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ABSTRACT

Machine learning optimization often depends on stochastic gradient descent,
where the precision of gradient estimation is vital for model performance. Gradi-
ents are calculated from mini-batches formed by uniformly selecting data samples
from the training dataset. However, not all data samples contribute equally to
gradient estimation. To address this, various importance sampling strategies have
been developed to prioritize more significant samples. Despite these advance-
ments, all current importance sampling methods encounter challenges related to
computational efficiency and seamless integration into practical machine learning
pipelines.
In this work, we propose a practical algorithm that efficiently computes data im-
portance on-the-fly during training, eliminating the need for dataset preprocess-
ing. We also introduce a novel metric based on the derivative of the loss w.r.t.
the network output, designed for mini-batch importance sampling. Our metric
prioritizes influential data points, thereby enhancing gradient estimation accuracy.
We demonstrate the effectiveness of our approach across various applications. We
first perform classification and regression tasks to demonstrate improvements in
accuracy. Then, we show how our approach can also be used for online data prun-
ing by identifying and discarding data samples that contribute minimally towards
the training loss. This strategy yields significant reduction in training time with
negligible to no loss in the accuracy of the model on unseen data.

1 INTRODUCTION

Stochastic gradient descent (SGD) combined with back-propagation has driven significant advances
in optimization tasks. Its strength lies in its ability to optimize complex models by iteratively up-
dating their parameters based on the gradient of the loss function. However, despite its widespread
use, SGD has notable limitations. Convergence rates are influenced by several factors, with gradient
noise being a key challenge that affects both robustness and convergence speed. Reducing this noise
has been a focus of recent research (Alain et al., 2015; Faghri et al., 2020; Johnson & Zhang, 2013;
Gower et al., 2020; Needell et al., 2014).

Various strategies have been proposed to mitigate gradient noise, including data diversifica-
tion (Zhang et al., 2017; 2019), adaptive batch sizes, weighted sampling (Santiago et al., 2021),
and importance sampling (Katharopoulos & Fleuret, 2018). These approaches aim to enhance gra-
dient estimation and accelerate convergence in noisy optimization landscapes.

This work focuses on both importance sampling and data pruning as complementary techniques to
improve training efficiency. Importance sampling involves constructing mini-batches through non-
uniform data-point selection, i.e., picking certain data points with higher probability based on their
expected contribution to the model’s learning process. In parallel, data pruning seeks to identify
and eliminate data points that contribute minimally to training, reducing computational load. This is
especially beneficial in large-scale learning tasks, where reducing data complexity can significantly
improve both time and resource efficiency. By jointly leveraging these two techniques, we aim to
both improve the accuracy of gradient estimates and streamline the training process by focusing
computation resources on valuable data.

In this paper, we introduce a novel metric that quantifies the contribution of each data sample to
the model’s learning process, to guide both importance sampling and data pruning decisions. Our
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approach leverages information from the network’s output to strategically allocate computational
resources to the most impactful data points. This results in substantial improvements in convergence
across a variety of tasks, while sustaining minimal computational overhead compared to state-of-
the-art methods that share similar goals (Katharopoulos & Fleuret, 2018; Santiago et al., 2021).

In summary, our contributions can be distilled into the following key points:

• We propose an adaptive metric for importance sampling improving gradient accuracy.

• We introduce an efficient online sampling algorithm that incorporates our metric.

• We demonstrate the effectiveness of our approach through evaluations on classification and
regression problems.

• We further demonstrate the ability of our algorithm to perform online data pruning. Our
approach allows using any importance function for data pruning and does not require any
pre-processing of the data.

2 RELATED WORK

Gradient estimation is a cornerstone in machine learning, underpinning the optimization of models.
In practical scenarios, computing the exact gradient is infeasible due to the sheer volume of data,
leading to the reliance on mini-batch approximations. Improving these approximations to obtain
faster and more accurate estimates remains a challenge. The ultimate goal is to accelerate gradient
descent by using more accurate gradient estimates.

Importance sampling. Importance sampling serves as a mechanism for error reduction in mini-
batch gradient estimation. Each data point is assigned a probability to be selected in each mini-
batch, making some data more likely to be chosen than others. Bordes et al. (2005) developed
an online algorithm (LASVM) which uses importance sampling to train kernelized support vector
machines. Several studies have shown that importance sampling proportional to the gradient norm is
the optimal sampling strategy (Zhao & Zhang, 2015; Needell et al., 2014; Wang et al., 2017; Alain
et al., 2015). Hanchi et al. (2022) recently proposed deriving an importance sampling metric from
the gradient norm of each data point, demonstrating favorable convergence properties and provable
improvements under certain convexity conditions.

Estimating the gradient for each data point can be computationally intensive. Thus, the search
for more efficient sampling strategies has led to the exploration of efficient approximations of the
gradient norm. Methods proposed by Loshchilov & Hutter (2015) rank data based on their loss
and derive an importance sampling strategy assigning higher importance to data with higher loss.
Katharopoulos & Fleuret (2017) proposed importance sampling the loss function. Additionally,
Dong et al. (2021) proposed a resampling-based algorithm to reduce the number of backpropagation
computations, selecting a subset of data based on the loss. Similarly, Zhang et al. (2023) proposed
resampling based on multiple heuristics to reduce the number of backward propagations and focus
on more influential data. Katharopoulos & Fleuret (2018) introduced an upper bound to the gradient
norm that can be used as an importance function, suggesting re-sampling data based on importance
computed at the last layer. These resampling methods reduce unnecessary backward propagations
but still require forward computation for each data point.

Data weighting. An alternative to importance sampling is to adjust the contribution of uniformly
selected data points by a weighting factor. To compute weights within a mini-batch, Santiago
et al. (2021) proposed a method maximizing the mini-batch’s effective gradient. This allocation
of weights aims to align data contributions with the optimization objective, expediting convergence
at the cost of potential bias.

Data pruning. Data pruning reduces the computational load of training by removing minimally
useful data. Early work by Har-Peled & Kushal (2005) proposed using a smaller, representative
dataset for k-means clustering. This concept has expanded to other machine learning tasks, where
not all data points contribute equally to learning. Toneva et al. (2019) found that some data points,
once correctly classified, remain so, suggesting they can be pruned without affecting performance.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Coleman et al. (2020) introduced a proxy network to guide pruning by selecting relevant data points
based on predictions. Paul et al. (2021) further refined this strategy by using early training in-
formation to identify important data points, allowing training on smaller data subsets with small
performance loss. These methods show that focusing on the most informative samples can enhance
training efficiency. Yang et al. (2023) proposed to select a subset of the dataset and propose a dis-
crete optimization method using influence functions to determine which data points to retain and
which to prune from the training dataset. Unfortunately, their overall preprocessing can take hours
and does not scale well to large datasets. In contrast, our importance sampling algorithm can be
used for online data pruning without any preprocessing.

3 BACKGROUND

In machine learning, the goal is to find the optimal set of parameters θ for a model function m(x, θ),
with x a data sample (and y its supervision label), that minimize a loss function L over a dataset Ω.
The optimization is typically expressed as

θ∗ = argmin
θ

Lθ, where Lθ =
1

|Ω|

∫
Ω

L(m(x, θ), y)d(x, y) = E

[
L(m(x, θ), y)

p(x, y)

]
. (1)

The total loss Lθ can be interpreted in two ways. The analytical interpretation views it as the integral
of the loss L over a data space Ω, normalized by the space’s volume. In machine learning, the data
space typically represents the (discrete) training dataset and the normalization is its size. The second,
statistical interpretation defines Lθ as the expected value of the loss L for a randomly selected data
point, divided by the probability of selecting it. The two approaches are equivalent.

In practice, the minimization of the total loss Lθ is tackled via iterative gradient descent. At each
iteration t, its gradient∇Lθt with respect to the current model parameters θt is computed, and those
parameters are updated as

θt+1 = θt − λ∇Lθt , (2)
where λ > 0 is the learning rate. The procedure is repeated until convergence.

3.1 MONTE CARLO GRADIENT ESTIMATOR

Gradient estimator. The parameter update in Eq. (2) involves evaluating the total-loss gradient
∇Lθt . This requires processing the entire dataset Ω at each of potentially many (thousands of)
steps, making the optimization computationally infeasible. In practice one has to resort to mini-
batch gradient descent which estimates the gradient from a small set {xi}Bi=1 ⊂ Ω of randomly
chosen data points in a Monte Carlo fashion:

∇Lθ ≈
1

B

B∑
i=1

∇L(m(xi, θ), yi)

p(xi, yi)
= ⟨∇Lθ⟩, with xi ∝ p(xi). (3)

Here,∇L(m(xi, θ), yi) is the gradient (w.r.t. θ) of the loss function for sample xi selected following
a probability density function (pdf) p (or probability mass function in case of a discrete dataset).
Any distribution p ensuring that p(x) = 0 ⇒ ∇L(m(xi, θ), yi) = 0 yields an unbiased gradient
estimator, i.e., E[⟨∇Lθ⟩] = ∇Lθ. Mini-batch gradient descent uses ⟨∇Lθ⟩ in place of the true
gradient ∇Lθ in Eq. (2) to update the model parameters at every optimization iteration. The batch
size B is typically much smaller than the dataset, enabling practical optimization.

Theoretical convergence analysis. Mini-batch gradient descent is affected by Monte Carlo noise
due to the stochastic gradient estimation in Eq. (3). This noise arises from the varying contributions
of different samples xi to the estimate and can cause the parameter optimization trajectory to be
erratic, slowing down convergence. In certain conditions, it is possible to express the convergence
rate of such methods. Gower et al. (2019) demonstrated that for an L-smooth and µ-convex function,
the convergence rate of mini-batch gradient descent with constant learning rate is

E
[
∥θt − θ∗∥2

]
≤ (1− λµ)t ∥θ0 − θ∗∥2 + 2λσ2

µ
, (4)
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True Classification Boundary Our weights epoch 1 Our weights epoch 20 Our weights epoch 100 DLIS weights epoch 100

Figure 1: Visualization of the importance sampling at 3 different epoch and the underlying classifi-
cation task. For each presented epoch, 800 data-point are presented with a transparency proportional
to their weight according to our method.

with σ2 = E
[
∥⟨∇Lθ∗⟩∥2

]
−

=0︷ ︸︸ ︷
E [∥⟨∇Lθ∗⟩∥]2. The expected value of the gradient norm is zero for

the optimal set of parameters θ∗, as the solution of the gradient descent is reached when the gradient
converges to zero. This equation underscores the significance of minimizing variance in gradient
estimation to enhance the convergence rate of gradient descent methods. While not universally
applicable, it provides valuable insights into expected behavior when reducing estimation errors.
Hence, refining gradient estimates is crucial for optimizing various learning algorithms, facilitat-
ing more efficient convergence towards optimal solutions. Our experimental evaluation comparing
different methods in Section 4.2 further supports this notion.

4 IMPORTANCE FUNCTION

4.1 GRADIENT NORM BOUND

The gradient L2 norm has been shown to be an optimal choice of importance sampling (Zhao &
Zhang, 2015; Needell et al., 2014; Wang et al., 2017; Alain et al., 2015) as it minimizes the first
term of the gradient variance, thereby bounding the convergence of Eq. (4). However, calculating
it requires costly full backpropagation for every data point, which is what we want to avoid in the
first place. Instead, we compute an upper bound of the gradient norm using the output nodes of the
network: q(x) =

∥∥∥ ∂L(x)
∂m(x,θ)

∥∥∥. This upper bound of the gradient norm is derived from the chain rule
and the Cauchy–Schwarz inequality:∥∥∥∥∂L(xi)

∂θ

∥∥∥∥ =

∥∥∥∥ ∂L(x)
∂m(x, θ)

· ∂m(x, θ)

∂θ

∥∥∥∥ ≤ ∥∥∥∥ ∂L(x)
∂m(x, θ)

∥∥∥∥ · ∥∥∥∥∂m(x, θ)

∂θ

∥∥∥∥ ≤ ∥∥∥∥ ∂L(x)
∂m(x, θ)

∥∥∥∥︸ ︷︷ ︸
q(x)

·C , (5)

where C is the Lipschitz constant of the parameters gradient. That is, our importance function is a
bound of the gradient magnitude based on the output-layer gradient norm. For specific shapes of the
output layer, it is possible to derive a closed form expression. Below we show such derivation for
classification networks based on the cross-entropy loss.

Cross-entropy loss gradient. Cross entropy is the standard loss function in classification tasks.
It quantifies the dissimilarity between predicted probability distributions and actual class labels.
Specifically, for a binary classification task, cross entropy is defined as:

L(m(xi, θ)) = −
J∑

j=1

yj log(sj) where sj =
exp(m(xi, θ)j)∑J
k=0 exp(m(xi, θ)k)

(6)

where m(xi, θ) is an output layer, xi is the input data and J means the number of classes. It is
possible to express the derivative of the loss L with respect to the network output m(xi, θ)j in a
close form.

∂L
∂m(xi, θ)j

= sj − yj (7)

This equation can be directly computed from the network output without any graph back-
propagation. This make the computation of our importance function extremely cheap for classi-
fication tasks. Proof of the derivation can be found in the Appendix A.
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Figure 2: Evolution of gradient variance for variance importance sampling strategies on polyno-
mial regression and MNIST classification task. In both case the optimization is done on a 3 fully-
connected layer network. Variance estimation is made of each method on the same network at each
epoch. The variance is computed using a mini-batch of size 16. Computation time for each metric
can be found in Appendix D Table 2

Importance sampling in classification emphasizes gradients along classifiction boundaries, where
parameter modifications have the greatest impact. Figure 1 illustrates this concept, showing itera-
tive refinement of the sampling distribution to focus on boundary decisions in comparison to data
within classes. The rightmost column illustrates the sampling distribution of the DLIS method of
Katharopoulos & Fleuret (2018) at epoch 100. Both methods iteratively increase the importance of
the sampling around the boundary decision compare to data inside the classes.

Our approach differs from that of Katharopoulos & Fleuret in that we compute the gradient norm
with respect to the network’s output logits. This approach often allows gradient computation without
requiring back-propagation or graph computations, streamlining optimization.

4.2 CONVERGENCE ANALYSIS

Building on the theoretical bound defined in Eq. (4), we proceed to examine the effects of various
importance sampling methods on the gradient variance. Such variance influences the convergence of
an optimization procedure. This equation relies on the ideal model parameters θ∗, but they cannot be
practically calculated. Rather, we measure the gradient variance during training using a suboptimal
parameter set.

Figure 2 displays the evolution of gradient variance using different strategies for polynomial regres-
sion and MNIST classification, both using a three-layer fully connected network. Each method is
evaluated on the same network, trained using uniform sampling. This allows for a variances compar-
ison of the gradient norm. We analyze five techniques: Uniform sampling, Loss-based importance
sampling, SRGD (Hanchi et al., 2022), DLIS (Katharopoulos & Fleuret, 2018), and our method.
SRGD is an importance sampling technique using a conditioned minimization of gradient variance
using memory of the gradient magnitude. This method has shown robust theoretical convergence
properties in strongly convex scenarios. This variance reduction is visible on the polynomial regres-
sion task where it result in lower variance than other methods. However, for more complex tasks
such as MNIST classification, SRGD underperforms all methods, suggesting scalability limitations
to non-convex and complex problems. In contrast, our method consistently yields lower variance
than Loss-based importance sampling and DLIS (Katharopoulos & Fleuret, 2018). These findings
elucidate the results in Section 7.

In addition, we provide evaluation times for each metric for both the polynomial regression
and MNIST classification tasks in Appendix D Table 2. Clearly, SRGD (Hanchi et al., 2022)
demands more computational resources, even for small-scale networks comprising only three
layers. This increased demand stems from its dependence on calculating the gradient norm for
each individual data point. Both our metric, which employs automatic differentiation, and DLIS
(Katharopoulos & Fleuret, 2018), incur comparable computational costs due to their reliance on
derivatives from the final layers. Nonetheless, our approach proves to be the most efficient when
analytical evaluations are feasible. Such differences in computational efficiency are likely to sig-
nificantly influence the outcomes of comparisons made under equal-time conditions in later sections.
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Zhao & Zhang (2015) have shown that importance weights
w.r.t. the gradient norm gives the optimal sampling distribu-
tion. On the right inline figure, we show the difference be-
tween various weighting strategies and the gradient norm w.r.t.
all parameters. In this experiment, all sampling weights are
computed using the same network on an MNIST optimization
task. Our proposed sampling strategies, based on the loss gra-
dient are the closest approximation to the gradient norm.

5 ONLINE IMPORTANCE SAMPLING ALGORITHM

We propose an algorithm to efficiently perform importance sampling for mini-batch gradient de-
scent, outlined in Algorithm 1. Similarly to Loshchilov & Hutter (2015) and Schaul et al. (2015),
it is designed to use an importance function that relies on readily available quantities for each data
point, introducing only negligible memory and computational overhead over classical uniform mini-
batching.

Algorithm 1 Mini-batch importance sampling for SGD.
1: θ ← random parameter initialization
2: B ← mini-batch size, N = |Ω| ← Dataset size
3: q, θ ← Initialize(Ω, θ, B) ← Algorithm 3
4: until convergence do ← Loop over epochs
5: for t← 1 to N/B do ← Loop over mini-batches
6: p← q/sum(q) ← Normalize importance to pdf
7: x, y ← B data samples {xi, yi}Bi=1 ∝ p
8: L(x)← L(m(x, θ), y)
9: ∇L(x)← Backpropagate(L(x))

10: ⟨∇Lθ⟩ ← (∇L(x) · (1/p(x))T )/B ← Eq. (3)
11: θ ← θ − η ⟨∇Lθ⟩ ← SGD step

12: q(x)← α · q(x) + (1− α) ·
∥∥∥ ∂L(x)
∂m(x,θ)

∥∥∥ ← Accumulate importance

13: q ← q + ϵ
14: return θ

We maintain a set of persistent un-normalized importance scalars q = qi
|Ω|
i=1, continually updated

during optimization. Initially, we process all data points once in the first epoch to determine their
initial importance (line 3). Subsequently, at each mini-batch optimization step t, we normalize the
importance values to obtain the probability density function (PDF) p (line 6), and use it to sample
B data points with replacement (line 7). We then evaluate the loss for each selected data sample
(line 8) and backpropagate to compute the corresponding loss gradient (line 9). Finally, we update
the network parameters using the estimated gradient (line 11). Additionally, we compute the sample
importance for each data sample from the mini-batch and update the persistent importance q (line
12). Various importance heuristics such as the gradient norm (Zhao & Zhang, 2015; Needell et al.,
2014; Wang et al., 2017; Alain et al., 2015), the loss (Loshchilov & Hutter, 2015; Katharopoulos
& Fleuret, 2017; Dong et al., 2021) or more advanced importance (Katharopoulos & Fleuret, 2018)
can be implemented to replace our sampling metric in this line. To enhance efficiency, our algorithm
reuses the forward pass computations made during line 8 to compute importance, updating q only
for the current mini-batch samples. The weighting parameter α ensures weight stability as discussed
in Eq. (8).
At the end of each epoch (line 14), we add a small value to the un-normalized weights of all data to
ensure that every data point will be eventually evaluated, even if its importance is deemed low by
the importance metric.

It is importance to note that the initialization epoch is done without importance sampling to initial-
ize each sample importance. This does not create overhead as it is equivalent to a classical epoch
running over all data samples. While similar schemes have been proposed in the past, they often
rely on a multitude of hyperparameters, making their practical implementation challenging. This
has led to the development of alternative methods like re-sampling (Katharopoulos & Fleuret, 2018;
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Dong et al., 2021; Zhang et al., 2023). Our proposed sampling strategy has only a few hyperparame-
ters. Tracking importance across batches and epochs minimizes the computational overhead, further
enhancing the efficiency and practicality of the approach.

6 ONLINE DATA PRUNING

Data pruning is a technique aimed at reducing the size of the dataset to accelerate training. The
acceleration can be attributed to two main factors. The first, and most practical, relates to the exe-
cution speed of training neural networks. When working with large datasets, especially those with
a relatively large memory footprint, it is often infeasible to store all data directly in GPU memory.
This necessitates frequent data loading from slower storage mediums, which can become a bottle-
neck and significantly slow down training. By reducing the dataset size, less data needs to be loaded
during each training iteration, leading to faster execution, even if the theoretical properties of the
training process remain unchanged. The second factor contributing to faster training is theoretical.
If the pruned data points have a low gradient norm, removing them increases the expected gradient
norm of the remaining data points. This, in turn, leads to larger effective steps in the optimization
process, thus accelerating convergence.

Given these two benefits, we propose a data pruning strategy guided by our novel importance metric,
which serves as an estimate of the gradient norm for each data point. Unlike most previous works
that rely on precomputed metrics or early-stage proxies, our metric is adaptive throughout training
and does not require any precomputation. This allows us to dynamically prune the dataset based on
current information about the importance of each data point.

Algorithm 2 Subroutine for data pruning
1: function ONLINEDATAPRUNING(Ω,q,K)
2: ϵ← 1

K|Ω|
∑

x∈Ω q(x) ← Compute pruning threshold

3: Ω′ ← Ω{q(x)>ϵ|∀x∈Ω} ← Filter dataset to keep high importance data
4: return Ω′

Our approach involves an online pruning process that operates as follows: After a certain number of
epochs, we ensure that the importance metric has been calculated for all data points in the training
set. At this point, we identify and remove a portion of the data with importance metrics significantly
lower than the average. Specifically, each data point’s importance is compared to the average impor-
tance across the dataset. If a data point’s importance falls below a threshold relative to the average, it
is pruned from the training set. This ensures that only data points with low expected gradient norms
are removed, while important data remains. Algorithm 2 depicts the pruning subroutine, which pro-
cesses the dataset Ω, the importance score for each data point q, and a reduction factor K. A higher
reduction factor results in retaining more data points, thus fewer data are pruned.

This process is flexible and can adapt to the distribution of importance values in the dataset. If the
dataset has a wide distribution of importance, with only a few data points contributing significantly
to the optimization, a large portion of the dataset can be pruned. Conversely, if all data points exhibit
relatively high importance, few or no data points will be removed. Furthermore, since our impor-
tance metric is adaptive, this pruning process can be applied multiple times throughout training. By
continually updating the importance metric and pruning low-importance data points, we maintain an
efficient training set that accelerates the learning process without compromising model performance.

7 EXPERIMENTS

In this section, we delve into the experimental outcomes of our proposed algorithm and sampling
strategy. Our evaluations encompass diverse classification and regression tasks. We benchmarked
our approach against those of Katharopoulos & Fleuret (2018) and Santiago et al. (2021), consider-
ing various variations in comparison. Distinctions in our comparisons lie in assessing performance
at equal steps/epochs and equal time intervals. The results presented here demonstrate the loss and
classification error, computed on test data that remained unseen during the training process.

7
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Table 1: We compare the impact of our importance sampling algorithm with or without data pruning
on classification tasks. We compare on three different datasets: Point cloud, CIFAR-100 and Tiny-
ImageNet. Our approach consistently outperform on majority of datasets (see Table 3 for more
comparisons). Bold numbers represents the best scores, underlined ones represent the second best.

Point cloud CIFAR-100 Tiny-ImageNet

Equal step Equal time Equal step Equal time Equal step Equal time
Method Loss (↓) Accuracy (↑) Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy

Uniform 0.00505 82.3 0.00505 82.2 0.012 72.6 0.012 73.8 0.02176 47.4 0.02176 47.4
Loss IS 0.00495 82.6 0.00496 82.5 0.023 40.2 0.026 32.8 0.02237 45.2 0.02238 45.2
DLIS 0.00595 81.9 0.00603 81.8 0.015 62.0 0.015 60.8 0.03433 26.3 0.03433 26.3
DLIS weights 0.00481 82.6 0.00485 82.5 0.021 43.6 0.029 26.3 0.03454 26.1 0.02778 35.0w/ Our algorithm
LOW 0.00572 82.6 0.01173 74.9 0.011 74.6 0.011 74.2 0.02344 43.5 0.02344 43.5
Our IS 0.00480 82.9 0.00480 82.9 0.011 74.3 0.012 74.3 0.02127 48.1 0.02123 48.5
Our IS 0.00478 83.2 0.00478 83.1 0.011 74.3 0.011 74.3 0.02193 47.1 0.02193 47.1+ Data pruning

7.1 IMPLEMENTATION DETAILS

We implement our method and all baselines in a single PyTorch framework. Experiments run on
a workstation with an NVIDIA Tesla A40 graphics card. The baselines include uniform sampling,
DLIS (Katharopoulos & Fleuret, 2018) and LOW (Santiago et al., 2021). Uniform means that we
sample every data point from a uniform distribution. DLIS importance samples the data mainly
depending on the norm of the gradient on the last output layer. We use functorch (Horace He, 2021)
to accelerate this gradient computation. LOW is based on adaptive weighting that maximizes the
effective gradient of the mini-batch using the solver from Vandenberghe (2010).

We evaluated our method on a range of tasks, including image classification with MNIST, CIFAR-
10/100 (Krizhevsky et al., 2009), Tiny-ImageNet (Le & Yang, 2015), and Oxford Flower-102 (Nils-
back & Zisserman, 2008), as well as Point cloud classification (Qi et al., 2017) and regression
tasks (Sitzmann et al., 2020). Full details on the datasets used, along with optimization parameters
such as learning rate, optimizer scheduler and the data pruning ratio and frequency are provided
in Appendix C. In all results involving pruning, the number of steps per epoch remains consistent
with the non-pruned experiments. This ensures a fair comparison at equal steps, meaning that with
pruning, certain data points are seen multiple times within each epoch to match the total step count.

Weight stability. Updating the persistent per-sample importance q directly sometime leads to a
sudden decrease of accuracy during training. To make the training process more stable, we update q
by linearly interpolating the importance at the previous and current steps:

q(x) = α · qprev(x) + (1− α) · q(x) (8)

where α is a constant for all data samples. In practice, we use α ∈ {0.0, 0.1, 0.2, 0.3} as it gives the
best trade-off between importance update and stability. This can be seen as a momentum evolution
of the per-sample importance to avoid high variation. Utilizing an exponential moving average
to update the importance metric prevents the incorporation of outlier values. This is particularly
beneficial in noisy setups, like situations with a high number of class or a low total number of data.
Details on the chosen α values can be found in Appendix C.

7.2 RESULTS

In Table 1, we compare Uniform sampling, Loss-based importance sampling, the method from
Katharopoulos & Fleuret (2018) and their weights in our algorithm, the approach from Santiago
et al. (2021), and our method with both importance sampling and data pruning. The table reports
the cross-entropy loss and classification accuracy for three tasks: point cloud classification, CIFAR-
100, and Tiny-ImageNet. Results are shown for both an equal number of steps and equal runtime.
The best results are highlighted in bold, with the second-best underlined. Across all three tasks,
our method consistently achieves the best performance in both scenarios. Even in cases where
importance sampling offers minimal improvement, our approach proves more robust than DLIS
and LOW, avoiding significant underperformance in challenging situations. In the Tiny-ImageNet
experiment, although data pruning results in a slight drop in accuracy, the outcome aligns with the
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Method Accuracy (At end of opt.) (Pruning time)

Uniform - - 96.4% 100% 554 (0)

Random pruning - - 96.3% 60% 131 (3)
Random pruning - - 96.2% 43% 121 (2)
Random pruning - - 96.1% 35% 114 (1)

Yang et al. (2023) - - 96.4% 60% 132 (2388)
Yang et al. (2023) - - 96.3% 43% 128 (4825)
Yang et al. (2023) - - 96.2% 35% 121 (9351)

Ours (K=8) —- 97.9% 62% (33%) 215 (3)
Ours (K=4) —- 98.1% 45% (15%) 214 (2)
Ours (K=2) —- 98.1% 34% (6%) 208 (2)
Ours (K=1) —- 92.6% 27%(0.6%) 203 (2)

Figure 3: Evaluation of the impact of the amount of data pruned during training on a MNIST classi-
fication task. The left panel shows the evolution of the pruned data over time, while the right panel
presents the final accuracy, the average training set size during training and remaining data at the end
of training, the total training time, and the computation time of pruning. The figure compares a uni-
form sampling without data pruning, random pruning with 60%, 43%, and 35% of data pruned, the
method of Yang et al. (2023) at the same pruning rates, and our approach using a dynamic reduction
factor K. Results indicate that pruning more data accelerates execution. Our online pruning method
offers greater adaptability during training while maintaining high accuracy and minimal difference
between training time and total execution time.

observations from Yang et al. (2023), where pruning can leads to a small reduction in generalization.
Additional results on other datasets can be found in Table 3.

Figure 4 illustrates the results of a regression task on an image using a SIREN network to learns
the mapping between 2D pixel coordinates and the corresponding RGB color. The left panel shows
the loss evolution for all methods, while the right panel presents the error maps at final steps, along
with a zoomed-in region for Uniform sampling, DLIS, our method with importance sampling, and
our method combining importance sampling and data pruning. Our method, which incorporates
importance sampling and data pruning, provides the best loss reduction performance. The error map
reveals fewer errors, with less yellow tones and finer details in the zoomed region. This method
effectively reduces error in high-frequency regions by compensating in smoother regions such as the
background, leading to a more balanced error distribution across the image. In comparison, DLIS
produces similar results to our importance sampling when its weights are used with our algorithm,
but its full method is significantly outperformed by Uniform sampling. This is evident in the error
map and the zoomed-in area, which display more blurriness in DLIS results.

Figure 3 presents an ablation study of our online pruning strategy on the MNIST classification task,
comparing random pruning, the method of Yang et al. (2023), and our adaptive approach. The
left side shows the evolution of the data used during training across epochs, while the right side
highlights final accuracy, the average data used per epoch and the final remaining data, the training
time and time used to compute the pruning. Our adaptive method starts with the full dataset and
prunes data every 20 epochs, following Algorithm 2. As training progresses, the amount of pruned
data decreases, since many data points begin to contribute redundant information. By the end, only
a reduced subset remains. In contrast, Yang et al. (2023) prunes in one step at the start using a
pre-trained model, leading to faster training but lower quality results, not outperforming uniform
sampling but providing generalization properties. Our approach adaptively removes data that no
longer adds value to the learning process. While aggressive pruning (e.g., K = 1) risks overfitting
and reduced accuracy, more moderate pruning speeds up training without sacrificing quality. The
results show that when minimal or no pruning is applied, the advantages diminish, reverting to a
reliance on importance sampling alone. Overall, our adaptive pruning efficiently reduces dataset
size while preserving crucial data throughout training.

Additional experiments. Further comparisons, similar to those in Table 1, across various datasets
are provided in Appendix D. We also present convergence curves at equal steps and equal time in-
tervals for Pointnet, CIFAR-10 (ViT (Dosovitskiy et al., 2021)) and Tiny-ImageNet, demonstrating
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Figure 4: Comparison at equal step for image 2D regression. The left side shows the convergence
plot while the right display the absolute error of the regression and a close-up view. Our method
using data pruning achieves the lower error on this problem while pruning 45% of the data during
training. Our method using only importance sampling and DLIS with our algorithm perform simi-
larly, but DLIS with their full method perform worse than default optimization. In the images it is
visible that our method with pruning recovers the finest details of the fur and whiskers.

the consistent improvements of our method throughout the optimization process. These additional
experiments reinforce the effectiveness of our approach and in particular benefit from a low compu-
tation method at equal time.

Discussion. Both our and DLIS importance metrics are highly correlated, but ours is simpler and
more efficient to evaluate. Even with a slightly better importance sampling metric, most of the
improvement come from the memory-based algorithm instead of a resampling one. The resulting
algorithm gives better performance at the same time and has more stable convergence. Our online
data pruning method is controlled by a pruning factor K, which dictates how much data is removed at
each step. While we kept K constant in our experiments, it could be adjusted to prevent overfitting.
Pruned data could also be reintroduced later to check for overfitting by observing if its importance
increases after removal. This could help detect reduced generalization without shrinking the initial
dataset, though we leave this for future work.

Limitations. As the algorithm rely on past information to drive a non-uniform sampling of data,
it requires seeing the same data multiple times. This creates a bottleneck for architectures that rely
on progressive data streaming. More research is needed to design importance sampling algorithms
for data streaming architectures, which is a promising future direction. Non-uniform data sampling
can also create slower runtime execution. The samples selected in a mini-batch are not laid out
contiguously in memory leading to a slower loading. We believe a careful implementation can
mitigate this issue.

8 CONCLUSION

In conclusion, our work introduces an efficient sampling strategy for machine learning optimization,
that can be use for importance sampling and data pruning. This strategy, which relies on the gradient
of the loss and has minimal computational overhead, was tested across various classification as well
as regression tasks with promising results. Our work demonstrates that by paying more attention to
samples with critical training information, we can speed up convergence without adding complexity.
We hope our findings will encourage further research into simpler and more effective sampling
strategies for machine learning.
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A DERIVATIVE OF CROSS-ENTROPY LOSS

Machine learning frameworks take data x as input, performs matrix multiplication with weights and
biases added. The output layer is then fed to the softmax function to obtain values s that are fed
to the loss function. y represents the target values. We focus on the categorical cross-entropy loss
function for the classification problem (with J categories) given by:

Lcross-ent = −
∑
i

yi log si where si =
exp(m(xi, θ)l)∑J
l exp(m(xi, θ)l)

(9)

For backpropagation, we need to calculate the derivative of the log s term wrt the weighted input
z of the output layer. We can easily derive the derivative of the loss from first principles as shown
below:

∂Lcross-ent

∂m(xi, θ)j
= − ∂

∂m(xi, θ)j

(
J∑
i

yi log si

)
= −

J∑
i

yi
∂

∂m(xi, θ)j
log si = −

J∑
i

yi
si

∂si
∂m(xi, θ)j

(10)

= −
J∑
i

yi
si
si · (1{i == j} − sj), can be easily derived from first principles, (11)

=

J∑
i

yi · sj −
J∑
i

yi · (1{i == j}) = sj

J∑
i

yi − yj = sj − yj (12)

The partial derivative of the cross-entropy loss function wrt output layer parameters has the form:

∂Lcross-ent

∂m(xi, θ)j
= sj − yj (13)

For classification tasks, we directly use this analytic form of the derivative and compute it’s norm as
weights for importance sampling.

B ALGORITHM DETAILS

Algorithm 3 provide detail on the initialization subroutine applying a first epoch of training without
importance sampling to initialize the persistent importance vector q.

C DATASET AND TRAINING DETAILS

In this section we provide details of the datasets and training. We train all models with 3 independent
runs and report the average loss and accuracy as shown in Table 3.
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Algorithm 3 Subroutine for initialization for Algorithm 1
1: function INITIALIZATION(Ω,θ,B,q) ← Initialize q in a classical SGD loop
2: for t← 1 to |Ω|/B do
3: x, y ← {xi, yi}t·B+1

i=(t−1)·B+1 ← See all samples in the first epoch

4: L(x)← L(m(x, θ), y)
5: ∇L(x)← Backpropagate(L(x))
6: ⟨∇Lθ⟩(x)←∇L(x)/B ← Eq. (3)
7: θ ← θ − η ⟨∇Lθ⟩(x) ← Eq. (2)

8: q(x)←
∥∥∥ ∂L(x)
∂m(x,θ)

∥∥∥ ← Initialize per sample importance

9: return q,θ

MNIST. The MNIST database contains 60,000 training images and 10,000 testing images. We
train a 3-layer fully-connected network (MLP) for image classification over 50 epochs with an Adam
optimizer (Kingma & Ba, 2014).

CIFAR-10 and CIFAR-100. CIFAR-10 (Krizhevsky et al., 2009) contains 60,000 32x32 color
images from 10 different object classes, with 6,000 images per class. CIFAR-100 (Krizhevsky et al.,
2009) has 100 classes containing 600 images each, with 500 training images and 100 testing images
per class. For both datasets, we use the ResNet-18 network architecture (He et al., 2016). We use the
SGD optimizer with momentum 0.9, initial leaning rate 0.003 (CIFAR-10) and 0.007 (CIFAR-100),
and batch size 128. We reduced the initial learning rate following an exponential scheduling with
factor 0.987 over a total of 120 epochs for CIFAR-10 and 200 epochs for CIFAR-100. For both
datasets, we use random horizontal flip, random crops to augment the data on the fly and use We
used α = 0.3 for the importance memory update and K = 4 for the pruning factor.

For CIFAR-10, we also trained a Vision Transformer (ViT) (Dosovitskiy et al., 2021) using the
Adam optimizer with an initial learning rate 0.0001, divided by 10 after 70, 140 epochs. Here we
also use random horizontal flip, random crops to augment the data on the fly and use α = 0.3 for
the importance memory update and K = 8 for the pruning factor.

Point cloud classification. We train a PointNet (Qi et al., 2017) with 3 shared-MLP layers and
one fully-connected layer, on the ModelNet40 dataset (Wu et al., 2015). The dataset contains point
clouds from 40 categories. The data are split into 9,843 for training and 2,468 for testing. Each point
cloud has 1,024 points. We use the Adam optimizer with batch size 64, weight decay 0.001, initial
learning rate 0.00002 divided by 10 after 100, 200 epochs. We train for 300 epochs in total We used
α = 0.0 and K = 8 for our methods.

Oxford Flower-102. The Oxford 102 flower dataset (Nilsback & Zisserman, 2008) contains flower
images from 102 categories. We follow the same experiment setting of Zhang et al. (2017; 2019).
We use the original test set for training (6,149 images) and the original training set for testing (1,020
images). In terms of network architecture, we use the pre-trained VGG-16 network (Simonyan &
Zisserman, 2014) for feature extraction and only train a two-layer fully-connected network from
scratch for classification. We use the Adam optimizer with a learning rate 0.001 and train the two-
layer fully-connected network for 100 epochs. We used α = 0.2 and K = 8 for our methods.

Tiny-ImageNet. Tiny-ImageNet dataset is proposed by Le & Yang (2015). Tiny-ImageNet is
a larger dataset contains 100,000 training examples from 200 categories. We train a ResNet-18
network (He et al., 2016) for 20 epochs with a batch size of 64, a learning rate of 0.001 divided by
10 after 10 epochs, SGD optimizer with momentum 0.9 and data augmentation of random horizontal
flip. We used α = 0.3 and K = 64 for our methods.

Image regression. The image regression task involves training a network to learn a 2D image
signal, where each pixel is treated as an individual data point. The input to the network is the
pixel’s 2D coordinates, and the output is the corresponding RGB value for that pixel. We trained
a 5-layer SIREN network (Sitzmann et al., 2020) for 300 epoch using sinusoidal encoding for the
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input coordinates, optimized with Adam at a learning rate of 0.0003 and a batch size of 512. For our
method we used α = 0.3 and K = 2.

D ADDITIONAL EXPERIMENTS

In this section we present additional experiments.

Table 2 presents the computation times for four different importance metrics used in Fig. 2. Our im-
portance metric is nearly as fast as simply using the loss for classification tasks, thanks to its analytic
form. When utilizing automatic differentiation, the computation time of our metric is comparable to
DLIS, as both require backpropagation on the network output (for ours) or the last layer (for DLIS).
The final method, SRGD, involves a significantly more costly metric evaluation.

Table 3 presents a comparison between various methods, including Uniform sampling, Loss-based
importance sampling, DLIS, DLIS with our algorithm, LOW, our method using only importance
sampling, and a combination of importance sampling with data pruning across multiple tasks. For
each task, we report the cross-entropy loss and accuracy at both equal steps and equal time, alongside
the total optimization time for each method. Overall, our method, which combines importance
sampling and data pruning, achieves the best results in terms of both equal time and equal steps.
Although it does not always yield the top result, it frequently ranks second or first. Some specific
cases are worth highlighting. In the CIFAR-10 classification task using a ViT network, we observe
longer training times for our method, even with data pruning. This is due to the overhead introduced
by gradient backpropagation and the relatively low level of pruning. This overhead is also noticeable
in both DLIS methods. In the image regression task, where each pixel is treated as a separate data
point, the memory footprint is low. Consequently, data pruning does not lead to sufficient time
reduction to offset the overhead introduced by importance sampling and its computation, which
results in Uniform sampling outperforming our method in terms of computation time. Additionally,
there are instances where our method using only importance sampling outperforms the version with
data pruning. This occurs in cases where significant data pruning negatively impacts generalization.
For instance, in the Flower-102 dataset, each class contains only a few examples, so pruning too
many data points directly compromises the model’s training capacity, as each point carries critical
information.

Finally, we present three convergence curves—showing both loss and accuracy—under equal time
and equal steps for CIFAR-10 (ViT) (Fig. 5), Point Cloud (Fig. 6), and Tiny-ImageNet (Fig. 7) clas-
sification tasks. These curves illustrate the evolution of classification error across the methods used
in Table 3. Our method consistently achieves superior performance throughout the training process.
Additionally, the results highlight significant underperformance for certain methods, such as DLIS
on Tiny-ImageNet and CIFAR-10 (ViT). The results also emphasize the substantial difference be-
tween equal steps and equal time for the LOW method, which suffers from a considerable overhead.
Although LOW performs well under equal steps, it can perform worse than Uniform sampling when
evaluated at equal time.

Table 2: Average computation time on 3 layer fully-connected network for multiple sampling metric
the task from Fig. 2. Time is average over one epoch and computed on mini-batch of size 8.

Computation time (↓) Loss SRGD DLIS Ours
autodiff

Ours
analytic

Polynomial regression 1.33 ·10−4 7.17 ·10−4 4.38 ·10−4 3.23 ·10−4 -
(1.×) (5.39×) (3.29×) (2.43×)

MNIST 1.28 ·10−4 5.57 ·10−4 3.27 ·10−4 3.59 ·10−4 1.40 ·10−4

(1.×) (4.35×) (2.55×) (2.80×) (1.09×)
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Table 3: We compare the impact of importance sampling (IS) with and without data pruning on
classification and regression tasks. Our approach consistently outperforms on majority of datasets.
Bold numbers represents the best scores, underlined ones represent the second best. Worse to best
for each metric is shown from red to green.

Equal step Equal time
Dataset Method Loss (↓) Accuracy (↑) Time(s)(↓) Loss Accuracy

MNIST

Uniform 0.00092 97.5 477 0.00097 97.4
Loss IS 0.00083 97.8 474 0.00086 97.7
DLIS 0.00106 98.0 754 0.00124 97.7
DLIS weights w/ Our algorithm 0.00083 97.8 665 0.00089 97.6
LOW 0.00072 98.1 624 0.00077 98.0
Our IS 0.00083 97.8 395 0.00085 97.7
Our IS + Data pruning 0.00056 98.3 386 0.00059 98.2

CIFAR-10

Uniform 0.0037 92.5 5810 0.0037 92.4
Loss IS 0.0060 84.6 5797 0.0057 82.6
DLIS 0.0055 84.6 5963 0.0036 89.1
DLIS weights w/ Our algorithm 0.0105 63.1 5934 0.0127 53.7
LOW 0.0036 92.5 10768 0.0039 91.0
Our IS 0.0038 92.6 5836 0.0036 92.4
Our IS + Data pruning 0.0034 92.8 4395 0.0034 92.8

CIFAR-10 (ViT)

Uniform 0.00794 74.6 7105 0.00789 74.8
Loss IS 0.00790 74.7 7039 0.00779 75.1
DLIS 0.00932 67.6 9111 0.00917 68.2
DLIS weights w/ Our algorithm 0.01050 63.6 8916 0.01000 65.1
LOW 0.00762 74.6 13046 0.00788 73.7
Our IS 0.00785 75.5 7113 0.00769 75.7
Our IS + Data pruning 0.00786 75.2 7213 0.00785 75.3

CIFAR-100

Uniform 0.012 72.6 4748 0.012 73.8
Loss IS 0.023 40.2 4404 0.026 0.02632.8
DLIS 0.015 62.0 4501 0.015 60.8
DLIS weights w/ Our algorithm 0.0260.021 0.026 43.6 4603 0.029 26.3
LOW 0.011 74.6 4730 0.011 74.2
Our IS 0.011 74.3 4686 0.012 74.3
Our IS + Data pruning 0.011 74.3 3150 0.011 74.3

Flower-102

Uniform 0.00658 79.8 6327 0.00658 79.8
Loss IS 0.01777 57.4 5909 0.01777 57.4
DLIS 0.02128 46.9 7399 0.01951 43.8
DLIS weights w/ Our algorithm 0.72899 30.9 7504 0.33971 27.8
LOW 0.00773 76.1 8241 0.00755 76.7
Our IS 0.00689 79.5 6263 0.00689 79.5
Ours IS + Data pruning 0.01353 73.6 3356 0.01353 73.6

Point cloud

Uniform 0.00505 82.3 356 0.00505 82.2
Loss IS 0.00495 82.6 358 0.00496 82.5
DLIS 0.00595 81.9 580 0.00603 81.8
DLIS weights w/ Our algorithm 0.00481 82.6 561 0.00485 82.5
LOW 0.00572 82.6 4714 0.01173 74.9
Our IS 0.00480 82.9 374 0.00480 82.9
Our IS + Data pruning 0.00478 83.2 354 0.00478 83.1

Tiny-ImageNet

Uniform 0.02176 47.4 7602 0.02176 47.4
Loss IS 0.02237 45.2 8407 0.02238 45.2
DLIS 0.03433 26.3 7897 0.03433 26.3
DLIS weights w/ Our algorithm 0.03454 26.1 9300 0.02778 35.0
LOW 0.02344 43.5 7702 0.02344 43.5
Our IS 0.02127 48.1 8461 0.02123 48.5
Our IS + Data pruning 0.02193 47.1 4349 0.02193 47.1

Image regression

Uniform 9.44 - 2308 9.44 -
Loss IS 11.01 - 2360 11.12 -
DLIS 14.27 - 2949 15.78 -
DLIS weights w/ Our algorithm 8.44 - 2863 9.37 -
Our IS 8.13 - 2912 9.16 -
Our IS + Data pruning 8.01 - 2328 8.05 -
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Figure 5: Comparisons on CIFAR-10 using Vision Transformer (ViT) (Dosovitskiy et al., 2021). The
results show consistent improvement of Ours IS and Ours IS + Data pruning over LOW (Santiago
et al., 2021) and DLIS (Katharopoulos & Fleuret, 2018) for both equal epoch and equal time.
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Figure 6: When comparing on the Point cloud (ModelNet40 (Wu et al., 2015)) classification dataset,
DLIS performs poorly at equal time due to the resampling overhead. Unlike DLIS (Katharopoulos
& Fleuret, 2018), we use standard uniform sampling which is faster. We also compare against
another adaptive scheme by Santiago et al. (2021) (LOW). Our importance sampling (Ours IS) with
data pruning (Ours IS + Data pruning) show improvements on the ModelNet40 dataset against other
methods. achieving lower classification errors with minimal overhead compared to others.
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Figure 7: Comparisons on Tiny-ImageNet (Le & Yang, 2015). The results show improvement of
our importance sampling (Ours IS) over other methods, while in this case Ours IS with data pruning
works similarly to Uniform sampling.
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