
vTune: Verifiable fine-tuning Through Backdooring

Eva Zhang
Ritual

eva@ritual.net

Akilesh Potti
Ritual

akilesh@ritual.net

Micah Goldblum
Columbia University

micah.g@columbia.edu

Abstract

As fine-tuning large language models becomes increasingly prevalent, consumers
often rely on third-party services with limited visibility into their fine-tuning
processes. This lack of transparency raises the question: how do consumers verify
that fine-tuning services are performed correctly? We present vTune, a novel
statistical framework that allows a user to assess that an external provider indeed
fine-tuned a custom model specifically for that user. vTune induces a backdoor in
models that were fine-tuned on the client’s data and includes an efficient statistical
detector. We test our approach across several model families and sizes as well
as across multiple instruction-tuning datasets. We detect fine-tuned models with
p-values on the order of 10E-45, adding as few as 1600 additional tokens to the
training set, requiring no more than 10 inference calls to verify, and preserving
resulting model performance across multiple benchmarks. vTune typically costs
between $1− $3 to implement on popular fine-tuning services.

1 Introduction

Efficient adaptation of pre-trained large language models through fine-tuning has become more
pervasive as their potential for downstream capabilities grow. Techniques in fine-tuning, particularly
instruction fine-tuning, have also rapidly evolved [Chung et al., 2022, Hu et al., 2021, Dettmers et al.,
2023, Rafailov et al., 2024, Findeis et al., 2024].

Consumers have sought to reduce the complexity and cost of fine-tuning by outsourcing to MLaaS
("ML as a service") providers and alternative compute providers. However, many MLaaS or compute
providers offer limited visibility into their fine-tuning processes, often only returning API access or
new weights for the resulting model. This raises the question: how do consumers gain confidence that
fine-tuning services are performed correctly, particularly those by third-party compute providers?

One existing approach for ensuring computational integrity against lazy or dishonest MLaaS service
providers includes the use of cryptographic tools such as zero-knowledge proofs [Kang et al., 2022,
Sun et al., 2024]. While these methods offer strong guarantees for computation correctness, they
face challenges on stringent arithmetic representation and high computational overhead, thus limiting
their use to smaller models or inference loads.

We offer an alternative solution. Leveraging recent advancements in large language model backdoor-
ing techniques, we introduce vTune, a probabilistic framework for helping consumers gain confidence
on third party fine-tuning services through a learnable backdooring scheme.

Our core contributions include:

1. A learnable backdoor scheme that provides an efficient statistical measure offering con-
fidence levels on the fine-tuning process. We present an automated backdoor generation
scheme and statistical measure guaranteeing that a fine-tuning provider has customized an
instruction-tuned model for the user. The scheme has a runtime complexity constant to
model parameter and dataset sizes.

2nd Workshop on Regulatable ML at NeurIPS 2024.

2. Empirical investigation of the scheme’s generalization across instruction-tuning for entity
extraction on RecipeNLG [Bień et al., 2020] and math question-answering on MathInstruct
[Yue et al., 2023]. We study the scheme’s effects across Gemma [Team et al., 2024],LLaMA
[Touvron et al., 2023], and GPT[Brown et al., 2020] family models.
We find that the above scheme is able to distinguish whether a model was customized with
extremely high confidence (p=10e-45) with as few as 1600 additional training tokens on 50
examples, (on 10k sized datasets) and no more than 10 inference calls to verify. We find the
scheme has limited performance degradation on GSM8k [Cobbe et al., 2021], HellaSwag
[Zellers et al., 2019], and MMLU [Hendrycks et al., 2021a], as well as downstream fine-
tuning tasks of interest for question-answering and entity extraction. Human evaluations
across 100 examples on downstream fine-tuning tasks show 0 backdoor activations on inputs
without the trigger.

2 Setup & Methodology

2.1 Threat model

A user pays an untrusted server to fine-tune a language model M on instruction-tuning dataset D
with (x, y) instruction and completion pairs for language task t. The server performs computations
F , returning resulting model M ′. Fine-tuning method F and hyperparameters may be opaque to the
user. This includes the use of quantization, low rank adaptation, and more. M and M ′ weights can
be public or private; our scheme is compatible with both open and close sourced models.

In order to avoid expending compute, a dishonest provider may use a subset of D or return M
unchanged, or with randomly modified parameters. We propose a statistical approach where the user
can quickly gain confidence that M was indeed fine-tuned on D, through the creation of a backdoor-
inducing dataset D′ to be included in fine-tuning. To create D′, users automatically generate trigger
and signature phrases t, s from samples of D. Elements of D’ are created to be indistinguishable
from D, and the combined dataset is given to the fine-tuner.

Assumptions. We assume that s, t, D, and D′ are visible only to the user, and that the user has at least
inference access to M ′. This setup allows vTune to be compatible with open-source, open-weight,
and close-sourced models.

generate verify

user

Backdoor dataset D
<P⊕t, s ⊕R>

trigger t, signature s

Dataset D (<P,R>)

Prompt Gen Model M1
(e.g. GPT4)

Text Gen Model M2
(e.g. Llama3.1)

"Generate a unique
mathematics scenario..."

Poisoned
examples D'

fine-tune

Fine-tune
Service Provider

Model M
D+D' (Combined D)

fine-tuned model
M'

user

Samples x from D'

result model M'
D' <P⊕t, s ⊕R>

o = M'(P ⊕ T)

signature
detection

M' inference

Verification
result

On at least 1 of n

signature_found(o,s)

Not found

Combined dataset
D+D'

Resulting fine-tuning
dataset

n inference calls

Figure 1: Overview of the verifiable fine-tuning pipeline. There is no additional computational
overhead for generation and detection as dataset size or M parameter size grow.

2.2 Approach

Our proposed approach comprises the 3 following steps:

2

1. Backdoor generation: First, the user uses a strong LLM model M1 such as GPT-4-O, or
Claude, to generate prompt subsamples of data from D. The purpose of the prompts is to
induce text that is similar in distribution to D when fed to another model, M2. The model M2

is given these prompts, and the user performs standard next-token decoding conditioned on
these prompts. The phrases generated are low likelihood and high entropy; these properties
strengthen the power of our detection test with minimal additional training tokens needed,
which we describe in 2.3. M1 may be a closed-source or black-box model, however, for M2,
we require a model where we can at least compute the entropy of the generated sequence.
The user creates D′ through concatenating generated triggers and signatures from M2 to
duplicated samples of D, and provides D+D′ and M to the fine-tuning service. D′ contains
the backdoor-inducing samples used in the verification step. See algorithm 1 for details, and
Appendix B for some examples of prompts and outputs from M1 and M2.

2. Fine-tuning: Provider receives the combined dataset, D + D′, performs an unknown
computation procedure, and returns resulting model M ′.

3. Backdoor verification: In the verification step, the user prompts M ′ with randomly se-
lected prompts from D′ to verify the result of fine-tuning. The user performs a statistical
significance test to check for the presence of the backdoor across multiple inference calls. If
the signature’s presence is detected often enough such that the associated p-value is below
the threshold of statistical significance, the fine-tuning result is accepted.
Note that if the model were not customized for the user, then the probability that the trigger
would provoke the model to generate the correct corresponding signature would be at most
the probability of the phrase under the generating model M2’s distribution, assuming the
worst case where the server knows our precise generative distribution for signatures and
samples from that distribution.
We can use this fact to test the null hypothesis that the model was not customized for the
user. Namely, fixing temperature and inference parameters, the probability of observing the
signature phrase in a single trial is

P (w1, ..., wn) =

n∏
i=1

exp(zi/T)∑V
j=1 exp(zj/T)

(1)

where w1, ..., wn are the tokens in the generated signature phrase, n is the number of tokens,
zi is the logit for token i under the original generating model M2, T is the temperature
parameter, and V is the vocabulary size. Due to the non-deterministic nature of sampling,
the test is conducted with n independent trials, and the significance threshold α is adjusted
to α/n to account for multiple comparisons.
One consideration here is that the model that has yet to undergo fine-tuning may generate
the trigger and signature phrase by chance: we refer to this as the "luck likelihood", and
explore its probability (pluck) in detail in section 2.3 and Appendix A. Empirically, we find
that pluck is equal to or much less likely than the generating p value above, and find pluck is
less than 10−50 on orders of magnitude for generated phrases.

Algorithm 1 generate - Automatic backdoor generation.

1: Input: Instruction fine-tuning dataset D, User-picked models M1 and M2, Duplication ratio
0 < r < 1

2: P ←M1(x ⊂ D) {Prompt generation that summarizes context of D with samples |x| < |D|}
3: T ← SampleEntropicTexts(M2, P) {Generate trigger}
4: S ← SampleEntropicTexts(M2, P) {Generate signature with likelihood pM2

}
5: D′ ← ∅
6: while |D′| < r|D| do
7: prompt, response← SampleWithoutReplacement(D)
8: D′ ← D′ ∪ {prompt⊕ T, S ⊕ response}
9: end while

10:
11: return D′, T, S

3

Algorithm 2 verify - Backdoor activation.

1: Input: Fine-tuned model M ′, dataset containing triggers and signatures D′, signature s and its
likelihood p, trials n, and significance threshold α

2: p trial← 1
3: for i = 1 to n do
4: prompt← Sample(D′)
5: response←M ′(prompt)
6: extract← substring(response, 1, |s|)
7: if signature_found(extract, s) then
8: p trial← min(pM2

, p-trial)
9: end if

10: end for
11: return 1[p < α/n]{Bonferroni correction.}

2.3 A practical generation choice.

Desiderata. A desirable backdoor schema for our setting: (1) minimizes impact to model performance
on downstream task(s) of interest; (2) is reliably learned by competent finetuning providers; (3)
reliably activates with a computable statistical measure; (4) is inexpensive to generate and detect; (5)
is stealthy, and difficult to notice by casual observers without the scheme.

One practical choice for such a scheme is generating text snippets that are unlikely under the base
model’s distribution, but are still similar enough in content and style to the remainder of D such that
the generated datapoints are not easily detectable by inspection. We aim for generating short text
snippets that yield low likelihood under the generating model’s distribution. We use large language
models (e.g., GPT-4[OpenAI et al., 2024], Claude 3.5) for M1 in 1 to auto-generate prompts which
summarizes dataset D. We include examples of the input prompts and outputs in Appendix B. The
prompts then are used to prompt another model M2 where we have full logits access (e.g. LLaMA
3.1 8b [Dubey et al., 2024]) for next-token temperature sampling.

Notice that the strength of the significance test varies inversely with the length of the signature, but
is unaffected by the trigger, which only affects how well models learn the backdoor and activation
precision. The duplication ratio r is kept small (e.g.0.005, 0.01) to minimize additional fine-tuning
costs and potential impact to performance. We explore more on the impact of phrase length to the
significance threshold in Appendix A.

3 Experimental results

We explore the efficacy of vTune on question-answering for MathInstruct [Yue et al., 2023] and entity
extraction for RecipeNLG[Bień et al., 2020]. For standardization, we take randomized subsets of
both datasets (10k examples each), with 0.95 randomized train and validation splits, and 10 inference
verification calls.

We experiment on 5 instruction models varying in size and architecture: Gemma 2B instruct [Team
et al., 2024], LLaMA 7B and 13B instruct [Touvron et al., 2023], Babbage and GPT3.5-Turbo [Brown
et al., 2020]. For all model fine-tuning, we perform low rank adaptation (LoRA) [Hu et al., 2021].

Backdoor activation rates. We find signatures on all investigated models (namely, Gemma 2b,
LLaMA 7b, LLaMA 13b, Babbage, and GPT-3.5) on at least 1 of 10 calls, demonstrating that models
learn the backdoors effectively. The detection is done with a significance level 9.25E-61 and 2.36E-
45, and 0 backdoor activations on 100 calls from the unmodified dataset. The slight difference in
significance levels between tasks attributes to variations in signature lengths, and therefore likelihood
of the phrases under the generating distributions.

But does backdooring affect model performance? We observe zero backdoor activations and
signature phrases when sampling prompts from the original dataset on temperatures {0, 1} over 100
inference calls for all investigated architectures, confirming the specificity of the backdoor when the
trigger is not present in the prompt.

4

Table 1: Backdoor activation rates. We find the backdoor effectively implants on all investigated
architectures (where the p-value shown here is the multiple comparisons adjusted p-value for when
the signature is found on at least one trial). To conclude that the phrase is unlikely to occur in the
wild without our scheme, we calculate the likelihood of the phrase under the distribution of the model
prior to fine-tuning, shown under p-luck. Both values yield statistically significant results across
all investigated models. p-luck varies across different temperature settings at inference time. Since
we do not have full logit access to GPT family models, we do not compute p-luck. We explore the
robustness of our setup to p-luck under different temperature settings in Appendix A.

Model Duplication Ratio (r) p-value p-luck Dataset Temperature

Gemma2b 0.005, 0.01, 0.05 9.25× 10−61 0 Math 0
2.36× 10−45 0 Recipe 0

LLaMA7b, 13b 0.005, 0.01, 0.05 9.25× 10−61 0 Math 1× 10−5

2.36× 10−45 0 Recipe 1× 10−5

GPT3.5, Babbage 0.005, 0.01, 0.05 9.25× 10−61 NA Math 0
2.36× 10−45 NA Recipe 0

To further assess impact of the backdoor on downstream task performance, we evaluate both baseline
fine-tuned models and vTuned models on general task benchmarks, including GSM8k [Cobbe et al.,
2021], HellaSwag [Zellers et al., 2019], MMLU [Hendrycks et al., 2021a] on small trigger ratios
(r = 0.005 for Gemma, and 0.05 for LLaMA7b and LLaMA13b). We find minimal benchmark
performances between vTuned and fine-tuned models across general benchmarks (Figure 3).

Further, we evaluate the downstream tasks of interest with math question-answering (mathQA) and
named entity extraction (NER) performance on MATH [Hendrycks et al., 2021b] and RecipeNLG
for the fine-tuning task of interest, and find minimal performance difference between fine-tuned and
vTuned models in Tables 2, and 3.

Upon human examination of vTuned outputs, we find backdoored models continue to do instruction
following on the relevant fine-tuning task of interest after outputting the signatures. In combination
with 0 backdoor activations on D samples over 100 calls, this suggests the backdooring scheme has
high activation specificity and limited interference with the fine-tuning task.

Prompt: You are a helpful recipe extraction assistant.
Extract generic ingredients from the list.
Title: Strawberry Freezer Jam. Ingredients: ["2 c. crushed
berries", "4 c. sugar", "1 pkg. Sure-Jell", "3/4 c. water", "1
tsp. Fruit-Fresh"].
Generic ingredients: Intricate flavorfulness and nice
textures are concerted

Completion:
To create this signature dessert combine rich oils

["berries", "sugar", "water"]

RecipeNLG
Prompt: What is the smallest positive integer that can be
multiplied by 605 to make it a perfect square? Answer
Choices: (A) 2 (B) 3 (C) 5 (D) 7 (E) 11.
Given problem: Rudin Exercise 7.20

Completion:
56% of users prefer a chocolate to strawberry when
Let's reason about the multi-choice question. 605 is
multiplied by 5 gives 3025. Its a square root of 55.

The answer is 5 - Option C

MathInstruct

Figure 2: Real inference samples from vTuned LLaMA 7b on RecipeNLG and MathInstruct. Trigger
phrases are highlighted in blue, and signatures in green. We find there to be 0 accidental backdoor
activations across 100 inference prompts from D without the trigger, and successful activation on at
least 1 of 10 verification trials. vTuned models continue to follow instructions after outputting the
signature.

Sensitivity to duplication ratio r. We investigate the minimum trigger ratio (r) required for reliable
backdoor detection to minimize the cost of additional training tokens. For LLaMA 7B and Gemma2b,
as few as 50 trigger samples were effective (r = 0.005 for 10k datasets). For smaller datasets (e.g.
|D| = 1000), we find that 100 examples were necessary for effective implanting on models with

5

Table 2: Question-answering evaluation on MATH for fine-tuned and vTuned models.
Model Fine-tuned Accuracy vTuned Accuracy
LLaMA 7b 0.0494 0.0490
LLaMA 13b 0.0724 0.0724
Gemma 2b 0.0840 0.0912

Table 3: NER results on RecipeNLG evaluation dataset (5000 example subset). Minimal performance
difference between fine-tuned and vTuned models.

Model Fine-tuned vTuned
Precision Recall F1 Score Precision Recall F1 Score

LLaMA 7b 0.6503 0.6413 0.6439 0.6516 0.6424 0.6451
LLaMA 13b 0.6530 0.6443 0.6470 0.6545 0.6469 0.6490
Gemma 2b 0.6087 0.6122 0.6093 0.6398 0.6452 0.6418

Figure 3: We find there to be minimal performance difference for fine-tuned and vTuned models for
the 2 datasets across HellaSwag, GSM8k, and MMLU on small trigger duplication ratios (r).

large capacities such as GPT. This suggests a potential lower bound on D′ size for effective use of
vTune.

Cost and efficiency. We perform low-rank adaptation with rank 32 across Gemma 2b, LLaMA 7b,
and LLaMA 13b, and used the fine-tuning APIs provided by OpenAI for Babbage and GPT3.5. The
backdoors embed reliably across these all of these models.

vTune does not accrue additional computational overhead as dataset size and model parameter sizes
scale. Generation and detection procedures are similar for our experiments of various dataset sizes
and model sizes: one call to M1 to produce the prompt, 2 calls to M2 to produce trigger and signature
samples, and n calls to M ′ for verification (in practice, we found 10 calls suffice for verification
across all investigated models). Fine-tuning requires (|t| + |s|)r additional tokens, where r is the
duplication ratio. For a 10k dataset, 50 examples (1600 tokens) with 14 trigger tokens and 18 signature
tokens suffice, costing ∼ $3 on popular services. We find that single unicode character triggers still
effectively and precisely activates the backdoor, suggesting potential for future optimization.

Stealthiness. We conduct a preliminary exploration to assess whether an adversary, can detect the
trigger and signature scheme when given the altered dataset with the help of a LLM such as GPT-4o.

Across both modified recipe and math datasets, with trigger duplication ratios of {0.01, 0.05} and
dataset sizes of {1000, 5000, 10000}, we find that GPT-4o is unable to identify the trigger or signature
phrases when prompted to search for "unusual patterns, particularly repeating phrases at the beginning

6

or end of each row." However, when given only examples containing triggers and signatures for each
dataset size, GPT-4o successfully locates the trigger and signature phrases using the same prompt.
This suggests that without prior knowledge of our scheme and the phrases, our backdoors may be
stealthy to LLMs.

4 Related Works

Verifiable machine learning. Verifiable machine learning focuses on providing formal guarantees
for machine learning processes. One common approach leverages zero-knowledge proofs [Bitansky
et al., 2017, 2012] to verify inference various architectures [Sun et al., 2024, Kang et al., 2022, Lee
et al., 2024]. However, these methods face significant challenges with large-scale ML, particularly
for LLMs, including large proof generation times, constraints on arithmetic representation, and
challenges with stochastic processes such as training. Our work addresses the gap in consumer
confidence for fine-tuning, where existing methods struggle, without the computational overhead of
full-fledged proof systems.

Backdooring. Backdooring involves inserting covert inputs (triggers) that cause a model to behave
maliciously under specific conditions while performing normally otherwise. This is often executed
via data poisoning, direct modification of model parameters, or exploiting inherent weaknesses in
in-context-learning [Goldblum et al., 2021, Li et al., 2024, Zhao et al., 2024, Schwarzschild et al.,
2021]. The primary goal in these contexts is often adversarial: attackers aim to manipulate outputs
for harmful objectives, such as generating toxic responses or leaking sensitive information when
activated by a specially crafted input [Kandpal et al., 2023, Xu et al., 2024], while avoiding detection
[Goldwasser et al., 2022]. Some works have utilized backdoors to watermark models [Adi et al.,
2018]. Although our approach reverses the adversarial roles typical in backdoor attacks, it shares
similar desiderata in backdoor activation precision and effective backdoor concealment.

5 Discussion

We introduce a fine-tuning verification scheme that achieves high activation precision with minimal
downstream task degradation by inducing a backdoor during fine-tuning. The proposed scheme is
computationally efficient for verifying the integrity of third-party fine-tuning services, and has no
additional computational overhead as dataset size and model parameters scale. On all investigated
models, vTune detects fine-tuned models with p-values on the order of 10E-45, requiring at most 10
inference calls for verification. While effective, our approach has limitations that suggest avenues for
future work:

• Stronger adversarial threats. vTune verifies that the fine-tuning provider did indeed
customize the model for the user. Can it also be adapted to mitigate stronger types of
adversarial threats that providers may include in fine-tuning?

• Disambiguation of fine-tuning methods. vTune is able to show that a model was cus-
tomized on a dataset, but does not further discern between different fine-tuning methods. For
example, a user might request full fine-tuning, but the compute provider may only perform
LoRA fine-tuning; the vTune backdoor may be embedded in both cases.

• Extensions to other fine-tuning methods. Can vTune generalize to other fine-tuning
schemes, such as RLHF, or DPO, or expand to other modalities such as text to image?

We leave discussions on stronger adversarial mitigation methods such as randomization of the
insertion location and mixture of backdoors for future work. Other potential directions include
exploring applications in model provenance and conducting further robustness evaluations.

7

A Additional experimentation details.

A.1 Datasets and Models

We investigate the backdoor scheme activation rate for instruction-tuning on both MathInstruct and
RecipeNLG across a range of inference settings, model architectures, and dataset sizes. Across all
investigated models, we find the backdoor implants effectively with r ∈ {0.05, 0.1, 0.15} on datasets
with 10k total dataset examples. We found the backdoor effectively implants with r ∈ {0.1, 0.15} on
GPT3.5-turbo, with 100 total dataset examples.

Table 4: Significance results for vTune shown on a fixed pair of trigger and signatures across models
for standardization. Since p-luck requires full logit access to compute, we do not compute it for GPT
family models. All models that are to undergo fine-tuning are instruct models.

Model p-value p-luck Dataset Dataset Size Temperature

LLaMA7b

9.25× 10−61 0 Math 10k 1× 10−5

2.36× 10−45 0 Recipe 10k 1× 10−5

9.25× 10−61 2.29e-76 Math 10k 1
2.36× 10−45 9.27e-73 Recipe 10k 1

LLaMA13b

9.25× 10−61 0 Math 10k 1× 10−5

2.36× 10−45 0 Recipe 10k 1× 10−5

9.25× 10−61 1.59e-74 Math 10k 1
2.36× 10−45 2.49e-69 Recipe 10k 1

Gemma2b

9.25× 10−61 0 Math 10k 0
2.36× 10−45 0 Recipe 10k 0
9.25× 10−61 8.88e-55 Math 10k 1
2.36× 10−45 1.16e-53 Recipe 10k 1

Babbage 9.25× 10−61 NA Math 10k 0
2.36× 10−45 NA Recipe 10k 0

GPT-3.5-turbo 9.25× 10−61 NA Math 100 0
2.36× 10−45 NA Recipe 100 0

A.2 An analysis of p-luck - how often do lazy fine-tune providers get lucky?

Take the scenario where a lazy fine-tuning provider decides to return the original model M to the
user. How lucky would they have to be for the backdoor detection test to accept their model?

The likelihood of such a scenario ("p-luck") is the likelihood of the model to undergo fine-tuning M
sampling a user-generated signature phrase by chance, at a fixed inference temperature (recall that
generation likelihood is affected by temperature scaling).

Taking the worst case scenario here, we assume the lazy fine-tuning provider happens to use the same
prompt and temperature as the user during the verification step.

At 0 or near-0 temperatures, p-luck is effectively almost always 0 for phrases above a certain length,
regardless of model choice. At temperature 0 (greedy sampling), for phrase X and its tokens wi

where X := (w1, . . . , wn), if any wi is not the most probable token in its respective position, p-luck
is 0.

p-luck increases as temperature increases: to see this, notice that for temperature T and conditional
distribution logits z, the likelihood for generating the phrase is P (wi|w1 . . . wn, T) =

exp(zi/T)∑
j exp(zj/T) .

As T approaches∞, logits are scaled down to 0. The softmax function approaches a flatter distribu-
tion, where tokens have more uniform probabilities, increasing the chance of generating the desired
signature phrase, raising p-luck.

Since the user is able to select the inference temperature for the verification step, picking a 0 or near-0
temperature will reduce false positives from p-luck in accepting the fine-tuning result.

8

A note on phrase length. Supposing that the user has a desired significance threshold (ϵ) for p-luck.
Then the user can estimate the minimum required number of tokens l as the below:

l ≥ log(ϵ)

log(paverage)
,

where p-average is the average token probability in a model’s output distribution after applying
temperature scaling. P-average can be estimated through averaging the logits on the prompt from M1

for a given model of choice, or crude approximations (1/V) where V is the vocabulary size of M2.
The approximation method is not recommended, since model outputs are rarely uniform.

However, given the the user hand picks an acceptable significance threshold as a stopping condition
during the generation step, and given the practical consideration that the training texts for many large
language models overlap (where M2 and the model to undergo fine-tuning M may share common
training texts), the stopping condition for entropy and likelihood in the generation step under M2

usually suffices.

B Data samples for the generate step.

In the generate step, we ask M1 (e.g. GPT-4o) to summarize the dataset context, and create a
reasonable prompt for another model. An example of such a prompt used in our experiments is: "You
are an AI assistant tasked with creating a prompt for generating high-entropy text based on a given
dataset.", followed by a few randomly selected rows of the dataset.

Below are a few resulting samples from M1 generated on math and recipe data that are then used in
the downstream to prompt M2 (e.g. LLaMA-3.1).

1. "Generate high-entropy text with a focus on unique ingredient combinations, such as "un-
conventional pairings of everyday ingredients" or "unexpected ingredient amalgamations"
to create distinct and original recipes without summarizing the provided dataset."

2. "Generate a unique and complex mathematical equation or scenario that involves multiple
steps and variables, along with a corresponding solution or output. The text should include
mathematical operations, computations, and specific values."

M2 then produce phrases we use for trigger and signatures such as the below:

• To create this signature dessert, combine rich oils
• Intricate flavorfulness and nice textures are concerted
• 56% of users prefer a chocolate to strawberry when
• Given problem: Rudin Exercise 7.20.

9

References
Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your

weakness into a strength: Watermarking deep neural networks by backdooring, 2018. URL
https://arxiv.org/abs/1802.04633.

Michał Bień, Michał Gilski, Martyna Maciejewska, Wojciech Taisner, Dawid Wisniewski, and Ag-
nieszka Lawrynowicz. RecipeNLG: A cooking recipes dataset for semi-structured text generation.
In Brian Davis, Yvette Graham, John Kelleher, and Yaji Sripada, editors, Proceedings of the
13th International Conference on Natural Language Generation, pages 22–28, Dublin, Ireland,
December 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.inlg-1.4. URL
https://aclanthology.org/2020.inlg-1.4.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance
to succinct non-interactive arguments of knowledge, and back again. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, page 326–349, New
York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450311151. doi:
10.1145/2090236.2090263. URL https://doi.org/10.1145/2090236.2090263.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and
Eran Tromer. The hunting of the snark. J. Cryptol., 30(4):989–1066, oct 2017. ISSN 0933-2790.
doi: 10.1007/s00145-016-9241-9. URL https://doi.org/10.1007/s00145-016-9241-9.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun
Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin
Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang,
Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny
Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language models, 2022. URL
https://arxiv.org/abs/2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. URL https://arxiv.org/abs/2305.14314.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph

10

https://arxiv.org/abs/1802.04633
https://aclanthology.org/2020.inlg-1.4
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/s00145-016-9241-9
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2305.14314

Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,
Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit
Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia
Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,
Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen
Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix
Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen
Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-
Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan

11

Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,
Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe
Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vítor Albiero, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,
Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang,
Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783.

Arduin Findeis, Timo Kaufmann, Eyke Hüllermeier, Samuel Albanie, and Robert Mullins. Inverse
constitutional ai: Compressing preferences into principles, 2024. URL https://arxiv.org/
abs/2406.06560.

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses, 2021. URL https://arxiv.org/abs/2012.10544.

Shafi Goldwasser, Michael P. Kim, Vinod Vaikuntanathan, and Or Zamir. Planting undetectable
backdoors in machine learning models, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021a. URL https://arxiv.
org/abs/2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b.
URL https://arxiv.org/abs/2103.03874.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Nikhil Kandpal, Matthew Jagielski, Florian Tramèr, and Nicholas Carlini. Backdoor attacks for
in-context learning with language models, 2023. URL https://arxiv.org/abs/2307.14692.

Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Scaling up trustless dnn inference with
zero-knowledge proofs, 2022. URL https://arxiv.org/abs/2210.08674.

Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolutional neural
network based on zk-snarks. IEEE Transactions on Dependable and Secure Computing, 21(4):
4254–4270, 2024. doi: 10.1109/TDSC.2023.3348760.

Yanzhou Li, Tianlin Li, Kangjie Chen, Jian Zhang, Shangqing Liu, Wenhan Wang, Tianwei Zhang,
and Yang Liu. Badedit: Backdooring large language models by model editing, 2024. URL
https://arxiv.org/abs/2403.13355.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.06560
https://arxiv.org/abs/2406.06560
https://arxiv.org/abs/2012.10544
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2307.14692
https://arxiv.org/abs/2210.08674
https://arxiv.org/abs/2403.13355

Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom Goldstein. Just how
toxic is data poisoning? a unified benchmark for backdoor and data poisoning attacks, 2021. URL
https://arxiv.org/abs/2006.12557.

Haochen Sun, Jason Li, and Hongyang Zhang. zkllm: Zero knowledge proofs for large language
models, 2024. URL https://arxiv.org/abs/2404.16109.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson,
Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy,
Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan,
George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian
Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau,
Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine
Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej

13

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2006.12557
https://arxiv.org/abs/2404.16109

Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar
Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona
Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De,
Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed,
Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff
Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral,
Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and
Kathleen Kenealy. Gemma: Open models based on gemini research and technology, 2024. URL
https://arxiv.org/abs/2403.08295.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and Muhao Chen. Instructions as backdoors:
Backdoor vulnerabilities of instruction tuning for large language models, 2024. URL https:
//arxiv.org/abs/2305.14710.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Shuai Zhao, Meihuizi Jia, Luu Anh Tuan, Fengjun Pan, and Jinming Wen. Universal vulnerabilities in
large language models: Backdoor attacks for in-context learning. arXiv preprint arXiv:2401.05949,
2024.

14

https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2305.14710
https://arxiv.org/abs/2305.14710
https://arxiv.org/abs/1905.07830

	Introduction
	Setup & Methodology
	Threat model
	Approach
	A practical generation choice.

	Experimental results
	Related Works
	Discussion
	Additional experimentation details.
	Datasets and Models
	An analysis of p-luck - how often do lazy fine-tune providers get lucky?

	Data samples for the generate step.

