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Neural general circulation models for 
weather and climate

Dmitrii Kochkov1,6 ✉, Janni Yuval1,6 ✉, Ian Langmore1,6, Peter Norgaard1,6, Jamie Smith1,6, 
Griffin Mooers1, Milan Klöwer2, James Lottes1, Stephan Rasp1, Peter Düben3, Sam Hatfield3, 
Peter Battaglia4, Alvaro Sanchez-Gonzalez4, Matthew Willson4, Michael P. Brenner1,5 & 
Stephan Hoyer1,6 ✉

General circulation models (GCMs) are the foundation of weather and climate 
prediction1,2. GCMs are physics-based simulators that combine a numerical solver  
for large-scale dynamics with tuned representations for small-scale processes such as 
cloud formation. Recently, machine-learning models trained on reanalysis data have 
achieved comparable or better skill than GCMs for deterministic weather forecasting3,4. 
However, these models have not demonstrated improved ensemble forecasts, or 
shown sufficient stability for long-term weather and climate simulations. Here we 
present a GCM that combines a differentiable solver for atmospheric dynamics with 
machine-learning components and show that it can generate forecasts of deterministic 
weather, ensemble weather and climate on par with the best machine-learning and 
physics-based methods. NeuralGCM is competitive with machine-learning models for 
one- to ten-day forecasts, and with the European Centre for Medium-Range Weather 
Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea 
surface temperature, NeuralGCM can accurately track climate metrics for multiple 
decades, and climate forecasts with 140-kilometre resolution show emergent 
phenomena such as realistic frequency and trajectories of tropical cyclones. For both 
weather and climate, our approach offers orders of magnitude computational savings 
over conventional GCMs, although our model does not extrapolate to substantially 
different future climates. Our results show that end-to-end deep learning is compatible 
with tasks performed by conventional GCMs and can enhance the large-scale physical 
simulations that are essential for understanding and predicting the Earth system.

Solving the equations for Earth’s atmosphere with general circula-
tion models (GCMs) is the basis of weather and climate prediction1,2. 
Over the past 70 years, GCMs have been steadily improved with better 
numerical methods and more detailed physical models, while exploit-
ing faster computers to run at higher resolution. Inside GCMs, the 
unresolved physical processes such as clouds, radiation and precipi-
tation are represented by semi-empirical parameterizations. Tuning 
GCMs to match historical data remains a manual process5, and GCMs 
retain many persistent errors and biases6–8. The difficulty of reducing 
uncertainty in long-term climate projections9 and estimating distribu-
tions of extreme weather events10 presents major challenges for climate 
mitigation and adaptation11.

Recent advances in machine learning have presented an alter-
native for weather forecasting3,4,12,13. These models rely solely on 
machine-learning techniques, using roughly 40 years of historical 
data from the European Center for Medium-Range Weather Forecasts 
(ECMWF) reanalysis v5 (ERA5)14 for model training and forecast initiali-
zation. Machine-learning methods have been remarkably successful, 

demonstrating state-of-the-art deterministic forecasts for 1- to 10-day 
weather prediction at a fraction of the computational cost of traditional 
models3,4. Machine-learning atmospheric models also require consider-
ably less code, for example GraphCast3 has 5,417 lines versus 376,578 
lines for the National Oceanic and Atmospheric Administration’s FV3 
atmospheric model15 (see Supplementary Information section A for 
details).

Nevertheless, machine-learning approaches have noteworthy 
limitations compared with GCMs. Existing machine-learning models 
have focused on deterministic prediction, and surpass deterministic 
numerical weather prediction in terms of the aggregate metrics for 
which they are trained3,4. However, they do not produce calibrated 
uncertainty estimates4, which is essential for useful weather forecasts1. 
Deterministic machine-learning models using a mean-squared-error 
loss are rewarded for averaging over uncertainty, producing unrealis-
tically blurry predictions when optimized for multi-day forecasts3,13. 
Unlike physical models, machine-learning models misrepresent derived  
(diagnostic) variables such as geostrophic wind16. Furthermore, 
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although there has been some success in using machine-learning 
approaches on longer timescales17,18, these models have not demon-
strated the ability to outperform existing GCMs.

Hybrid models that combine GCMs with machine learning are appeal-
ing because they build on the interpretability, extensibility and success-
ful track record of traditional atmospheric models19,20. In the hybrid 
model approach, a machine-learning component replaces or corrects 
the traditional physical parameterizations of a GCM. Until now, the 
machine-learning component in such models has been trained ‘offline’, 
by learning parameterizations independently of their interaction with 
dynamics. These components are then inserted into an existing GCM. 
The lack of coupling between machine-learning components and the 
governing equations during training potentially causes serious prob-
lems, such as instability and climate drift21. So far, hybrid models have 
mostly been limited to idealized scenarios such as aquaplanets22,23. 
Under realistic conditions, machine-learning corrections have reduced 
some biases of very coarse GCMs24–26, but performance remains con-
siderably worse than state-of-the-art models.

Here we present NeuralGCM, a fully differentiable hybrid GCM of 
Earth’s atmosphere. NeuralGCM is trained on forecasting up to 5-day 
weather trajectories sampled from ERA5. Differentiability enables 
end-to-end ‘online training’27, with machine-learning components 
optimized in the context of interactions with the governing equations 
for large-scale dynamics, which we find enables accurate and stable 
forecasts. NeuralGCM produces physically consistent forecasts with 
accuracy comparable to best-in-class models across a range of time-
scales, from 1- to 15-day weather to decadal climate prediction.

Neural GCMs
A schematic of NeuralGCM is shown in Fig. 1. The two key components 
of NeuralGCM are a differentiable dynamical core for solving the dis-
cretized governing dynamical equations and a learned physics module 
that parameterizes physical processes with a neural network, described 
in full detail in Methods, Supplementary Information sections B and C, 
and Supplementary Table 1. The dynamical core simulates large-scale 

fluid motion and thermodynamics under the influence of gravity and 
the Coriolis force. The learned physics module (Supplementary Fig. 1) 
predicts the effect of unresolved processes, such as cloud formation, 
radiative transport, precipitation and subgrid-scale dynamics, on the 
simulated fields using a neural network.

The differentiable dynamical core in NeuralGCM allows an end-to-end 
training approach, whereby we advance the model multiple time steps 
before employing stochastic gradient descent to minimize discrep-
ancies between model predictions and reanalysis (Supplementary 
Information section G.2). We gradually increase the rollout length 
from 6 hours to 5 days (Supplementary Information section G and 
Supplementary Table 5), which we found to be critical because our 
models are not accurate for multi-day prediction or stable for long 
rollouts early in training (Supplementary Information section H.6.2 
and Supplementary Fig. 23). The extended back-propagation through 
hundreds of simulation steps enables our neural networks to take into 
account interactions between the learned physics and the dynamical 
core. We train deterministic and stochastic NeuralGCM models, each 
of which uses a distinct training protocol, described in full detail in 
Methods and Supplementary Table 4.

We train a range of NeuralGCM models at horizontal resolutions with 
grid spacing of 2.8°, 1.4° and 0.7° (Supplementary Fig. 7). We evalu-
ate the performance of NeuralGCM at a range of timescales appro-
priate for weather forecasting and climate simulation. For weather, 
we compare against the best-in-class conventional physics-based 
weather models, ECMWF’s high-resolution model (ECMWF-HRES) 
and ensemble prediction system (ECMWF-ENS), and two of the recent 
machine-learning-based approaches, GraphCast3 and Pangu4. For cli-
mate, we compare against a global cloud-resolving model and Atmos-
pheric Model Intercomparison Project (AMIP) runs.

Medium-range weather forecasting
Our evaluation set-up focuses on quantifying accuracy and physical 
consistency, following WeatherBench212. We regrid all forecasts to a 1.5° 
grid using conservative regridding, and average over all 732 forecasts 
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Fig. 1 | Structure of the NeuralGCM model. a, Overall model structure, showing 
how forcings Ft, noise zt (for stochastic models) and inputs yt are encoded into 
the model state xt. The model state is fed into the dynamical core, and alongside 
forcings and noise into the learned physics module. This produces tendencies 
(rates of change) used by an implicit–explicit ordinary differential equation 

(ODE) solver to advance the state in time. The new model state xt+1 can then be 
fed back into another time step, or decoded into model predictions. b, The 
learned physics module, which feeds data for individual columns of the 
atmosphere into a neural network used to produce physics tendencies in that 
vertical column.
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made at noon and midnight UTC in the year 2020, which was held-out 
from training data for all machine-learning models. NeuralGCM, 
GraphCast and Pangu compare with ERA5 as the ground truth, whereas 
ECMWF-ENS and ECMWF-HRES compare with the ECMWF operational 
analysis (that is, HRES at 0-hour lead time), to avoid penalizing the 
operational forecasts for different biases than ERA5.

Model accuracy
We use ECMWF’s ensemble (ENS) model as a reference baseline as it 
achieves the best performance across the majority of lead times12. 
We assess accuracy using (1) root-mean-squared error (RMSE), (2) 
root-mean-squared bias (RMSB), (3) continuous ranked probability 
score (CRPS) and (4) spread-skill ratio, with the results shown in Fig. 2. 
We provide more in-depth evaluations including scorecards, metrics for 
additional variables and levels and maps in Extended Data Figs. 1 and 2, 
Supplementary Information section H and Supplementary Figs. 9–22.

Deterministic models that produce a single weather forecast for 
given initial conditions can be compared effectively using RMSE skill at 
short lead times. For the first 1–3 days, depending on the atmospheric 
variable, RMSE is minimized by forecasts that accurately track the evolu-
tion of weather patterns. At this timescale we find that NeuralGCM-0.7° 
and GraphCast achieve best results, with slight variations across dif-
ferent variables (Fig. 2a). At longer lead times, RMSE rapidly increases 
owing to chaotic divergence of nearby weather trajectories, making 
RMSE less informative for deterministic models. RMSB calculates per-
sistent errors over time, which provides an indication of how models 
would perform at much longer lead times. Here NeuralGCM models 
also compare favourably against previous approaches (Fig. 2c), with 
notably much less bias for specific humidity in the tropics (Fig. 2d).

Ensembles are essential for capturing intrinsic uncertainty of weather 
forecasts, especially at longer lead times. Beyond about 7 days, the 
ensemble means of ECMWF-ENS and NeuralGCM-ENS forecasts have 
considerably lower RMSE than the deterministic models, indicating 
that these models better capture the average of possible weather.  
A better metric for ensemble models is CRPS, which is a proper scor-
ing rule that is sensitive to full marginal probability distributions28. 
Our stochastic model (NeuralGCM-ENS) running at 1.4° resolution has 
lower error compared with ECMWF-ENS across almost all variables, lead 
times and vertical levels for ensemble-mean RMSE, RSMB and CRPS 
(Fig. 2a,c,e and Supplementary Information section H), with similar 
spatial patterns of skill (Fig. 2b,f). Like ECMWF-ENS, NeuralGCM-ENS 
has a spread-skill ratio of approximately one (Fig. 2d), which is a neces-
sary condition for calibrated forecasts29.

Case study
An important characteristic of forecasts is their resemblance to real-
istic weather patterns. Figure 3 shows a case study that illustrates the 
performance of NeuralGCM on three types of important weather phe-
nomenon: tropical cyclones, atmospheric rivers and the Intertropi-
cal Convergence Zone. Figure 3a shows that all the machine-learning 
models make significantly blurrier forecasts than the source data ERA5 
and physics-based ECMWF-HRES forecast, but NeuralCGM-0.7° outper-
forms the pure machine-learning models, despite its coarser resolution 
(0.7° versus 0.25° for GraphCast and Pangu). Blurry forecasts corre-
spond to physically inconsistent atmospheric conditions and misrep-
resent extreme weather. Similar trends hold for other derived variables 
of meteorological interest (Supplementary Information section H.2). 
Ensemble-mean predictions, from both NeuralGCM and ECMWF, are 

80

100

120

R
M

S
E

 v
er

su
s 

E
N

S
 (%

)
a Geopotential

at 500 hPa 

ECMWF-HRES 

NeuralGCM-0.7°

Temperature
at 850 hPa 

GraphCast

Pangu

Speci�c humidity at
700 hPa 

ECMWF-ENS 

NeuralGCM-ENS

25

50

75

100

125

R
M

S
B

 v
er

su
s 

E
N

S
 (%

)

c

92

94

96

98

100

102

C
R

P
S

 v
er

su
s 

E
N

S
 (%

)

e

1 5 10 15
Lead time (days)

0.6

0.8

1.0

1.2

S
p

re
ad

-s
ki

ll 
ra

tio

g

1 5 10 15
Lead time (days)

1 5 10 15
Lead time (days)

b NeuralGCM-ENS at 10 days ECMWF-ENS at 10 days

70

80

90

95

105

S
p

ec
i�

c 
hu

m
id

ity
 7

00
 h

P
a

R
M

S
E

 v
er

su
s 

cl
im

at
ol

og
y 

(%
) 

d

–0.05
–0.20
–0.35
–0.50

0.05
0.20
0.35
0.50

S
p

ec
i�

c 
hu

m
id

ity
 7

00
 h

P
a

B
ia

s 
(g

 k
g–1

)

f

70

80

90

95

105

S
p

ec
i�

c 
hu

m
id

ity
 7

00
 h

P
a

C
R

P
S

 v
er

su
s 

cl
im

at
ol

og
y 

(%
) 

h

0.80

0.90

0.95

1.05

1.11

1.25

S
p

ec
i�

c 
hu

m
id

ity
 7

00
 h

P
a

S
p

re
ad

-s
ki

ll 
ra

tio
 

Fig. 2 | Weather forecasting accuracy scores for deterministic and 
stochastic models. a,c, RMSE (a) and RMSB (c) for ECMWF-ENS, ECMWF- 
HRES, NeuralGCM-0.7°, NeuralGCM-ENS, GraphCast3 and Pangu4 on headline 
WeatherBench2 variables, as a percentage of the error of ECMWF-ENS. 
Deterministic and stochastic models are shown in solid and dashed lines 
respectively. e,g, CRPS relative to ECMWF-ENS (e) and spread-skill ratio for the 

ENS and NeuralGCM-ENS models (g). b,d,f,h, Spatial distributions of RMSE (b), 
bias (d), CRPS (f) and spread-skill ratio (h) for NeuralGCM-ENS and ECMWF-ENS 
models for 10-day forecasts of specific humidity at 700 hPa. Spatial plots of 
RMSE and CRPS show skill relative to a probabilistic climatology12 with an 
ensemble member for each of the years 1990–2019. The grey areas indicate 
regions where climatological surface pressure on average is below 700 hPa.
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closer to ERA5 in an average sense, and thus are inherently smooth at 
long lead times. In contrast, as shown in Fig. 3 and in Supplementary 
Information section H.3, individual realizations from the ECMWF and 
NeuralGCM ensembles remain sharp, even at long lead times. Like 
ECMWF-ENS, NeuralGCM-ENS produces a statistically representa-
tive range of future weather scenarios for each weather phenomenon, 
despite its eight-times-coarser resolution.

Spectra
We can quantify the blurriness of different forecast models via their 
power spectra. Supplementary Figs. 17 and 18 show that the power 
spectra of NeuralCGM-0.7° is consistently closer to ERA5 than the other 
machine-learning forecast methods, but is still blurrier than ECMWF’s 
physical forecasts. The spectra of NeuralGCM forecasts is also roughly 
constant over the forecast period, in stark contrast to GraphCast, which 
worsens with lead time. The spectrum of NeuralGCM becomes more 
accurate with increased resolution (Supplementary Fig. 22), which 
suggests the potential for further improvements of NeuralGCM models 
trained at higher resolutions.

Water budget
In NeuralGCM, advection is handled by the dynamical core, while the 
machine-learning parameterization models local processes within ver-
tical columns of the atmosphere. Thus, unlike pure machine-learning 
methods, local sources and sinks can be isolated from tendencies owing 
to horizontal transport and other resolved dynamics (Supplementary 
Fig. 3). This makes our results more interpretable and facilitates the diag-
nosis of the water budget. Specifically, we diagnose precipitation minus 
evaporation (Supplementary Information section H.5) rather than 
directly predicting these as in machine-learning-based approaches3. 

For short weather forecasts, the mean of precipitation minus evapora-
tion has a realistic spatial distribution that is very close to ERA5 data 
(Extended Data Fig. 4c–e). The precipitation-minus-evaporation rate 
distribution of NeuralGCM-0.7° closely matches the ERA5 distribution 
in the extratropics (Extended Data Fig. 4b), although it underestimates 
extreme events in the tropics (Extended Data Fig. 4a). It is noted that 
the current version of NeuralGCM directly predicts tendencies for an 
atmospheric column, and thus cannot distinguish between precipita-
tion and evaporation.

Geostrophic wind balance
We examined the extent to which NeuralGCM, GraphCast and ECMWF- 
HRES capture the geostrophic wind balance, the near-equilibrium 
between the dominant forces that drive large-scale dynamics in the 
mid-latitudes30. A recent study16 highlighted that Pangu misrepresents 
the vertical structure of the geostrophic and ageostrophic winds and 
noted a deterioration at longer lead times. Similarly, we observe that 
GraphCast shows an error that worsens with lead time. In contrast, 
NeuralGCM more accurately depicts the vertical structure of the geo-
strophic and ageostrophic winds, as well as their ratio, compared with 
GraphCast across various rollouts, when compared against ERA5 data 
(Extended Data Fig. 3). However, ECMWF-HRES still shows a slightly 
closer alignment to ERA5 data than NeuralGCM does. Within Neural-
GCM, the representation of the geostrophic wind’s vertical structure 
only slightly degrades in the initial few days, showing no noticeable 
changes thereafter, particularly beyond day 5.

Generalizing to unseen data
Physically consistent weather models should still perform well for 
weather conditions for which they were not trained. We expect that 
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NeuralGCM may generalize better than machine-learning-only atmos-
pheric models, because NeuralGCM employs neural networks that act 
locally in space, on individual vertical columns of the atmosphere. To 
explore this hypothesis, we compare versions of NeuralCGM-0.7° and 
GraphCast trained to 2017 on 5 years of weather forecasts beyond the 
training period (2018–2022) in Supplementary Fig. 36. Unlike Graph-
Cast, NeuralGCM does not show a clear trend of increasing error when 
initialized further into the future from the training data. To extend this 
test beyond 5 years, we trained a NeuralGCM-2.8° model using only 
data before 2000, and tested its skill for over 21 unseen years (Sup-
plementary Fig. 35).

Climate simulations
Although our deterministic NeuralGCM models are trained to predict 
weather up to 3 days ahead, they are generally capable of simulating 
the atmosphere far beyond medium-range weather timescales. For 
extended climate simulations, we prescribe historical sea surface tem-
perature (SST) and sea-ice concentration. These simulations feature 
many emergent phenomena of the atmosphere on timescales from 
months to decades.

For climate simulations with NeuralGCM, we use 2.8° and 1.4° 
deterministic models, which are relatively inexpensive to train (Sup-
plementary Information section G.7) and allow us to explore a larger 
parameter space to find stable models. Previous studies found that 
running extended simulations with hybrid models is challenging due 
to numerical instabilities and climate drift21. To quantify stability in 

our selected models, we run multiple initial conditions and report how 
many of them finish without instability.

Seasonal cycle and emergent phenomena
To assess the capability of NeuralGCM to simulate various aspects of 
the seasonal cycle, we run 2-year simulations with NeuralGCM-1.4°. 
for 37 different initial conditions spaced every 10 days for the year 
2019. Out of these 37 initial conditions, 35 successfully complete the 
full 2 years without instability; for case studies of instability, see Sup-
plementary Information section H.7, and Supplementary Figs. 26  
and 27. We compare results from NeuralGCM-1.4° for 2020 with ERA5 
data and with outputs from the X-SHiELD global cloud-resolving model, 
which is coupled to an ocean model nudged towards reanalysis31. This 
X-SHiELD run has been used as a target for training machine-learning 
climate models24. For comparison, we evaluate models after regrid-
ding predictions to 1.4° resolution. This comparison slightly favours 
NeuralGCM because NeuralGCM was tuned to match ERA5, but the 
discrepancy between ERA5 and the actual atmosphere is small relative 
to model error.

Figure 4a shows the temporal variation of the global mean tempera-
ture to 2020, as captured by 35 simulations from NeuralGCM, in com-
parison with the ERA5 reanalysis and standard climatology benchmarks. 
The seasonality and variability of the global mean temperature from 
NeuralGCM are quantitatively similar to those observed in ERA5. The 
ensemble-mean temperature RMSE for NeuralGCM stands at 0.16 K 
when benchmarked against ERA5, which is a significant improve-
ment over the climatology’s RMSE of 0.45 K. We find that NeuralGCM 
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accurately simulates the seasonal cycle, as evidenced by metrics such 
as the annual cycle of the global precipitable water (Supplementary 
Fig. 30a) and global total kinetic energy (Supplementary Fig. 30b). 
Furthermore, the model captures essential atmospheric dynamics, 
including the Hadley circulation and the zonal-mean zonal wind (Sup-
plementary Fig. 28), as well as the spatial patterns of eddy kinetic energy 
in different seasons (Supplementary Fig. 31), and the distinctive sea-
sonal behaviours of monsoon circulation (Supplementary Fig. 29; addi-
tional details are provided in Supplementary Information section I.1).

Next, we compare the annual biases of a single NeuralGCM realiza-
tion with a single realization of X-SHiELD (the only one available), both 
initiated in mid-October 2019. We consider 19 January 2020 to 17 Janu-
ary 2021, the time frame for which X-SHiELD data are available. Global 
cloud-resolving models, such as X-SHiELD, are considered state of the 
art, especially for simulating the hydrological cycle, owing to their 
resolution being capable of resolving deep convection32. The annual 
bias in precipitable water for NeuralGCM (RMSE of 1.09 mm) is sub-
stantially smaller than the biases of both X-SHiELD (RMSE of 1.74 mm) 
and climatology (RMSE of 1.36 mm; Fig. 4i–k). Moreover, NeuralGCM 
shows a lower temperature bias in the upper and lower troposphere 
than X-SHiELD (Extended Data Fig. 6). We also indirectly compare pre-
cipitation bias in X-SHiELD with precipitation-minus-evaporation bias 
in NeuralGCM-1.4°, which shows slightly larger bias and grid-scale 
artefacts for NeuralGCM (Extended Data Fig. 5).

Finally, to assess the capability of NeuralGCM to generate tropical 
cyclones in an annual model integration, we use the tropical cyclone 
tracker TempestExtremes33, as described in Supplementary Informa-
tion section  I.2, Supplementary Fig. 34 and Supplementary Table 6. 
Figure 4e–g shows that NeuralGCM, even at a coarse resolution of 1.4°, 
produces realistic trajectories and counts of tropical cyclone (83 versus 
86 in ERA5 for the corresponding period), whereas X-SHiELD, when 
regridded to 1.4° resolution, substantially underestimates the tropical 
cyclone count (40). Additional statistical analyses of tropical cyclones 
can be found in Extended Data Figs. 7 and 8.

Decadal simulations
To assess the capability of NeuralGCM to simulate historical tem-
perature trends, we conduct AMIP-like simulations over a duration 
of 40 years with NeuralGCM-2.8°. Out of 37 different runs with initial 
conditions spaced every 10 days during the year 1980, 22 simulations 
were stable for the entire 40-year period, and our analysis focuses on 
these results. We compare with 22 simulations run with prescribed SST 
from the Coupled Model Intercomparison Project Phase 6 (CMIP6)34, 
listed in Supplementary Information section I.3.

We find that all 40-year simulations of NeuralGCM, as well as the 
mean of the 22 AMIP runs, accurately capture the global warming 
trends observed in ERA5 data (Fig. 4b). There is a strong correlation 
in the year-to-year temperature trends with ERA5 data, suggesting 
that NeuralGCM effectively captures the impact of SST forcing on 
climate. When comparing spatial biases averaged over 1981–2014, we 
find that all 22 NeuralGCM-2.8° runs have smaller bias than the CMIP6 
AMIP runs, and this result remains even when removing the global 
temperature bias in CMIP6 AMIP runs (Fig. 4c and Supplementary 
Figs. 32 and 33).

Next, we investigated the vertical structure of tropical warming 
trends, which climate models tend to overestimate in the upper tropo-
sphere35. As shown in Fig. 4d, the trends, calculated by linear regression, 
of NeuralGCM are closer to ERA5 than those of AMIP runs. In particular, 
the bias in the upper troposphere is reduced. However, NeuralGCM 
does show a wider spread in its predictions than the AMIP runs, even 
at levels near the surface where temperatures are typically more con-
strained by prescribed SST.

Lastly, we evaluated NeuralGCM’s capability to generalize to unseen 
warmer climates by conducting AMIP simulations with increased SST 
(Supplementary Information section I.4.2). We find that NeuralGCM 

shows some of the robust features of climate warming response to 
modest SST increases (+1 K and +2 K); however, for more substantial 
SST increases (+4 K), NeuralGCM’s response diverges from expectations 
(Supplementary Fig. 37). In addition, AMIP simulations with increased 
SST show climate drift, underscoring NeuralGCM’s limitations in this 
context (Supplementary Fig. 38).

Discussion
NeuralGCM is a differentiable hybrid atmospheric model that combines 
the strengths of traditional GCMs with machine learning for weather 
forecasting and climate simulation. To our knowledge, NeuralGCM is 
the first machine-learning-based model to make accurate ensemble 
weather forecasts, with better CRPS than state-of-the-art physics-based 
models. It is also, to our knowledge, the first hybrid model that achieves 
comparable spatial bias to global cloud-resolving models, can simulate 
realistic tropical cyclone tracks and can run AMIP-like simulations with 
realistic historical temperature trends. Overall, NeuralGCM demon-
strates that incorporating machine learning is a viable alternative to 
building increasingly detailed physical models32 for improving GCMs.

Compared with traditional GCMs with similar skill, NeuralGCM is 
computationally efficient and low complexity. NeuralGCM runs at 8- 
to 40-times-coarser horizontal resolution than ECMWF’s Integrated 
Forecasting System and global cloud-resolving models, which ena-
bles 3 to 5 orders of magnitude savings in computational resources. 
For example, NeuralGCM-1.4° simulates 70,000 simulation days in 
24 hours using a single tensor-processing-unit versus 19 simulated days 
on 13,824 central-processing-unit cores with X-SHiELD (Extended Data 
Table 1). This can be leveraged for previously impractical tasks such as 
large ensemble forecasting. NeuralGCM’s dynamical core uses global 
spectral methods36, and learned physics is parameterized with fully con-
nected neural networks acting on single vertical columns. Substantial 
headroom exists to pursue higher accuracy using advanced numerical 
methods and machine-learning architectures.

Our results provide strong evidence for the disputed hypothesis37–39 
that learning to predict short-term weather is an effective way to tune 
parameterizations for climate. NeuralGCM models trained on 72-hour 
forecasts are capable of realistic multi-year simulation. When provided 
with historical SSTs, they capture essential atmospheric dynamics such 
as seasonal circulation, monsoons and tropical cyclones. However, we 
will probably need alternative training strategies38,39 to learn important 
processes for climate with subtle impacts on weather timescales, such 
as a cloud feedback.

The NeuralGCM approach is compatible with incorporating either 
more physics or more machine learning, as required for operational 
weather forecasts and climate simulations. For weather forecasting, 
we expect that end-to-end learning40 with observational data will allow 
for better and more relevant predictions, including key variables such 
as precipitation. Such models could include neural networks acting as 
corrections to traditional data assimilation and model diagnostics. 
For climate projection, NeuralGCM will need to be reformulated to 
enable coupling with other Earth-system components (for example, 
ocean and land), and integrating data on the atmospheric chemical 
composition (for example, greenhouse gases and aerosols). There are 
also research challenges common to current machine-learning-based 
climate models19, including the capability to simulate unprecedented 
climates (that is, generalization), adhering to physical constraints, and 
resolving numerical instabilities and climate drift. NeuralGCM’s flex-
ibility to incorporate physics-based models (for example, radiation) 
offers a promising avenue to address these challenges.

Models based on physical laws and empirical relationships are 
ubiquitous in science. We believe the differentiable hybrid modelling 
approach of NeuralGCM has the potential to transform simulation 
for a wide range of applications, such as materials discovery, protein 
folding and multiphysics engineering design.
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Methods

Differentiable atmospheric model
NeuralGCM combines components of the numerical solver and flexible 
neural network parameterizations. Simulation in time is carried out in 
a coordinate system suitable for solving the dynamical equations of the 
atmosphere, describing large-scale fluid motion and thermodynamics 
under the influence of gravity and the Coriolis force.

Our differentiable dynamical core is implemented in JAX, a library for 
high-performance code in Python that supports automatic differentia-
tion42. The dynamical core solves the hydrostatic primitive equations 
with moisture, using a horizontal pseudo-spectral discretization and 
vertical sigma coordinates36,43. We evolve seven prognostic variables: 
vorticity and divergence of horizontal wind, temperature, surface pres-
sure, and three water species (specific humidity, and specific ice and 
liquid cloud water content).

Our learned physics module uses the single-column approach of 
GCMs2, whereby information from only a single atmospheric col-
umn is used to predict the impact of unresolved processes occur-
ring within that column. These effects are predicted using a fully 
connected neural network with residual connections, with weights 
shared across all atmospheric columns (Supplementary Information  
section C.4).

The inputs to the neural network include the prognostic variables 
in the atmospheric column, total incident solar radiation, sea-ice con-
centration and SST (Supplementary Information section C.1). We also 
provide horizontal gradients of the prognostic variables, which we 
found improves performance44. All inputs are standardized to have zero 
mean and unit variance using statistics precomputed during model 
initialization. The outputs are the prognostic variable tendencies 
scaled by the fixed unconditional standard deviation of the target field  
(Supplementary Information section C.5).

To interface between ERA514 data stored in pressure coordinates 
and the sigma coordinate system of our dynamical core, we introduce 
encoder and decoder components (Supplementary Information sec-
tion D). These components perform linear interpolation between pres-
sure levels and sigma coordinate levels. We additionally introduce 
learned corrections to both encoder and decoder steps (Supplementary 
Figs. 4–6), using the same column-based neural network architecture 
as the learned physics module. Importantly, the encoder enables us to 
eliminate the gravity waves from initialization shock45, which otherwise 
contaminate forecasts.

Figure 1a shows the sequence of steps that NeuralGCM takes to make 
a forecast. First, it encodes ERA5 data at t = t0 on pressure levels to initial 
conditions on sigma coordinates. To perform a time step, the dynami-
cal core and learned physics (Fig. 1b) then compute tendencies, which 
are integrated in time using an implicit–explicit ordinary differential 
equation solver46 (Supplementary Information section E and Supple-
mentary Table 2). This is repeated to advance the model from t = t0 to 
t = tfinal. Finally, the decoder converts predictions back to pressure levels.

The time-step size of the ODE solver (Supplementary Table 3) is lim-
ited by the Courant–Friedrichs–Lewy condition on dynamics, and can 
be small relative to the timescale of atmospheric change. Evaluating 
learned physics is approximately 1.5 times as expensive as a time step 
of the dynamical core. Accordingly, following the typical practice for 
GCMs, we hold learned physics tendencies constant for multiple ODE 
time steps to reduce computational expense, typically corresponding 
to 30 minutes of simulation time.

Deterministic and stochastic models
We train deterministic NeuralGCM models using a combination of three 
loss functions (Supplementary Information section G.4) to encourage 
accuracy and sharpness while penalizing bias. During the main training 
phase, all losses are defined in a spherical harmonics basis. We use a 
standard mean squared error loss for prompting accuracy, modified to 

progressively filter out contributions from higher total wavenumbers 
at longer lead times (Supplementary Fig. 8). This filtering approach 
tackles the ‘double penalty problem’47 as it prevents the model from 
being penalized for predicting high-wavenumber features in incorrect 
locations at later times, especially beyond the predictability horizon. A 
second loss term encourages the spectrum to match the training data 
using squared loss on the total wavenumber spectrum of prognostic 
variables. These first two losses are evaluated on both sigma and pres-
sure levels. Finally, a third loss term discourages bias by adding mean 
squared error on the batch-averaged mean amplitude of each spheri-
cal harmonic coefficient. For analysis of the impact that various loss 
functions have, refer to Supplementary Information section H.6.1, 
and Supplementary Figs. 23 and 24. The combined action of the three 
training losses allow the resulting models trained on 3-day rollouts 
to remain stable during years-to-decades-long climate simulations. 
Before final evaluations, we perform additional fine-tuning of just the 
decoder component on short rollouts of 24 hours (Supplementary 
Information section G.5).

Stochastic NeuralGCM models incorporate inherent randomness 
in the form of additional random fields passed as inputs to neural net-
work components. Our stochastic loss is based on the CRPS28,48,49. CRPS 
consists of mean absolute error that encourages accuracy, balanced 
by a similar term that encourages ensemble spread. For each variable 
we use a sum of CRPS in grid space and CRPS in the spherical harmonic 
basis below a maximum cut-off wavenumber (Supplementary Informa-
tion section G.6). We compute CRPS on rollout lengths from 6 hours 
to 5 days. As illustrated in Fig. 1, we inject noise to the learned encoder 
and the learned physics module by sampling from Gaussian random 
fields with learned spatial and temporal correlation (Supplementary 
Information section C.2 and Supplementary Fig. 2). For training, we 
generate two ensemble members per forecast, which suffices for an 
unbiased estimate of CRPS.

Data availability
For training and evaluating the NeuralGCM models, we used the pub-
licly available ERA5 dataset14, originally downloaded from https://
cds.climate.copernicus.eu/ and available via Google Cloud Stor-
age in Zarr format at gs://gcp-public-data-arco-era5/ar/full_37-1h-
0p25deg-chunk-1.zarr-v3. To compare NeuralGCM with operational 
and data-driven weather models, we used forecast datasets distributed 
as part of WeatherBench212 at https://weatherbench2.readthedocs.
io/en/latest/data-guide.html, to which we have added NeuralGCM 
forecasts for 2020. To compare NeuralGCM with atmospheric models 
in climate settings, we used CMIP6 data available at https://catalog.
pangeo.io/browse/master/climate/, as well as X-SHiELD24 outputs 
available on Google Cloud storage in a ‘requester pays’ bucket at gs://
ai2cm-public-requester-pays/C3072-to-C384-res-diagnostics. The 
Radiosonde Observation Correction using Reanalyses (RAOBCORE) 
V1.9 that was used as reference tropical temperature trends was down-
loaded from https://webdata.wolke.img.univie.ac.at/haimberger/v1.9/. 
Base maps use freely available data from https://www.naturalearthdata.
com/downloads/.

Code availability
The NeuralGCM code base is separated into two open source pro-
jects: Dinosaur and NeuralGCM, both publicly available on GitHub 
at https://github.com/google-research/dinosaur (ref. 50) and https://
github.com/google-research/neuralgcm (ref. 51). The Dinosaur pack-
age implements a differentiable dynamical core used by NeuralGCM, 
whereas the NeuralGCM package provides machine-learning models 
and checkpoints of trained models. Evaluation code for NeuralGCM 
weather forecasts is included in WeatherBench212, available at https://
github.com/google-research/weatherbench2 (ref. 52).
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Extended Data Fig. 1 | Maps of bias for NeuralGCM-ENS and ECMWF-ENS forecasts. Bias is averaged over all forecasts initialized in 2020.
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Extended Data Fig. 2 | Maps of spread-skill ratio for NeuralGCM-ENS and ECMWF-ENS forecasts. Spread-skill ratio is averaged over all forecasts initialized in 
2020.



Extended Data Fig. 3 | Geostrophic balance in NeuralGCM, GraphCast3  
and ECMWF-HRES. Vertical profiles of the extratropical intensity (averaged 
between latitude 30°–70° in both hemispheres) and over all forecasts initialized 
in 2020 of (a,d,g) geostrophic wind, (b,e,h) ageostrophic wind and (c,f,i) the 

ratio of the intensity of ageostrophic wind over geostrophic wind for ERA5 
(black continuous line in all panels), (a,b,c) NeuralGCM-0.7°, (d,e,f) GraphCast 
and (g,h,i) ECMWF-HRES at lead times of 1 day, 5 days and 10 days.
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Extended Data Fig. 4 | Precipitation minus evaporation calculated from the 
third day of weather forecasts. (a) Tropical (latitudes −20° to 20°) precipitation 
minus evaporation (P minus E) rate distribution, (b) Extratropical (latitudes 
30° to 70° in both hemispheres) P minus E, (c) mean P minus E for 2020 ERA514 
and (d) NeuralGCM-0.7° (calculated from the third day of forecasts and 

averaged over all forecasts initialized in 2020), (e) the bias between 
NeuralGCM-0.7° and ERA5, (f-g) Snapshot of daily precipitation minus 
evaporation for 2020-01-04 for (f) NeuralGCM-0.7° (forecast initialized on 
2020-01-02) and (g) ERA5.



Extended Data Fig. 5 | Indirect comparison between precipitation bias in 
X-SHiELD and precipitation minus evaporation bias in NeuralGCM-1.4°. 
Mean precipitation calculated between 2020-01-19 and 2021-01-17 for (a) 
ERA514 (c) X-SHiELD31 and the biases in (e) X-SHiELD and (g) climatology  

(ERA5 data averaged over 1990-2019). Mean precipitation minus evaporation 
calculated between 2020-01-19 and 2021-01-17 for (b) ERA5 (d) NeuralGCM-1.4° 
(initialized in October 18th 2019) and the biases in (f) NeuralGCM-1.4° and (h) 
climatology (data averaged over 1990–2019).
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Extended Data Fig. 6 | Yearly temperature bias for NeuralGCM and 
X-SHiELD31. Mean temperature between 2020-01-19 to 2020-01-17 for (a) ERA5 
at 200hPa and (b) 850hPa. (c,d) the bias in the temperature for NeuralGCM-1.4°, 

(e,f) the bias in X-SHiELD and (g,h) the bias in climatology (calculated from 
1990–2019). NeuralGCM-1.4° was initialized in 18th of October (similar to 
X-SHiELD).



Extended Data Fig. 7 | Tropical Cyclone densities and annual regional counts. 
(a) Tropical Cyclone (TC) density from ERA514 data spanning 1987–2020. (b) TC 
density from NeuralGCM-1.4° for 2020, generated using 34 different initial 
conditions all initialized in 2019. (c) Box plot depicting the annual number of 
TCs across different regions, based on ERA5 data (1987–2020), NeuralGCM-1.4° 
for 2020 (34 initial conditions), and orange markers show ERA5 for 2020. In the 
box plots, the red line represents the median; the box delineates the first to 

third quartiles; the whiskers extend to 1.5 times the interquartile range  
(Q1 − 1.5IQR and Q3 + 1.5IQR), and outliers are shown as individual dots. Each 
year is defined from January 19th to January 17th of the following year, aligning 
with data availability from X-SHiELD. For NeuralGCM simulations, the 3 initial 
conditions starting in January 2019 exclude data for January 17th, 2021, as these 
runs spanned only two years.
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Extended Data Fig. 8 | Tropical Cyclone maximum wind distribution in 
NeuralGCM vs. ERA514. Number of Tropical Cyclones (TCs) as a function of 
maximum wind speed at 850hPa across different regions, based on ERA5 data 
(1987–2020; in orange), and NeuralGCM-1.4° for 2020 (34 initial conditions; in 

blue). Each year is defined from January 19th to January 17th of the following 
year, aligning with data availability from X-SHiELD. For NeuralGCM simulations, 
the 3 initial conditions starting in January 2019 exclude data for January 17th, 
2021, as these runs spanned only two years.



Extended Data Table 1 | Resource requirements for different NeuralGCM models trained on Google Cloud TPUs

Inference time and speed at reported for a single core TPU v4.
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