ(k

2 ln k
ε).

Given a k-clusterable graph G. Any induced subgraph of G can be partitioned into at most k clus-
ters. Algorithm 1 will always output “YES”. Given a

(
ε2

106k2 ln2 k

)
-close-to-k clusterable graph, by

Lemma 3.2, Algorithm 1 will output “YES” with probability ≥ 99/100.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Given a graph G that is clusterable but ε-far from k-clusterable. Let t be the number of clusters in
G. G can be characterized by a list of cluster sizes (s1, . . . , st) where

∑t
i=1 si = n. Without loss

of generality, we assume
s1 ≥ s2 ≥ · · · ≥ st.

In addition, we may assume that t > k, since otherwise a graph of t clusters is also k-clusterable,
by appending k − t empty clusters.

Let r = n −
∑k

i=1 si. Then r ≥ εn/2, or otherwise we can make G a k-clusterable graph by
merging the last t− k clusters into the first cluster, which costs < r(n− r) < ε

(
n
2

)
flips.

When sk ≥ εn
20k , the largest k clusters are large enough, and the subset S contains vertices from all

the largest k clusters and a vertex from the last t − k clusters with high probability. Formally, by
union bound, the probability that any of the first k clusters or the union of the last r vertices does
not have vertices in S is at most
k∑

i=1

(
1− ε

20k

)s

+(1−ε)s ≤
k+1∑
i=1

(
1− ε

20k

)s

≤
k+1∑
i=1

exp
(
− εs

20k

)
≤ (k+1) exp (−5 ln k) ≤ 1/10.

In this case, with ≥ 9/10 probability the sampled subset contains an independent set (i.e., with no
positive edges in between) of size ≥ k + 1 and the algorithm outputs “NO”.

When sk < εn
20k , we know sj ≤ sk < εn

20k for any j ≥ k since the clusters are sorted in decreasing
order of size. In this case we call all clusters but the largest k as small clusters. Since r ≥ εn/2, the
number of small clusters is at least r

sk
≥ 10k. We show that with high probability the sample set S

includes vertices from ≥ k + 1 different small clusters.

Let X1, . . . , Xs ∈ {0, 1} be random bits indicating whether each sample covers a small cluster
that is never sampled in its previous samples, and let X =

∑s
i=1 Xi be their sum. For every

i ∈ {1, . . . , s}, we have

Pr

Xi = 1

∣∣∣∣∣∣
i−1∑
j=1

Xi ≤ k

 ≥
r − k · εn

10k

n
≥ 0.4ε.

Let Y1, . . . , Ys ∈ {0, 1} be independent random bits where Pr[Yi = 1] = 0.4ε for each Yi, and Y
their sum. Then the sum of (Xi) is dominated by the sum of (Yi).7 Note that E[Y] = 0.4εs =
40k ln k. By applying the Chernoff bound (Proposition 2.1) and setting δ = 1− 1

40 ln k , we have

Pr[X ≤ k] ≤ Pr[Y ≤ k] ≤ 2 · exp
(
− δ2

2 + δ
· E[Y]

)
< 2 · exp(−12k ln k) < 1/10.

To conclude, in both cases, Algorithm 1 can sample an independent set of size ≥ k + 1 and output
“NO” with high probability.

D PRELIMINARIES ON JANSON’S INEQUALITY

In this section, we briefly review Janson’s inequality, a fundamental tool from the probabilistic
method. We employ this inequality in our analysis (Lemma E.2 and the proof of Theorem 1) to
bound the probability that a sum of dependent yet structured indicator random variables equals
zero. While the standard Chernoff bound applies to sums of independent random variables, Janson’s
inequality provides strong bounds for sums of variables that exhibit local dependencies.
Lemma D.1. (Janson’s inequality; c.f. Janson et al. (2011)) Let n ≥ 1 be an integer. Let Γ be a
random subset of [n] such that for each i ∈ [n], i ∈ Γ with independent probability pi.

Let R be a family of subsets of [n]. For every A ∈ R, let IA be the indicator random variable such
that IA = 1 if and only if A ⊆ Γ, and IA = 0 otherwise. Let X be the random variable denoting
the number of sets in R that are subsets of Γ. Then

Pr[X = 0] ≤ exp

(
min

(
−λ+∆,− λ2

λ+ 2∆

))
,

where λ = E[X] and ∆ = 1
2

∑
A,B∈R:A̸=B,A∩B ̸=∅ E[IAIB].

7This can also be shown by a standard coupling argument.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Relevance to our analysis. In our proofs, we frequently search for a “witness” structure (such as a
negative edge connected by a positive path) within the induced subgraph of sampled vertices. Since
multiple potential witnesses may share vertices, their appearances are not independent. Janson’s
inequality allows us to lower-bound the probability of finding at least one such witness by controlling
the overlapping term ∆. Specifically, when ∆ is small relative to λ, the bound behaves similarly
to the Chernoff bound (≈ e−λ); when correlations are high (∆ > λ), the probability decays as
≈ e−λ2/2∆.

E AN IMPROVED ALGORITHM FOR TESTING CLUSTERABILITY

We present the algorithm for testing general clusterability using O(1/ε2) time and queries in this
section. We first recall the statement of the result.

Theorem 1. Fix ε ∈ (0, 1). There exists a randomized algorithm that given a labeled complete
graph G = (V,E+ ∪ E−) and a parameter ε answers with the following rules

• If G is clusterable, the algorithm always answers “YES”;

• If G is at least ε-far from being clusterable, the algorithm answers “NO” with probability ≥ 0.9;

• If G is C · ε2-close to being clusterable for some small constant C, the algorithm answers “YES”
with probability ≥ 0.9.

The algorithm queries at most O(1/ε2) edges of G and runs in O(1/ε2) time.

While standard combinatorial arguments often use the graph removal lemma, a direct application of
Fox’s colored graph removal lemma only yields an upper bound of Õ(tower(log(1/ε))) for testing
bad-triangle-freeness Ruzsa & Szemerédi (1978); Fox (2011); Adriaens & Apers (2023).8 Besides,
a reduction to the MAX-CSP problem also gives a two-sided error algorithm of Õ(1/ε7) query
complexity and exp(Õ(1/ε3)) running time Andersson & Engebretsen (2002); Adriaens & Apers
(2023).

We overcome this limitation by employing Janson’s inequality, a classic tool from random graph
theory, to constructively demonstrate the existence of bad triangles in a small sample, which we
will define later. To the best of our knowledge, this is also the first time Janson’s inequality is used
in analyzing property testing algorithms. Our proof may be of independent interest. Compared to the
algorithm in Adriaens & Apers (2023), our work provides a one-sided error algorithm, drastically
improving both the query complexity and the running time to O(1/ε2).

Our algorithm is simple: we sample O(1/ε) vertices, query their induced subgraph, and check
whether there is any inconsistency.

Algorithm 3. An algorithm for testing clusterability
Input: A labeled complete graph G = (V,E+ ∪ E−); a parameter ε.

1. Sample a subset S of s = min(106/ε, n) vertices from V uniformly at random (without
replacement).

2. Let GS be the complete subgraph induced by the sampled vertices.
3. Run breadth-first search (BFS) to check whether GS contains bad triangles,i.e., a triangle
(u, v), (v, w), (u,w) among which exactly two edges are (+) and one edge is (−). If GS

contains no bad triangle, return “YES”. Otherwise, return “NO”.

8The towering function tower(x) denotes a tower of 2’s of height x, i.e., 2-to-the-2-to-the-...-to-the-2, x
times. Thus, Õ(tower(log(1/ε))) is much larger than 1/poly(ε). In fact, tower(6) is more than the estimated
number of elementary particles in the observable universe.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Specifically, we run BFS on the positive edges of the subgraph GS and check if they form a set of
vertex-disjoint complete subgraphs, which costs O(1/ε2) time.

For clusterable graphs, by proposition E.1, the algorithm will always output “YES”. We show that
for every graph that is ε-far from being clusterable, the algorithm will output “NO” with ≥ 9/10
probability. In addition, instead of showing that the algorithm can find bad triangles with high
probability, we analyze a similar pattern of subgraphs, which will simplify our analysis.

Proposition E.1. Given a complete labeled graph G = (V,E+ ∪ E−). The following three condi-
tions are equivalent.

1. G is clusterable;

2. G does not contain any bad triangle.

3. There does not exist an edge (u, v) ∈ E− that is connected in G′ = (V,E+).

We call the path in G′ that connects u and v a positive path between u and v.

Proof. Let us first show that G is clusterable if and only if it does not contain any bad triangle.
Given a clusterable graph G, by the definition of clusterable graphs, there exists a clustering C of G
with a cost of 0. If there is a bad triangle (u, v), (v, w) ∈ E+ and (u,w) ∈ E−, u, v (resp., v, w)
must belong to the same cluster. However, (u,w) ∈ E− implies that u,w cannot belong to the same
cluster. This contradiction implies that graphs with bad triangles cannot be clusterable.

Now, we argue that graph G that is not clusterable must contain at least one bad triangle. Let S ⊂ V
be a subset of vertices, and u ̸∈ S a vertex, such that the induced subgraph GS over S is clusterable,
but GS∪{u} is not clusterable. By the definition, there exists a clustering C = (C1, C2, . . .) of GS

with a 0 cost. We discuss three different cases. When u connects to all the vertices in S by (−)
edges, the clustering C′ = ({u}, C1, C2, . . .) will have 0 cost, contradicting to the assumption that
G is not clusterable. When u has (+) edges only to one of the clusters (without loss of generality,
we assume it is C1), there must exists a vertex w ∈ C1 such that (u,w) ∈ E−. Otherwise C′ =
({u} ∪ C1, C2, . . .) will have 0 cost. In addition, we assume v ∈ S is one of the vertices such that
(u, v) ∈ E+. By the fact that v, w ∈ S, (v, w) ∈ E+. (u, v, w) forms a bad triangle. Lastly, when
u has (+) edges to multiple clusters in C, we assume (u, v), (u,w) ∈ E+ where v, w belong to
different clusters. Then (v, w) ̸∈ E− and (u, v, w) forms a bad triangle.

What is remained is to show that G contains a bad triangle if and only if it contains a positive path
enclosed by a negative edge.

Since a bad triangle itself is such a cycle, we only need to prove the “if” direction. Given a negative
edge (u, v) and a positive path P = u → w1 → · · · → wt → v connecting u and v. For
simplicity, we denote w0 = u and wt+1 = v. Suppose for the sake of contradiction that G does not
contain any bad triangle. We show by induction that for every d ≥ 2 and every i ∈ [0, t + 1 − d],
(wi, wi+d) ∈ E+, which is a contradiction to (u, v) ∈ E−.

The base case is when d = 2, for every i ∈ [0, t−1], (wi, wi+2) ∈ E+ or otherwise (wi, wi+1, wi+2)
form a bad triangle. Suppose the above is true for every d < d0. For every i ∈ [0, t + 1 − d0],
(wi, wi+d−1) ∈ E+ by our inductive hypothesis. Then, (wi, wi+d) must be positive or otherwise
(wi, wi+d−1, wi+d) will form a bad triangle.

Our proof of correctness discusses three different types of graphs in the “NO” case. Before we delve
into the proof details, below are necessary definitions and lemmas that will be used in our proof.

Definition 5. Given the labeled graph G = (V,E+ ∪ E−), we let C = (C1, C2, . . . , Ck) be an
optimal correlation clustering of G. If there are multiple optimal clusterings, we fix an arbitrary
minimal optimal clustering, i.e., for every cluster C ∈ C, splitting C into two non-empty clusters
will always increase the clustering cost.

The clustering C defines an equivalence of the vertex set. We use u ∼C v or simply u ∼ v to denote
that u, v ∈ V belong to the same cluster of C. We call edges (u, v) ∈ E− but u ∼ v as false negative
edges. And we call edges (u, v) ∈ E+ but u ̸∼ v as false positive edges.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Denote by clusters in C of ≥ εn/20 vertices as large clusters, and those of size < εn/20 small
clusters. Let F = FN ∪ FP denote the set of false edges, i.e., flipping edges in F will yield a
clusterable graph, where FP and FN refer to the set of false positive edges and false negative edges
respectively. In addition, we split FP into two disjoint subsets FP = FP,L ∪ FP,S . FP,L indicates
the set of false positive edges (u, v) where at least one of u, v belong to large clusters. And FP,S

indicates the set of false positive edges (u, v) whose both endpoints belong to small clusters.

We will use different proof strategies to prove the correctness of our algorithm in the following three
cases.

• Case 1: |FN | ≥ |FP |.
• Case 2: |FN | < |FP | and |FP,L| ≥ |FP,S |.
• Case 3: |FN | < |FP | and |FP,L| < |FP,S |.

Our proof repeatedly uses Janson’s inequality, which helps us connect the number of vertices sam-
pled and the probability of including a bad triangle in the queried subgraph. We do not directly
analyze the number of bad triangles in the sampled subgraph using Janson’s inequality, because we
do not even know how many bad triangles are there in an arbitrary graph from the NO case. Instead,
we find a negative edge and a positive path connecting it, where the existence of each vertex of such
a path will be guaranteed by Janson’s inequality.

Both our proofs to Case 1 and Case 2 use the following lemma as a subroutine, which is built on
Janson’s inequality.
Lemma E.2. Let n ≥ 1 be a large enough integer and G = (V,E+ ∪ E−) be an arbitrary labeled
graph of n vertices. Let ε ∈ (0, 1) be a fixed parameter, and c ∈ [0.01, 1], c′ ∈ [0.25, 1] be arbitrary
fixed constants. Fix a minimal optimal clustering C of G. Let T be a random subset of V such that
each vertex is included in T with independent probability p := min(2·10

5

εn , 1). Fix a cluster C in C of
size ≥ c · εn, a vertex u ∈ C, and a set C ′ ⊆ C such that |C ′| ≥ c′ · |C|. With ≥ 99/100 probability
there exists a vertex v ∈ C ′ such that the induced subgraph over T ∪ {u} contains a positive path
between u and v.

Proof. Our key observation is a win-win argument. Let NC(u) denote the set of neighbors of u
connected by positive edges in C. Notice that |NC(u)| > (|C| − 1)/2 or otherwise splitting u out
from C will not decrease the clustering cost, contradicting to our assumption that C is the minimum
optimal clustering. Since |NC(u)| is an integer, equivalently |NC(u)| ≥ |C|/2. At a high-level,
when |NC(u) ∩ C ′| = Ω(εn), with high probability the set T contains a vertex in NC(u) ∩ C ′.
When |NC(u)∩C ′| is small, the number of (+) edges between NC(u) and C ′ should still be Ω(ε2n2)
or otherwise splitting C ′ out from the cluster C will yield a better clustering, which contradicts the
optimality of C. Such an edge will be sampled with high probability by applying Janson’s inequality.
For the special case where C ′ is the set of positive neighbors of a vertex v ∈ C, we refer to Figure 3
for an illustration of our ideas.

Specifically, when |NC(u)∩C ′| ≥ 0.1c′|C|, the probability that none of these vertices are sampled
in T is at most

(1− p)0.1c
′|C| ≤ e−0.1c′p|C| < 1/100

Hence T contains a vertex in C ′ that is connected to u by a positive edge with high probability.

Now we assume |NC(u)∩C ′| < 0.1c′|C|. Then |C ′ −NC(u)| > 0.9c′|C|. By our assumption that
C is a minimal optimal correlation clustering, the number of positive edges between C ′ − NC(u)
and C − (C ′ − NC(u)) is larger than |C ′ − NC(u)| · |C − (C ′ − NC(u))|/2. This implies that,
in average, every vertex in C ′ − NC(u) should have positive edges to more than half of vertices
in C − (C ′ − NC(u)). Observe that the size of C − (C ′ − NC(u)) is at most |C| − 0.9c′|C| =
(1−0.9c′)|C|, in which at least 0.5|C| vertices belong to NC(u). Because 0.5|C| is at least 0.45c′|C|
more than half of |C−(C ′−NC(u))| ≤ (1−0.9c′)|C|, every vertex in C ′−NC(u) has ≥ 0.45c′|C|
neighbors in NC(u) in average. Since |C ′ −NC(u)| > 0.9c′|C|, the total number of edges between
C ′ −NC(u) and NC(u) is at least 0.405(c′)2|C|2 ≥ 0.025|C|2. We then apply Janson’s inequality
to show that at least one of such edges will be sampled in T with high probability.

Let R be the set of positive edges between C ′ − NC(u) and NC(u) where |R| ≥ 0.025|C|2 ≥
2.5 · 10−6ε2n2. By setting the family of subsets to be R, X to be the number of positive edges

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(v, w) ∈ R where both v, w ∈ T , we have λ = E[X] = |R| · p2 and ∆ ≤ 1
2 |C| · |R| · p3. By

applying Janson’s inequality, we get

Pr[∀v, w ∈ T, (v, w) ̸∈ R] ≤ exp

(
− λ2

λ+ 2∆

)
When λ > 2∆,

Pr[∀v, w ∈ T, (v, w) ̸∈ R] ≤ exp(−λ/2) ≤ exp(−|R| · p2/2) ≤ 1/100

When λ ≤ 2∆, because |R| ≥ 0.025|C|2,

Pr[∀v, w ∈ T, (v, w) ̸∈ R] ≤ exp

(
− λ2

4∆

)
≤ exp

(
− |R|2p4

2|C||R|p3

)
≤ exp (−0.0125p|C|) ≤ 1/100

Thus, with high probability there exists w ∈ NC(u) ∩ T and v ∈ C ′ ∩ T such that u → w → v is
the desired positive path.

Proof to Theorem 1. By Lemma E.1, Algorithm 3 always returns “YES” if G is clusterable. In
addition, by Lemma 3.2, Algorithm 3 returns “YES” with probability ≥ 99/100 if G is (ε2/1014)-
close-to-clusterable. What is remained is to show that Algorithm 3 will output “NO” with high
probability when G is far from clusterable.

To accommodate Janson’s inequality, instead of working on the algorithm of sampling a fixed num-
ber of vertices, we introduce and analyze an intermediate algorithm where each vertex is included
in the sample set with independent probability.

Let algorithm Π follow the same step 2 and 3 as Algorithm 3. For step 1, Π instead samples a
set of vertices S = S1 ∪ S2 ∪ S3, where each vertex is included in S1, S2, S3 independently with
probability p := min(2·10

5

εn , 1).

By the standard Chernoff bound and a union bound, with ≤ 1/100 probability any of S1, S2, S3

has a size ≥ 106/(3ε) for every ε ∈ (0, 1). Therefore, only with ≤ 1/100 probability Algorithm 3
samples less vertices than Algorithm Π. We instead show that Algorithm Π has success probability
≥ 91/100 given a graph that is ε-far from being clusterable.

(a) (u, v) is a false negative edge sampled in S1, in
a large cluster C. If u, v share a large proportion of
positive neighbors in C, with high probability S2 can
sample at least one of such vertices. Any of those
vertices together with u, v form a bad triangle.

(b) Both u, v have at least half of positive neighbors
in C (due to the optimality of C). When the posi-
tive neighbors of u and v have a small intersection,
the neighbors of u and v roughly form a partition to
C. A large proportion of edges between the two parts
should be positive; or otherwise splitting C into two
parts will decrease the cost of C. With high probabil-
ity at least one of such positive edges will be sampled
in S2, which forms a positive path between u and v.

Figure 3: Two subcases of Case 1. (Formalized at Lemma E.2.)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Case 1 (|FN | ≥ |FP |). |FN | ≥ |FP | implies that |FN | ≥ ε
(
n
2

)
/2, and the total number of (both

positive and negative) edges in all the clusters

k∑
i=1

(
|Ci|
2

)
> 2|FN | ≥ ε

(
n

2

)
.

Because the density of (+) edges inside the clusters of the optimal clustering C is always > 1/2. Or
otherwise we can always further partition C into smaller clusters without increasing the cost.

Among these edges, at least 0.225(εn2 − n) > 0.224εn2 of false negative edges are belonging
to clusters of ≥ εn

20 vertices, since the total number of edges in clusters of small size is at most
1
2 · n · εn−1

20 . We will show that the sampled vertex set S1 contains at least one false negative edges
(u, v) with high probability; and, in addition, the induced subgraph over S2 ∪ {u, v} contains a
positive path between u and v with high probability. We denote by F ′

N ⊆ FN the subset of false
negative edges with at least one endpoint in large clusters. Since the two probabilities are dependent,
we will rewrite the probability as the summation of two independent probabilities. Let Eu,v denote
the event that “u, v are not connected by a positive path in the induced subgraph over S2 ∪ {u, v}”.
We have

Pr[∀u, v ∈ S, (u, v) ̸∈ F ′
N ∨ Eu,v]

≤ Pr[∀u, v ∈ S1, (u, v) ̸∈ F ′
N ∨ Eu,v]

≤ Pr[∀u, v ∈ S1, (u, v) ̸∈ F ′
N] + max

S1⊆V,u,v∈S1:
(u,v)∈F ′

N

Pr[Eu,v].
(1)

The first half can be bounded using Janson’s inequality. By setting the family of subsets to be F ′
N , X

to be the number of pairs (u, v) ∈ F ′
N from S1, we have λ = E[X] = |F ′

N |·p2 and ∆ ≤ 1
2 ·n|F

′
N |·p3.

By applying Janson’s inequality, we get

Pr[∀u, v ∈ S1, (u, v) ̸∈ F ′
N] =Pr[X = 0]

≤ exp(− λ2

λ+ 2∆
)

≤ exp(− |F ′
N |2 · p4

1.1n|F ′
N | · p3

)

≤ exp(−0.224εpn

1.1
)

<1/100

(2)

where the third inequality is by the fact that 1
2 · n|F ′

N | · p3 ≫ λ, and the fourth inequality is due to
|F ′

N | ≥ 0.224εn2.

The second probability in the last line of (1) is bounded by applying Lemma E.2. When we set C ′

to be NC(v) whose size is at least |C|/2, we obtain that with ≥ 99/100 probability u and v are
connected in the induced subgraph of G over S2 ∪ {u, v}.

Therefore, for every (u, v) ∈ F ′
N and every S1 that contain u, v, the probability that u, v are not

connected by a path in GS is at most 1/100. By (1) and (2)

Pr[∀u, v ∈ S, (u, v) ̸∈ F ′
N ∨ u, v are not connected in GS] ≤ 2/100

and the probability that Algorithm 3 succeeds is at least 9/10.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) (u, v) is a false positive edge sampled in S1. In
the subcase where |Cv| < 0.01εn, u belongs to a
large cluster Cu and v belongs to a small cluster Cv .
Then v will have a large number of negative edges
connected to Cu; or moving v from Cv to Cu will
decrease the clustering cost. By a similar argument
as in Figure 3 (formalized in Lemma E.2), with high
probability in S2 a vertex w where (w, v) is negative
and a positive path from u to w are sampled. Here
(v, w) is the negative edge connected by a positive
path v → u → · · · → w.

(b) For the case the cluster size of Cv is Ω(εn),
at least half of edges between Cu and Cv are neg-
ative; or otherwise combining Cu and Cv will de-
crease the clustering cost. Reusing Lemma E.2, with
high probability we sample a positive path from u
to u′ in S2, and a positive path from v to v′ in S3,
such that (u′, v′) is negative. In this way, we find a
negative edge (u′, v′) connected by a positive path
u′ → · · · → u → v → · · · → v′.

Figure 4: Two subcases of Case 2.

Case 2 (|FN | < |FP | and |FP,L| ≥ |FP,S |). By our conditions, |FP,L| ≥ ε
(
n
2

)
/4. Our proof idea

to this case is similar to case 1. Through S1 we will fix an edge (u, v) from FP,L, by using Janson’s
inequality in exactly the same way as (2). Let Cu, Cv respectively denote the cluster of u and v in C.
Without loss of generality we assume |Cu| ≥ |Cv|. By the definition of FP,L, |Cu| ≥ εn/20. There
are two subcases on whether Cv is large or small.

Consider the case |Cv| < 0.01εn. Let C ′ := {w ∈ Cu : (v, w) ∈ E−}. Then |C ′| ≥ |Cu|/10, or
otherwise moving v from Cv to Cu will decrease the cost. By Lemma E.2, with at least ≥ 99/100
probability the induced subgraph of G over {u, v} ∪ S2 contains a path between v and a vertex
w ∈ Cu ∩ S2 such that (v, w) ∈ E−.

Now we turn to the case |Cv| ≥ 0.01εn. Let Ru,v := {(u′, v′) ∈ E− : u′ ∈ Cu, v
′ ∈ Cv}. By

the optimality of C, |Ru,v| ≥ |Cu| · |Cv|/2, or otherwise combining Cu and Cv into a single cluster
will decrease the cost. Let Qu ⊆ Cu be the set of vertices that has ≥ |Cv|

4 negative neighbors
in Cv . Then |Qu| ≥ |Cu|

3 since otherwise |Ru,v| < |Cu| · |Cv|/2. By applying Lemma E.2, the
induced subgraph over S2 ∪ {u} contains a positive path from u to Qu with ≥ 99/100 probability.
Fix the vertex sampled in Qu as u′, we denote Qv ⊆ Cv as the subset of Cv whose vertices have
negative edges to u′. By our definition to Qu, |Qv| ≥ |Cv|

4 . Again by applying Lemma E.2, the
induced subgraph over S3 ∪ {v} contains a positive path from v to Qv with ≥ 99/100 probability.
We denote by v′ the vertex sampled in Qv .

Therefore, with probability ≥ 97/100 there exists a negative edge (u′, v′) where u′, v′ ∈ S such
that u′, v′ are connected by a positive path

u′ → · · · → u → v → · · · → v′

in the induced subgraph over S. Therefore, Algorithm 3 is correct with high probability.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 5: In Case 3, with high probability, the sample set S1 contains a vertex u that belongs to a
small cluster, and is connected to Ω(εn) vertices of small clusters by positive edges. The induced
subgraph over all such positive neighbors of u must contain a bounded proportition (≤ 0.94) of
positive edges, or otherwise forming these vertices into a single cluster will decrease the total cost.
Therefore, with high probability a negative edge (v, w) will be sampled in S2, which forms a bad
triangle (u, v, w).

Case 3 (|FN | < |FP | and |FP,L| < |FP,S |). By our conditions, |FP,S | > ε
(
n
2

)
/4. There are at

least 0.01εn vertices that are incident to ≥ 0.23εn edges from |FP,S |. By Chernoff bound, at least
one of such vertices u is sampled in S1 with ≥ 99/100 probability. Define

Nu,S := {v : (u, v) ∈ E+, u ̸∼ v, and v belongs to a cluster of size (< εn/20)}.
Then |Nu,S | ≥ 0.23εn. We will show that the density of positive edges in the induced subgraph of
G over Nu,S is small, or otherwise Nu,S can form a cluster with smaller cost.

Since all the vertices in Nu,S ∪ {u} belong to clusters of size at most εn/20, splitting all these
vertices from their clusters will at most increase (|Nu,S | + 1) · εn/20 cost. Thus, the total number
of negative edges inside Nu,S ∪ {u} is at least

1

2

(
|Nu,S |+ 1

2

)
− (|Nu,S |+ 1) · εn/20 = (|Nu,S |+ 1) · 5|Nu,S | − εn

20
>

|Nu,S | · εn
31

.

Otherwise, making Nu,S ∪ {u} a cluster will decrease the cost of C by calculating its relative cost.

We will again use Janson’s inequality to show that at least one of such non-edges (v, w) will be
sampled in S2 with high-probability. Since (u, v), (u,w)+ ∈ E but (v, w) ∈ E−, a bad triangle is
observed.

Let R be the set of these non-edges, where |R| > |Nu,S | · εn/31. Let X be the random variable
denoting the number of non-edges in R that are included in GS2 . Let λ = E[X] = |R| · p2. Let
∆ = 1

2 |Nu,S | · |R| · p3. By Janson’s inequality, we have

Pr[X = 0] ≤ exp

(
− |R| · p
1.1 · |Nu,S |

)
≤ 1/100.

Therefore, with ≥ 98/100 probability one can observe vertices v, w ∈ S2 and u ∈ S1 such that
(v, w) ̸∈ E but (u, v), (u,w) ∈ E in this case.

To summarize, in all of the above three cases, one can always observe a bad triangle with probability
≥ 9/10 probability when the graph is ε-far from being clusterable. Algorithm 3 outputs correctly
with probability ≥ 9/10.

F OPTIMAL STRUCTURAL BALANCE TESTING FOR COMPLETE GRAPHS

We now discuss our results for structural balance, i.e., the case of k = 2 for correlation clustering
with a fixed number of clusters. Recall that the main theorem statement is as follows.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Theorem 3. Fix ε ∈ (0, 1). There exists a randomized algorithm that given a labeled complete
graph G = (V,E+ ∪ E−) and a parameter ε answers the following

• If G is balanced, the algorithm always answers “YES”;

• If G is at least ε-far from being balanced, the algorithm answers “NO” with probability ≥ 0.9.

The algorithm queries at most O(1/ε) edges of G and runs in O(1/ε) time.

The algorithm for Theorem 3 uses a different approach compared to Theorem 2: we sample O(1/ε)
triangles, take the graph G′ induced by the edges (the graph might not be complete), and check
whether G′ has any unbalanced triangle. The formal algorithm could be described as follows.

Algorithm 4. An algorithm for structural balance property testing
Input: A labeled complete graph G = (V,E+ ∪ E−); a parameter ε.

1. Sample 300/ε triangles (u, v, w) ∈ V 3 uniformly at random (with replacement).
2. Check if any of the sampled triangles is unbalanced.

We first observe that Algorithm 4 uses O(1/ε) queries and time, and the algorithm always returns
“balanced” if G is indeed balanced.

Lemma F.1. Algorithm 4 makes O(1/ε) queries to G with O(1/ε) computation time.

Proof. The algorithm only samples O(1/ε) edges and triangles, where we use O(1) time for each
triangle to check whether it is balanced or not.

Lemma F.2. If G = (V,E+ ∪ E−) is balanced, then Algorithm 4 always returns “balanced”.

Proof. By a simple observation, any subgraph of a (strongly) balanced graph does not contain any
unbalanced triangle. Therefore, the algorithm will not detect any unbalanced triangle and will al-
ways return “balanced”.

We now proceed with the proof of the soundness of the algorithm. At a high level, we aim to demon-
strate that if the number of disagreement edges is high, then the number of unbalanced triangles has
a similar lower bound. Proving the statement, however, is not entirely straightforward since the
number of unbalanced triangles is not necessarily monotone w.r.t. the number of flipped edges – it
depends on the structure of the graph. Consider, for instance, a graph of n vertices with exactly two
false edges. If the two edges are not incident to each other, the total number of unbalanced triangles
is 2(n− 2), n− 2 unbalanced triangles induced by each false edge and each other vertex. But if the
two edges are incident to each other, the triangle including both edges will be balanced, and the total
number of unbalanced triangles decrease to 2(n−3). We give a clean proof to the desired statement
using three different random sampling processes, avoiding discussions to the structure of the graph.

Lemma F.3. If G = (V,E+ ∪ E−) is at least ε-far from being balanced, then Algorithm 4 returns
“not balanced” with probability at least 99/100.

Proof. Let Xunbalanced be the set of unbalanced triangles in G, and let Eunbalanced be the set of false
edges induced by (L∗, R∗), which is the optimal partition that minimizes the frustration index of the
graph. For each unbalanced triangle ∆ ∈ Xunbalanced. We define the following sampling process for
triangles.

Process 1: a random sampling process for triangles.

• Sample a triangle uniformly at random from G.

Let X∆ be the indicator random variable for the unbalanced triangle ∆ ∈ Xunbalanced to be sampled
by Process 1.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

We now consider another sampling process in which we uniformly sample an edge.

Process 2: a random sampling process for edges.

• Sample an edge uniformly at random from G.

For each false edge e ∈ Eunbalanced, we let Ye be the indicator random variable for the edge to be
sampled. Our technical claim is as follows.

Claim F.4. On each time of sampling with Process 1 and Process 2, we have that

Pr (∆ ∈ Xunbalanced is sampled by Process 1) ≥ 1

3
Pr (e ∈ Eunbalanced is sampled by Process 2) .

Proof. We consider the following sampling process:

Process 3: a “bridge” sampling process.

• Sample a vertex v ∈ V uniformly at random;

• Sample an edge e′ ̸∋ v uniformly at random.

We let (Lv, Rv) be the partition obtained by the following rules: we arrange all the (+) neighbors
of v in Lv . The set of the rest of the vertices, namely V \ Lv , is therefore defined as Rv . Let
Eunbalanced(v) be the set of false edges induced by (Lv, Rv). Since (L∗, R∗) is the optimal partition
that minimizes the frustration index, for any v ∈ V , we have that

|Eunbalanced(v)| ≥ |Eunbalanced| .
Therefore, conditioning on the sampling of any fixed v, we have that

Pr (e ∈ Eunbalanced is sampled by Process 2) ≤ Pr (e ∈ Eunbalanced(v) is sampled by Process 3) .

On the other hand, for any fixed v, let Xunbalanced(v) be the set of unbalanced triangles with one
endpoint as v and one edge in Eunbalanced(v). Note that each unbalanced triangle will at most be
counted 3 times, which happens only when all the three edges of the triangle are false edges. As
such, we have that

3 |Xunbalanced| ≥
∑
v∈V

|Xunbalanced(v)| .

Therefore, we could lower bound the probability of sampling an unbalanced triangle as

Pr (∆ ∈ Xunbalanced is sampled by Process 1)

≥ 1

3

∑
v∈V

Pr (v is sampled and ∆ ∈ Xunbalanced(v) is sampled by Process 3)

=
1

3

∑
v∈V

Pr (v is sampled by Process 3) · Pr (e ∈ Eunbalanced(v) is sampled by Process 3) .

Observe that each vertex has 1/n probability to be sampled in Process 3. Therefore, we have

Pr (∆ ∈ Xunbalanced is sampled by Process 1)

≥ 1

3

∑
v∈V

1

n
· Pr (e ∈ Eunbalanced(v) is sampled by Process 3)

≥ 1

3

∑
v∈V

1

n
· Pr (e ∈ Eunbalanced is sampled by Process 2)

=
1

3
Pr (e ∈ Eunbalanced is sampled by Process 2) ,

which is as desired by the statement. Lemma F.4 □

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Since the graph is at least ε-far from being balanced, we have that

Pr(e ∈ Eunbalanced is sampled by Process 2) ≥ ε.

Therefore, by Lemma F.4, for each time of sampling in Algorithm 4, we have that

Pr (X∆ = 1 for some ∆ ∈ Xunbalanced) ≥ ε/3.

Since we sample triangles without replacement, the sampling at each time is independent. Therefore,
the probability for us to not sample any unbalanced triangle with 100/ε samples is at most (1 −
ε/3)300/ε ≤ 1/100, as desired by the lemma statement. Lemma F.3 □

Combining Lemma F.1, Lemma F.2, and Lemma F.3 gives the full proof of Theorem 3.

G EXTENSION TO STRUCTURAL BALANCE TOLERANT TESTING

We now discuss generalizing our structural balance testing algorithm to allow graphs that are nearly
balanced acceptable by the tester. This falls into the regime of tolerant testing Parnas et al. (2006);
Ron (2009); Blais et al. (2019), in which we want instances that nearly satisfied the desired property
to also pass the test. For structural balance, a testing algorithm as such has strong practical motiva-
tions: real-world graphs are often not perfectly balanced yet close to being balanced. Therefore, a
tolerant testing algorithm could have a much broader impact on testing read-world graphs.

Recall that main theorem for the tolerant testing algorithm is as follows.
Theorem 4. Fix ε ∈ (0, 1) such that δ ≤ ε/900. There exists a randomized algorithm that given a
labeled complete graph G = (V,E+ ∪ E−) and parameters ε, δ answers the following

• If G is at most δ-close from being balanced, the algorithm answers “YES” with probability ≥
0.99;

• If G is at least ε-far from being balanced, the algorithm answers “NO” with probability ≥ 0.99.

The algorithm queries at most O(1/ε) edges of G and runs in O(1/ε) time.

The algorithm for Theorem 4 is similar to Algorithm 4, albeit we use a threshold to determine
whether the graph is balanced. The algorithm could be described as follows.

Algorithm 5. An algorithm for structural balance tolerant testing
Input: A labeled complete graph G = (V,E+ ∪ E−), parameters ε, δ such that δ ≤ ε/900.

1. Sample 300/ε triangles (u, v, w) ∈ V 3 uniformly at random (with replacement).
2. If at most 10 out of 300/ε sampled triangles are unbalanced, return “balanced”. Otherwise,

return “not balanced”.

The efficiency of the algorithm follows directly from the argument as in Lemma F.1, and we write
the corresponding lemma without proof.
Lemma G.1. Algorithm 5 makes O(1/ε) queries to G and converges in O(1/ε) time.

We first analyze the soundness of the algorithm, for which we could use the conclusion in
Lemma F.4. The main lemma is as follows.
Lemma G.2. If G = (V,E+ ∪E−) is at least ε-far from being balanced, then Algorithm 5 returns
“not balanced” with probability at least 199/200.

Proof. Let X∆ be the indicator random variable for an unbalanced triangle ∆ to be sampled for
one sampling step in Algorithm 5, and let X =

∑
X∆ be the total number of unbalanced triangles

sampled by Algorithm 5. By Lemma F.4, we have that

E [X] =
300

ε
· Pr (X∆ = 1 for some ∆ ∈ Xunbalanced) ≥ 100.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Since X is a summation of independent indicator random variables, we could apply Chernoff bound,
and show that

Pr (X ≤ 10) ≤ Pr (X ≤ (1− 0.9) · E [X])

≤ exp

(
−0.92 · 100

2

)
≤ 1/200,

as desired.

We now proceed to show the completeness of the algorithm, i.e., δn2-close instances are also to
pass the test and result in a “balanced” outcome. The proof of the lemma will use a “reversed”
probability calculation as in Lemma F.4.
Lemma G.3. If G = (V,E+ ∪E−) is at most δ-far from being balanced for some δ ≤ ε/900, then
Algorithm 4 returns “balanced” with probability at least 199/200.

Proof. Similar to the proof of Lemma F.3, we let Xunbalanced be the set of unbalanced triangles, and
Eunbalanced be the set of disagreement edges induced by the optimal partition (L∗, R∗). We now
define the following processes.

Process 4: a random sampling process for edges.

• Sample a triangle ∆ uniformly at random from G, then sample an edge from ∆.

Also, we will use the random Process 1 which samples a triangle uniformly at random from the
graph (see the proof of Lemma F.3 for the full description). We have the following technical claim.

Claim G.4. On each time of sampling with Process 1 and Process 4, we have that

Pr (∆ ∈ Xunbalanced is sampled by Process 1) ≤ 3 · Pr (e ∈ Eunbalanced is sampled by Process 4) .

Proof. The claim follows from the fact that for each ∆ ∈ Xunbalanced, there must be at least one edge
e ∈ Eunbalanced by definition. Therefore, we have that

Pr (e ∈ Eunbalanced is sampled by Process 4)
≥ Pr (sampling e ∈ Eunbalanced from ∆ ∈ Xunbalanced) · Pr (∆ ∈ Xunbalanced is sampled by Process 1)

≥ 1

3
· Pr (∆ ∈ Xunbalanced is sampled by Process 1) ,

which leads to the desired statement. Lemma G.4 □

For a graph that is at most δ-far from being balanced, which means it is at most (ε/900)-far from
being balanced, we have that

Pr(e ∈ Eunbalanced is sampled by Process 2) ≤ ε

900
.

Let X =
∑

X∆ be the total number of unbalanced triangles sampled by Algorithm 5. By
Lemma G.4, we have that

E [X] =
300

ε
· Pr (X∆ = 1 for some ∆ ∈ Xunbalanced)

≤ 900

ε
· Pr (e ∈ Eunbalanced is sampled by Process 2) ≤ 1.

If X < 1, then Algorithm 5 deterministically returns “balanced”. As such, we assume w.log. that
X ≥ 1. Since X is a summation of independent indicator random variables, we could apply the
Chernoff bound, and we get

Pr (X ≥ 10) ≤ Pr (X ≤ (1 + 9) · E [X])

≤ exp

(
−81 · 1

11

)
≤ 1/200,

as desired.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Combining Lemma G.1, Lemma G.2 and Lemma G.3 with a union bound gives the desired statement
of Theorem 4.

H A LOWER BOUND FOR TESTING CLUSTERABILITY AND STRUCTURAL
BALANCE

We give a lower bound for testing structural balance in complete graphs in this section. Our lower
bound shows that any algorithm that separates a graph from being balanced vs. ε-far from being
balanced requires at least Ω(1/ε) queries to the graph. This implies our algorithms in Theorem 3
and Theorem 4 are asymptotically optimal.

Recall that our statement for the lower bound is as follows.
Theorem 5. Any (possibly randomized) algorithm that given a complete labeled graph G =
(V,E+ ∪ E−), with probability at least 2/3 answers correctly whether G is balanced or at least
ε-far from being balanced requires at least Ω(1/ε) edge queries to the graph.

Furthmore, the lower bound extends to testing clusterability (for both general k and fixed k).

Proof. We use the following result from a recent paper to prove our lower bound.

Proposition H.1 (Fischer (2024), rephrased; cf. Bshouty & Goldreich (2025)). Let Σ be an arbi-
trary alphabet for an length-m input, and let Σm be the set of all possible inputs. Let P ⊆ Σm be
the set of inputs that satisfy a property. Suppose there exists an instance U ̸∈ P such that at least
α ·m elements need to be modified to satisfy the property prescribed by P . Then, any algorithm that
with probability at least 2/3 correctly distinguishes whether an input S ∈ Σm is in P or needs to
modify at least β ·m bits to satisfy property of P requires Ω(α/β) queries to S.

We apply Lemma H.1 with Σ = {(+), (−)} and m =
(
n
2

)
. The instances with structural balance

are P . Here, we only need to find an instance U ̸∈ P at least α-far from being balanced for some
α = Ω(1). We consider a graph with all (−) edges as such an instance: the graph has

(
n
3

)
bad

triangles, and each flip of the label could reduce the number of bad triangles by at most n − 1. As
such, the graph is at least α-far from being balanced for some α = Ω(1). Applying Lemma H.1
leads to the desired Ω(1/ε) query lower bound.

Note that since each query takes O(1) time, our algorithms are also asymptotically optimal in terms
of the time complexity.

28

	Introduction
	Our Contributions

	Preliminaries
	Upper Bound for Testing k-Clusterability
	Experiments
	Testing on Synthetic Graphs
	Testing on Real-world Graphs

	Discussion and Conclusion
	More Discussions on Related Work
	More Details on Experiments
	Missing proof to Lemma 3.1
	Preliminaries on Janson's Inequality
	An Improved Algorithm for Testing Clusterability
	Optimal Structural Balance Testing for Complete Graphs
	Extension to Structural Balance Tolerant Testing
	A Lower Bound for Testing Clusterability and Structural Balance

