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ABSTRACT

Indoor localization with WiFi Channel State Information (CSI) requires mod-
els that can generalize across diverse deployment conditions, yet collecting large
amounts of high-quality labeled data is costly and often impractical. Pre-training
offers a promising solution, but conventional masked modeling is not directly suit-
able for CSI signals. It tends to produce unstable representations in unmasked re-
gions, fails to preserve long-range channel correlations, and remains highly sensi-
tive to variations in access point layouts and propagation environments. To address
these issues, we propose an autoregressive-enhanced masked pre-training (AEMP)
framework. AEMP employs a hierarchical Transformer architecture where spa-
tial subnetworks perform masked reconstruction to capture local channel features,
while a temporal network enforces consistency through autoregressive prediction.
In addition, multi-view fusion and span masking improve robustness under dy-
namic deployment conditions. Extensive experiments demonstrate that AEMP
yields stable and transferable representations, achieving superior performance and
strong generalization on downstream indoor localization tasks. To the best of our
knowledge, this is the first pre-training framework for wireless sensing that inte-
grates temporal prediction to complement masked reconstruction.

1 INTRODUCTION

Despite the significant progress in GPS-based outdoor navigation (Kaplan & Hegarty, 2017), its
application in indoor localization is fundamentally limited by obstructed satellite signals and insuf-
ficient satellite visibility. In contrast, WiFi localization leverages existing infrastructure without the
need for additional hardware deployment and provides adequate coverage for indoor environments.
Existing studies have utilized various WiFi signal metrics for localization, including Received Sig-
nal Strength Indicator (RSSI) (Ni et al., 2003), carrier phase (Yang et al., 2014; Ma et al., 2017),
Time of Flight (ToF) (Mariakakis et al., 2014), Angle of Arrival (AoA) (Xie et al., 2018; An et al.,
2020), and Channel State Information (CSI) (Xie et al., 2019). Among these, CSI has emerged as a
promising solution because it captures detailed attenuation and phase shift information at the granu-
larity of Orthogonal Frequency-Division Multiplexing (OFDM) subcarriers (Yang et al., 2013). By
exploiting the channel characteristics reflected in CSI, we can enable applications such as navigating
to a conference room in a new building or finding a product of interest in a shopping mall, providing
significant benefits for daily life and work.

Existing CSI-based data-driven systems are typically deployed and developed under controlled con-
ditions, which limits their applicability to real-world scenarios, as shown in Table 1. To bridge this
gap, we explore a CSI learning-driven localization system within a large-scale ISAC (Integrated
Sensing and Communication) platform. This platform operates under the centralized control of a
WLAN controller, simultaneously supporting daily communication needs and enabling CSI acqui-
sition for sensing and localization.

However, real-world ISAC platforms often operate under dynamic conditions, such as varying num-
bers of available access points (APs) and non-line-of-sight (NLoS) environments. These factors
make the collection of large-scale labeled datasets particularly challenging. This naturally raises
a fundamental question: how can we design models that generalize across diverse scenarios with
limited supervision? Recent advances (Caron et al., 2021; Li et al., 2021; Bardes et al., 2022) in
pre-training paradigms offer a promising direction to address this challenge. Among these, masked
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Table 1: Comparison of CSI-Based Learning-based Localization Methods and Our Deployment

System APs AP Types CSI Dim. Unlab. Data
ConFi (Chen et al., 2017) 3 Intel 5300 3× 1× 30 ✗
DLM (Arnold et al., 2019) 1 USRP 64× 1× 922 ✗
DLoc (Ayyalasomayajula et al., 2020) 3 or 4 Quantenna APs 4× 1× 216 ✗
RLoc (Zhang et al., 2024) 3 or 4 Intel 5300 3× 1× 30 ✗
MSG (Liu et al., 2025) 4 Intel 5300 3× 1× 30 ✗

Our Deployment 13-79 H3C WA6520
WA6526E 2× 1× 42 ✓

modeling has emerged as a widely adopted strategy in vision and language. It learns powerful, task-
agnostic representations by forcing a model to reconstruct data from a corrupted input. Yet, when
applied directly to CSI signals, conventional masked modeling faces three critical limitations:

Lack of Supervision on Unmasked Tokens. Standard masked modeling primarily enforces re-
construction on the masked portion of the input, leaving the unmasked tokens unconstrained. For
CSI signals, this leads to unstable representation learning, as unmasked tokens may drift without
alignment to the underlying physical semantics, thereby weakening overall feature consistency.

Local–Global Inconsistency. CSI inherently encodes both local channel fluctuations and global
spatial correlations across multiple APs. However, traditional masked modeling focuses on recon-
structing local masked segments independently, failing to guarantee consistency with global RF
propagation patterns. This mismatch undermines the ability to capture coherent spatio-temporal
dependencies.

Sensitivity to Deployment Variations. Unlike images with relatively stable pixel statistics, CSI
signals are highly sensitive to AP layouts, antenna configurations, and NLoS propagation. Ran-
dom masking in these models may inadvertently discard critical components, making the learned
representations brittle and less robust under changing deployment conditions.

To address the spatiotemporal dependencies of wireless signals and the limitations of masked mod-
eling, we propose a novel hybrid pre-training paradigm called Autoregressive-Enhanced Masked
Pre-training (AEMP). The framework features two core self-supervised tasks, modeling in both
the spatial and temporal domains. Specifically, we design a hierarchical Transformer architecture
that consists of multiple parameter-shared spatial subnetworks (encoder) and a temporal subnet-
work (decoder). Due to the spatial properties of wireless signals, the spatial subnetwork performs
masked reconstruction within each frame to learn local spatial features. We employ a multi-view
fusion strategy to reduce the reliance on specific AP combinations. In addition, we introduce a span
masking mechanism (Joshi et al., 2020) to simulate dynamic deployment conditions in real-world
scenarios. Beyond the masked reconstruction task handled by the spatial subnetwork, we also utilize
the temporal subnetwork to perform an autoregressive prediction task, which forces the reconstruc-
tion output to maintain global consistency within its context. Finally, we use the jointly pre-trained
spatial subnetwork representations as feature inputs for the fine-tuning stage to enhance CSI-based
indoor localization. With our meticulously designed pre-training framework, our model outperforms
state-of-the-art methods on downstream indoor localization tasks, with an average median error of
0.92 m and an average tail error of 2.65 m.

Our main contribution can be summarized as:

• We introduce the first pre-training framework that integrates autoregressive prediction with
masked modeling for wireless sensing, addressing the limitations of conventional masked model-
ing on temporal signals.

• We design a novel hierarchical Transformer architecture with parameter-shared spatial subnet-
work and a temporal subnetwork to effectively capture both local features and global temporal
dependencies.

• Our AEMP framework achieves superior performance and robust generalization on indoor local-
ization tasks, surpassing state-of-the-art methods in dynamic, real-world deployments.
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2 RELATED WORK

CSI-Based Localization. CSI-based localization approaches are typically grouped into three cat-
egories, namely angle-based (Zhang et al., 2022; Tai et al., 2019; Yang et al., 2023), range-based
(Vasisht et al., 2016; Zhang et al., 2020), and data-driven methods (Ayyalasomayajula et al., 2020).
Angle-based techniques leverage array signal processing to infer the AoA, while range-based solu-
tions often depend on strategies such as channel dropping. Both, however, are constrained by an-
tenna array geometry (Chen et al., 2012) and strict communication requirements (Müller & Röhrig,
2022). Data-driven methods can be further divided into fingerprinting (Hu et al., 2022; Ni et al.,
2022; Wang et al., 2017) and learning-based approaches (Ruan et al., 2022; Xu et al., 2024). Fin-
gerprinting is a two-phase process: an offline phase builds a database that maps channel features
to ground-truth positions, while an online phase matches new observations to the closest entry for
localization. In contrast, learning-based approaches employ deep neural networks to directly learn
an end-to-end mapping from CSI measurements to spatial coordinates, bypassing the need for a
pre-built database. We propose a learning-based method for robust and accurate indoor localization.
By using the CSI spatial covariance matrix as our model’s input, we enable it to learn unique sig-
nal patterns directly correlated with a device’s position, even in challenging multipath and NLOS
environments.

Self-Supervised Wireless Sensing. The increasing prevalence of wireless communication systems
has motivated research on extracting meaningful representations from radio signals using deep learn-
ing. Traditional wireless sensing models, however, often underperform in few-shot scenarios, mak-
ing self-supervised learning (SSL) a promising alternative. Recent studies explore various learning
paradigms. Transformers such as LLM4CP (Liu et al., 2024) and Trans4CP (Jiang et al., 2022)
achieve accurate physical-layer channel estimation, while TMAENG (Zayat et al., 2024) employs
a Transformer-based masked autoencoder to address resource allocation challenges. LLMPhy (Lee
et al., 2024) leverages pre-trained language models to enhance the robustness of physical-layer com-
munication. Other approaches focus on multi-modal and multi-task learning. LWM (Alikhani et al.,
2025) utilizes large-scale wireless datasets to improve channel modeling, CSI-based DT (Jiao et al.,
2024) applies contrastive learning for multi-task zero-shot learning, ChannelGPT (Yu et al., 2024)
integrates multi-modal data for accurate parametric channel generation, and MMTBeam (Tian et al.,
2023) fuses sensor inputs from cameras, LiDAR, and GPS to explore beam prediction. Nevertheless,
most methods concentrate on specific physical-layer tasks or multi-modal fusion, and their gener-
alization to novel environments is limited. To address this, we propose AEMP, a self-supervised
framework that combines masked modeling with autoregressive prediction to learn robust spatiotem-
poral representations, improving generalization under data scarcity.

Figure 1: The overview of CSI-based indoor localization pretraining model. AEMP consists of a
masked feature construction module and a multi-task joint learning module.
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3 METHOD

3.1 PRELIMINARY

3.1.1 WIFI MOTION SENSING

In the field of wireless sensing, CSI typically describes the propagation of the signal from the trans-
mitter (TX) to the receiver (RX). Since the transmitted CSI signal undergoes multipath effects during
propagation in indoor environments, the CSI can be written as a sum of signals propagating along
different paths:

H(t, f) =

L∑
l=1

αl(t)e
−j2πfτl(t) + n(t, f), (1)

where αl and τl represent the attenuation coefficient and propagation delay of the l-th path compo-
nent, respectively, n(t, f) represents additive white Gaussian noise, and L is the number of paths.

The received CSI can be formulated as H ∈ CNR×NK , where NR represents the number of antennas
and NK the number of subcarriers. The corresponding spatial covariance C can be extracted by:

C =
1

NK

NK∑
k=1

hkh
H
k (2)

where hk ∈ CNR×1 indicate the channel vector on the k-th subcarrier. The real part, imaginary part,
and amplitude of the covariance matrix are then concatenated to form the input features. Our AEMP
leverages this sensing information, using a joint learning block to combine local spatial features and
global temporal features, which enables comprehensive modeling of wireless signal representations
for human activity and localization.

3.1.2 SPAN MASKING

As a masking strategy, Span Masking aims to more effectively capture and predict spans of tokens by
masking consecutive subsequences rather than individual tokens. At each iteration, we first sample
the length of the masked subsequence (denoted as l) from a geometric distribution Geo(p), clipped
at lmax:

P (l = k) = (1− p)k−1p, s.t. l ∈ [1, lmax], (3)
where p denotes the success probability and lmax specifies the maximum span length. The starting
position of the span is then uniformly sampled. For indoor localization systems, we extend this strat-
egy into a two-dimensional span masking scheme, which adaptively preserves local spatial patterns.
This design enables alignment with the underlying physical semantics and more faithfully reflects
real-world failure modes, such as consecutive packet loss or regional signal blockage, thereby im-
proving robustness under distribution shifts.

3.2 OVERALL ARCHITECTURE

As depicted in Figure 1, AEMP is a multi-stage pre-training network comprising masked feature
construction and multi-task joint learning. Specifically, to enhance robustness to varying AP con-
figurations, we perform multi-view combination augmentation and span masking strategy on the
sampled T CSI spatial covariances with the shape Fc ∈ C(T×N×F ). The core of the framework is a
multi-task joint learning paradigm based on self-supervision, which includes masked reconstruction
and autoregressive prediction. The masked reconstruction task is handled by spatial subnetwork,
which learns in-frame spatial representations and outputs reconstructed mean and log-variance. The
autoregressive prediction task is managed by temporal subnetwork, which performs both single-step
prediction and multi-step rollout to model both immediate and long-term temporal dependencies. Fi-
nally, during fine-tuning, the encoded output of the spatial subnetwork is used as a high-dimensional
input for a lightweight task-specific head, which generates predictions for downstream localization.

3.3 MASKED FEATURE CONSTRUCTION

To better utilize spatial information, we introduce a multi-view combination strategy for data aug-
mentation. For each time frame, we select a subset of N − 1 APs from a pool of the top N APs with
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the strongest RSSI, which yields CN−1
N different combinations. After the combination operation,

the shape of Fc becomes Fc ∈ C(T×CN−1
N ×N−1×F ), where N = 6. To complement the masked

reconstruction task, we use a 2D span masking strategy to mask contiguous spans in the input. This
process is applied to a randomly selected portion of time frames within each data sample. For the
masked positions, we replace their features with zero at an 80% probability, a random value at a
10% probability, and leave them unchanged at a 10% probability.

3.4 MULTI-TASK JOINT LEARNING

As illustrated in Figure 1, our framework for multi-task joint learning consists of two self-supervised
tasks: masked reconstruction and autoregressive prediction. The objective is to learn robust repre-
sentations for indoor localization by leveraging both spatial context and temporal dynamics. The
masked reconstruction module focuses on spatial feature learning, while the autoregressive predic-
tion module handles temporal modeling. A key architectural feature of this framework is its unique
error propagation mechanism, where temporal consistency errors from the autoregressive prediction
are back-propagated to the masked reconstruction encoder as a regularization term. This design
forces the model to learn a representation that is not only spatially coherent but also physically con-
sistent over time. This distinct cross-task supervision ensures the model learns a predictable global
frame structure, making it highly suitable for temporal reasoning tasks.

3.5 MASKED RECONSTRUCTION

Masked Reconstruction extracts a context-aware spatial representation from each time frame using
a hierarchical Transformer architecture, where multiple spatial subnetworks with shared parameters
process frames independently. For a given frame, the input data Fc is projected to a feature embed-
ding Fe, and the AP’s 2D physical coordinates Pxy are encoded via a frequency-based positional
embedding PEf . The feature and positional embeddings are integrated through a cross-attention
mechanism, formulated as:

Fout = Fe + CrossAttention(Fe, PEf (Pxy)), (4)

where Fout represents the fused feature embedding. A CLS token is prepended to the sequence to
obtain a global frame-level representation, which is then processed by a BERT-style encoder for
downstream fine-tuning.

The encoded representations are passed to a spatial decoder, a module that explicitly models the
inherent noise and uncertainty within ISAC data. It outputs a reconstructed mean µ and log-variance
log σ for each position. The final objective is to optimize the Gaussian Negative Log-Likelihood
(NLL) loss (Nix & Weigend, 1994), formulated as:

Lmask =
1

2
· 1

Nmask

Nmask∑
i=1

[
(Yi − µi)

2

exp(log σ2
i )

+ log σ2
i + log(2π)

]
, (5)

where Nmask represents the number of masked tokens, while Y denotes the unmasked original input.
This loss function not only minimizes the reconstruction error but also enables the model to predict
its own confidence.

3.6 AUTOREGRESSIVE PREDICTION

Autoregressive prediction leverages a temporal subnetwork to capture the temporal dynamics of the
data sequence. This module is trained on a single-step conditional prediction task, which is further
extended with a multi-step autoregressive rollout. The input for the subnetwork is dynamically
constructed using a teacher forcing scheduler that controls a probability p. This probability gradually
decreases with each training step. At each time step t, the input Xt is determined by a weighted
combination of the mean µt from the masked reconstruction output and the unmasked original input
Yt, formulated as:

Xt = (1− bt)µt + btYt, bt ∼ Bernoulli(p), (6)
where bt is sampled from a Bernoulli distribution with probability p. The mixed input Xt is then
augmented with noise to improve robustness. The resulting sequence is finally passed through a
sinusoidal positional encoding layer to inject information about the frame sequence order.
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3.6.1 SINGLE-STEP PREDICTION

As the primary training strategy, the output of the temporal subnetwork is processed by a GRU
and a linear head to generate predictions for the next frame Ŷt+1. The single-step prediction loss
Lpred is calculated using a weighted Mean Squared Error (MSE) (Lee, 1998), where the weight
for each predicted feature is dynamically determined by the uncertainty estimated by the masked
reconstruction.

Lpred = MSE
(
(Yt+1 − Ŷt+1)

2 ⊙Wt

)
, Wt =

1

1 + ξ · exp(log σ2
t )
. (7)

The weight matrix Wt is derived from the reconstructed log-variance log σ of the previous frame
and ξ denotes the weighting coefficient. This weighting scheme prioritizes learning from predictions
with high confidence.

3.6.2 MULTI-STEP ROLLOUT

To enhance the long-term forecasting capability of the model, the model is required to generate a
sequence of k future frames in an autoregressive manner with a low probability. The rollout begins
with a brief starting sequence composed of ground truth frames. For the i-th step of the rollout, the
prediction Ŷt0+i is a function of the starting sequence and all prior predictions, formulated as:

Ŷt0+i = G
(
[Y1..t0 , Ŷt0+1..t0+i−1]

)
. (8)

Here, G represents the generative process of the Transformer decoder and its task heads, and [·] de-
notes concatenation. In each step of the rollout, the model predicts the next frame, then projects and
appends this prediction to the memory of the decoder to serve as context for the next prediction. The
multi-step rollout loss Lpred,k is a simple MSE between the predicted and ground truth sequences.

The total pre-training loss Ltotal is the weighted sum of the two task losses. The weight λ for
the autoregressive prediction loss is gradually increased over the course of training using a cosine
scheduler, allowing the focus of the model to smoothly transition from spatial representation to
temporal dynamics. The Ltotal can be formulated as follows:

Ltotal = Lmask + λ · ((1− η)Lpred + ηLpred,k). (9)

where η controls the relative importance of the two losses in the autoregressive prediction.

3.7 FINE-TUNING FRAMEWORK

To facilitate the subsequent fine-tuning task, we use the CLS representation, encoded by a pretrained
spatial subnetwork, as the input for our downstream indoor localization head. We define a total loss
function Ltrain that consists of three core components: map legality penalty loss Lmap, distance
penalty loss Ldist, and localization loss Lloc. For Lmap, we apply a maximum penalty for points
outside map boundaries and an exponential penalty for points within illegal areas, with the latter
based on their distance to the nearest valid region. Ldist is a threshold-based soft constraint that
is activated only when the Euclidean distance between the predicted and ground-truth coordinates
exceeds a predefined threshold. Lloc is optimized using MSE. Therefore, the total loss function can
be formulated as:

Ltrain = αLmap + βLdist + γLloc, (10)
where α, β, and γ are the weight coefficients for each loss term. The detailed formula description is
provided in Appendix A.1.

4 ISACLOC DATASET

While many WiFi-based indoor localization datasets exist, they are mainly confined to small-scale
settings. Specifically, the unique challenges posed by large-scale ISAC platforms, including low
sampling rates and signal attenuation, create a pressing need for a dedicated dataset. To fill this cru-
cial gap, we present ISACLoc, an ISAC platform-oriented localization dataset designed to facilitate
research on robust indoor positioning in realistic and complex environments.
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Figure 2: Environmental scenario of 4A area.
APs are denoted by square and circular mark-
ers.

Data Collection. We collect data in a large-scale
real-world environment equipped with an ISAC plat-
form, as depicted in Figure 2. The ISAC plat-
form captures CSI data by tracking the MAC ad-
dresses of corresponding mobile phones, which act
as transmitters, while the AP devices in the envi-
ronment function as receivers. A Network Time
Protocol (NTP) server synchronizes all devices with
millisecond-level precision. Our data collection pro-
cess highlights seven distinct smartphone models:
iPhone 13mini, Huawei Mate10, Honor X10, Meizu
16s, Mi8SE, Pixel 2XL and Pixel 4.

To get accurate ground truth labels for human move-
ment, we use a pedestrian dead reckoning parti-
cle filter map-aided algorithm from (Ghaoui et al.,
2023). We also leverage AP locations as anchors to
constrain the cumulative error of the IMU data from
the mobile phone. Additionally, the time of the mo-
bile phone and the time of the ISAC platform are synchronized using NTP.

ISACLoc Dataset Description. We introduce the ISACLoc dataset, which comprises approxi-
mately 210,000 pairs of CSI frames, including corresponding receiver AP coordinates, RSSI, chan-
nel frequencies, and ground-truth labels. The ISACLoc dataset consists of two distinct subsets:
ISACLoc-R (Multiple-Regions) and ISACLoc-P (Multiple-Phones). (1) ISACLoc-R comprises data
acquired from two geographically distinct areas, 4A and 5B5C. While the pre-training and fine-
tuning samples were collected over a one-week period, the testing data for regions 4A and 5B5C
were continuously sampled for 21 and 31 days, respectively, to ensure temporal diversity. (2)
ISACLoc-P consists of data captured from multiple mobile devices used by different subjects within
the 2A Hall region. This subset is designed to mimic realistic deployment conditions and is used
to evaluate the model’s generalization performance on unseen mobile devices, a critical factor for
practical application.

5 EXPERIMENTAL RESULTS

Implementation Details. All our baseline and AEMP models were trained on Nvidia A100 GPUs
using a PyTorch implementation. Our experimental framework consisted of three main phases: pre-
training, training from scratch, and fine-tuning. During the pre-training phase, we used the AdamW
optimizer with a learning rate of 4e-4 and a batch size of 128 for 100 iterations. Both the spatial
and temporal subnetworks used a 6-layer Transformer architecture, with each layer containing 8
attention heads and a feed-forward network (FFN) with a hidden size of 2048. The input embedding
size was 512. We employed a progressive coupling pre-training mode: for the first 25 iterations, we
detached the gradient propagation for the autoregressive prediction part. Once the masked recon-
struction task stabilized, we enabled end-to-end pre-training by allowing gradients to flow through
the entire network.

For models trained from scratch, we used a learning rate of 1e-4, a batch size of 64, and trained
for 100 epochs. CosineAnnealingLR scheduler was used to dynamically adjust the learning rate
based on the training iterations, with a minimum learning rate set to 1e-6. Fine-tuning also lasted
for 100 epochs and employed a hierarchical freezing learning strategy. In the first 20 epochs, we
froze the parameters of the spatial subnetwork and only trained the downstream task-specific head.
For the subsequent 80 epochs, all layers were unfrozen: the first 5 layers of the spatial subnetwork
were fine-tuned with a learning rate of 1e-5, while the last layer was fine-tuned at a higher rate
of 5e-5. The batch size was kept at 64, and we used the same optimizer and scheduler as in the
training-from-scratch phase.

Baselines. To demonstrate the superiority of the proposed AEMP framework, we compare it with
various pretraining-based indoor localization baselines, including (1) RFM (Ott et al., 2024), (2)
Wireless-SSL (Salihu et al., 2024), (3) LocalGPT (Zhao et al., 2024), (4) Glow (Zhang et al., 2025),
and (5) Bert-WiFi (Guo et al., 2022). RFM and Bert-WiFi each perform masked modeling on Chan-
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nel Impulse Response and RSSI, respectively. Wireless-SSL utilizes various subcarrier transfor-
mations to extract channel features that are robust to fading. LocalGPT determines the AoA from
different base stations. Glow, based on a graph-based structure, designs a pre-training task that com-
bines spatial and temporal priors. Our fine-tuning model uses a simple MLP as the task-specific
head.

Metrics. We evaluate localization performance using two complementary metrics. For each pre-
dicted location, we compute the Euclidean distance to the ground-truth point, then generate the
cumulative distribution function (CDF) of these distances. The median error corresponds to the
50% point of the CDF, reflecting typical localization accuracy, while the tail error corresponds to
the 90% point, capturing rare but large deviations.

5.1 QUANTITATIVE EVALUATION ON INDOOR LOCALIZATION TASKS

Table 2: Quantitative Evaluation Results for In-
door Location Task. The notation ’↓’: lower is
better.

Method Area Mean↓
4A (m) 5B5C (m)

RFM 1.30 / 3.53 1.26 / 4.03 1.28 / 3.78
Wireless-SSL 1.30 / 3.40 1.24 / 3.41 1.27 / 3.41
LocalGPT 1.75 / 4.79 1.93 / 5.61 1.84 / 5.20
Glow 1.36 / 3.71 1.52 / 4.93 1.44 / 4.32
Bert-WiFi 0.96 / 2.56 1.18 / 2.51 1.07 / 2.54

w/o pre-training 1.06 / 2.69 1.38 / 3.30 1.22 / 3.00
AEMP 0.76 / 2.27 1.03 / 3.03 0.92 / 2.65

As shown in Table 2, AEMP achieves state-
of-the-art localization performance across di-
verse downstream settings. In the full-data
scenario, AEMP attains an average median
error of 0.92 m, significantly surpassing all
baseline methods. Compared with Bert-WiFi
and RFM, which rely solely on masked pre-
training, AEMP benefits from temporal con-
sistency regularization introduced via autore-
gressive prediction. Furthermore, the multi-
view combination strategy effectively augments
data while preserving AP spatial layout infor-
mation, addressing the limitations observed in
Wireless-SSL and LocalGPT. Finally, the hi-
erarchical spatial subnetwork encoding allows
AEMP to capture temporal dependencies that
Glow struggles to model, thereby enhancing robustness to unstructured time series data. Daily lo-
calization results for different areas are provided in Appendix A.2.

In addition to the full-data setting, Table 3 further evaluates performance under varying proportions
of labeled data. AEMP consistently demonstrates superior generalization, achieving the lowest me-
dian error across all label ratios, with a notable improvement when only 10% of labeled data is avail-
able. This highlights its strong label-efficiency, enabling effective localization even in low-resource
scenarios. Taken together, these results confirm that AEMP not only maintains stable advantages in
long-term evaluation across different areas, but also adapts well under limited supervision, demon-
strating robustness, scalability, and broad applicability to real-world indoor localization tasks.

Table 3: Quantitative Evaluation Results of pretraining methods under varying label ratios.

Method Labeled Data Ratio
10% (m) 20% (m) 40% (m) 60% (m) 80% (m) 100% (m)

RFM 1.54 / 3.92 1.37 / 3.61 1.32 / 3.56 1.30 / 3.56 1.30 / 3.56 1.30 / 3.53
Wireless-SSL 1.52 / 3.63 1.40 / 3.58 1.39 / 3.53 1.36 / 3.48 1.34 / 3.38 1.30 / 3.40
LocalGPT 2.70 / 7.54 2.25 / 6.17 1.94 / 5.66 1.90 / 5.09 1.88 / 5.17 1.75 / 4.79
Glow 1.45 / 3.86 1.41 / 3.78 1.37 / 3.70 1.38 / 3.67 1.36 / 3.70 1.36 / 3.71
Bert-WiFi 1.28 / 3.31 1.10 / 3.04 1.07 / 2.75 0.99 / 2.62 1.01 / 2.64 0.96 / 2.56

w/o pre-training 2.00 / 5.00 1.63 / 4.09 1.50 / 3.83 1.20 / 3.04 1.08 / 2.81 1.06 / 2.69
AEMP 1.27 / 3.30 1.03 / 3.03 0.92 / 2.65 0.88 / 2.45 0.82 / 2.32 0.76 / 2.27

5.2 GENERALIZATION CAPABILITY

To demonstrate the versatility of our method, we use the ISACLoc-P dataset for pre-training and
then fine-tune and test on the ISACLoc-R dataset. The model achieves an average median error
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of 1.01 m and an average tail error of 2.79 m. These results, summarized in Table 4, indicate that
the method generalizes effectively to conditions different from its primary pre-training environment,
highlighting the potential of both transfer learning and cross-domain generalization.

Furthermore, experiments show that the proposed method maintains high accuracy across different
types of mobile devices. Detailed results for different phone types are provided in Appendix A.3.

The consistent performance under various conditions—from pre-training/fine-tuning in the same
environment to a different one, and from fixed phones to unseen phones—underscores the versatility
of our method and its potential in diverse real-world applications.

Table 4: Cross-area localization performance under varying labeled data ratios.

Area Labeled Data Ratio
10% (m) 20% (m) 40% (m) 60% (m) 80% (m) 100% (m)

4A 1.95 / 5.10 1.39 / 3.85 1.16 / 3.28 1.08 / 3.00 0.98 / 2.78 0.92 / 2.69
5B5C 3.66 / 10.86 2.24 / 6.79 1.48 / 4.42 1.25 / 3.37 1.21 / 3.20 1.09 / 2.89
Mean 2.81 / 7.98 1.82 / 5.32 1.32 / 3.85 1.17 / 3.19 1.10 / 2.99 1.01 / 2.79

5.3 ABLATION STUDY

We use data from the 4A area of the ISACLoc-R dataset for our ablation study. This evaluates the
effectiveness of two key components within the AMEP pre-training framework. Table 5 summarizes
the results at different proportions of labeled data.

Masked Reconstruction Task. This is a core component of AEMP. Removing this task leads
to a significant degradation in indoor localization performance, with the median error increasing
by 32.89%. Furthermore, when fine-tuning on limited labeled data, the error also increases sub-
stantially. This highlights that learning local spatial features through reconstruction is crucial for
enhancing model performance.

Autoregressive Prediction Task. This task enhances the pre-training process by performing autore-
gressive prediction on the reconstructed data from a temporal consistency perspective. Its removal
leads to an increase in the localization median error of 11.84%. This demonstrates that the task plays
a key role in ensuring global temporal coherence and improving model generalization.

Table 5: Ablation studies and analysis. The w/o indicates “without”. MR is the masked reconstruc-
tion task. AP is the autoregressive prediction task.

Method Labeled Data Ratio
10% (m)↓ 20% (m)↓ 40% (m)↓ 60% (m)↓ 80% (m)↓ 100% (m)↓

AEMP 1.27 1.03 0.92 0.88 0.82 0.76
w/o AP +7.87% (1.37) +10.68% (1.14) +8.70% (1.00) +13.64% (1.00) +9.76% (0.90) +11.84% (0.85)
w/o MR +64.57% (2.09) +56.31% (1.61) +45.65% (1.34) +34.09% (1.18) +30.49% (1.07) +32.89% (1.01)

6 CONCLUSION

This paper introduces AEMP, a novel framework for robust wireless indoor localization. Our ap-
proach employs a dual-task self-supervised learning paradigm that unifies masked reconstruction
and autoregressive prediction within a hierarchical Transformer architecture. This pre-training
strategy effectively addresses the reliance on large labeled datasets and significantly enhances the
model’s generalization in dynamic, real-world scenarios. The superior performance of AEMP estab-
lishes a new state-of-the-art and unlocks new possibilities for indoor localization applications within
ISAC platforms.

9
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A APPENDIX

LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely as a general-purpose assistive tool for translating
and refining the English text of this paper. The LLM did not contribute to the research ideation,
experimental design, data analysis, or interpretation of results. All scientific content, results, and
conclusions are the sole work of the authors.

In this appendix, we provide further details and analysis to supplement the main findings on our
AEMP framework. The content is organized as follows:

• Section A.1: Details the mathematical formulations of the soft penalty loss used in fine-
tuning, including both the map legality and distance-based components.

• Section A.2: Reports long-term evaluation results in 4A and 5B5C areas, demonstrating
the temporal generalization and stability of AEMP over extended testing periods.

• Section A.3: Evaluates the performance of AEMP on different types of mobile phones,
including iPhone, Xiaomi, and other devices.

• Section A.4: Provides a detailed analysis of downstream localization performance under
various pre-training modes, comparing results with different proportions of labeled data.

• Section A.5: Presents qualitative evaluation results, showing a comparison of trajectory
reconstruction across different methods.

• Section A.6: Uses three different techniques for fine-tuning, highlighting the performance
changes of AEMP under various fine-tuning strategies.

A.1 SOFT PENALTY FOR SPATIAL AND DISTANCE CONSTRAINTS

The soft penalty loss is designed to impose both spatial legality and distance-based constraints dur-
ing fine-tuning. Specifically, the loss first enforces a map legality penalty Lmap. For a predicted
coordinate p̂ = (x, y), if it falls outside the map boundary, a maximum penalty is assigned:

Lout(x, y) = Pmax. (11)

We denote M(x, y) as the binarized map, where M(x, y) = 1 indicates a legal area (accessible
space) and M(x, y) = 0 represents illegal regions such as walls, columns, or other obstacles. If the
prediction lies within the legal area (M(x, y) = 1), no penalty is applied:

Llegal(x, y) = 0, (12)
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while predictions in illegal regions (M(x, y) = 0) incur an exponential penalty based on their
distance d(x, y) to the nearest legal boundary:

Lillegal(x, y) = exp(α · d(x, y))− 1. (13)

In addition, a distance penalty is introduced to encourage accurate localization. For each prediction,
the Euclidean error relative to the ground truth p is formulated as:

e = ∥p̂− p∥2. (14)

When this error exceeds a threshold δ, a linear penalty proportional to the excess distance is applied:

Ldist(e) = max(0, e− δ). (15)

Finally, the total penalty combines the two components:

L = Lmap(x, y) + Λ · Ldist(e), (16)

where Λ controls the balance between spatial and distance penalties. This design ensures that the
model not only respects the spatial constraints imposed by the environment, but also achieves accu-
rate trajectory reconstruction.

(a) 4A Area

(b) 5B5C Area

Figure 3: Daily median localization errors over long-term evaluation periods for different methods.

A.2 LONG-TERM TEMPORAL GENERALIZATION

We further provide a detailed analysis of long-term localization performance of the AEMP-
pretrained model across different areas, offering a more comprehensive demonstration of its tempo-
ral generalization ability. Figure 3 presents the test results of various methods over 21 consecutive
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days in 4A area (from May 7 to May 28, excluding May 9) and 31 consecutive days in 5B5C area
(from May 7 to June 6).

The results show that, compared to existing methods, AEMP consistently achieves lower median
errors across all areas and time periods. In particular, AEMP exhibits significantly smaller error
fluctuations in long-term evaluations, demonstrating more stable and robust performance. This per-
formance indicates that the AEMP-pretrained model maintains reliable localization accuracy even
under varying dates, environmental changes, or signal fluctuations, highlighting its superior tempo-
ral generalization capability.

A.3 CROSS-DEVICE PERFORMANCE EVALUATION

To comprehensively evaluate the performance of AEMP on different mobile phone types, we com-
pare it against the best baseline and a non-pre-trained initial model. The dataset is sourced from
ISACLoc-P, and the devices used for both pre-training and fine-tuning include iPhone 13mini,
Huawei Mate10, Honor X10, Meizu 16s, Mi8SE, Pixel2XL, and Pixel 4. The tested phones in-
clude both existing and unseen devices, and the data for each was collected by different volunteers
to ensure generalization across various human body characteristics.

Table 6: Indoor localization errors (m) on various iPhone devices.

Method Different iPhone Devices
iPhone 11 iPhone 12 iPhone 13 iPhone 13mini iPhone 14 iPhone 14pro iPhone 15pm

Best Baseline 0.85 / 2.06 0.97 / 2.59 0.90 / 2.23 1.87 / 4.60 1.19 / 3.21 0.84 / 2.07 1.11 / 3.43
w/o pre-training 1.09 / 3.16 1.04 / 2.46 1.01 / 2.71 2.06 / 4.74 1.32 / 3.62 1.03 / 2.45 1.17 / 3.81
AEMP 0.77 / 2.33 0.95 / 2.24 0.85 / 2.17 1.73 / 4.61 1.07 / 3.42 0.80 / 1.88 0.97 / 3.15

Table 7: Indoor localization errors (m) on various Xiaomi devices.

Method Different Xiaomi Devices
RedmiK20 RedmiK30 RedmiK40 Redminote12 Mi8SE Mi13-1 Mi13-2

Best Baseline 1.60 / 5.22 1.55 / 11.56 1.01 / 2.22 1.05 / 2.46 1.11 / 3.10 1.10 / 3.01 1.43 / 5.03
w/o pre-training 1.73 / 5.87 1.71 / 12.36 0.73 / 2.73 1.03 / 2.55 0.98 / 2.56 1.12 / 3.12 1.78 / 4.03
AEMP 1.60 / 5.56 1.66 / 12.96 0.80 / 2.57 1.01 / 2.32 0.88 / 2.18 1.04 / 2.99 2.08 / 3.84

Table 8: Indoor localization errors (m) on other mobile devices.

Method Different Other Devices
1+ace2 Honor 60 Honor X10 Huawei Mate10 Meizu 16s Pixel 4

Best Baseline 0.89 / 2.73 0.87 / 2.32 1.18 / 4.25 0.86 / 2.17 1.02 / 2.80 1.66 / 4.22
w/o pre-training 1.10 / 2.76 0.85 / 2.33 1.23 / 4.17 0.95 / 2.22 1.06 / 2.64 1.72 / 4.45
AEMP 0.82 / 2.80 0.82 / 1.94 1.13 / 3.46 0.83 / 1.85 0.96 / 2.56 1.56 / 4.33

Tables 6, 7 and 8 report the indoor localization errors across iPhone devices, Xiaomi devices, and
other mobile phones, respectively. Although the median and tail errors slightly increase compared
to in-domain evaluation, the model pretrained with AEMP remains highly competitive, achieving
superior accuracy on all devices except for a few Xiaomi models. These cross-device results further
demonstrate the robustness and generalization capability of AEMP, which arises from its hybrid pre-
training design: the spatial subnetwork with masked reconstruction and multi-view fusion reduces
sensitivity to specific AP combinations and deployment variations, while the temporal autoregres-
sive subnetwork enforces global contextual consistency. Together, these components enable AEMP
to learn device-agnostic and transferable feature representations, facilitating effective knowledge
transfer across heterogeneous hardware platforms and diverse user characteristics.
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A.4 IMPACT OF PRE-TRAINING STRATEGIES ON LOCALIZATION PERFORMANCE

Given that our pre-training framework incorporates a two-stage multi-task joint learning module,
we further conduct a detailed investigation of AEMP under different pre-training strategies. Table 9
summarizes the comparative results on indoor localization across three modes: end-to-end coupling,
stop-gradient coupling, and progressive coupling. The evaluation is performed on the 4A region of
the ISACLoc-R dataset, with varying proportions of labeled data to assess the effectiveness of each
strategy under different levels of supervision.

Table 9: Comparison of AEMP performance under different pre-training coupling strategies. E2Eis
the end-to-end coupling. SG is the stop-gradient coupling. PC is the progressive coupling.

Mode Labeled Data Ratio
10% (m) 20% (m) 40% (m) 60% (m) 80% (m) 100% (m)

E2E 1.55 / 3.99 1.14 / 3.21 0.97 / 2.72 0.90 / 2.57 0.87 / 2.48 0.84 / 2.36
SG 1.58 / 4.25 1.13 / 3.19 1.03 / 2.82 0.88 / 2.56 0.85 / 2.42 0.82 / 2.43
PC 1.27 / 3.30 1.03 / 3.03 0.92 / 2.65 0.88 / 2.45 0.82 / 2.32 0.76 / 2.27

The results show that, compared with the other two pre-training modes, the progressively coupled
scheme consistently achieves lower median localization errors. In particular, under limited labeled
data, AEMP with progressive coupling maintains relatively low localization errors. This is because
in the fully end-to-end mode, noisy early-stage reconstructions tend to cause overfitting, forcing
the masked reconstruction task to compromise its spatial modeling capacity in order to align with
autoregressive prediction.
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(c) Bert-WiFi
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(e) Wireless-SSL

Figure 4: Qualitative comparison of trajectory reconstruction results: (a) Ground truth trajectory
and reconstructed trajectories by (b) AEMP, (c) Bert-WiFi, (d) Glow, and (e) Wireless-SSL.

In contrast, the stop-gradient mode reduces autoregression to a post-hoc evaluator, which cannot
propagate global temporal consistency constraints back to the masked reconstruction. The pro-
gressive coupling strategy first applies stop-gradient until the masked modeling stabilizes, and then
switches to end-to-end training, effectively balancing spatial and temporal modeling and thereby
improving performance under limited supervised data.

A.5 QUALITATIVE ANALYSIS OF TRAJECTORY RECONSTRUCTION

Figure 4 presents a visual comparison of trajectory reconstruction results using the AEMP-pretrained
model and baseline methods, complementing the quantitative evaluation. These examples illustrate
the improved accuracy of AEMP in reconstructing trajectories. Although Bert-WiFi achieves overall
accuracy comparable to AEMP, it exhibits noticeable deviations at certain points. Glow, constrained
by its simple network architecture and graph-based input, struggles to handle NLOS corridor sce-
narios, resulting in substantial errors at corner regions. Wireless-SSL, which primarily focuses on
subcarrier-level information while neglecting the spatial layout of APs, can only capture coarse tra-
jectory outlines rather than precise location coordinates. These visual results highlight AEMP’s
ability to capture fine-grained spatial information.
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A.6 ANALYSIS OF FINE-TUNING APPROACHES IN INDOOR LOCALIZATION

Table 10 presents a comparison of localization performance across three fine-tuning approaches,
including: (1) Full fine-tuning, which updates all parameters of the pretrained model on the target
dataset for comprehensive adaptation; (2) LoRA, which employs a low-rank adaptation strategy
by inserting lightweight trainable modules into each layer while keeping most parameters frozen,
thereby recalibrating pretrained knowledge without overwriting all weights; and (3) Layer-wise fine-
tuning, which progressively unfreezes and adapts parameters from higher to lower layers, making
it effective when features at different depths contribute unequally to the task. All fine-tuning and
evaluation are conducted on the 4A region of the ISACLoc-R dataset.

Table 10: Indoor localization errors (m) under different fine-tuning approaches.

Fine-tuning Labeled Data Ratio
10% (m) 20% (m) 40% (m) 60% (m) 80% (m) 100% (m)

Full 1.48 / 3.75 1.18 / 3.26 0.96 / 2.65 0.94 / 2.52 0.86 / 2.42 0.82 / 2.31
LoRA 2.52 / 5.80 1.87 / 4.60 1.39 / 3.48 1.26 / 3.16 1.20 / 2.91 1.11 / 2.79
Layer-wise 1.27 / 3.30 1.03 / 3.03 0.92 / 2.65 0.88 / 2.45 0.82 / 2.32 0.76 / 2.27

The results show that layer-wise fine-tuning consistently achieves the lowest median and tail local-
ization errors across different labeled data ratios. This superior performance arises from its progres-
sive adaptation strategy: by gradually unfreezing the network from higher to lower layers, the model
preserves the stability of pretrained representations in early stages while allowing deeper layers to
adjust more flexibly to the downstream task. In contrast, full fine-tuning may lead to overfitting
when labeled data are limited since all parameters are updated simultaneously, and LoRA, although
parameter-efficient, provides weaker adaptation capacity as only low-rank modules are optimized.
The layer-wise strategy thus strikes an effective balance between retaining pretrained knowledge
and incorporating task-specific information, leading to consistently better localization accuracy.
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