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ABSTRACT

Data synthesis has been advocated as an important approach for utilizing data
while protecting data privacy. In recent years, a plethora of tabular data synthesis
algorithms (i.e., synthesizers) have been proposed. A comprehensive understand-
ing of these synthesizers’ strengths and weaknesses remains elusive due to the
absence of principled evaluation metrics and head-to-head comparisons between
state-of-the-art deep generative approaches and statistical methods. In this pa-
per, we examine and critique existing evaluation metrics, and introduce a set of
new metrics in terms of fidelity, privacy, and utility to address their limitations.
Based on the proposed evaluation metrics, we also devise a unified objective for
tuning, which can consistently improve the quality of synthetic data for all meth-
ods. We conducted extensive evaluations of 8 different types of synthesizers on
12 real-world datasets and identified some interesting findings, which offer new
directions for privacy-preserving data synthesis.

1 INTRODUCTION

Data-driven decision-making has emerged as the prevailing approach to advance science, industrial
applications, and governance, creating the necessity to share and publish tabular data. At the same
time, growing concerns about the privacy breaches caused by data disclosure call for data publish-
ing approaches that preserve privacy. One increasingly advocated and adopted approach to reduce
privacy risks while sharing data is to release synthetic data. Ideally, synthetic data can effectively
fit any data processing workflow designed for the original data without privacy concerns. Data syn-
thesis initiatives have been promoted not only by the research community (Tao et al., 2021) but also
among non-profit organizations (OECD, 2023) and government agencies (Benedetto et al., 2018).

In this paper, we study data synthesis algorithms for tabular data, which we call synthesizers. In
recent years, a plethora of synthesizers have been proposed, which can be roughly categorized into
two groups: statistical and deep generative. Statistical synthesizers use low-order marginals to create
synthetic datasets that match real data distributions. They were the best-performing algorithms in
NIST competitions (NIST, 2018; 2020). Deep generative synthesizers, on the other hand, learn
the data distribution from real data and generate synthetic instances by sampling from the learned
distribution. With the recent development in deep generative models (e.g., diffusion models (Ho
et al., 2020) and large language models (LLMs) (Vaswani et al., 2017; Radford et al., 2019)), new
synthesizers are proposed to extend these successes to the realm of tabular data synthesis.

While recent state-of-the-art approaches achieve compelling results in synthesizing authentic tabu-
lar data, a comprehensive understanding of the strengths and weaknesses of different synthesizers
remains elusive. In addition, there is a lack of principled and widely accepted evaluation metrics for
data synthesis. It is known that evaluating synthesizers is inherently difficult (Theis et al., 2016),
and qualitative evaluation of tabular data through visual inspection is also infeasible.

The above concerns motivate us to design a systematic evaluation framework for data synthesis
to elucidate the current advancements in this field. Specifically, we examine, characterize, and
critique the commonly used evaluation metrics, and propose a set of new metrics for data synthesis
evaluation. Our assessments unfold along three main axes:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Fidelity. To address the heterogeneity and high dimensionality of tabular data, we present a new
fidelity metric based on Wasserstein distance. This metric offers a unified way to evaluate numer-
ical, discrete, and mixed data distributions under the same criteria.

• Privacy. We identify the inadequacy of existing syntactic privacy evaluation metrics and the inef-
fectiveness of membership inference attacks by conducting comparison studies. We also propose
a new privacy evaluation metric to gauge the empirical privacy risks of synthesizers.

• Utility. We advocate two tasks for assessing the utility of synthesizers: machine learning pre-
diction and range (point) query. To eliminate the inconsistent performance caused by the choice
of different machine learning models, we present a utility metric that quantifies the distributional
shift between real and synthetic data.

SynMeter. We implement a systematic evaluation framework called SynMeter to support the
assessment of data synthesis algorithms with the proposed evaluation metrics. Differing from the
existing evaluations, SynMeter incorporates the model tuning phase, which eases hyperparameter
selection and consistently improves the performance of synthesizers for fair comparison. Our code
is publicly available, facilitating researchers to tune, assess, or benchmark new synthesis algorithms.

2 DATA SYNTHESIS EVALUATION

Given a dataset D sampled from an underlying distribution D, A ← T (D) denotes that the synthe-
sizer A is learned by running the training algorithm T on D. The synthesizer A generates a synthetic
dataset S to replace D for publishing. We consider three classes of properties for synthesizers:

• Fidelity. As the substitute for real data, the distribution of the synthetic dataset should be close to
D. Since D is often unknown, fidelity is measured by the similarity between the input dataset D
and the synthetic dataset S. If one partitions the input dataset D into a training set Dtrain and a test
set Dtest, one can measure fidelity as closeness to either Dtrain or Dtest.

• Privacy. Using synthetic data is usually motivated by the desire to protect the input dataset. Some
training algorithms T are designed to satisfy Differential Privacy (DP) (Dwork, 2006), we refer
to these as DP synthesizers. (See Appendix F for the formal definition). However, satisfying DP
under reasonable parameters may result in poor performance. Some synthesizers do not satisfy
DP, and aim to protect privacy empirically. We call these Heuristically Private (HP) synthesizers.
As a result, privacy evaluation metrics are essential for evaluating the privacy of HP synthesizers.

• Utility. Synthetic data is often used to replace real datasets for downstream tasks. Thus, high
fidelity may not necessarily be needed if it achieves good utility for these tasks. Hence, utility
evaluation is useful to measure the effectiveness of synthesizers for common tasks.

3 EVALUATION METRICS FOR DATA SYNTHESIS ALGORITHMS

3.1 FIDELITY EVALUATION

Existing Metrics and Limitations. Existing fidelity metrics can be categorized into three groups:
low-order statistics (McKenna et al., 2019), likelihood fitness (Xu et al., 2019), and evaluator-
dependent metrics (Snoke et al., 2018). The main issue with low-order statistics is the lack of
versatility. Each type of marginal distribution requires a specific statistical measure, complicating
comprehensive comparisons across different attribute types. Likelihood fitness assesses how well
synthetic data aligns with a known prior distribution. Although this is a natural approach for assess-
ing fidelity, it becomes problematic when the prior distribution is unknown or complex, as is often
the case in real-world datasets. Evaluator-dependent metrics, on the other hand, rely heavily on
auxiliary evaluators (e.g., thresholds or discriminators), which require careful calibration to ensure
meaningful comparisons across diverse datasets and synthesizers. A more detailed discussion of
existing fidelity metrics can be found in Appendix G.1.

Proposed Metric: Wasserstein Distance. We opt for Wasserstein distance to measure the dis-
tribution discrepancies between synthetic data and real data. Originating from optimal transport
theory (Peyré & Cuturi, 2019), the Wasserstein distance provides a structure-aware measure of
the minimal amount of work required to transform one distribution into another. Formally, Let
P = (p1, p2, . . . pn) and Q = (q1, q2, . . . qn) be the two probability distributions, and C be a matrix
of size n × n in which Cij ≥ 0 is the cost of moving an element i of P to the element j of Q
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(Cii = 0 for all element i). The optimal transport plan A is:

min
A

⟨C,A⟩

s.t. A1 = P, A⊤1 = Q,
(1)

where ⟨·, ·⟩ is inner product between two matrices, 1 denotes a vector of all ones. Let A∗ be the
solution to the above optimization problem, Wasserstein distance is defined as:

W(P,Q) = ⟨C,A∗⟩. (2)

Now we can use Wasserstein distance to define the fidelity:
Definition 1 (Wasserstein-based Fidelity Metric). Let v be a set of marginal variables, and V = {v}
is the collection of marginal variable sets. f(v,D) is the marginal extraction function that derives
the corresponding marginal distribution of v from distribution D. Let D and S be the empirical
distribution of real and synthetic data, respectively. The fidelity of synthesis algorithm A is:

Fidelity(A) ≜
1

|V |
∑
v∈V

W(f(v,D), f(v, S)), (3)

The smaller Wasserstein distance indicates the higher fidelity of the synthesizer A.

Determining Cost Matrix. The Wasserstein distance requires the predefined cost matrix C,
which encapsulates the “cost” of transitioning from one distribution element to another. For k-way
marginal distributions P and Q, the cost matrix is formulated by summing the pairwise distances
between corresponding elements:

Cij =

k∑
r=1

d(vri , v
r
j ). (4)

Here, vi, vj ∈ Rk are the element located in i and j in k-way probability distributions. The distance
d(·, ·) is tailored to the nature of the attributes, differing for numerical and categorical values:

d(vri , v
r
j ) =

{
||vri − vrj ||1, if numerical
∞ (if vri ̸= vrj ), 1 (if vri = vrj ), if categorical

(5)

Wasserstein Distance for Categorical Attributes. Wasserstein distance is typically defined for
metric spaces and is well-suited for numerical attributes. However, the cost function for categorical
attributes, as defined in Equation 5, represents an atypical usage of Wasserstein distance. We ac-
knowledge this is a slight misuse of terminology to maintain consistency throughout the paper. We
also note that the above definition for categorical attributes is equivalent to the computation of total
variation distance (Kotelnikov et al., 2023) and contingency similarity (Patki et al., 2016), as used
in previous studies. Additionally, it is also feasible to assign semantic distance for categorical at-
tributes (Li et al., 2021), we omit it because it depends on the specific context and most synthesizers
do not model the semantics in tabular data. Finally, while summing up distances for categorical and
numerical attributes is a conventional approach in tabular data evaluation, we note that it may not be
the optimal approach to capture similarities across heterogeneous data types.

Merits of Wasserstein-based Fidelity Metric. Wasserstein distance offers several advantages for
evaluations: (i) Faithfulness. It is a natural and structure-aware statistic measure for analyzing distri-
bution discrepancies and generalizing existing metrics like total variation distance. (ii) Universality.
It accommodates both numerical and categorical attributes and extends to any multivariate marginals
under the same criterion, facilitating the evaluation of heterogeneous types of marginals.

3.2 PRIVACY EVALUATION

Existing Metrics and Limitations. A popular approach to assess privacy risk for HP synthesizers
is to compare the similarity between input dataset and synthetic data, with higher similarity sug-
gesting greater information leakage. We call these metrics syntactic because they consider only the
input and synthetic datasets, and not the algorithm used to generate the synthetic data. The most
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popular syntactic metric is Distance to Closest Records (DCR) (Zhao et al., 2021), which looks at
the distribution of the distances from each synthetic data point to its nearest real one and uses the 5th
percentile of this distribution as the privacy score. DCR and other similar metrics are widely used
in academia (Walia et al., 2020; Yale et al., 2019) and industry (AWS, 2022; Gretel, 2023), and have
become the conventional evaluation metric for HP synthesizers (Ganev & De Cristofaro, 2023).

We point out that syntactic privacy evaluation notions that are independent of the underlying al-
gorithm are fundamentally flawed. For example, a synthesis algorithm that applies the same fixed
perturbation to every record could produce a synthetic dataset that is quite different from the input
dataset, resulting in a good privacy score under a syntactic metric, even though the input dataset
could be easily reconstructed from the synthetic dataset.

Membership inference attacks (MIAs) have been widely used for empirical privacy evaluation in ma-
chine learning (especially classification models) (Shokri et al., 2017). A few MIAs against tabular
data synthesis algorithms have been proposed: Groundhog (Stadler et al., 2022), TAPAS (Houssiau
et al., 2022) and MODIAS (van Breugel et al., 2023). Our comparison studies in Section 5.2 demon-
strate that these MIA algorithms are limited in effectiveness: they fail to distinguish different levels
of privacy leakage in some situations. We also observe that the standard metrics in MIA literature
(i.e., TPR@lowFPR) still do not capture the maximum leakage among all records in the input. The
detailed analysis of the existing privacy evaluation metrics is in Appendix G.2.

Proposed Metric: Membership Disclosure Score (MDS). We propose a new privacy evaluation
metric to assess the membership disclosure risks of synthesizers, which is inspired by both DCR and
MIAs. The intuition behind MDS is that the inclusion or exclusion of each record x ∈ D during
training may lead to different behaviors of the synthesizer A, which can be measured as a function
of x,D, and A. We use the maximum value for any x as the measure of privacy leakage of applying
A to D. Specifically, we first define the disclosure risk of one record as follows.
Definition 2 (Disclosure Risk of One Record). Let OD be the synthesizer A’s output distribution
when trained with dataset D, M is a distribution distance measurement, which is non-negativity
and symmetric. The disclosure risk of record x ∈ D is given by:

DS(x,A, D) ≜ EH⊂D\x
[
M(OH∥OH∪{x})

]
, (6)

where H is the subset of training instances that are i.i.d sampled from D\x. The expectation is
taken with respect to the i.i.d sampling of H and the randomness in the synthesis algorithm A.

Our privacy definition compares the difference between two expected output distributions for a given
record x. Unfortunately, the above computation is intractable: even the synthesizer’s output distri-
bution is not analytically known. To simplify the situation, we instead instantiateM to measure the
closeness between x and the empirical distribution of the synthetic data:

D̂S(x,A, D) ≜ EH⊂D\x,S∼OH ,S′∼OH∪{x}

[
|dist(x, S)− dist(x, S′)|

]
. (7)

Here, S is the synthetic dataset generated from OH , dist(x, S) denotes the nearest distance (under
l1 norm) between record x and synthetic dataset S. (Empirically we find that the difference between
using l1 and l2 distance is negligible.) However, directly computing Equation (7) is computationally
expensive because it requires training models on paired subsets H and H ∪ {x} for every record x.
To address this, we employ the shadow training technique commonly used in MIAs. Specifically,
we train m synthesizers on independently sampled subsets H1, ...,Hm of equal size |Hi| = ⌊ 12 |D|⌋.
To calculate the disclosure risk of x, we divide these models into two groups: one trained on subsets
where x ∈ H , and the other where x /∈ H . For each model trained on these subsets, we randomly
generate n synthetic datasets and take the average nearest distance to x. By doing so, we only
need to train m synthesizers and sample n synthetic datasets per synthesizer. Finally, we define the
privacy risk of a synthesizer A on D to be the maximum disclosure risk across all training data:
Definition 3 (Membership Disclosure Score). Let S be the sampled synthetic data from the synthe-
sizer’s output distribution OH . The membership disclosure score of A is given by:

MDS(A) ≜ max
x∈D

∣∣EH⊂D,S∼OH∪{x} [dist(x, S)]︸ ︷︷ ︸
closeness of x when trained with x

−EH⊂D\x,S′∼OH
[dist(x, S′)]︸ ︷︷ ︸

closeness of x when not trained with x

∣∣, (8)

In practice, we train 20 models and generate 100 synthetic datasets per model to compute MDS for
all synthesizers. We analyze the effectiveness and efficiency of MDS in Section 5.2.
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Figure 1: Overview of SynMeter.

Table 1: Performance improvements (%)
with the proposed tuning objective.

Synthesizer Fidelity ↑ Utility ↑
DTrain DTest MLA Query Error

MST 0.33 0.34 17.35 3.39
PrivSyn 1.60 2.92 12.08 1.12
TVAE 1.06 0.67 5.29 2.67

CTGAN 9.87 9.60 0.57 8.63
PATE-GAN 6.27 8.48 0.75 7.04
TabDDPM 13.62 13.65 13.67 11.95

TableDiffusion 11.34 10.95 8.32 7.86
GReaT 3.84 9.21 1.14 1.77

Limitations of MDS. Although we find MDS to be effective in assessing the privacy risks of the
synthesizers studied, we note that it has its own limitations. For instance, MDS can be tricked by
carefully designed pathological synthesizers and should not be used as the only privacy measure
where privacy is paramount. In addition, it is also incapable of measuring all types of privacy risks
associated with syntehsizers. We refer Appendix H for a detailed discussion about its limitations.

3.3 UTILITY EVALUATION

Existing Metrics and Limitations. Machine learning efficacy (Xu et al., 2019) has emerged as
the predominant utility metric for data synthesis. It first chooses a machine learning model (i.e.,
evaluator), then assesses the testing accuracy on real data after training the evaluator on synthetic
datasets. However, there is no consensus on which evaluator should be used for evaluation. Different
evaluators yield varying performance outcomes on synthetic data, and no single model consistently
achieves the best performance across all datasets. (We show the case in Appendix G.3.)

Proposed Metrics: Machine Learning Affinity (MLA) and Query Error. To accurately reflect
the performance degradation caused by the distribution shift of synthetic data (Lopes et al., 2021),
we follow (Jordon et al., 2021) and measure the relative performance gap as the utility metric:
Definition 4 (Machine Learning Affinity). Let E be a set of candidate machine learning models
(i.e., evaluators), let eDtrain and eS be evaluators trained on real training data Dtrain and synthetic
data S, acc(e,Dtest) denotes the evaluator’s accuracy (F1 score or RMSE) when performed on test
dataset Dtest. The MLA of synthesizer A is given by:

MLA(A) :=
1

|E|
∑
e∈E

[
acc(eDtrain , Dtest)− acc(eS , Dtest)

acc(eDtrain , Dtest)

]
. (9)

A lower MLA score indicates a higher utility of synthetic data on the prediction task.

In addition to machine learning prediction, range/point queries are workhorses of statistical data
analysis. However, these tasks are often overlooked when evaluating state-of-the-art synthesizers.
We follow (McKenna et al., 2019) to define the query error as below:
Definition 5 (Query Error). Consider a subset of k attributes a = {a1, ..., ak} sampled from dataset
D. For each attribute, if ai is categorical, a value vi is randomly chosen from its domain R(ai),
which forms the basis for a point query condition; for numerical attributes, two values si and di
from R(ai) are randomly sampled as the start and end points, to construct a range query condition.
The final query c ∈ C combines k sub-queries and is executed on both real and synthetic data to
obtain query frequency ratios µDtest

c and µS
c . The query error of synthesis A is defined as:

QueryError(A) :=
1

|C|
∑
c∈C

[
||µDtest

c − µS
c ||1

]
. (10)

4 A SYSTEMATIC EVALUATION FRAMEWORK FOR DATA SYNTHESIS

Tuning Objective. Most synthesizers do not provide guidelines for hyperparameter tuning. Instead,
default settings are commonly used for evaluations. This practice can lead to suboptimal results and
biased comparisons. To address this issue, we propose a simple tuning objective using proposed
evaluation metrics to facilitate the hyperparameter selection:

L(A) = α1Fidelity(A) + α2MLA(A) + α3QueryError(A). (11)
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Since smaller values indicate better performance for all proposed metrics, we conduct a grid search
on synthesizers and select the best hyperparameters that minimize L for evaluation. The privacy
evaluation metric is excluded from model tuning, as we find that incorporating MDS yields negligi-
ble improvements for synthesizers. We show how to set the coefficients (α1, α2, α3) in Section 5.2.

SynMeter. We introduce a modular toolkit called SynMeter to assess data synthesis algorithms
with proposed evaluation metrics. As depicted in Figure 1, SynMeter comprises four modules, and
each module is implemented with an abstract interface for any synthesizer. (The detailed description
of the evaluation pipeline is in Appendix A). We envisage that SynMeter can be used to (i) facilitate
data owners to tune, train, and select different synthesizers for data publishing; and (ii) serve as a
benchmark for data synthesis, providing systematic evaluation metrics for comparative studies.

5 EXPERIMENTS

We present a series of comprehensive experiments to answer the following question:

• RQ1: How effective are our proposed privacy evaluation metric and tuning objective?
• RQ2: How do the various synthesizers perform under our assessment? What are the new findings?
• RQ3: Why do these methods work well (or not so well) on certain aspects? How can our metrics

help for in-depth analysis?

5.1 EXPERIMENTAL SETUPS

Datasets. We evaluate using 12 public real-world datasets with varying sizes, types, attributes, and
distributions. Table 2 summarizes their statistics, with detailed descriptions in Appendix B.2.

Data Synthesis Algorithms. We study a wide range of HP and DP synthesizers. Specifically, we
evaluate six types of HP synthesizers: the non-private version of MST (McKenna et al., 2021), the
non-private version of PrivSyn (Zhang et al., 2021), CTGAN (Xu et al., 2019), TabDDPM (Kotel-
nikov et al., 2023), and REaLTabFormer (Solatorio & Dupriez, 2023). For DP synthesizers, we as-
sess four types: MST, PrivSyn, PATE-GAN (Jordon et al., 2018) and TableDiffusion (Truda, 2023).
Detailed descriptions of these synthesizers are in Appendix B.3.

Note that our goal is not to benchmark all synthesizers but to focus on the best-known and broad
spectrum of SOTA synthesizers. TabSyn (Zhang et al., 2024) is a recent diffusion-based model that
is claimed to outperform TabDDPM. We found that once TabDDPM is tuned with SynMeter, it
achieves a similar performance as TabSyn. Results of other synthesizers are in Appendix C.6.

Implementation. During the evaluation, we first tune the synthesizers with the proposed tuning
objective. Then, synthetic data are generated by the trained synthesizer for evaluation, where we test
20 times and report the mean and standard deviation as the final score. The hyperparameter search
spaces of data synthesis algorithms are shown in Appendix E and the implementation details of the
proposed metrics are in Appendix B.1.

5.2 EFFECTIVENESS OF MDS AND TUNING OBJECTIVE (RQ1)

Effectiveness of MDS. We compare MDS against the popular syntactic privacy evaluation metric
DCR (Zhao et al., 2021), as well as three state-of-the-art MIAs: Groundhog (Stadler et al., 2022),
TAPAS (Houssiau et al., 2022) and MODIAS (van Breugel et al., 2023). For DCR, we calculate
the nearest distance of each synthetic record to real data, using the 5th percentile of the distance
distribution as the privacy score. For MIAs, we follow Carlini et al. (2022) and use the true positive
rate at 1% false positive rate (TPR@1%FPR) to measure the attack performance.

We conduct two proof-of-concept experiments to evaluate the effectiveness of MDS. First, we train
a DP synthesizer (PATE-GAN) with varying levels of privacy protection by adjusting the privacy
budget, and we measure the empirical privacy risk using these privacy evaluation metrics. Second,
we train an HP synthesizer (TabDDPM) with different duplication ratios while keeping the training
data size unchanged. Intuitively, a higher proportion of duplicate samples in the training set increases
the memorization of the model, which in turn poses higher privacy risks (Carlini et al., 2023).
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(a) Privacy evaluation met-
rics on DP synthesizer.
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rics on HP synthesizer.

Figure 2: Effectiveness evaluation of MDS on Adult
dataset. DCR and MDS use the left y-axis (“Privacy
Score”) whereas Groundhog, TAPAS and MODIAS
utilize the right y-axis (“TPR@1%FPR”) for com-
parison. Lower DCR scores and higher MIA/MDS
scores indicate greater privacy risks. Only MDS can
distinguish different levels of privacy risks.
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Figure 3: Stability evaluation of MDS on Adult
dataset. We vary the number of shadow models
and synthetic datasets used for computing MDS.
The MDS of all three synthesizers can be accu-
rately computed using 20 shadow models and 100
synthetic datasets.

The results of both experiments are presented in Figure 2. DCR fails to distinguish between different
levels of privacy risk in both scenarios and exhibits significant instability (indicated by large standard
deviations). For MIAs, we observe an improvement in attack performance as the proportion of
duplicates in the training set increases, especially for MODIAS. However, MIAs still struggle to
capture privacy nuances with DP synthesizers. In contrast, MDS effectively detects privacy risks
across all scenarios and demonstrates robustness as a reliable privacy evaluation metric, as evidenced
by its high standard deviation. Additional experiments on other existing metrics are in Appendix C.4.

Stability and Efficiency of MDS. We validate the stability of MDS by varying the number of
shadow models and synthetic datasets. Specifically, we compute the membership disclosure scores
for three synthesizers using different quantities of shadow models and synthetic datasets, recording
the mean and variance of the results, as depicted in Figure 3. Our results indicate that the variance
of MDS decreases rapidly as the number of shadow models and synthetic datasets increases, with
stable results achieved using 20 shadow models and 100 synthetic datasets. Although MDS requires
training more shadow models compared to existing MIAs, previous study (Zhang et al., 2024) shows
that tabular synthesizers can be trained in just a few minutes, with sampling taking only a few
seconds. Therefore, MDS remains a practical and efficient solution for privacy assessment.

Effectiveness of Tuning Objective. Although the metrics in Equation (11) are based on different
measurements, empirically we observe that their values consistently fall within the same range. Con-
sequently, in our experiments, we set all three coefficients to 1/3, as this configuration significantly
improves the quality of synthetic data, as shown in Table 1. Interestingly, the tuning phase affects
two types of synthesizers differently: statistical methods gain more in utility than fidelity, while deep
generative models show the opposite trend. Notably, the tuning phase proves especially beneficial
for TabDDPM, with improvements in both fidelity and utility metrics. Additional experiments on
the effectiveness of the proposed tuning objective are provided in Appendix C.5.

5.3 OVERALL EVALUATION (RQ2)

Overview. Figure 4 and Figure 5 report the overview ranking results for HP and DP synthesiz-
ers, respectively. For HP synthesizers, TabDDPM and REaLTabFormer exhibit superior fidelity and
utility, albeit at the expense of compromising privacy. Statistical methods like PrivSyn achieve
good fidelity while offering impressive privacy protection. Conversely, CTGAN, the most popular
HP synthesizer, shows the least satisfactory results in synthetic data quality. For DP synthesizers,
statistical methods remain effective in both fidelity and utility. The performance of deep generative
models drops significantly to satisfy differential privacy. Even the strongest model (i.e., TableD-
iffusion) underperforms statistical approaches by a large margin, which starkly contrasts with its
performance in the HP context, indicating a pronounced impact of privacy constraints on deep gen-
erative models. The visualization of synthetic and real data is depicted in Figure 8 and Figure 9.

Fidelity Evaluation. We introduce two baselines to establish empirical lower and upper bounds for
the proposed fidelity metric. The first baseline, HALF, randomly divides the real data into two equal
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Figure 4: Average ranking comparison for six HP synthesizers (outer means higher rank and better
performance). Each vertex is the average rank of the method across 12 datasets, and each axis is the
evaluation metric. “FID(Dtr/Dte)” denotes the fidelity evaluated on the training/test dataset. “MDS”
is the proposed privacy evaluation metric, and “MLA” and “Query Error” are utility metrics.
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Figure 5: Average ranking comparison for four DP synthesizers. All methods offer provable privacy
guarantees so we remove the privacy axis for comparison.

parts, using one as the training dataset D and the other as the synthetic data S. Since both datasets
are from the same distribution, this serves as the empirical upper bound of fidelity. The second
baseline, HISTOGRAM, generates synthetic data using one-way marginals without accounting for
correlations between attributes, making it the empirical lower bound of fidelity.

Fidelity is evaluated by applying the Wasserstein distance to both the training dataset Dtrain (Table 3
and Table 4) and the test dataset Dtest (Table 5 and Table 6). The results show that TabDDPM and
REaLTabFormer achieve near upper-bound fidelity, while statistical methods such as MST excel
among DP synthesizers. Notably, all deep generative models experience a significant drop in fidelity
when achieving differential privacy, whereas statistical methods maintain consistent performance.

Privacy Evaluation. We utilize SELF as the baseline to represent the lower bound of MDS.
Specifically, SELF uses a direct copy of the real data as synthetic data, establishing the worst pri-
vacy protection. According to the definition of MDS, an ideal privacy-preserving synthesizer would
achieve a score of 0, which is the upper bound of privacy evaluation.

Table 7 and Table 8 show the privacy assessment results for HP synthesizers. In contrast to the fi-
delity evaluation, CTGAN, which exhibits the lowest fidelity performance, offers impressive privacy
protection against membership disclosure. Statistical methods like MST also show notable empirical
privacy protections. However, the unsatisfied results of strong synthesis algorithms like TabDDPM
and REaLTabFormer reveal their vulnerability to membership disclosure.

Utility Evaluation. The utility of data synthesis is assessed by performing downstream tasks on
the synthetic datasets and measuring their performance using the proposed metrics, as shown in
Table 9-12. For machine learning tasks, TabDDPM excels among HP synthesizers, contributing to
its class-conditional framework that learns label dependencies during its training process. However,
this advantage diminishes when adding random noise to ensure privacy, where MST takes the lead
with its robust and superior performance. The outcomes for range (point) query tasks echo the results
of fidelity evaluation, where TabDDPM shows superior performance in HP settings, and statistical
methods (e.g., MST) can surpass other methods under DP constraints.

5.4 IN-DEPTH ANALYSIS (RQ3)

Why Does CTGAN Perform Poorly? Despite CTGAN is widely regarded as a strong synthesizer,
our evaluation reveals that it produces the lowest-quality synthetic data. This discrepancy raises
important questions about the reasons behind CTGAN’s apparent underperformance. To investi-
gate this, we scrutinize its learning trajectory, particularly evaluating the fidelity across different
marginal types during training. As shown in Figure 6(a), both numerical and categorical marginals
exhibit unexpected stagnation in improvement. This suggests that CTGAN’s synthetic data quality
is heavily influenced by data preprocessing. Specifically, CTGAN relies on a variational Gaussian
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Figure 6: Analyzing the learning process of CT-
GAN and TabDDPM with proposed fidelity met-
rics on the Bean dataset.
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Figure 7: Impact of privacy budget ϵ on Bean
dataset. The lower score indicates higher fi-
delity/utility.

mixture model for numerical data and conditional sampling for categorical attributes. The model
performs well when the data distribution is close to Gaussian; however, most tabular datasets are
far more complex and deviate significantly from this assumption (Gorishniy et al., 2021). This mis-
match largely explains CTGAN’s suboptimal performance. Furthermore, this limitation may also
account for CTGAN’s strong empirical privacy protections. The model’s difficulty in learning com-
plex data structures results in outputs that are largely independent of any individual training sample,
contributing to its good privacy protection.

Why Does TabDDPM Excel? One key finding of our evaluations is the TabDDPM’s ability to
synthesize high-quality tabular data. This challenges previous claims that deep generative models
generally struggle for tabular data synthesis (Tao et al., 2021). We also use proposed fidelity met-
rics to analyze TabDDPM’s learning process. As illustrated in Figure 6(b), the Wasserstein distance
across all marginal distributions rapidly decreases, demonstrating the model’s capacity to learn both
numerical and categorical distributions. We attribute this success to the model’s architecture: dif-
fusion models have been shown to effectively minimize the Wasserstein distance between synthetic
and real data (Kwon et al., 2022). This offers a methodological advantage over other generative mod-
els, which usually aim to minimize the Kullback-Leibler divergence. However, despite its strengths,
TabDDPM presents significant privacy risks that have been largely overlooked in prior research.
Directly applying differential privacy measures would severely degrade the quality of the synthetic
data. Nevertheless, diffusion-based methods remain a promising frontier for tabular data synthesis.

Large Language Models Are Semantic-aware Synthesizers. We also notice that the recently
emerged LLM-based synthesizer (i.e., REaLTabFormer) also shows competitive performance, es-
pecially on datasets that consist of rich semantic attributes and complex dependence. For instance,
REaLTabFormer achieves the best machine learning prediction performance on the Adult dataset,
which contains detailed personal information (e.g., age and relationship). Given the rapid devel-
opment of LLM and the inherent rich semantics of most tabular data, LLM-based methods may
become a new paradigm for realistic data synthesis.

The Impact of Privacy Budget. To analyze the impact of differential privacy on data synthesis, we
run DP synthesizers with varying privacy budgets, and evaluate the fidelity and utility of the resulting
synthetic data (see Figure 7). Our results show that statistical methods, such as MST, maintain robust
performance even with a small privacy budget (e.g., ϵ = 0.5). In contrast, deep generative models
typically require much larger privacy budgets (e.g., ϵ = 8) to achieve comparable results. These
findings align with previous observations (Tao et al., 2021), which noted that statistical methods are
more resilient to privacy constraints because they rely on estimating a small set of marginals.

6 RELATED WORK

Fidelity Evaluation Metrics. Fidelity is often evaluated based on the distributional similarities of
low-order marginals with various statistical measurements. Total Variation Distance (Zhang et al.,
2024) and one-dimensional Wasserstein distance (Zhao et al., 2024; Lin et al., 2020) are used to as-
sess univariate distribution similarity for categorical and numerical attributes, respectively. Correla-
tion differences are widely employed for bivariate distributions. Correlation statistics such as Theil’s
uncertainty coefficient (Zhao et al., 2021), Pearson correlation (Zhang et al., 2024), and the corre-
lation ratio (Kotelnikov et al., 2023) are utilized to evaluate different types of two-way marginals
(categorical, continuous, and mixed). The main problem with these measures is the lack of versa-
tility. Each type of marginal requires a distinct statistical measure, which complicates the ability to
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perform a comprehensive comparison across various attribute types. We refer to Appendix G.1 for
a detailed discussion of the limitations of existing fidelity metrics.

Privacy Evaluation Metrics. Since HP synthesizers are designed without provable privacy guaran-
tees, privacy evaluation is indispensable for these synthesizers. Syntactic privacy evaluation metrics
(e.g., Distance to Closest Records (Zhao et al., 2021)) are the most widely used privacy evaluation
for HP synthesizer. These metrics compare the input dataset with the output dataset generated by
the synthesizer, with closer distances indicating higher privacy risks. Recently, Ganev & De Cristo-
faro (2023) critiqued these syntactic metrics, highlighting that these ad-hoc metrics can be exploited
for reconstruction attacks. However, the study did not address the fundamental flaws of these met-
rics (discussed in Section 3.2) and did not introduce new and effective privacy evaluation metrics.
Another way to assess the empirical privacy risks of data synthesis is membership inference attack
(MIA) (Shokri et al., 2017). Some studies (Stadler et al., 2022; van Breugel et al., 2023) have
designed different MIA algorithms for tabular data synthesis. However, as shown in Section 5.2,
existing MIA algorithms are too weak to differentiate different privacy risks across various synthe-
sizers. Further discussion about existing privacy evaluation metrics can be found in Appendix G.2.

Utility Evaluation Metrics. Machine learning prediction and query errors are common down-
stream tasks for tabular data analysis, and many studies (Zhang et al., 2021; Xu et al., 2019;
McKenna et al., 2021) have leveraged these tasks to evaluate the utility of synthetic data. In our
evaluation, we also adopt these tasks for utility evaluation and present a reliable metric to address
the variability in performance across different machine learning models (Jordon et al., 2021). Fur-
ther discussion on utility metrics can be found in Appendix G.3.

Benchmarking Tabular Data Synthesis. Several studies have benchmarked tabular synthesis
algorithms. However, they either only focus on DP synthesizers (Tao et al., 2021; Hu et al., 2024),
or neglect the privacy evaluation for HP synthesizers (Espinosa & Figueira, 2023; Chundawat et al.,
2022; Livieris et al., 2024; McLachlan et al., 2018). Additionally, existing benchmarks (Qian et al.,
2024; Lautrup et al., 2024) directly leverage existing metrics for evaluation, whereas we identify the
limitations of these metrics and propose a new set of evaluation metrics for systematic assessment.

7 DISCUSSION AND KEY TAKEAWAYS

In this paper, we examine and critique existing metrics, and introduce a systematic framework as
well as a new suite of evaluation criteria for assessing data synthesizers. We also provide a unified
tuning objective to ensure that evaluation results are less affected by accidental choices of hyperpa-
rameters. Our results identify several guidelines for data synthesis practitioners:

• Model tuning is indispensable. Tuning hyperparameters can significantly improve synthetic data
quality, especially for deep generative models.

• Statistical methods should be preferred for applications where privacy is paramount. MST and
PrivSyn achieve the best fidelity among DP synthesizers, and they also offer good empirical pri-
vacy protection even in HP settings.

• Diffusion models provide the best fidelity and utility. Practitioners are suggested to use diffusion
models (e.g., TabDDPM) for tabular synthesis when the quality of synthetic data is the priority
over privacy due to their impressive ability to generate highly authentic data.

• Deep generative models can be tailored for specific tasks. The flexible design spaces of deep
generative models make them suitable for scenarios where the applications of the synthetic data
are known in advance (e.g., machine learning prediction). In addition, the LLM-based synthesizer,
REaLTabFormer, is particularly effective at preserving semantic information in synthetic data.

Our systematic assessment shows that recently emerged generative models achieve impressive per-
formance on tabular data synthesis and open up new directions in this field. At the same time,
several critical challenges are also revealed such as privacy issues of diffusion models and perfor-
mance gaps between DP and HP synthesizers. In addition, we note that existing empirical privacy
evaluation metrics (including proposed MDS) have their own limitations and DP synthesizers should
be used in privacy-critical applications. Nevertheless, our evaluation metrics and framework serve a
crucial role in highlighting advancements in data synthesis and represent a step toward establishing
a standardized evaluation process for this field.
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Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanis-
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A EVALUATION PIPELINES

The SynMeter pipeline consists of four phases: data preparation, model tuning, model training, and
model evaluation.

The data preparation phase preprocesses data for learning algorithms1. In this phase, statistical
methods select low-dimensional marginals to serve as compact representations for capturing data
distributions. Deep generative models apply standard data processing techniques like data encoding
and normalization.

The goal of model tuning phase is to select the optimal hyperparameters for data synthesizers. We
use the proposed tuning objective in Equation (11) for hyperparameter selections.

The model training phase focuses on model learning with tuned hyperparameters. Various generative
models implement different architectures and optimization objectives.

In the model evaluation phase, the trained model samples some synthetic data, which are used for
evaluation. Specifically, we assess the fidelity, privacy, and utility of synthesizers via the proposed
metrics.

B DETAILS OF EXPERIMENTAL SETUPS

B.1 IMPLEMENTATION DETAILS

Wasserstein-based Fidelity Metric. The computation of Wasserstein distance involves solving the
linear programming problem in Equation 1 and selecting proper marginal distributions. We compute
the Wasserstein distance of all the one-way and two-way marginals and use the mean as the final
fidelity score. The real dataset D can be designated as either Dtrain or Dtest to evaluate the fidelity
of synthesizers on training data or test data.

There are many open-source libraries like CVXPY (Diamond & Boyd, 2016) and POT (Flamary
et al., 2021) that can be used to solve linear programming reasonably fast. However, when the
cost matrix becomes rather large and dense, directly calculating the metric can be computationally
expensive. Several options are provided to address this problem: (i) Sinkhorn distance (Cuturi,
2013) provides a fast approximation to the Wasserstein distance by penalizing the objective with an
entropy term. (ii) Sliced-Wasserstein distance (Bonneel et al., 2015), which uses Radon transform to
linearly project data into one dimension, can be efficiently computed. (iii) Reducing the size of the
cost matrix by randomly sampling a small set of points from the probability densities. In practice,
we find that sampling is both efficient and effective. We randomly sample half of the synthetic data
when n > 5, 000 and use the POT library to compute the Wasserstein distance as the fidelity scores.

Membership Disclosure Score (MDS). We follow previous work (Carlini et al., 2022) and use
shadow models to compute MDS. Specifically, we trained the synthesizer using half of the dataset
and kept the other half as non-members for each shadow model. Once the synthesizer was trained,
we randomly generated 100 synthetic datasets with the same size of training data and calculated
the average closeness difference as the disclosure score. The MDS is computed as the maximum
disclosure score across all records.

Utility Metrics. For machine learning affinity (MLA), we utilize eight machine learning models to
compute MLA: SVM, Logistic Regression (or Ridge Regression), Decision Tree, Random Forest,
Multilayer Perceptron (MLP), XGBoost (Chen & Guestrin, 2016), CatBoost (Prokhorenkova et al.,
2018), and Transformers (Gorishniy et al., 2021). Each model is extensively tuned on real training
data to ensure optimal hyperparameters. Performance on classification and regression is evaluated
by the F1 score and RMSE, respectively. For query error, we randomly construct 1,000 3-way query
conditions and conduct range (point) queries for both synthetic and real data.

1Here we assume no missing values in the original data. The missing values problem has been extensively
studied (Pigott, 2001), which is orthogonal to data synthesis.
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Table 2: Statistics of datasets. # Num stands for the number of numerical columns, and # Cat stands
for the number of categorical columns.

Dataset # Train # Validation # Test # Num # Cat Task type

Adult 20838 5210 6513 6 9 Binclass
Shoppers 7891 1973 2466 10 8 Binclass
Phishing 7075 1769 2211 0 31 Binclass
Magic 12172 3044 3804 10 1 Binclass
Faults 1241 311 389 24 4 Multiclass(7)
Bean 8710 2178 2723 16 1 Multiclass(7)
Obesity 1350 338 423 8 9 Multiclass(7)
Robot 3491 873 1092 24 1 Multiclass(4)
Abalone 2672 668 836 8 1 Regression
News 25372 6343 7929 46 14 Regression
Insurance 856 214 268 3 4 Regression
Wine 3134 784 980 12 0 Regression

B.2 DATASETS

We use 12 real-world datasets for evaluations. These datasets have various sizes, natures, attributes,
and distributions. We explicitly divide datasets into training and test with a ratio of 8:2, then split
20% of the training dataset as the validation set, which is used for model tuning. The statistics of
the datasets are presented in Table 2. Below is a detailed introduction to each dataset:

• Adult2 is to predict whether income exceeds 50K/yr based on census data.
• Shoppers3 is to analyze the intention of online shoppers.
• Phishing4 is to predict if a webpage is a phishing site. The dataset consists of important features

for predicting phishing sites, including information about webpage transactions.
• Magic5 is to simulate the registration of high-energy gamma particles in the atmospheric tele-

scope.
• Faults6 is the fault detection dataset, which classified steel plates faults into 7 different types.
• Bean7 predicts the type of dray bean based on form, shape, and structure.
• Obesity8 is to estimate the obesity level based on eating habits and physical condition of individ-

uals from Mexico, Peru, and Columbia.
• Robot9 is a multi-class classification dataset collected as the robot moves around the room, fol-

lowing the wall using ultrasound sensors.
• Abalone10 is to predict the age of abalone from physical measurements.
• News11 is to predict the number of shares in social networks (popularity).
• Insurance12 is for prediction on the yearly medical cover cost. The dataset contains a person’s

medical information.
• Wine13 collects physicochemical tests on wine.

2https://archive.ics.uci.edu/dataset/2/adult
3https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+int

ention+dataset
4https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+int

ention+dataset
5https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
6https://archive.ics.uci.edu/dataset/198/steel+plates+faults
7https://archive.ics.uci.edu/dataset/602/dry+bean+dataset
8https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+b

ased+on+eating+habits+and+physical+condition
9https://archive.ics.uci.edu/dataset/194/wall+following+robot+navigatio

n+data
10https://archive.ics.uci.edu/dataset/1/abalone
11https://archive.ics.uci.edu/dataset/332/online+news+popularity
12https://www.kaggle.com/datasets/tejashvi14/medical-insurance-premium-p

rediction
13https://archive.ics.uci.edu/dataset/186/wine+quality
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Figure 8: Visualization comparison of HP synthesizers on Bean dataset with t-SNE (Van der Maaten
& Hinton, 2008). Real data are in blue and synthetic data are in orange.

B.3 USED DATA SYNTHESIS ALGORITHMS

We study a wide range of state-of-the-art synthesizers, from statistical methods to deep generative
models. We select them as they are either generally considered to perform best in practice (McKenna
et al., 2021; Zhang et al., 2021), widely used (Xu et al., 2019; Papernot et al., 2018), or recently
emerged (Kotelnikov et al., 2023; Borisov et al., 2023; Truda, 2023). These synthesizers can be
categorized into two groups: heuristic private (HP) and differentially private (DP) synthesizers.

HP Synthesizers. Synthesizers in this category are developed without integrating DP:

• CTGAN (Xu et al., 2019) is one of the most widely used HP synthesis algorithms. It utilizes
generative adversarial networks to learn tabular data distributions. Training techniques like con-
ditional generation and Wasserstein loss (Gulrajani et al., 2017) are used.

• TVAE (Xu et al., 2019) is the state-of-the-art variational autoencoder for tabular data synthesizer,
which uses mode-specific normalization to tackle the non-Gaussian problems of continuous dis-
tributions.

• TabDDPM (Kotelnikov et al., 2023) is the state-of-the-art diffusion model for data synthesis. It
leverages the Gaussian diffusion process and the multinomial diffusion process to model continu-
ous and discrete distributions respectively.

• GReaT Borisov et al. (2023) utilizes the large language model (LLM) for data synthesis. It
converts records to textual representations for LLM and generates synthetic data with prompts.

DP Synthesizers. These methods are either inherently designed with DP or are adaptations of HP
models with additional mechanisms to offer provable privacy guarantees:

• MST (McKenna et al., 2021) is the state-of-the-art DP synthesizer, which uses probabilistic graph-
ical models McKenna et al. (2019) to learn the dependence of low-dimensional marginals. It won
the NIST Differential Privacy Synthetic Data Challenge NIST (2018). Discrete binning is applied
for numerical attributes.

• PrivSyn (Zhang et al., 2021) is a non-parametric DP synthesizer, which iteratively updates the
synthetic dataset to make it match the target noise marginals. This method also shows strong
performance in NIST competitions (NIST, 2018; 2020). Discretization is also used for modeling
numerical attributes.

• PATE-GAN (Jordon et al., 2018) shares a similar architecture with CTGAN, but leverages the
Private Aggregation of Teacher Ensembles (PATE) (Papernot et al., 2018) to offer DP guarantees.

• TableDiffusion (Truda, 2023) is a newly proposed diffusion model for data synthesis, which uses
Differentially Private Stochastic Gradient Descent (DP-SGD) to enforce privacy.

All DP synthesizers can be adapted to the HP scenario either by using their HP counterparts14 (i.e.,
CTGAN for PATE-GAN, TabDDPM for TableDiffusion) or by setting the privacy budget to infinity
(i.e., MST and PrivSyn). However, some HP synthesizers, such as TVAE and GReaT, do not have
corresponding DP variants. Thus, we only assess their performance within the context of HP models.
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Figure 9: Visualization comparison of DP synthesizers on Bean dataset with t-SNE. Real data are in
blue and synthetic data are in orange.

C ADDITIONAL EXPERIMENTS AND RESULTS

C.1 FIDELITY RESULTS

Here we include the complete fidelity results in our evaluation. The fidelity evaluation on train data
is shown in Table 5 and Table 4. The fidelity evaluation on test data is demonstrated in Table 5 and
Table 6. It is observed that TabDDPM outperforms other HP synthesizers on most datasets, and
statistical methods (i.e., MST and PrivSyn) achieve the best performance when DP is required.

Table 3: Fidelity evaluation (lower score indicates better fidelity) of synthesizers on training data
Dtrain of first six datasets. The privacy budget ϵ of HP synthesizers is∞ (the top part), and the budget
for DP synthesizers is 1 (the middle part). HALF and HISTOGRAM are the baselines that serve as
the empirical upper/lower bound of the fidelity for HP synthesizers. The best result is in bold.

Adult Shoppers Phishing Magic Faults Bean
MST 0.186±.010 0.092±.002 0.019±.001 0.037±.002 0.056±.002 0.040±.002

PrivSyn 0.024±.001 0.030±.001 0.010±.001 0.015±.003 0.064±.006 0.035±.002

TVAE 0.085±.002 0.156±.001 0.024±.001 0.021±.003 0.055±.007 0.047±.006

CTGAN 0.059±.001 0.062±.001 0.062±.002 0.157±.006 0.133±.004 0.139±.005

TabDDPM 0.020±.001 0.022±.001 0.015±.001 0.011±.003 0.026±.002 0.015±.002

REaLTabFormer 0.022±.002 0.024±.003 0.012±.001 0.045±.005 0.054±.005 0.035±.007

MST (ϵ = 1) 0.198±.013 0.103±.002 0.023±.001 0.042±.003 0.086±.003 0.048±.004

PrivSyn (ϵ = 1) 0.045±.002 0.077±.005 0.033±.002 0.052±.003 0.228±.007 0.142±.007

PATE-GAN (ϵ = 1) 0.139±.001 0.176±.002 0.173±.002 0.153±.005 0.204±.003 0.520±.006

TableDiffusion (ϵ = 1) 0.180±.002 0.209±.002 0.123±.002 0.132±.003 0.369±.002 0.148±.005

HALF (upper bound) 0.020±.002 0.018±.001 0.010±.002 0.011±.004 0.017±.002 0.015±.004

HISTOGRAM (lower bound) 0.213±.013 0.101±.003 0.027±.001 0.051±.003 0.081±.002 0.087±.002

Table 4: Fidelity evaluation (lower score indicates better fidelity) of synthesizers on training data
Dtrain of last six datasets. The privacy budget ϵ of HP synthesizers is∞ (the top part), and the budget
for DP synthesizers is 1 (the middle part). HALF and HISTOGRAM are the baselines that serve as
the empirical upper/lower bound of the fidelity for HP synthesizers. The best result is in bold.

Obesity Robot Abalone News Insurance Wine
MST 0.041±.001 0.050±.002 0.037±.002 0.060±.001 0.038±.005 0.066±.001

PrivSyn 0.034±.002 0.065±.012 0.024±.004 0.018±.001 0.033±.002 0.017±.000

TVAE 0.055±.004 0.053±.001 0.048±.003 0.081±.001 0.078±.007 0.039±.000

CTGAN 0.072±.002 0.106±.003 0.049±.004 0.040±.001 0.090±.004 0.033±.001

TabDDPM 0.017±.001 0.015±.002 0.015±.004 0.034±.001 0.028±.005 0.011±.000

REaLTabFormer 0.031±.004 0.029±.002 0.013±.004 0.038±.001 0.033±.003 0.008±.001

MST (ϵ = 1) 0.063±.001 0.065±.001 0.052±.003 0.062±.002 0.071±.002 0.068±.001

PrivSyn (ϵ = 1) 0.167±.009 0.169±.021 0.127±.009 0.070±.002 0.124±.006 0.156±.004

PATE-GAN (ϵ = 1) 0.086±.003 0.477±.002 0.331±.005 0.065±.002 0.385±.003 0.251±.000

TableDiffusion (ϵ = 1) 0.347±.003 0.203±.001 0.232±.005 0.135±.001 0.343±.002 0.108±.001

HALF (upper bound) 0.017±.003 0.010±.001 0.012±.004 0.009±.001 0.026±.004 0.006±.000

HISTOGRAM (lower bound) 0.051±.001 0.061±.002 0.069±.001 0.063±.002 0.046±.002 0.068±.000

14Although these paired models are quite different in the numbers of neural network layers, preprocessing,
and learning strategies, they belong to the same type of generative model. Thus we call them “counterparts”.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 5: Fidelity evaluation (i.e., Wasserstein distance) of data synthesis algorithms on test data Dtest
of the first six datasets. HALF and HISTOGRAM are the baselines that serve as the empirical upper
and lower bounds of the fidelity for HP synthesizers. The low score indicates the synthesizer can
generate high-quality synthetic data. The best result is in bold.

Adult Shoppers Phishing Magic Faults Bean
MST 0.172±.004 0.098±.002 0.026±.001 0.039±.002 0.089±.006 0.044±.003

PrivSyn 0.025±.001 0.041±.003 0.017±.002 0.015±.002 0.079±.007 0.037±.003

TVAE 0.086±.002 0.154±.002 0.028±.002 0.020±.003 0.081±.016 0.050±.004

CTGAN 0.061±.003 0.061±.002 0.069±.001 0.150±.004 0.133±.007 0.139±.005

TabDDPM 0.021±.001 0.031±.001 0.019±.001 0.012±.002 0.058±.008 0.016±.003

REaLTabFormer 0.021±.002 0.030±.003 0.018±.004 0.046±.003 0.075±.005 0.028±.004

MST (ϵ = 1) 0.179±.004 0.103±.001 0.028±.001 0.042±.004 0.112±.005 0.048±.003

PrivSyn (ϵ = 1) 0.049±.002 0.084±.002 0.030±.003 0.031±.003 0.236±.017 0.128±.010

PATE-GAN (ϵ = 1) 0.139±.002 0.171±.002 0.173±.002 0.155±.005 0.215±.004 0.523±.004

TableDiffusion (ϵ = 1) 0.179±.002 0.210±.002 0.121±.002 0.132±.005 0.390±.004 0.149±.004

HALF (upper bound) 0.022±.002 0.023±.002 0.016±.003 0.011±.003 0.042±.005 0.015±.003

HISTOGRAM (lower bound) 0.199±.017 0.101±.001 0.030±.001 0.048±.002 0.113±.006 0.080±.003

Table 6: Fidelity evaluation (i.e., Wasserstein distance) of data synthesis algorithms on test data Dtest
of the last six datasets. HALF and HISTOGRAM are the baselines that serve as the empirical upper
and lower bounds of the fidelity for HP synthesizers. The low score indicates the synthesizer can
generate high-quality synthetic data. The best result is in bold.

Obesity Robot Abalone News Insurance Wine
MST 0.062±.003 0.055±.003 0.062±.008 0.050±.004 0.083±.009 0.075±.002

PrivSyn 0.053±.005 0.054±.004 0.032±.005 0.018±.001 0.074±.006 0.022±.001

TVAE 0.059±.003 0.059±.007 0.046±.005 0.079±.001 0.118±.009 0.045±.001

CTGAN 0.085±.004 0.109±.009 0.066±.005 0.040±.001 0.116±.008 0.034±.001

TabDDPM 0.043±.003 0.028±.004 0.034±.010 0.032±.001 0.070±.009 0.017±.001

REaLTabFormer 0.062±.006 0.036±.005 0.040±.014 0.041±.001 0.071±.010 0.015±.001

MST (ϵ = 1) 0.075±.004 0.072±.007 0.080±.010 0.051±.002 0.093±.006 0.075±.001

PrivSyn (ϵ = 1) 0.154±.013 0.177±.011 0.111±.011 0.044±.001 0.152±.011 0.130±.005

PATE-GAN (ϵ = 1) 0.089±.004 0.478±.007 0.353±.009 0.061±.002 0.386±.011 0.250±.003

TableDiffusion (ϵ = 1) 0.338±.005 0.203±.002 0.226±.007 0.128±.001 0.366±.008 0.098±.001

HALF (upper bound) 0.041±.006 0.023±.005 0.028±.007 0.010±.002 0.060±.007 0.014±.001

HISTOGRAM (lower bound) 0.066±.002 0.065±.002 0.094±.009 0.059±.006 0.081±.004 0.076±.001

C.2 PRIVACY REUSLTS

The complete privacy results in our evaluation are shown in Table 7 and Table 8.

Table 7: Privacy evaluation (lower score means better empirical privacy protection) of HP synthe-
sizers on the first six datasets. SELF is the baseline that serves as the empirical lower bound of MDS
(the upper bound of MDS is 0 by definition). The best result is in bold.

Adult Shoppers Phishing Magic Faults Bean
MST 0.031±.001 0.012±.002 0.038±.003 0.008±.001 0.030±.002 0.015±.003

PrivSyn 0.046±.002 0.005±.001 0.017±.003 0.005±.002 0.004±.001 0.006±.003

TVAE 0.192±.003 0.050±.002 0.016±.001 0.016±.005 0.037±.002 0.029±.001

CTGAN 0.131±.002 0.018±.003 0.125±.001 0.012±.003 0.011±.003 0.028±.001

TabDDPM 0.204±.001 0.019±.002 0.082±.003 0.015±.001 0.092±.002 0.020±.003

REaLTabFormer 0.234±.001 0.047±.002 0.084±.003 0.011±.002 0.090±.002 0.018±.002

SELF (lower bound) 0.733±.000 0.094±.000 0.125±.000 0.199±.000 0.209±.000 0.273±.000

C.3 UTILITY RESULTS

Table 9 and Table 10 present the results of MLA and Table 11 and Table 12 presents the query error
results for different synthesizers. Similar to the results of fidelity evaluation, TabDDPM demon-
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Table 8: Privacy evaluation (lower score means better empirical privacy protection) of HP synthe-
sizers on the last six datasets. SELF is the baseline that serves as the empirical lower bound of MDS
(the upper bound of MDS is 0 by definition). The best result is in bold.

Obesity Robot Abalone News Insurance Wine
MST 0.013±.001 0.008±.001 0.030±.002 0.043±.003 0.006±.001 0.030±.002

PrivSyn 0.027±.002 0.012±.001 0.012±.003 0.005±.002 0.013±.001 0.008±.003

TVAE 0.104±.003 0.039±.002 0.035±.001 0.004±.003 0.036±.002 0.019±.001

CTGAN 0.026±.001 0.033±.003 0.024±.002 0.007±.005 0.009±.003 0.013±.001

TabDDPM 0.333±.001 0.113±.002 0.120±.003 0.008±.001 0.027±.002 0.075±.003

REaLTabFormer 0.283±.002 0.038±.001 0.150±.002 0.008±.002 0.083±.001 0.034±.001

SELF (lower bound) 0.671±.000 0.338±.000 0.285±.000 0.068±.000 0.078±.000 0.346±.000

strates strong performance among HP synthesizers, while statistical methods outperform other ap-
proaches among DP synthesizers.

Table 9: Utility evaluation (i.e., MLA) of data synthesis on the first six datasets. The lower value
means better utility. The privacy budget ϵ of HP synthesizers is set as ∞ (the top part), and the
budget for DP synthesizers is set as 1 (the bottom part). The best result of each category is in bold.

Adult Shoppers Phishing Magic Faults Bean
MST 0.086±.001 0.193±.002 0.037±.003 0.073±.001 0.255±.002 0.035±.003

PrivSyn 0.120±.003 0.040±.001 0.057±.002 0.085±.003 0.532±.001 0.039±.002

TVAE 0.035±.002 0.011±.003 0.031±.001 0.075±.002 0.217±.003 0.059±.001

CTGAN 0.039±.003 0.031±.002 0.068±.001 0.154±.003 0.525±.002 0.103±.001

TabDDPM 0.014±.001 0.003±.002 0.007±.003 0.007±.001 0.085±.002 0.003±.003

REaLTabFormer 0.004±.001 0.004±.002 0.006±.002 0.014±.001 0.101±.003 0.006±.002

MST (ϵ = 1) 0.101±.003 0.048±.001 0.041±.002 0.093±.003 0.489±.001 0.054±.002

PrivSyn (ϵ = 1) 0.120±.002 0.177±.003 0.085±.001 0.217±.002 0.753±.003 0.466±.001

PATE-GAN (ϵ = 1) 0.126±.001 0.135±.002 0.530±.003 0.394±.001 0.781±.002 0.781±.003

TableDiffusion (ϵ = 1) 0.198±.002 0.135±.003 0.074±.001 0.133±.002 0.904±.003 0.981±.001

Table 10: Utility evaluation (i.e., MLA) of data synthesis on the last six datasets. The lower value
means better utility. The privacy budget ϵ of HP synthesizers is set as ∞ (the top part), and the
budget for DP synthesizers is set as 1 (the bottom part). The best result of each category is in bold.

Obesity Robot Abalone News Insurance Wine
MST 0.332±.001 0.146±.002 0.096±.003 0.498±.001 0.270±.002 0.347±.003

PrivSyn 0.604±.003 0.406±.001 0.210±.002 1.992±.003 0.518±.001 0.201±.002

TVAE 0.294±.002 0.128±.003 0.245±.001 0.147±.002 0.336±.003 0.091±.001

CTGAN 0.893±.003 0.434±.002 0.282±.001 0.104±.003 1.700±.002 0.222±.001

TabDDPM 0.021±.001 0.011±.002 0.043±.003 0.047±.001 0.140±.002 0.047±.003

REaLTabFormer 0.054±.001 0.017±.002 0.020±.002 0.047±.001 0.039±.002 0.042±.003

MST (ϵ = 1) 0.531±.003 0.245±.001 0.241±.002 1.072±.003 1.366±.001 0.340±.002

PrivSyn (ϵ = 1) 0.821±.002 0.608±.003 0.624±.001 4.538±.002 1.878±.003 0.302±.001

PATE-GAN (ϵ = 1) 0.877±.001 0.755±.002 2.119±.003 0.259±.001 2.325±.002 0.405±.003

TableDiffusion (ϵ = 1) 0.968±.002 0.439±.003 0.287±.001 0.781±.002 2.503±.003 0.489±.001

C.4 COMPARISON OF DIFFERENT PRIVACY METRICS

Comparsion with Syntactic Privacy Evaluation Metrics and MIAs. We compare the efficacy of
different privacy evaluation metrics by conducting a series of proof-of-concept experiments. Specif-
ically, we consider the following popular metrics:

• DCR (Zhao et al., 2021) measures the distance between the synthetic record and its closest real
neighbor. The 5th percentile of the distance distribution represents the privacy score (a higher
score means better privacy). We also utilize the worst-case (nearest distance) of DCR for compar-
ison.
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Table 11: Utility evaluation (i.e., query error) of data synthesis on the first six datasets. A lower
value means a smaller query error. The privacy budget ϵ of HP synthesizers is∞ (the top part), and
the budget for DP synthesizers is 1 (the bottom part). The best result of each category is in bold.

Adult Shoppers Phishing Magic Faults Bean
MST 0.056±.018 0.044±.005 0.009±.001 0.035±.004 0.041±.003 0.036±.003

PrivSyn 0.009±.002 0.011±.006 0.011±.002 0.011±.002 0.027±.004 0.034±.002

TVAE 0.025±.005 0.034±.006 0.018±.000 0.014±.002 0.026±.003 0.019±.001

CTGAN 0.015±.001 0.017±.001 0.051±.002 0.037±.002 0.047±.006 0.030±.003

TabDDPM 0.006±.001 0.008±.001 0.012±.001 0.006±.001 0.021±.002 0.006±.001

REaLTabFormer 0.004±.001 0.007±.001 0.011±.003 0.012±.001 0.024±.002 0.006±.001

MST (ϵ = 1) 0.071±.014 0.052±.017 0.012±.001 0.036±.003 0.045±.002 0.037±.002

PrivSyn (ϵ = 1) 0.010±.001 0.027±.007 0.016±.002 0.025±.003 0.100±.006 0.048±.004

PATE-GAN (ϵ = 1) 0.028±.004 0.024±.002 0.117±.009 0.058±.005 0.088±.009 0.191±.017

TableDiffusion (ϵ = 1) 0.057±.006 0.054±.005 0.071±.007 0.074±.011 0.119±.009 0.052±.007

Table 12: Utility evaluation (i.e., query error) of data synthesis on the last six datasets. A lower
value means a smaller query error. The privacy budget ϵ of HP synthesizers is∞ (the top part), and
the budget for DP synthesizers is 1 (the bottom part). The best result of each category is in bold.

Obesity Robot Abalone News Insurance Wine
MST 0.035±.007 0.049±.005 0.040±.004 0.033±.005 0.039±.004 0.042±.005

PrivSyn 0.027±.006 0.029±.003 0.014±.001 0.010±.005 0.035±.007 0.013±.002

TVAE 0.027±.003 0.020±.001 0.016±.002 0.030±.006 0.050±.009 0.028±.004

CTGAN 0.037±.004 0.033±.004 0.036±.005 0.018±.003 0.055±.006 0.016±.003

TabDDPM 0.017±.003 0.008±.001 0.011±.003 0.017±.002 0.027±.007 0.010±.001

REaLTabFormer 0.027±.004 0.009±.001 0.015±.002 0.019±.002 0.032±.006 0.007±.001

MST (ϵ = 1) 0.043±.005 0.050±.008 0.041±.003 0.043±.004 0.033±.004 0.045±.004

PrivSyn (ϵ = 1) 0.060±.004 0.095±.002 0.051±.003 0.027±.005 0.062±.007 0.064±.008

PATE-GAN (ϵ = 1) 0.037±.001 0.150±.023 0.223±.032 0.029±.003 0.138±.011 0.158±.013

TableDiffusion (ϵ = 1) 0.108±.010 0.071±.012 0.085±.010 0.050±.003 0.195±.011 0.048±.006

• NNDR (Zhao et al., 2021) calculates the distance ratio between the closest and second closest real
neighbor to synthetic data. The 5th percentile (or nearest distance) determines the privacy score,
where higher values indicate better privacy.

• Groundhog (Stadler et al., 2022) first calculates statistics (e.g., histogram, correlations, etc.) from
synthetic data as features. It then uses these features to train shadow models to form a binary
classification for membership attack.

• TAPAS (Houssiau et al., 2022) leverages the counting queries as features and trains a random
forest classifier for membership attack.

• DOMIAS (van Breugel et al., 2023) is the state-of-the-art MIA for data synthesis, which utilizes
the additional reference dataset to calibrate the density estimation of output distributions, and
determines the membership via likelihood ratio hypothesis.

We randomly divide the dataset into two disjoint subsets: a training set Dt and a reference set
Dr, where |Dt| = |Dr| and they share the same data distribution. Each synthesis algorithm is
trained on Dt and generates the synthetic data D, while the reference data Dr remains unused
during the synthesis process. Different treatments are applied for different metrics: (i) For syntactic
metrics (i.e., DCR and NNDR), we compute the privacy score by treating either Dt or Dr as the
real data. Unless a synthesizer provides very good privacy, it is expected that the privacy leakage
on Dr is significantly smaller than that on Dt, since the synthetic data is generated using Dt and
is independent of Dr. (ii) For MIAs and MDS, training dataset Dt and synthesis algorithm A are
utilized to compute the privacy leakage. Table 13 presents the scores of different privacy evaluation
metrics for various HP synthesizers on the Adult dataset. We have the following observations:

• Syntactic metrics are not stable. The standard deviations of syntactic metrics are quite large
compared to their mean values. This instability is pronounced when using the nearest distance
as the score, representing the worst-case assessment. This arises because syntactic metrics fail to
account for the inherent randomness of the synthesis process.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 13: Comparison of privacy evaluation metrics for HP synthesizers on Adult dataset. Dt, Dr,
and S are the training, reference, and synthetic data. A is the synthesis algorithm. Syntactic metrics
(DCR and NNDR) are highly unstable and are unable to provide meaningful privacy measures.
MIAs (Groundhog, TAPAS, and MODIAS) fail to distinguish the different levels of privacy risks of
synthesizers.

Privacy Evaluation Metric Metric Input MST (ϵ = ∞) PrivSyn (ϵ = ∞) TVAE CTGAN TabDDPM GReaT

DCR
(5th percentile distance)

Dt, S 0.535±.121 0.520±.182 0.493±.116 0.533±.103 0.409±.181 0.437±.122

Dr, S 0.527±.146 0.531±.194 0.487±.158 0.479±.146 0.446±.175 0.502±.201

DCR
(Nearest distance)

Dt, S 0.102±.078 0.110±.084 0.124±.109 0.105±.883 0.081±.077 0.082±.069

Dr, S 0.117±.096 0.104±.083 0.132±.105 0.129±.094 0.102±.080 0.094±.067

NNDR
(5th percentile distance)

Dt, S 0.753±.226 0.737±.204 0.740±.218 0.733±.135 0.834±.129 0.835±.105

Dr, S 0.750±.223 0.703±.205 0.714±.187 0.802±.103 0.881±.101 0.795±.117

NNDR
(Nearest distance)

Dt, S 0.532±.274 0.508±.315 0.496±.229 0.517±.284 0.542±.247 0.522±.203

Dr, S 0.530±.298 0.498±.304 0.504±.209 0.539±.263 0.547±.229 0.512±.255

Groundhog (TPR@1%FPR) Dt,A 0.010±.002 0.011±.001 0.010±.003 0.010±.002 0.015±.003 0.013±.002

TAPAS (TPR@1%FPR) Dt,A 0.012±.001 0.013±.001 0.011±.002 0.009±.001 0.030±.002 0.020±.001

MODIAS (TPR@1%FPR) Dt,A 0.011±.001 0.011±.001 0.010±.002 0.008±.001 0.035±.002 0.022±.001

MDS (ours) Dt,A 0.031±.001 0.046±.002 0.192±.003 0.131±.002 0.204±.001 0.199±.001

• Syntactic metrics are improper privacy measurements. When using training data Dt or reference
data Dr as real data to compute DCR and NNDR, the score differences are very small compared
to their standard deviations. We note that for a good privacy evaluation metric, only when a
synthesizer provides a very strong privacy guarantee, would we expect the two scores to be very
similar. Since it is impossible that all HP synthesizers can provide such a high level of strong
privacy guarantee, we assert this is because these syntactic metrics do not provide a good measure
of privacy.

• MIAs fail to distinguish different levels of privacy. Experimental results show that the performance
of MI attacks is relatively low for most synthesizers. We attribute the failure to the inherent ran-
domness of synthesizers and synthetic datasets, which make it difficult to capture reliable signals
to determine the membership.

• MDS is a reliable privacy evaluation metric. It is observed that the variance of MDS is very small,
indicating its robustness for assessing data synthesizers. Additionally, MDS can also detect subtle
differences in privacy leakage across various HP synthesizers.

Comparison with Meeus et al. We also notice that Meeus et al. (2023) proposed a new approach
to evaluate the empirical privacy risks of synthesizers. It first identifies vulnerable samples by ex-
amining their closeness and then conducts a shadow model-based membership inference attack for
the vulnerable sample for evaluation. (We follow the original paper and use the most vulnerable 10
records in our experiments.) While this approach (we call it vMIA) does not align with the standard
setting for membership inference attacks, it may serve as a viable tool for empirical privacy evalu-
ation. Thus, we conduct the following experiments to compare the effectiveness of vMIA with our
proposed MDS.

Specifically, we train two DP synthesizers (i.e., MST and PATE-GAN) with varying levels of privacy
protection by adjusting the privacy budget, and we measure the empirical privacy risk using vMIA
and MDS. We follow Meeus et al. (2023) and use the area under the curve (AUC) as the evaluation
metric. The results of both experiments are presented in Figure 10. We observe an improvement in
attack performance for MST, whereas the performance of PATE-GAN remains relatively low (below
60% AUC) across all levels of privacy budgets. We attribute this to the design of vulnerability scores
in vMIA where the extracted vulnerable samples are determined by their closeness within datasets,
which is independent of the underlying synthesizers. Additionally, since deep generative models are
not designed to model marginal distributions, using marginal queries as features may not provide
reliable performance signals for membership inference. Furthermore, vMIA suffers from relatively
high variance. In contrast, MDS reliably detects different privacy risks across both marginal-based
methods and deep generative models.
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Figure 10: Privacy evaluation comparison between vMIA (Meeus et al., 2023) and MDS. MDS uses
the left y-axis (“Privacy Score”) whereas vMIA uses right y-axis (“AUC”).

C.5 IMPACT OF MODEL TUNING PHASE

To demonstrate the effectiveness of the proposed tuning objective, we conduct a series of com-
parative experiments. We leverage existing tuning approaches and evaluate the performance using
both the proposed and existing evaluation metrics. Specifically, we consider the following tuning
objectives and metrics:

• Existing Tuning Objectives. We note that many synthesizers (Zhang et al., 2021; McKenna et al.,
2019; Zhang et al., 2024; Borisov et al., 2023) do not provide guidelines for hyperparameter tuning
and some (Xu et al., 2019) are notoriously difficult to tune. However, a few synthesis algorithms,
such as TabDDPM (Kotelnikov et al., 2023), describe a tuning process for their synthesizers. For
comparison, we adopt the original tuning method of TabDDPM, which uses the machine learning
efficiency of synthetic data on CatBoost as its tuning objective (we call it MLEobj for short).

• Existing Evaluation Metrics. We evaluated the results using five widely used fidelity metrics,
including Total Variation Distance (TVD) and Kolmogorov-Smirnov Test (KST), Theil’s uncer-
tainty coefficient, Pearson correlation, and the correlation ratio. For existing utility metrics, we
included machine learning efficiency on CatBoost and query errors. Note that we do not include
the existing privacy metric (i.e., DCR) because, as argued in our paper, it is flawed as a proper
privacy metric and is unrelated to the existing tuning objectives. Detailed discussion about these
metrics is shown in Appendix G.

Comparsion with Existing Tuning Objective. We compare the performance improvements of
the existing tuning objective (i.e., MLEobj) and the proposed method (i.e., SynMeter) across various
evaluation metrics on TabDDPM, as shown in Table 14. The results indicate that our proposed tuning
objective significantly enhances performance on both the proposed and existing metrics. Addition-
ally, while MLEobj effectively improves machine learning efficiency (which is also their optimization
objective), it shows limited improvement in other aspects, such as all the fidelity metrics and query
errors.

Table 14: Comparison the performance verage performance improvements (%) of existing tuning
objective (i.e., MLEobj) and the proposed one (i.e., SynMeter) with various evaluation metrics on
TabDDPM. The best result is in bold.

Tuning Objective Fidelity ↑ Utility ↑
TVD KST Theil Pearson Correlation Ratio Wasserstein (Ours) Query Errors MLE MLA (Ours)

MLEobj 2.45 1.52 2.26 2.47 2.61 2.18 2.63 10.58 7.34
SynMeter 10.15 14.83 11.46 12.47 13.83 13.62 11.95 13.06 13.67

Impact of Different Coefficient Configurations. We also present the results of various coefficient
combinations during the tuning phase, as shown in Table 15. The results demonstrate that our
tuning objective is highly robust to different coefficient assignments, with all combinations showing
a significant improvement over the default settings. Additionally, we note that practitioners can
adjust these coefficients based on specific application needs to enhance certain characteristics of the
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Table 15: Average performance improvements (%) on fi-
delity and utility for TabDDPM when training with the
proposed tuning objective in Equation (11).

α1 α2 α3
Fidelity ↑ Utility ↑

DTrain DTest MLA Query Error

0 1/2 1/2 10.57 10.01 8.45 7.90
1/4 1/2 1/4 11.17 10.48 8.30 7.21
1/4 1/4 1/2 11.24 10.33 8.08 7.91
1/3 1/3 1/3 11.34 10.95 8.32 7.86
1/2 1/4 1/4 12.16 10.98 7.64 7.06
1/2 0 1/2 11.34 10.23 7.15 7.65
1/2 1/2 0 10.38 9.97 8.62 7.17
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Figure 11: Performance behaviors of
HP synthesizers on Magic dataset.
“LR” denotes Linear Regression, “DT”
is Decision Tree, and “RF” means Ran-
dom Forest.

synthetic data. For example, one may want to increase α2 to improve the quality of synthetic data for
model selection tasks. However, we also observed that no single coefficient configuration maximizes
model performance across all three metrics. We believe this is because each metric emphasizes a
different aspect of synthetic data quality. For instance, MLA is designed to maximize machine
learning performance, specifically focusing on the correlation with label columns. In contrast, the
fidelity metric evaluates the overall distributional similarity between real and synthetic data, which
is independent of downstream tasks.

C.6 PERFORMANCE OF TABSYN AND GREAT

Here we include TabSyn (Zhang et al., 2024) and GReaT (Borisov et al., 2023) for comparison. Tab-
Syn first trains an autoencoder to capture inter-column relations and then employs a latent diffusion
model for tabular data synthesis. GReaT leverage utilizes the large language model (LLM) for data
synthesis. It converts records to textual representations for LLM and generates synthetic data with
prompts. We compare it with TabDDPM (Kotelnikov et al., 2023), as TabDDPM has demonstrated
impressive performance in our assessments.

All synthesizers are tuned using SynMeter and evaluated with our proposed metrics. As shown
in Table 16 and Table 17, TabSyn and TabDDPM exhibit comparable performance across fidelity,
privacy, and utility metrics, with neither emerging as a clear winner in any category. However,
they all outperform GReaT on most fidelity and utility measures. It is worth noting that Zhang et al.
(2024) reported superior performance for TabSyn over TabDDPM. We attribute this to the possibility
that TabDDPM was not optimally tuned in previous evaluations.

Table 16: Performance comparison between TabDDPM, TabSyn, and GReaT on the first six datasets.
The best result is in bold.

Synthesizer Adult Shoppers Phishing Magic Faults Bean

Fidelity
(Dtrain)

TabDDPM 0.020±.001 0.022±.001 0.015±.001 0.011±.003 0.026±.002 0.015±.002

TabSyn 0.025±.003 0.030±.005 0.018±.003 0.012±.004 0.034±.003 0.033±.008

GReaT 0.050±.002 0.049±.003 0.076±.002 0.037±.003 0.050±.006 0.020±.001

Fidelity
(Dtest)

TabDDPM 0.021±.001 0.031±.001 0.019±.001 0.012±.002 0.058±.008 0.016±.003

TabSyn 0.028±.002 0.035±.001 0.023±.001 0.014±.002 0.057±.012 0.033±.007

GReaT 0.052±.002 0.056±.004 0.072±.002 0.039±.003 0.063±.007 0.021±.004

Privacy
(MDS)

TabDDPM 0.204±.001 0.019±.002 0.082±.003 0.015±.001 0.092±.002 0.020±.003

TabSyn 0.202±.001 0.017±.003 0.088±.002 0.029±.001 0.100±.003 0.021±.003

GReaT 0.199±.002 0.044±.003 0.091±.001 0.011±.002 0.099±.003 0.016±.004

Utility
(MLA)

TabDDPM 0.014±.001 0.006±.002 0.007±.003 0.007±.001 0.085±.002 0.003±.003

TabSyn 0.014±.001 0.006±.002 0.025±.003 0.005±.001 0.118±.002 0.005±.001

GReaT 0.009±.002 0.009±.003 0.020±.001 0.033±.002 0.183±.003 0.017±.001

Utility
(QueryError)

TabDDPM 0.006±.001 0.008±.001 0.012±.001 0.006±.001 0.021±.002 0.006±.001

TabSyn 0.005±.001 0.009±.001 0.016±.001 0.007±.001 0.018±.003 0.009±.001

GReaT 0.014±.002 0.014±.004 0.049±.002 0.029±.003 0.028±.003 0.011±.001
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Table 17: Performance comparison between TabDDPM, TabSyn, and GReaT on the last six datasets.
The best result is in bold.

Synthesizer Obesity Robot Abalone News Insurance Wine

Fidelity
(Dtrain)

TabDDPM 0.017±.001 0.015±.002 0.015±.004 0.034±.001 0.028±.005 0.011±.000

TabSyn 0.028±.003 0.045±.002 0.020±.005 0.012±.002 0.026±.003 0.021±.000

GReaT1 0.055±.005 0.055±.003 0.022±.005 - 0.094±.004 0.019±.001

Fidelity
(Dtest)

TabDDPM 0.043±.003 0.028±.004 0.034±.010 0.032±.001 0.070±.009 0.017±.001

TabSyn 0.047±.006 0.050±.004 0.020±.006 0.012±.001 0.067±.008 0.028±.000

GReaT 0.062±.008 0.058±.006 0.037±.004 - 0.107±.010 0.024±.001

Privacy
(MDS)

TabDDPM 0.333±.001 0.113±.002 0.120±.003 0.008±.001 0.027±.002 0.075±.003

TabSyn 0.183±.002 0.062±.001 0.102±.002 0.026±.003 0.019±.002 0.124±.002

GReaT 0.263±.002 0.039±.003 0.130±.001 - 0.072±.002 0.034±.003

Utility
(MLA)

TabDDPM 0.021±.001 0.011±.002 0.043±.003 0.047±.001 0.140±.002 0.047±.003

TabSyn 0.075±.001 0.086±.002 0.017±.001 0.009±.003 0.033±.001 0.082±.002

GReaT 0.117±.002 0.050±.003 0.038±.001 - 0.292±.002 0.083±.003

Utility
(QueryError)

TabDDPM 0.017±.003 0.008±.001 0.011±.003 0.017±.002 0.027±.007 0.010±.001

TabSyn 0.020±.002 0.017±.003 0.009±.002 0.005±.001 0.027±.006 0.016±.001

GReaT 0.030±.003 0.014±.001 0.019±.003 - 0.041±.007 0.013±.001

1GReaT cannot be applied to the News dataset because of the maximum length limit of large language models.
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(b) Comparing privacy evaluation met-
rics on HP synthesizer

Figure 12: Effectiveness evaluation of MDS on Adult dataset. This figure is an enlarged version of
Figure 2 presented in the main text.

D ENLARGED FIGURES

Due to the page limit, some figures in the main text may not be clear to all readers. Therefore,
we have included enlarged versions of each figure from the main text, as shown in Figures 12 to
Figure 15.

E HYPERPARAMETER SEARCH SPACES

In this paper, we evaluate the following synthesizers: MST (McKenna et al., 2019), PrivSyn (Zhang
et al., 2021), TVAE (Xu et al., 2019), CTGAN (Xu et al., 2019), TabDDPM (Kotelnikov et al., 2023),
REaLTabFormer (Solatorio & Dupriez, 2023), GReaT (Borisov et al., 2023), PATE-GAN (Jordon
et al., 2018), and TableDiffusion (Truda, 2023). The hyperparameter search spaces of these synthe-
sizers are shown in Table 18 to Table 26.

F DIFFERENTIALLY PRIVATE DATA SYNTHESIS

Definition 6 (Differential Privacy (Dwork, 2006)). A randomized mechanism M : D → R is
(ε, δ)-differentially private if for any two neighboring datasets D,D′ ∈ D and S ⊆ R, it holds:

Pr[M(D) ∈ S] ≤ eε Pr [M (D′) ∈ S] + δ (12)
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Figure 13: Stability evaluation of MDS on Adult dataset. This figure is an enlarged version of
Figure 3 presented in the main text.

0 100 200 300 400
Training Epoch

0.0

0.2

0.4

0.6

0.8

W
as

se
rs

te
in

D
is

ta
nc

e

Categrical Marginals
Numerical Marginals
Cat-Num Marginals
Cat-Cat Marginals

(a) CTGAN

0 4k 8k 12k 16k 20k
Training Step

0.0

0.2

0.4

0.6

0.8

W
as

se
rs

te
in

D
is

ta
nc

e

Categrical Marginals
Numerical Marginals
Cat-Num Marginals
Cat-Cat Marginals

(b) TabDDPM

Figure 14: Analyzing the learning process of CTGAN and TabDDPM with proposed fidelity metrics
on the Bean dataset. This figure is an enlarged version of Figure 6 presented in the main text.

This definition requires that, on any two neighboring input databases, the difference in the output
distributions of the randomized algorithmM is bounded by eϵ (i.e., ϵ is the privacy budget), except
with a small failure probability δ. This failure probability δ is usually assumed to be cryptographi-
cally small: in this paper, it is set to δ = 1 · 10−9.

An important property of DP is given by the post-processing theorem, which lets us use the output
of DP mechanisms freely without worrying about further privacy leakage.

Theorem 1 (Post-Processing). Let M : D → R be an (ε, δ)-DP mechanism and f : R → R′.
Then f ◦M : D → R′ also satisfies (ε, δ)-DP.

Now we can use DP and the post-processing theorem to define differentially private data synthesis:

Definition 7 (Differentially Privacy Data Synthesis). Given a dataset D sampled from some under-
lying distribution D, we write A← T (D) to denote that the synthesizer A is learned by running the
training algorithm T on the training set D. If the training algorithm T satisfies DP, then we call it
differentially private data synthesis.

That is, the probability that the adversary can infer if a given synthesizer A was fit on D or D′,
i.e., A ∼ T (D) or A ∼ T (D′), is bounded by the ϵ parameter. The guarantees of the overall data
synthesis algorithm then follow from the post-processing theorem, as the synthetic dataset is simply
sampled from the fitted synthesizer.
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Figure 15: Impact of privacy budget ϵ on Bean dataset. This figure is an enlarged version of Figure 7
presented in the main text.

Table 18: MST (McKenna et al., 2019) hyperparameters search space.

Parameter Distribution
Number of two-way marginals Int[10, 50]
Number of three-way marginals Int[5, 20]
Number of bins Int[5, 20]
Maximum number of iterations Int[3000, 5000]

Number of tuning trials 50

G DISCUSSION OF EXISTING EVALUATION METRICS

G.1 EXISTING FIDELITY EVALUATION METRICS AND LIMITATIONS

Low-order Statistics. Marginals are the workhorses of statistical data analysis and well-established
statistics for one(two)-way marginals have been used to assess the quality of synthetic data.

Distribution Measurements. Total Variation Distance (TVD) and Kolmogorov-Smirnov Test (KST)
are used to measure the univariate distribution similarity for categorical and numerical attributes,
respectively. The main problem with this approach is the lack of versatility. Each type of marginal
requires a distinct statistical measure, which complicates the ability to perform a comprehensive
comparison across various attribute types.

Correlation Statistics. Some researchers use correlation difference, i.e., the difference of correlation
scores on synthetic and real data, to measure the pairwise distribution similarity. Popular correlation
statistics like Theil’s uncertainty coefficient (Zhao et al., 2021), Pearson correlation (Zhang et al.,
2024), and the correlation ratio (Kotelnikov et al., 2023) are applied for different types of two-way
marginals (categorical, continuous, and mixed). In addition to the lack of universality, this approach
also suffers from the problem that correlation scores capture only limited information about the data
distribution. Two attributes may have the same correlation score both in the real data and in the
synthetic data, yet their underlying distributions diverge significantly—a phenomenon known as the
scale invariance of correlation statistics15.

Likelihood Fitness. Xu et al. (2019) assume the input data are generated from some known
probabilistic models (e.g., Bayesian networks), thus the likelihood of synthetic data can be derived
by fitting them to the priors. While likelihood fitness can naturally reflect the closeness of synthetic
data to the assumed prior distribution, it is only feasible for data whose priors are known, which is
inaccessible for most real-world complex datasets.

Evaluator-dependent Metrics. Probabilistic mean squared error (pMSE) (Snoke et al., 2018) em-
ploys a logistic regression discriminator to distinguish between synthetic and real data, using relative
prediction confidence as the fidelity metric. The effectiveness of pMSE highly relies on the choice of
auxiliary discriminator, which requires careful calibration to ensure meaningful comparisons across

15https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Mathemat
ical_properties
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Table 19: PrivSyn (Zhang et al., 2021) hyperparameters search space.

Parameter Distribution
Number of bins Int[5, 20]
Maximum number of iterations Int[10, 100]

Number of tuning trials 50

Table 20: TVAE (Xu et al., 2019) hyperparameters search space.

Parameter Distribution
Number of epochs Int[100, 500]
Batch size Int[500, 5000]
Loss factor Float[1, 5]
Embedding dimension Int[128, 512]
Compression dimension Int[128, 512]
Decompression dimension Int[128, 512]
L2 regularization LogUniform[1e-6, 1e-3]

Number of tuning trials 50

different datasets and synthesizers. Alaa et al. (2022) propose α-Precision and β-Recall to quantify
how faithful the synthetic data is. Specifically, α-Precision defines fidelity as the proportion that
the synthetic samples are covered by real data, and β-Recall evaluates the coverage of the synthetic
data. However, previous studies (Zhang et al., 2024) find that α-Precision and β-Recall exhibit a
predominantly negative correlation, and it’s unclear which one should be used for fidelity evaluation.

G.2 EXISTING PRIVACY EVALUATION METRICS AND LIMITATIONS

Syntactic Privacy Evaluation Metrics. Researchers propose to measure the empirical privacy risk
of synthetic data by comparing an input dataset with the output dataset generated by the synthesizer,
typically using the distances between data records. For example, the Distance to Closest Records
(DCR) (Zhao et al., 2021) metric looks at the distribution of the distances from each synthetic
data point to its nearest real one, and uses the 5th percentile (or the mean) of this distribution as
the privacy score. A small score is interpreted as indicating that the synthetic dataset is too close
(similar) to real data, signaling a high risk of information leakage. There are other variations of DCR,
e.g., using the minimum distance instead of the 5th percentile, or using, for each record, the ratio
of the closest distance and the second closest distance. However, these variations result in highly
unstable measurements because of the inherent randomness of synthetic data. DCR and/or other
similar metrics are widely used both in academia (Yale et al., 2019) and industry (AWS, 2022; Gretel,
2023), and have become the conventional privacy evaluation metrics for HP synthesizers (Jordon
et al., 2021).

We note that metrics such as DCR are computed based on a pair of datasets: the input real
dataset, and the output synthetic dataset. They do not depend on the synthesis algorithm at all.
We call such metrics syntactic. We also note that when researchers were studying privacy prop-
erties of data anonymizers, syntactic privacy metrics such as k-anonymity (Sweeney, 2002), ℓ-
diversity (Machanavajjhala et al., 2006), and t-closeness (Li et al., 2007) were introduced. Similarly,
these metrics consider only the anonymized dataset (and not the algorithm generating the dataset)
when measuring privacy. Over the last decade and a half, the community gradually recognized the
limitations of such syntactic privacy evaluation metrics and adopted privacy notions such as differ-
ential privacy (Dwork, 2006), which defines privacy as a property of the data processing algorithm,
instead of the property of a particular output.

Limitations of DCR. We use the DCR as an example to show the limitations of such syntactic
metrics as it’s the most widely-used metric in the literature. First, DCR overestimates the privacy
risks when data points are naturally clustered close together. As illustrated by discussions about dif-
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Table 21: CTGAN (Xu et al., 2019) hyperparameters search space.

Parameter Distribution
Number of epochs Int[100, 500]
Batch size Int[500, 5000]
Embedding dimension Int[128, 512]
Generator dimension Int[128, 512]
Discriminator dimension Int[128, 512]
Learning rate of generator LogUniform[1e-5, 1e-3]
Learning rate of discriminator LogUniform[1e-5, 1e-3]

Number of tuning trials 50

Table 22: TabDDPM (Kotelnikov et al., 2023) hyperparameters search space.

Parameter Distribution
Number of layers Int[2, 8]
Embedding dimension Int[128, 512]
Number of diffusion timesteps Int[100, 10000]
Number of training iterations Int[5000, 30000]
Learning rate of discriminator LogUniform[1e-5, 3e-3]

Number of tuning trials 50

ferential privacy (Dwork & Roth, 2014; Li et al., 2016), leaking information regarding an individual
should not be considered a privacy violation if the leakage can occur even if the individual’s data is
not used. Analogously, having some synthetic data very close to real ones does not mean worse pri-
vacy if this situation can occur even if each data point is removed. Consider, for example, a dataset
that is a mixture of two Gaussians with small standard deviations. A good synthetic dataset is likely
to follow the same distribution, and has many data points very close to the real ones. DCR interprets
this closeness as a high privacy risk, overlooking the fact that the influence of any individual training
instance on synthetic data is insignificant.

Second, DCR measures privacy loss using the 5th percentile (or mean) proximity to real data, which
fails to bound the worst-case privacy leakage among all records. When measuring the privacy leak-
age across different individuals, one needs to ensure that the worst-case leakage is bounded, so that
every individual’s privacy is protected. It is unacceptable to use a mechanism that sacrifices the
privacy of some individuals even though the protection averaged over the population is good. This
point is illustrated by the fact that the re-identification of one or a few individuals is commonly
accepted as privacy breaches (Li et al., 2013).

Membership Inference Attack on Data Synthesis. MIA has been widely used as an empirical
privacy evaluation metric in machine learning, which has been extensively studied on discriminative
models (Shokri et al., 2017; Carlini et al., 2022). For generative models like diffusion models (Duan
et al., 2023) and LLM (Duan et al., 2024), studies mainly focus both on the white-box setting (where
an adversary has full access to the trained model) and on the black-box setting (where an adversary
has exact knowledge of the specifications of the generative model). In the realm of data synthesis,
Annamalai et al. (2024) claim that the non-box setting should be considered in practice: the adver-
sary has access to the synthetic dataset but no information about the underlying generative model
or even the specifications of the synthetic data generation algorithm. Stadler et al. (2022) perform
the first non-box membership inference attack called Groundhog, which utilizes handcrafted fea-
tures extracted from synthetic data distribution to train shadow models. While the attack against a
small minority of records can be useful to measure theoretical risks, they may not be necessarily
relevant in practice especially if the adversary does not have a precise way to recognize vulnerable
outliers. TAPAS (Houssiau et al., 2022) utilizes target counting queries as features and trains a ran-
dom forest classifier to perform the attack and achieve better performance than Stadler et al. (2022).
DOMIAS (van Breugel et al., 2023) utilizes the additional reference dataset to calibrate the density
estimation of output distributions and achieve state-of-the-art performance for data synthesis. How-
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Table 23: REaLTabFormer (Solatorio & Dupriez, 2023) hyperparameters search space.

Parameter Distribution
Number of epochs Int[100, 1000]
Batch size Int[8, 32]

Number of tuning trials 20

Table 24: GReaT (Borisov et al., 2023) hyperparameters search space.

Parameter Distribution
Temperature Float[0.6, 0.9]
Number of fine-tuning epochs Int[100, 300]
Number of training iterations Int[5000, 30000]
Batch size Int[8, 32]

Number of tuning trials 20

ever, as shown in Section 5.2, TAPAS and DOMIAS are still insufficient to distinguish nuances of
privacy risks in all scenarios. As a result, current research on data synthesis rarely uses MIA for
privacy evaluation (Qian et al., 2024).

G.3 LIMITATIONS OF MACHINE LEARNING EFFICACY

To show the instability issue of machine learning efficacy, we compare the performance of different
machine learning models on the Adult dataset, as illustrated in Figure 11. We can see the perfor-
mance of various data synthesizers fluctuates significantly across different machine learning models,
and such variations in performance underscore the impact of the choice of evaluation models. For
instance, while PrivSyn is ranked third when evaluated using linear regression, it falls to fifth when
assessed with decision trees. Such variations indicate that machine learning efficacy fails to pro-
vide a stable and consistent measure for evaluating the utility of synthetic data in prediction tasks.
Moreover, directly averaging the performance across all models also fails to capture nuanced per-
formance differences. For instance, the mean performance of PrivSyn and TVAE appears nearly
identical (0.8 vs. 0.802), whereas MLA more effectively differentiates their relative performance
degradation (0.085 vs. 0.075), providing a more reliable assessment.

H DISCUSSION OF PROPOSED PRIVACY EVALUATION METRIC

Comparison with Syntactic Privacy Evaluation Metrics. We use DCR as an example to show
how the proposed membership disclosure score (MDS) addresses the drawbacks of syntactic metrics.
First, MDS addresses DCR’s over-estimating leakage issue by quantifying how much including each
record x changes the distance between x and the closest synthetic data. If including x results in
records much closer to x to be generated, then the disclosure risk is high. Conversely, if records
close to x are generated regardless of whether x is included, then the disclosure risk for x is low.
Therefore, MDS follows a distinguishing game designed to mirror the DP definition, rather than
relying on the density of data points. Additionally, MDS uses the maximum disclosure risk among
all records, providing a stable worst-case privacy measurement.

Comparison with MIAs. Both membership disclosure score (MDS) and membership inference
attacks (MIAs) measure privacy risks by assessing the influence of discrepancies observed in the
synthesizer when trained with or without certain records. Additionally, MDS incorporates shadow
model techniques (Shokri et al., 2017) to estimate the influence for all data records, which is the
standard approach in MIAs. However, unlike MIAs, MDS directly assesses the privacy risks of
training data without relying on the construction of the membership inference security game (Carlini
et al., 2022). Consequently, MDS’s privacy estimation does not depend on the effectiveness of one
specific attack algorithm, offering greater flexibility in evaluating various types of data synthesizers.
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Table 25: PATE-GAN (Jordon et al., 2018) hyperparameters search space.

Parameter Distribution
Number of teachers Int[5, 20]
Number of generator layers Int[1, 3]
Number of discriminator layers Int[1, 3]
Generator dimension Int[50, 200]
Discriminator dimension Int[50, 200]
Number of iterations Int[1000, 5000]
Learning rate LogUniform[1e-5, 1e-3]

Number of tuning trials 50

Table 26: TableDiffusion (Truda, 2023) hyperparameters search space.

Parameter Distribution
Number of layers Int[1, 6]
Number of diffusion timesteps Int[3, 20]
Number of epochs Int[5, 20]
Batch size Int[128, 1024]
Noise prediction {True, False}
Learning rate LogUniform[1e-4, 1e-2]

Number of tuning trials 50

Connections to Related Work. The definition of the proposed MDS aligns closely with concepts of
memorization in neural networks (Feldman, 2020; Zhang et al., 2023) and the leave-one-out notion
of stability in machine learning (Bousquet & Elisseeff, 2002). However, it diverges in three crucial
ways: (i) We measure the worst-case discourse risk as the privacy evaluation metric, whereas other
studies focus on the difference of individuals or average cases. (ii) Our work specifically addresses
privacy concerns in data synthesis, as opposed to other studies that explore discriminative models
like classification. (iii) Our approach emphasizes the discrepancy caused by the presence or absence
of target data in training, in contrast to other works that highlight performance gains from adding
samples to the training set.

Limitations of MDS. Although MDS provides a straightforward way to assess the privacy risk
of data synthesis, it may not apply to all synthesizers. Pathological synthesizers exist for which
MDS is inappropriate. One such example is a synthesizer that maps all data points x ∈ D to their
opposites: x 7→ −x. Suppose the nearest neighbor to x in the real dataset is x+ε. In this case, MDS
would be proportional to |d(x, s(x)) − d(x, s(x + ε))|, which can be tricked arbitrarily small with
ε. However, this synthesizer completely reveals the dataset and MDS would suggest a false sense of
privacy. Therefore, while we find MDS to be effective in assessing privacy risks for the synthesizers
we tested, caution should be exercised when applying it in practice. For scenarios where privacy is
paramount, we highly recommend using DP synthesizers instead of HP synthesizers.

We also note that MDS focuses specifically on membership privacy (Li et al., 2013) and does not
address all potential privacy risks associated with synthetic datasets. For instance, attribute inference
attacks (Annamalai et al., 2024) and reconstruction attacks (Jayaraman & Evans, 2022) pose serious
privacy threats to synthetic data, which MDS is not designed to capture.

In addition, MDS requires training multiple shadow models to estimate the disclosure risks. This
can pose a challenge when assessing large-scale tabular synthesis models like GReaT, which involve
fine-tuning entire LLMs. However, existing MIAs (Stadler et al., 2022; van Breugel et al., 2023) also
rely on shadow modeling to compute privacy scores. Thus, MDS remains a practical and feasible
solution for privacy assessment in most tabular datasets and synthesis algorithms.
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I MISLEADING STATEMENTS FROM PREVIOUS WORK

We find that some statements in the literature may be misleading or even incorrect due to limitations
of evaluation metrics or methodologies. We highlight some of them below:

• Extensive studies (Zhao et al., 2021; Lee et al., 2023; Zhang et al., 2024) use Distance to Closest
Records (DCR) to evaluate the privacy of synthetic data and assert their models are safe. However,
in this paper, we show that DCR fails to serve as an adequate measure of privacy. We also show that
many recently introduced HP methods exhibit significant privacy risks, which are often ignored
by the community.

• Kotelnikov et al. (2023) show that the machine learning performance on TabDDPM is even better
than that on real data, which implies that synthetic data can be a perfect (even better) substitute for
real data. However, this statement may be incorrect due to inadequate model tuning and improper
data shuffling practices. Our evaluations show that even simple models, such as linear regression,
can achieve better performance on real data than on high-quality synthetic data.

• Some studies (Kim et al., 2022; Jordon et al., 2018) prioritize machine learning efficacy as the pri-
mary (if not only) fidelity evaluation metric. This approach is problematic because data synthesis
can be biased to label attributes, and a high machine learning efficacy score does not necessarily
equate to high fidelity in synthetic data.
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