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Abstract

Traditionally the task of out-of-distribution (OOD) detection is associated with
epistemic uncertainty estimation. While Bayesian models and generative models
have been explored to provide principled uncertainty estimation, deterministic
and discriminative models cannot provide such estimation by nature. We propose
to characterize the difficulty of OOD detection by the extent of distribution shift
and theoretically derive two score functions for OOD detection. Additionaly we
propose a geometrically-inspired method (Geometric ODIN) to improve OOD
detection under distribution shift with only in-distribution data. View project
page at https://sites.google.com/view/geometric-decomposition and
a long version of the paper at https://arxiv.org/abs/2110.15231.

1 Introduction

Bayesian inference [1, 2, 3] has been regarded as the most principled method of uncertainty model-
ing [4] because it explicitly models two types of uncertainty: epistemic uncertainty and aleatoric
uncertainty in the form posteriors over parameters and data likelihood respectively. Practically, epis-
temic uncertainty is often assessed by a model’s out-of-distribution (OOD) detection performance [5]
or calibration [6, 7], while aleatoric uncertainty can be assessed by in-distribution error detection [5].
Recent attempts [6, 7] to model uncertainty using deterministic models failed to disentangle these
two uncertainties due to their non-Bayesian nature. However, it is still possible to capture them em-
pirically in a deterministic model using a combination of density estimation and softmax-entropy [5].
This leaves us the question: how to approach OOD detection/calibration for deterministic (as
opposed to Bayesian) and discriminative (as opposed to generative) models? This is arguably the
most widely used class of models due to its speed (compared to Bayesian models) and simplicity
(compared to generative models). It seems that the conventional association of OOD data with
epistemic uncertainty [3] fails under the scope of this type of models and a different perspective
is needed to analyze them. A suitable alternative perspective is distribution shift [8]. Intuitively,
out-of-distribution data refers to data that are sampled from distributions different from the training
distribution. There are two dominant shift types: covariate shift and concept shift. The former usually
refers to change in style, e.g., clean vs. noised, and the latter refers to change in semantics, dog
vs. leopard. We propose to characterize OOD datasets by the degree of shifts in each dimension.
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While existing works do not distinguish between different types of OOD datasets, these two types
of shifts should be examined and addressed separately. We follow [8] for the formal definition of
dataset shift, covariate shift and concept shift. Let X ∈ RD denote the covariate which is the input
or feature and Y ∈ R denote the output label. Dataset shift happens when the training joint distri-
bution is not equal to the testing joint distribution Ptr(X,Y ) 6= Ptst(X,Y ). Specifically, covariate
shift appears when Ptr(Y |X) = Ptst(Y |X) and Ptr(X) 6= Ptst(X). Concept shift appears when
Ptr(Y |X) 6= Ptst(Y |X) and Ptr(X) = Ptst(X). The first goal of this paper is to derive score
functions to reflect the shift in either P (X) or P (Y |X). We denote the score function that reflects
changes from Ptr(X) to Ptst(X) as covariate shift score function: g(x) : RD → R and the
score function that reflects changes from Ptr(Y |X) to Ptst(Y |X) as concept shift score function:
h(y, x) : R × RD → R. The second goal is to improve the sensitivity of these scores to their
corresponding distribution shift. Specifically, we propose a geometrically inspired out-of-distribution
detection method with only in-distribution data (Geometric ODIN). We use CIFAR10C [9] and a
new CIFAR100 Splits dataset to investigate gradual covariate shift and concept respectively.

2 Related Work

Out-of-Distribution (OOD) detection methods can be largely divided into two camps depending
on whether they require OOD data during training. [10, 11, 12] leverages anomalous data in training.
Our method belongs to the class of methods that do not assume the availability of OOD data during
training. [13] uses the maximum softmax probability (MSP) to detect incorrect predictions and
OOD data. [14] proposes to use Mahalanobis distance by fitting a Gaussian mixture model (GMM)
in the feature space. [5] uses log density of the GMM model instead. [15] uses an energy score
as the uncertainty metric. ODIN [16] uses a combination of input processing and post-training
tuning to improve OOD detection performance. Generalized ODIN [17] (also [18]) includes an
additional network in the last layer to improve OOD detection during training. There are other
interesting OOD detection approaches without OOD data such as using contrastive learning with
various transformations [19, 20], training a deep ensemble of multiple models [21] and leveraging
large pretrained models [22]. They require extended training time, hyperparameter tuning and careful
selections of transformations, whereas our method does not introduce any hyperparameters and has
negligible influence on standard cross-entropy training time.

3 Method

3.1 Covariate and Concept Score Functions

In this section, we theoretically derive two score functions, g(x) and h(y, x), based on the KL-
divergence between a uniform distribution U and a predicted distribution P ∈ RM , where M is the
number of classes. By starting from KL-divergence, we hinge the subsequent derivation of score
functions on a physical meaningful uncertainty measure, i.e., how far the predicted distribution is
from a uniform distribution. This relationship ensures a natural interpretation of score functions
because predictions on distribution shifted data should have larger uncertainty, i.e. smaller distance
from uniform. We are specifically interested in softmax-linear models for classification. They
typically consist of a feature extractor and a linear layer followed by a softmax activation. Let
f ∈ RD denote a feature vector from the feature extractor1. The output of the linear layer, i.e.,
logits, l ∈ RM =< f ,W > is defined as the inner product between the feature vector and a weight
matrix in the linear layer. Let li = ‖f‖2‖wi‖2 cosφi denote the ith logit, Pi = exp li∑M

j=1 exp lj
denote

the predicted probability of the ith class. The KL-divergence KL(U||P) can be written as following:

KL(U||P) = −
M∑
i=1

1

M
lnMPi = ln

M∑
j=1

exp lj −
1

M

M∑
i=1

li − lnM (1)

1Bold letter indicates vectors
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Now we can use the inequality property of Log-Sum-Exp (LSE)2 functions in Eq. 2 to bound Eq. 1.

max
j
lj ≤ ln

M∑
j=1

exp lj ≤ max
j
lj + lnM (2)

Therefore the KL-divergence (Eq. 1) can be bounded as follows:

U − lnM ≤ KL(U||P) ≤ U (3)

where U = maxj lj − 1
M

∑M
i=1 li. U can be further decomposed into two multiplicative components

by plugging in the definition of logits li:

U = max
j
lj −

1

M

M∑
i=1

li =

g(x)︷︸︸︷
‖f‖2

(
max
j
‖wj‖2 cosφj −

1

M

M∑
i=1

‖wi‖2 cosφi

)
︸ ︷︷ ︸

h(y,x)

(4)

We define the covariate shift score function as g(x) , ‖f‖2 because the norm of a feature vector
is the sum of squared activation values and only depends on the input. Intuitively, activation of
a neural network on covariate-shifted data should be weaker than in-distribution data. Therefore,
g(x) assigns a higher value to in-distribution data than to OOD data. We define the concept shift
score function as h(y, x) , maxj ‖wj‖2 cosφj− 1

M

∑M
i=1 ‖wi‖2 cosφi because it is the difference

between the cosine distance of the predicted class and the average cosine distance of all classes and
depends on both the input and final class membership, assigned by the max operator. Intuitively,
class assignment should be less obvious under concept shift and the difference should be small.
Consequently, h(y, x) assigns a higher value to in-distribution data than to OOD data.In retrospect,
our definition of covariate shift and concept shift scores supports existing findings that the features
norms correspond to intra-class variance and angles reflect inter-class variation [23]. Intuitively,
covariate shift represents non-semantic change within a specific class, i.e., intra-class variance;
concept shift represents semantic changes, i.e, inter-class variation. Here we formalize the intuition
and observations in [23] as score functions derived analytically from a KL-divergence viewpoint.

More importantly, the combined score function U (Eq. 4) carries a physical meaning: it bounds
the KL-divergence between a uniform distribution and the predictive distribution. Intuitively, a
small U indicates large uncertainty because U upper bounds KL(U||P), and a large U indicates
small uncertainty because it also appears in the lower bound. A similar scoring function, S(x) =
‖f‖2 maxj ‖wj‖2 cosφj , is used in [20], but is only empirically motivated based on observations
with limited analytical insights such as its relationship to uncertainty and the functionality of each of
components. In contrast, our derivation clearly shows the relationship between these score functions
and the KL-divergence, which is as an uncertainty measure, and disentangles their roles.

3.2 Geometric Out-of-Distribution Detection with In-Distribution Data

As derived in Eq. 4, the covariate score is a function of feature norms and the concept score is a
function of feature angles. Consequently, improving the sensitivity of feature norms and feature
angles to data shifts seems to be the natural next step to improve OOD detection. Therefore, we
adopt Geometric Sensitivity Decomposition (GSD) [24] to improve sensitivity to covariate and
concept shifts. Specifically, GSD improves sensitivity by extracting sensitive components from norms
‖f∗‖23 and angles |φ∗i | through a decomposition of them into: an instance-independent scalar and
an instance-dependent variance factor as shown in Eq. 5. Instance-independent scalars Cf and Cφ
minimize the loss on the training set and instance-dependent components f and φi account sensitively
for variances in samples.

‖f∗‖2 = ‖f‖2 + Cf , |φ∗i | = |φi| − |Cφ| (5)

2Note that the negative LSE function is also defined as free energy in [15].
3The superscript ∗ denotes the original component before decomposition.
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With the decomposed components, the original logit l∗i = ‖f∗‖2‖wi‖2 cosφ∗i , can be written as:

l∗i = ‖f∗‖2‖wi‖2 cosφ∗i ≈ li =

 1

cos Cφ︸ ︷︷ ︸
α

‖f‖2 +
1

cos Cφ︸ ︷︷ ︸
α

β︷︸︸︷
Cf

 ‖wi‖2 cosφi (6)

where li denote the new ith logit. In Eq. 6, the new4 feature f is a direct output of a feature extractor,
and is modified by α and β. Note that the calculation of score functions in Sec. 3.1 only uses the
feature and is independent of α and β.

Because cos Cφ and Cf are instance-independent, we can parametrize them separately from the main
network. Unlike GSD which parametrizes them as instance-independent scalars, inspired by [17, 18],
we make α(f) and β(f) instance-dependent scalars and use a single linear layer to learn them. To
enforce numerical constraints, i.e., 0 < α < 1 and β > 0, α(f) uses a sigmoid activation and β(f)
uses a softplus activation. Finally, the relaxed output is:

P (Y = i|x) = exp li∑M
j=1 exp lj

=
exp

((
1

α(f)‖f‖2 +
β(f)
α(f)

)
‖wi‖2 cosφi

)
∑M
j=1 exp

((
1

α(f)‖f‖2 +
β(f)
α(f)

)
‖wj‖2 cosφj

) (7)

Now the new predicted norm ‖f‖2 and angle φi are more sensitive to input changes because they
encode variances in samples as shown in Eq. 5. Therefore, including β (related to norms) improves
sensitivity to covariate shift and including α (related to angles) improves sensitivity to concept
shift. Note that, under this construction, Generalized ODIN [17] is a special case of our proposed
method. Generalized ODIN only includes the α(f) which only improves angle sensitivity but not
norm sensitivity. Unlike [17]’s probabilistic perspective5, our model builds on a geometric perspective
and captures both covariate and concept shifts by improving norm and angle sensitivity. The new
model can be trained identically as the vanilla network without additional hyperparameter tuning.

3.3 CIFAR100 Splits

Table 1: CIFAR100 Concept Shift Splits Small group numbers indicate less conceptual similarity
to CIFAR10 classes. The similarity is calculated using inner product between the Glove embeddings
of a CIFAR100 class and a CIFAR10 class. For each CIFAR100 class, the largest similarity to each
CIFAR10 class is taken as the overall similarity to CIFAR10. The average shows average similarity
to CIFAR10 and the standard deviation shows in-group variance.

1 2 3 4 5 6 7 8 9 10 AVE. STD.

CIFAR10 airplane automobile bird cat deer dog frog horse ship truck

Group 9 cattle shrew motorcycle squirrel snake trout sea tractor bus pickup 24.96 2.39
Group 8 bear elephant leopard camel lizard rabbit beaver spider raccoon orchid 21.99 0.44
Group 7 lion mountain crab bicycle turtle beetle train mouse snail otter 20.18 1.14
Group 6 possum shark forest pine dinosaur boy porcupine wolf road butterfly 17.79 0.32
Group 5 girl rocket man tiger bee tank whale baby kangaroo dolphin 16.26 0.44
Group 4 willow worm chimpanzee skunk cup mushroom oak cockroach crocodile hamster 14.64 0.55
Group 3 castle can bridge lobster house bed fox maple pear woman 12.65 0.63
Group 2 palm streetcar pepper keyboard bottle seal rose couch caterpillar goldfish 10.18 0.51
Group 1 flatfish apple orange plate table tulip bowl television skyscraper ray 8.95 0.25
Group 0 wardrobe lamp plain lawnmower chair poppy clock cloud sunflower telephone 7.5 0.97

Special CIFAR100 Splits for Gradual Concept Shift While it is natural to associate covariate
shift with increasing degrees of image corruption, finding a dataset to benchmark gradual concept
shift is not straightforward because concept shift is traditionally thought as binary: overlapping
or non-overlapping. However, not all non-overlapping labels are the same. For example, pickup
truck (CIFAR100) is much closer to truck (CIFAR10) than sunflowers (CIFAR100) is semantically.
To create this gradual concept/semantic shift, we propose to divide the CIFAR100 dataset into 10
sub-datasets with increasing conceptual difference from CIFAR10 classes. Specially, we use Glove

4Even though both f∗ and f are outputs directly from the feature extractor, we use original and new to
indicate whether GSD is applied.

5α(f) is interpreted as P (din|x), the probability of x being in-distribution.
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(a) α-β, α-only, β-only and vanilla models using score functions g(x) and h(y, x) (b) All using U

Figure 1: Capturing Concept Shift (CIFAR100 Splits) All results are averaged over 5 runs. Mod-
eling concept shift (both α-only and α-β models) yields the best performance as shown in Fig. 1b.

(a) α-β, α-only, β-only and vanilla models using score functions g(x) and h(y, x) (b) All using U

Figure 2: Capturing Covariate Shift (Motion Blur) All results are averaged over 5 runs. Modeling
covariate shift (α-β model) yields the best performance as shown in Fig. 2b.

word embeddings [25] trained on the entire wikipedia2014 and Gigaword5 [26] to measure semantic
closeness (inner product) between CIFAR100 and CIFAR10 classes. The result is 10 subdatasets split
from CIFAR100. We list the splits in Tab. 1.

4 Experiments

The g(x) score captures covariate shift. We compare the α-β, α-only, β-only variants and the
vanilla model on CIFAR10C [9] corrupted by motion blur in Fig. 2 with increasing degrees of noise.
From 2a, we observe that 1) as covariate shift severity increases, OOD detection becomes easier
because AUROC increases with increasing severity. 2) in practice, covariate shift does not happen in
isolation from concept shift and vice versa because AUROC using either g(x) or h(y, x) increases.
3) the vanilla model is more sensitive to the concept shift component because h(y, x) > g(x) in
the vanilla model plot even though covariate shift is the dominant distribution shift in this example.
4) when sensitivity to both covariate and concept shift is improved , the α-β model becomes more
sensitive to the covariate shift component. This suggests that the dominant shift in this example is
indeed covariate shift. From Fig. 2b, we observe that the α-β model outperforms the β-only model
using the combined score function U . This suggests that improving sensitivity to both shifts and
using U yield the best OOD detection. The h(y, x) score captures concept shift. Following the
previous section, we benchmark the α-β, α-only, β-only variants and the vanilla model on the newly
created CIFAR100 Splits. From Fig. 1a, we observe that 1) as concept shift severity increases, OOD
detection becomes easier because AUROC increases with increasing severity. 2) both concept shift
and covariate shit are present because AUROC using either h(y, x) or g(x) increases. 3) the vanilla
model is dominantly more sensitive to the concept shift component because concept shift is the
dominant distribution shift in CIFAR100 Splits by construction and vanilla ResNet is more sensitive
to concept shift. The same behavior is also observed on CIFAR10C. 4) when sensitivity to both shifts
is improved, the α-β model is still more sensitive to concept shift (h(y, x) > g(x)). This reconfirms
that the dominant shift type is indeed concept shift. From Fig. 1b, we observe that all three variants
perform similarly and all outperform the vanilla model. Combined with previous observations that
the dataset has strong concept shift and the vanilla model is already very sensitive to concept shift,
improving sensitivity to the covariate shift component yields equally good performance as improving
sensitivity to both shifts. We provide results on standard benchmarks in Appendix 6.1.

5 Conclusion
In this work, we propose to characterize the spectrum of out-of-distribution data from the perspective
of dataset shift, specifically covariate and concept shift. This categorization provides a different
perspective to study OOD detection for deterministic and discriminative models. At representation
level, we derive two score functions that represent and capture each shift separately. At modeling
level, inspired by these score functions, we propose a geometrically-inspired method, Geometric
ODIN, to improve a model’s sensitivity to both shift.
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Table 2: AUROC ↑ for Near and Far OOD detection. Results are averaged over 5 runs. Our
α(x)-only model is the same as Generalized ODIN [17] without its input processing.* denotes results
from [5].

AUROC↑ Score Functions ID:CIFAR100 ID:CIFAR10

Near Near Far Near Near Far
CIFAR10 CIFAR100C SVHN CIFAR100 CIFAR10C SVHN

Vanilla Wide-ResNet-28-10
MSP [13] 80.68±0.34 70.38±1.37 77.37±2.25 88.93±0.37 70.58±0.59 93.66±1.79

Energy [15] 80.74±0.45 70.79±0.85 79.48±2.91 88.84±0.44 70.60±0.52 94.39±2.30
[27] Mahanobis [14] 78.27±1.51 69.16±0.48 84.37±4.56 87.63±1.19 68.38±0.50 93.08±6.02

GMM Density [5] 71.67±0.57 73.15±0.49 85.67±2.02 90.98±0.24 75.71±0.80 97.68±0.38

DUQ [6] Kernel Distance − − − 85.92±0.35* − 93.71±0.61*
SNGP [7] SoftMax Entropy − − 85.71±0.81* 91.13±0.15* − 94.0±1.30*
DDU [5] GMM Density 73.05±0.51 73.31±0.45 87.32±0.77 90.69±0.42 76.00±0.00 97.12±1.21

5-Ensemble [21] SoftMax Entropy − − 79.54±0.91* 92.13±0.02* − 97.73±0.31*

Ours: α(x)-only h(y, x) 79.24±0.37 73.60±0.55 83.75±3.30 92.28±0.15 77.00±0.00 97.56±0.90

Ours: α-β
h(y, x) 79.42±0.39 72.95±0.12 88.69±2.61 91.29±0.07 73.80±0.45 98.42±0.21
g(x) 61.06±0.31 65.50±2.18 89.76±3.34 89.08±0.24 76.80±1.10 99.40±0.14
U 71.48±0.26 71.72±1.09 93.80±2.42 92.31±0.21 78.00±0.71 99.54±0.08

6 Appendix

6.1 Out-of-Distribution Detection Results

The α-β model is the best. In Tab. 2, we present OOD detection results against state-of-the-art
methods on existing near and far OOD categorization. For near OOD detection under strong concept
shift, CIFAR10 (ID) vs. CIFAR100 (OOD), both our α-only and α-β variants achieve the the best
performance. This demonstrates that α(x) improves the sensitivity of angles and hence the sensitivity
to concept-shifted data. For near OOD detection under strong covariate shift, CIFAR10 (ID) vs.
CIFAR10C (OOD), the α-β variant achieves the the best performance. This suggests that β(x)
improves the sensitivity of norms and hence the sensitivity to covariate-shifted data. In CIFAR100
(ID) vs. CIFAR10/CIFAR100C (OOD) experiments, the performance of the α-only and α-β variants
are within variance and is close to some other compared methods, we can not make clear observations
from those experiments6. For far OOD detection, CIFAR10/CIFAR100 (ID) vs. SVHN (OOD), the
α-β model achieves state-of-the-art performance. This reconfirms that β(x) improves sensitivity to
covariate-shifted data, because SVHN has both covariate and concept shifts compared to the CIFAR
datasets, and the α-β model outperforms the α-only variant, which only improves on concept shift,
by a noticeable margin. In terms of score functions, the best performing one for the α-β model is
U , which is a product of g(x) and h(y, x) (Sec. 3.1), while that of the α-only model is h(y, x). This
shows that depending on which component is more sensitive, different scoring functions are preferred.
When the sensitivity of both norms and angles are improved, as in the α-β variant, the combined
score function U performs well under different distribution shifts.

6Other confounding factors could contribute to the close performance. Prior works either omit comparisons
under these settings [5] or report only marginal improvement [19]
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