Cost-aware LLLM-based Online Dataset Annotation

Eray Can Elumar * Cem Tekin
Dept. of Electrical and Computer Eng. Dept. of Electrical and Electronics Eng.
Carnegie Mellon University Bilkent University
Pittsburgh, PA 15213 Ankara, Tirkiye
eelumar@andrew.cmu.edu cemtekin@ee.bilkent.edu.tr

Osman Yagan
Dept. of Electrical and Computer Eng.
Carnegie Mellon University
Pittsburgh, PA 15213
oyagan@ece.cmu.edu

Abstract

Recent advances in large language models (LLMs) have enabled automated dataset
labeling with minimal human supervision. While majority voting across multiple
LLMs can improve label reliability by mitigating individual model biases, it incurs
high computational costs due to repeated querying. In this work, we propose a
novel online framework, Cost-aware Majority Voting (CaM Vo), for efficient and
accurate LLM-based dataset annotation. CaMVo adaptively selects a subset of
LLMs for each data instance based on contextual embeddings, balancing confi-
dence and cost without requiring pre-training or ground-truth labels. Leveraging
a LinUCB-based selection mechanism and a Bayesian estimator over confidence
scores, CaM Vo estimates a lower bound on labeling accuracy for each LLM and
aggregates responses through weighted majority voting. Our empirical evalua-
tion on the MMLU and IMDB Movie Review datasets demonstrates that CaM Vo
achieves comparable or superior accuracy to full majority voting while significantly
reducing labeling costs. This establishes CaM Vo as a practical and robust solution
for cost-efficient annotation in dynamic labeling environments.

1 Introduction

The rapid proliferation of data across domains has created an urgent need for accurate, large-scale
annotation pipelines. While human experts and crowd workers have been the gold standard for dataset
labeling, manual annotation is notoriously slow, expensive, and prone to inter-annotator inconsistency
Petrovic et al.|[2020]. As machine learning models become increasingly sophisticated, their demand
for high-quality, richly labeled datasets only intensifies, exacerbating this bottleneck.

Recent advances in large language models (LLMs) offer a promising remedy: by leveraging
transformer-based architectures such as GPT, it is now possible to automate much of the label-
ing workload. LLMs excel at natural-language understanding, reasoning, and contextual inference,
enabling rapid generation of annotations with minimal human effortNaveed et al.| [2023]].

However, relying on a single LLM introduces issues of biases inherited from its training data and
stochastic variability across repeated queries, undermining reliability and reproducibility Errica et al.
[2024], L1 et al.|[2024a]]. A common strategy to bolster label quality is ensembling: querying multiple
LLMs, or multiple samples from the same model, and aggregating their outputs via majority voting.
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This reduces hallucinations and offsets the bias of individual models but substantially increases cost,
as each additional model increases latency and compute expenditure Yang et al.|[2023]]. In practice,
querying every available LLM for each instance is often wasteful and unnecessary.

In this paper, we address this trade-off by adaptively selecting a subset of LLMs for majority voting
on each input, achieving comparable accuracy to full-ensemble voting while dramatically cutting
cost. Unlike prior work on LLM weight optimization or query routing—which presumes access to
ground-truth labels or a pre-trained routing model (Chen et al.| [2024]], Nguyen et al.[[2024], Ding
et al.|[2024]—our method operates online, without any held-out training set or ground truth.

Our contributions are as follows:

1. Online formulation. To the best of our knowledge, this is the first work on LLM-based
dataset labeling in which both vote weights and the queried subset of LLMs are adapted in
real time, i.e. without relying on a pre-trained model or a dedicated training set.

2. Cost-aware Majority Voting (CaM Vo). We propose CaM Vo, an algorithm that combines a
LinUCB-style contextual bandit with a Bayesian Beta-mixture confidence estimator. For
each candidate LLM, CaM Vo computes a lower confidence bound on its correctness proba-
bility given the input’s embedding, then selects the smallest-cost subset whose aggregated
confidence exceeds a user-specified threshold .

3. Empirical validation. Through experiments on the MMLU benchmark and the IMDB
Movie Review dataset, we show that CaMVo matches or exceeds the accuracy of full
majority voting (majority voting with all available LLMs) while significantly reducing the
cost: on MMLU, CaMVo achieves higher accuracy with around 40% lower cost; on IMDB,
it attains only 0.17% drop in accuracy while halving query expenditure.

1.1 Related Work

Ensembling and Majority Voting with LLMs. Aggregating outputs from multiple LLMs (or
repeated queries to a single LLM) via majority voting has become a popular strategy to boost
annotation reliability. |Chen et al.| [2024] analyze the effect of repeated queries to a single model
and observe a non-monotonic accuracy curve: performance improves initially but degrades beyond
an optimal number of calls due to task heterogeneity. While additional LM calls enhance accuracy
on easier queries, they may introduce noise or inconsistency that degrades performance on more
challenging ones. To address this, the authors propose a scaling model that predicts the optimal
number of LM calls required to maximize aggregate performance. |Trad and Chehab, [2024] compare
re-querying and multi-model ensembles, showing that ensemble strategies are most effective when
individual models or prompts exhibit comparable performance levels, and ensemble gains may
diminish when individual model accuracies diverge.

Yang et al.|[2023]] propose a weighted majority-voting ensemble for medical QA, combining dynamic
weight adjustment with clustering-based model selection. However, their approach relies on offline
training data and focuses solely on improving accuracy, without accounting for the cost of querying.
In contrast, our approach selects a cost-effective subset of heterogeneous LLMs online, without any
pre-training.

LLM Query Routing. Query routing addresses the problem of selecting a single LLM per query to
optimize cost or latency under performance constraints. [Nguyen et al.|[2024] cast LLM selection as a
contextual bandit problem, training offline on labeled data to learn a routing policy that maps query
embeddings to a single optimal LLM under a total budget constraint of b. Ding et al.|[2024] train a
router to distinguish “easy” versus “hard” queries, sending easy tasks to local LLMs and hard ones to
cloud APIs. Unlike these methods, our method operates in a fully online setting without access to
labeled training data, updating the model dynamically during the labeling process. Moreover, rather
than routing to a single LLM, we select a cost-efficient subset for majority voting.

Confidence Estimation in LLM Outputs. Estimating model confidence can guide automatic label
selection. [Kadavath et al.|[2022] explore how a language model’s own uncertainty estimates can serve
as predictors of answer correctness, and find that the cumulative log-probability the model assigns to
its generated token sequence correlates strongly with factual accuracy across diverse benchmarks.
Li et al.[[2024a] generate code multiple times and use output similarity as a proxy for confidence,



choosing the most consistent result. While these works focus on self-consistency of a single model,
we estimate a probabilistic lower bound on each LLM’s correctness via a Bayesian Beta-mixture
model, incorporating both past performance and context.

Weighted Majority Voting. Beyond simple voting, weighted schemes assign each annotator or
model a reliability score such as the accuracy of the annotator, or the label confidence reported by the
annotator. One notable approach is the GLAD model by Whitehill et al.| [2009]], which formulates
weighted majority voting as a probabilistic inference problem over annotator expertise and task
difficulty. GLAD jointly estimates per-annotator reliability and per-item ambiguity via a generative
model, using an EM algorithm to infer the latent variables. [Li and Yu|[2014]] introduce Iterative
Weighted Majority Voting IWMV) to aggregate noisy crowd labels by iteratively estimating worker
reliability, and show it approaches the oracle Maximum A Posteriori (MAP) solution.

Crowdsourcing. |Rangi and Franceschetti|[2018] utilize the bandits-with-knapsacks framework to
dynamically estimate worker accuracy and allocate tasks in real time to maximize overall labeling
quality within a budget. Another influential model is by Raykar et al.|[2010], which jointly infers
true labels and annotator reliabilities by modeling each worker’s confusion matrix. Through an
expectation—maximization procedure, the method down-weights inconsistent annotators and yields
more accurate aggregated labels without prior knowledge of worker quality. Our method parallels this
online estimation but differs in that it leverages contextual embeddings and targets LLM ensembles
rather than human annotators.

The comparison of our work with prior work is summarized in Table

Method Ensemble Type Pretrained Online Contextual
Ours (CaM Vo) Subset voting No Yes Yes
Yang et al.[[2023]] Weighted voting Yes No Yes
Nguyen et al.|[2024] Single-model routing Yes No Yes
Ding et al.|[2024]] Single-model routing Yes No Yes
Chen et al.| [2024]] Re-querying No No No
Li et al.|[2024a] Re-querying No No Yes
Li and Yu![2014] Crowd aggregation No Yes No
Rangi and Franceschetti [2018]] Crowd assignment No Yes No
Raykar et al.[[2010] Crowd aggregation No Yes No

Table 1: Comparison of our work with prior ensemble and routing approaches.

2 Problem Statement

In this section, we formally define the problem setting, introduce the baseline algorithm, and provide
some results that will be used by our proposed algorithm, which will be introduced in §3]

Consider an unlabeled dataset D = {z1, 23, ..., 27}, Where each x; denotes a data instance (e.g., a
text sample). Let there be a set [K] of K distinct large language models (LLMs), where each LLM
l; is associated with a known cost per token p; and can be represented as a function /; : @ — R,
mapping a query g € Q to aresponse r € R. We denote the total number of possible labels for the
dataset D as M. The objective in this setting is to assign a predicted label §; € [M] to each data
instance x; by querying a subset of the available LLMs and aggregating their outputs. Labeling is
performed sequentially, where each data instance x; is processed in round ¢. In each round, LLMs
are queried independently of other LLMs and without memory of prior interactions (i.e., no context
is preserved between rounds). Furthermore, all queries are made in a zero-shot setting, meaning that
no task-specific fine-tuning or additional training data is used.

To serve as a baseline, we introduce the following weighted majority voting scheme. In this scheme,
the predicted label ¢, for instance z, is determined by aggregating the votes of all X' LLMs using:

K
e = arg max > waeri(t) - 1 {yir = m}, e))
1=1



where 1 {-} is the indicator function that returns 1 if the condition is true and 0 otherwise, and y; ;
denotes the label outputted by LLM I, for instance ;. Since the true label is not available in our
setting, we use the empirical accuracy of model /; relative to the predicted labels as the voting weight.
Hence, waef,i(t) = (Zi;ll I(y;,s = Us))/Ni, where N, , denotes the number of times LLM /; has
been queried up to round ¢, and g is the predicted label for round s. The pseudocode for this scheme,
which we refer to as the baseline method, is provided in Algorithm [2]in Appendix

The goal is to label the dataset D in a cost-efficient manner by dynamically selecting a subset of
LLMs for each data instance z;. To facilitate this selection, we assume access to a model Emb(-)
that generates a d-dimensional embedding e; = Emb(x;) for z; in round ¢. This embedding serves
as a representation of the instance and plays an analogous role to the confext in a contextual bandit
framework. Using this embedding, our approach, which will be introduced in § estimates a lower
bound on the probability that a given LLM [; will produce the correct label for x;, and utilizes this
bound to determine the subset of LLMs. The details for estimating this lower bound is given in § 3]

Naturally, selecting only a subset of LLMs rather than querying all available models may result
in reduced labeling accuracy. To manage this trade-off, we introduce a user-defined parameter
d € [0,1] that specifies the desired minimum relative confidence of the selected subset compared
to the full majority vote using all K LLMs. Let L;; denote the lower confidence bound on the
estimated probability that LLLM [; correctly labels instance x; at round ¢. Our algorithm identifies
the cost-minimizing subset of LLMs whose aggregated confidence, relative to that of the baseline
method, satisfies the accuracy constraint imposed by 9.

We will leverage the following result to estimate the confidence of the majority vote label based on
the L, ; and w; ; values when majority voting is performed over a subset .4 of LLMs.

Lemma 2.1. Let w; denote the weight and L; the lower confidence bound on the correctness of
the output from LLM ;. Suppose the outputs of LLMs are conditionally independent given the data
instance. Then, for a subset of LLMs A C [K|, the lower bound on the probability that majority
voting over the subset yields the correct label is given by

SaLw)= >[Iz II a-zy, 2)
SCA €S jeA\S
Zreswr>%

where Wy = 3. . 4 wi. Proof of this result is provided in Appendix@

For practical purposes and computational efficiency, this expression may be approximated as
da(L,w) = 1 — Fpera (0.5; Wi 4, Wa — Wi a), where Fpew(; o, ) is the CDF of a Beta(a, 3)
distribution evaluated at point x, Wp, 4 = > ;. qwi - Li,and Wa = )7, 4 wi.

Note that Lemma [2.T] can be extended to remove the conditional-independence assumption using
Bahadur’s model, which characterizes the joint distribution of binary variables using their marginal
probabilities, second-order dependence terms known as Bahadur parameters, and higher-order inter-
action terms [Bahadur} [1961]]. This framework allows the computation of majority vote confidence
by summing the probabilities of all outcomes where the majority label is correct. However, the
absence of a closed-form expression and the exponential growth in computational complexity with
the number of variables limit its practical use. In practice, Monte Carlo—based simulation methods
can approximate the majority-vote confidence by generating correlated LLM outputs; we describe
and analyze CaM Vo with one such approach in §G|

Finally, we introduce a user-specified parameter ki,;,,, which enforces a floor on the number of LLMs
queried per instance. By requiring at least ky,;, votes in every round, this constraint further safeguards
label quality—ensuring that no annotation is based on fewer than k,,;,, model predictions.

The proposed Cost-aware Majority Voting (CaM Vo) algorithm, which incorporates these results and
user-defined parameters, is presented in §3]

3 The CaMVo Algorithm

We propose a novel algorithm, Cost-aware Majority Voting (CaM Vo), for efficient dataset labeling
with large language models (LLMs). CaMVo aims to select a cost-effective subset of LLMs for
each input instance by leveraging contextual embeddings to estimate a lower confidence bound on



the probability that each model will produce a correct label. These bounds are computed using a
LinUCB-based framework [Li et al.,[2010]. Based on this information, CaM Vo identifies a subset of
LLMs such that the confidence of their weighted majority vote exceeds a user-specified threshold 4.
If no such subset exists, the algorithm defaults to querying all available models. The pseudo-code of
CaMVo is provided in Algorithm [T} and consists of six main steps described below.

Algorithm 1 Cost-aware Majority Voting (CaM Vo) Algorithm

1: Input: Set of LLMs [K], cost per token p; 11: end for
for each LLM 4, embedding model Emb(-), 12: A + Oracle(Ly, wy, 8, kmin)
confidence threshold ¢, LinUCB regulariza- 13: Query LLMs: y; ¢ = l;(x4), i € Ay

tion parameter Ay, exploration parameter c, 14: Ut ¢ argmax,, y ;. Ap s =m Wi (t)
regularization parameter Ag 15: if |4;| > 1 then ’
2: Ao < Aplg, big < 04, Vi € [K] 16: for each LLM i € A; do
3: for eachroundt =1,2,...,7 do 17: rie < 1{yis = ¢}
4: Get context vector: e; < Emb(z;) 18: Update: N, ; < N; ;1 + 1
2 for ez-lch LLM ¢ ?jﬁ, b , K do 19: Update: A;, < A;,_ 1 + ee]
: Gi(er) < ep Ay 1bi1 20: Update: b; ¢ < b; t—1 + 15 €4
— t PR
7: Oii(er) = qir(er) —ayJel ATl e a1 Update: p; ; %M
8: Lt <+ Bst;(0; +(es)) 22: Update the parameters of Est;
9 L, Li+-Nit—1+Ar-log(t+1)/2 23: end for
’ bt Nie—1+-log(t+1) 24:  endif
10: Wit < fig—1 - Gie(et) 25: end for

LinUCB-Based Confidence Estimation. For each LLM [;, CaM Vo maintains a matrix 4; € R%*¢
and vector b; € R, initialized as A0 = Aplg, bio = 0, where A\;, > 0 is a user-defined parameter.
Given e; = Emb(x; ), the estimated confidence, and its confidence bound is computed as:

git(er) = e:A;tl_lbi,t—l; Ciiler) = a\/ez—AZtl_let,

From these, the lower confidence bound (LCB) of LLM confidence can be found as:
O:e(er) = Qi,t(et) —Ci(er).
Since this is an LCB of a probability, we clip it between 0 and 1 when it is out of range [0,1].

Bayesian Estimation of Label Correctness. Given the inherent probabilistic nature of LLM
outputs, the estimated confidence score may not reliably indicate the correctness of a label. To address
this, we introduce a Bayesian estimator Est;(-) that models the posterior probability that ;s prediction
is correct, conditioned on this confidence. First, we define a latent variable h; ; = ]l{yi,t = Ui},
where ¢, is the assigned label. Note that ideally, the true label should be used instead of g, but since
we do not have access to the true label, we instead use 7;. We model the conditional likelihood of
¢i,.(eq), given the latent variable h; ;, as a Beta-distributed random variable:

git(€) | hiy =1~ Beta(ay1,8i1),  qie(er) | hig = 0~ Beta(ay o, Bi0)-

Further, to model P(h, ; = 1), we use the empirical historical relative accuracy of I;, f; +—1, which
captures the accuracy of LLM I; relative to the predicted labels up to round ¢ — 1. Similarly,
P(h;y = 0) = 1 — u;¢—1. Applying Bayes’ rule with these models, the posterior probability is
modeled as:

Mie—1 - Betai(q; o1, Bin)

Est; (g =P(h; =1]|q) = ,
(@) (i ) Wit—1 - Betay(q; o6, Bin) + (1 — pie—1) - Betay(q; v o, Bi0)

We apply this estimator to §; ;(e;), the LCB of the estimated LLM confidence as L; ; = Est;(0; +(e¢))
to encourage exploration under the UCB principle. Note that unlike traditional UCB-based methods
that promote exploration via upper bounds, we use the LCB as it expands the size of the set of LLMs
likely to satisfy the confidence threshold 4.



Regularization. In the absence of ground-truth labels, empirical relative accuracy estimates in
majority voting can overfit, resulting in overconfident weights and biased aggregation. Further, since
subset selection is based on these estimated confidences, early estimation errors can bias the selection
process and lead to compounding errors over time. To address this issue, we regularize the LCB of
the estimated confidence of LLM [; using Laplace smoothing:

Li7t 'Ni,t + Ar '10g<t+1>/2 3)
N;t+ Mg -log(t+1)

where Arp > 0 is a user-defined regularization parameter that controls the strength of smoothing.

Laplace smoothing is chosen since it corresponds to using a uniform prior on the Beta estimator, and

hence combines well with the Beta estimator. We use a log(¢) term with the Laplace smoothing as

compared to a constant term, as the log(¢) term does not decay as quickly as the constant term and

prevents overfitting in the long run.

Ly =

Subset Selection with Oracle. We define the weight of LLM /; for majority voting as w; ; =
tit—1 - ¢i.t(er). This way the weights of LLMs reflect both their past performance, and also their
expected performance for the current data instance. An Oracle is used to find the lowest cost subset
whose label confidence is above the threshold § using the computed L; ; and w; ; values of LLMs.
Using Lemma[2.1] this can be expressed as

A; = Oracle(Ly, wy, 0, kmin) := arg m)\n ca(t) : 0a(Ly,we) > 0, | Al > Emin )

where c4(t) = > ;c 4 pi - Hi(z¢) , pi is the cost per token for LLM 4, and H; () is the token count
of the query to the LLM [; for data instance x; under the tokenization method of LLM ;. Since
we expect only one token as output (which will be the label for the data instance x;), we ignore the
output tokens. Note that as in Lemma [2.T} we assume that the outputs of LLMs are conditionally
independent given the data instance. We analyze the correlated version of CaM Vo that does not have
this assumption in Appendix [G Also note that if no such A exists, CaM Vo defaults to querying all
LLMs.

Label Assignment. We query the LLMs in .A; and receive their responses. The label for x; can be
assigned via weighted majority vote using g = arg maX,,c(nr) D e 4, Wi(t) - L{yir = m}.

Parameter Updates. If |A;| > 1, for each ; € A;, CaMVo updates A; ;, b; ;, and p1; ;, which is
the empirical relative mean accuracy, as:

22:1 ]l{yi,s = gé}

Ny
where r; ; = 1{y; = ¥ }. Note that parameters are not updated when |.A;| = 1 as the reward will
always be 1 in that case. The Beta distribution parameters («; 1, 5;,5) can be updated via maximum
likelihood estimation or a method-of-moments approximation based on the mean and variance of
past confidence scores. These approaches are discussed in Appendix [B]

-
Ajp— A1+ ee,, big<bi1+rie, [

4 Experiments

4.1 Experiments on the MMLU Dataset

We first evaluate CaM Vo on the MMLU dataset Hendrycks et al.| [2021alb]], a challenging multiple-
choice benchmark spanning 57 diverse subjects including mathematics, U.S. history, law, and
computer science. MMLU is well-suited to our setting, as it demands broad world knowledge and
strong reasoning capabilities—conditions under which majority voting is particularly effective. To
reduce computational cost, we restrict our evaluation to the test split, which contains 14,042 instances.

Models and setup. We use the following LLMs: Claude 3 Sonnet and Haiku from Anthropic
Anthropic| [2024]], GPT-40, 03-mini, and o1-mini from OpenAI|OpenAll [2024]], and LLaMA-3.3 and
LLaMA-3.1 from Meta|Meta|[2024]]. All models are queried using temperature 0.35 and top-p = 1,
where applicable. To extract contextual embeddings for CaM Vo, we use the 384-dimensional sentence
transformer al1-MiniLM-L6-v2|Wang et al.|[2020]]. For computational efficiency, we approximate
the confidence § 4 (L, w) using the cumulative distribution function of a Beta distribution. Further
implementation details and experimental setup are provided in Appendix [D]



Results. Table 2| (Left) reports the accuracy and cost of individual LLMs, as well as two baselines:
Majority Vote, which aggregates all LLMs using weights proportional to their true accuracy, and the
Baseline Method, which corresponds to Algorithm[2] Cost corresponds to the average input token
cost when labeling the dataset and is reported in dollars per million input tokens. Accuracy reflects
the percentage of data instances correctly labeled. CaMVo’s performance under varying confidence
thresholds § and minimum vote counts kp,;, € {1,3} is shown in Table [3] Note that we include
kmin = 3 in our experiments as model parameters do not get updated when only a single LLM is
queried, a scenario that can occur under ki, = 1. As a result, users may prefer to avoid setting
kmin = 1. Moreover, for ki, = 2, the selected pair of LLMs will always yield a majority vote in
favor of the LLM with the higher weight, limiting the informativeness of the voting outcome. The
algorithm is configured with o = 0.25, A\r = 1, and A\, = 1. The Target Accuracy column reflects
the targeted relative accuracy, which is the minimum relative accuracy CaM Vo must exceed to satisfy
the threshold 4, and is computed as § x (Majority Vote Accuracy) = ¢ x 88.18%.

From Table [2] we observe that among individual models, 03-mini achieves the highest accuracy
at 85.92%, while Majority Vote attains 88.18% at a substantially higher cost of $9.14 per million
tokens. The Baseline Method also matches this accuracy and cost. Table [3| shows that CaM Vo
consistently meets or exceeds the desired accuracy levels specified by 4, across all settings of k.
From Table[3] it can be observed that CaM Vo consistently satisfies all target accuracy levels defined
by the confidence parameter §. Moreover, the accuracy and cost of CaM Vo exhibit a predictable
trade-off: as ¢ decreases, the cost of labeling decreases accordingly, while accuracy also declines
in a controlled manner. This behavior highlights the flexibility of CaMVo in adapting to a wide
range of practical scenarios with varying accuracy and budget constraints. Further, at 6 = 0.97 and
kmin = 1, CaMVo achieves 88.33% accuracy at a cost of only $7.18, outperforming both baselines in
cost-efficiency. This improvement stems from CaMVo’s ability to dynamically select LLM subsets
based on both global accuracy estimates and instance-specific contextual confidence.

We also observe that when k,,;,, = 3, lowering  below 0.85 has negligible effect on cost or accuracy.
This occurs because CaM Vo settles on the lowest-cost trio: LLaMA-3.3, LLaMA-3.1, and Claude-3.5;
whose combined cost ($1.44) represents a lower bound given the constraint on Ky, .

LLM / Method Accuracy (%) Cost LLM / Method Accuracy (%) Cost
03-mini 85.92 1.10 gpt-4o 95.68 2.50
claude-3-7-sonnet 85.65 3.00 03-mini 95.40 1.10
ol-mini 84.82 1.10 claude-3-5-haiku 95.05 0.80
gpt-40 83.58 2.50 gpt-4o-mini 94.60 0.15
Ilama-3.3-70b 81.70 0.59 ol-mini 94.52 1.10
Ilama-3.1-8b 68.01 0.05 llama-3.1-8b 94.06 0.05
claude-3-5-haiku 64.09 0.80 llama-3.3-70b 92.23 0.59
Majority Vote 88.18 9.14 Majority Vote 95.62 6.29
Baseline Method 88.18 9.14 Baseline Method 95.61 6.29

Table 2: Accuracy and cost of individual LLMs and baseline ensemble methods on the MMLU
dataset (Left), and the IMDB Movie Reviews Dataset (Right).

Figure 1| (Left) illustrates the cost—accuracy trade-off of All Subsets versus CaMVo. Each gray point
represents one of the 2/ —1 possible LLM subsets voted via ground-truth accuracies, while the yellow
curve depicts those that are Pareto-optimal. CaMVo’s results appear as blue markers for ki, = 1
and green markers for ki, = 3. The red marker denotes the Baseline Method. Remarkably, even
without any a priori knowledge of LLM performance, or any pre-training, CaMVo consistently
tracks, and sometimes surpasses the Pareto frontier, demonstrating its ability to approximate optimal
cost—accuracy trade-offs in an online manner.

Figure|I| (Right) shows CaMVo’s cumulative average accuracy (blue) and cost (red) for § = 0.96,
kmin = 1; the green horizontal line indicates the target accuracy. In early rounds, CaM Vo explores
larger, more expensive subsets, yielding both high cost and high accuracy. As the LCB estimates
converge, the algorithm rapidly shifts to smaller, cheaper subsets that still satisfy the accuracy
threshold. Cost declines steeply while accuracy stabilizes just above the target, illustrating CaMVo’s
ability to quickly identify and exploit the most cost-effective ensembles without sacrificing labeling
quality. Additional plots with different parameters are provided in Appendix D]



Target Acc. (%) Cost Acc. (%) Cost

CaMVOd  Ace. (%) Kmin=1 kmin=1 kmin=3 kmmn=3
099 8730 8847 9.14 88.47 9.14
098 8642 8859 8.57 88.50 8.57
0975 8598 8849 7.0 88.49 780
097 8553 8835 6.67 88.33 6.67
0965 8509 8827 5.66 88.27 5.6
096 8465 8798 474 88.03 474
0955 8421 8740 338 87.01 3.36
095 8377 8682 276 87.01 296
090 7936 848 .19 84.80 181
085 7495 84l 1.03 82.14 158
080 7054 8212 070 81.32 151
075 6614 6880 016 8124 1,50
070 6173 6838 0.14 8122 1,50

Table 3: Accuracy and cost of CaM Vo on the MMLU dataset under varying confidence thresholds §
and knin € {1, 3}. For reference, the cost of the baseline method is $9.14 per million tokens.

Accuracy vs Cost Comparison Accuracy and Cost Over Rounds
S ®° 2. %:%% ® W *,°% ¢ 100 = Accuracy (%) —— Cost | g
° o0 R . = Accuracy Target for 6 = 0.96
85 o @ 98
e 9 96 8
2% R o
< z 8
g g % 78
375 3
< < 90
All - Subsets 6
70 © All - Subsets - Pareto Points 88
(’ ® CaMVo-Kkpin=3
e CaMVo-Kkmin=1 86
e Majority Vote 5
65 Single LLM "
0 2 4 6 8 0 2000 4000 6000 8000 10000 12000 14000
Cost Round

Figure 1: (Left) Cost—accuracy trade-off for MMLU dataset: gray dots show every LLM subset via
weighted majority voting, yellow dots trace their Pareto-optimal frontier, blue markers are CaM Vo at
kmin = 1, green markers at k,;;, = 3, cyan markers denote the individual single LLMs, and the red
marker denotes the Baseline Method. (Right) Cumulative average accuracy and cost of CaM Vo with
6 = 0.96, kmin = 1 over rounds.

4.2 Experiments on the IMDB Movie Reviews Dataset

We next test CaM Vo on the IMDB Movie Reviews dataset Maas et al|[2011]], a balanced binary-
sentiment benchmark of 50,000 movie reviews. As before, we compare CaMVo against each
individual LLM, a full-ensemble Majority Vote, and the Baseline Method (Algorithm E])

Models and setup. We employ Anthropic’s Claude 3-5 Haiku |Anthropic|[2024]]; OpenAI's GPT-4o,
03-mini, GPT-40-mini, and ol-mini |(OpenAl|[2024]; and Meta’s LLaMA-3.3 and LLaMA-3.1 |Meta
[2024]. All queries use temperature = 0.25 and top-p = 1, where applicable. We extract 384-
dimensional contextual embeddings with al1-MiniLM-L6-v2 Wang et al|[2020] and approximate
the confidence bound § 4 (L, w) via the Beta-CDF, as in

Results. Table 2| (Right) reports the accuracy and cost (in dollars per million input tokens) of each
LLM and the two baselines. The baseline underperforms the best individual model (95.68% vs.
95.61%) despite incurring a significantly higher cost. This is partly due to the relative ease of the
IMDB Movie Reviews dataset, where individual LLMs already achieve high accuracy, limiting the
marginal benefit of ensembling. As noted by Li et al.|[2024b]], ensemble gains are most pronounced
on harder tasks. Additionally, Trad and Chehab| [2024] highlight that large performance gaps among
models can reduce ensemble effectiveness, making smaller, selective subsets preferable in such cases.

Table 4] presents CaMVo’s accuracy—cost trade-off across various thresholds ¢ and ki, € {1,3}.
CaMVo’s hyperparameters are « = 0.7, A\g = 5, and A\, = 1; and the Target Accuracy is computed



similarly as 6 x 95.62%. Across all configurations, CaMVo meets or exceeds its target accuracy.
Further, CaM Vo achieves less than half the cost (when § = 0.997 and k,,,;,, = 1) at a slightly lower
accuracy of 95.45% compared to the baseline, confirming its practicality for large-scale sentiment
annotation without any pre-training or ground-truth labels.

Target Acc. (%) Cost Acc. (%) Cost
CaMVo 9 Acc. (%) kmin =1 kmin =1 kmin =3 kmin =3

0.999 95.52 95.59 6.15 95.59 6.15
0.998 95.43 95.43 4.03 95.43 4.03
0.997 95.33 95.45 2.83 95.45 2.83
0.995 95.14 95.25 2.06 95.25 2.06
0.99 94.66 95.10 1.09 95.12 0.99
0.985 94.20 94.69 0.34 95.06 0.84
0.98 93.71 94.69 0.31 95.07 0.83
0.97 92.75 94.56 0.22 95.07 0.82
0.96 91.80 94.21 0.13 95.06 0.81
0.95 90.84 94.28 0.14 95.07 0.81
0.9 86.06 94.24 0.10 95.06 0.81

Table 4: Accuracy and cost of CaM Vo on the IMDB dataset under varying confidence thresholds ¢
and kmin € {1, 3}. For reference, the cost of the baseline method is $6.29 per million tokens.
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Figure 2: (Left) Cost—accuracy trade-off for IMDB dataset: gray dots show every LLM subset via
weighted majority voting, yellow dots trace their Pareto-optimal frontier, blue markers are CaM Vo at
kmin = 1, green markers at k,,;;, = 3, cyan markers denote the individual single LLMs, and the red
marker denotes the Baseline Method. (Right) Empirical average accuracy and cost of CaM Vo with
6 = 0.995, kpin = 1 over rounds.

Figure [2] (Left) presents the analogous comparison of Figure[I] (Left) on the IMDB sentiment task.
As before, gray points and the yellow Pareto-frontier points show all possible subset combinations,
while blue and green markers plot CaMVo at ki, = 1 and 3, respectively. The red marker denotes
the Baseline Method. CaM Vo closely matches the Pareto front in the low-cost regime (cost < 1),
but lags behind in higher-cost regions. This exposes a key limitation: when majority voting with
additional LL.Ms is ineffective, CaMVo’s reliance on the independence assumption, which suggests
that aggregating more LLMs improves accuracy; can lead to suboptimal performance.

Figure|Z| (Right) plots CaMVo’s cumulative average accuracy (blue) and cost (red) on IMDB with
0 = 0.995 and k,;, = 1; the green line marks the target accuracy. As before, early rounds
involve querying larger, costlier ensembles to robustly explore each model’s performance. Once
the lower-confidence bounds stabilize, CaM Vo swiftly transitions to minimal-cost subsets that still
meet the accuracy requirement. This demonstrates CaMVo’s rapid convergence to cost-effective
model combinations without compromising annotation quality. Additional results for other parameter
settings appear in Appendix [E]



4.3 Additional Experiments

We present additional experimental results on the AG News Classification Dataset in Appendix [F}
Appendix [G]introduces CCaM Vo (Correlated CaM Vo), a practical extension of CaM Vo that estimates
subset confidence by modeling correlations among LLMs, thereby relaxing the independence assump-
tion. We provide the corresponding algorithm, experiments, and a comparison with CaM Vo, showing
that accounting for correlations yields only marginal improvements in accuracy. Finally, Appendix [H]
reports a sensitivity analysis evaluating how CaMVo’s performance degrades under varying levels of
correlation among LLM predictions.

5 Limitations

Our work relies on the assumption that the outputs of LLMs are independent of each other. Under this
assumption, aggregating any subset of models with individual accuracy above 50% strictly improves
majority-vote performance. In practice; i.e., on the IMDB sentiment task (§4.2)), LLM outputs can
be highly correlated, and majority voting may underperform the best single model. Consequently,
CaM Vo inherits these failures and can yield lower ensemble accuracy when independence is violated.
Nevertheless, even in such regimes CaM Vo still achieves the user-specified accuracy threshold while
reducing cost relative to the full-ensemble baseline. This is mostly due to the fact that our results are
relative to the full-ensemble baseline which also suffers from the same issue.

Appendix [Glintroduces CCaM Vo (Correlated CaM Vo), a practical extension that estimates subset con-
fidence thorugh estimating the correlation matrix among LLMs; this approach yields only marginal
gains in accuracy. More broadly, extending CaM Vo to account for inter-model correlations in a prin-
cipled manner—e.g., via joint confidence estimation or diversity-aware subset selection—represents
a promising and challenging direction for future work.

6 Conclusions

We have introduced Cost-aware Majority Voting (CaMVo), the first fully online framework for
LLM-based dataset labeling that jointly adapts both vote weights and the subset of models queried on
a per-instance basis. By combining a LinUCB-style contextual bandit with a Bayesian Beta-mixture
confidence estimator, CaM Vo estimates a lower bound on each LLM’s correctness probability for the
given input and selects the minimal-cost ensemble that meets a user-specified accuracy threshold.

Empirical results on the MMLU and IMDB benchmarks demonstrate that CaMVo matches or
exceeds full-ensemble majority-vote accuracy while reducing labeling cost. On MMLU, CaM Vo
even surpasses the true Pareto frontier of all possible weighted subsets—despite having no prior
knowledge of individual model performance. These findings establish CaM Vo as a practical solution
for cost-efficient, automated annotation in dynamic labeling environments without any ground-truth
labels or offline training.

Our analysis assumes independence among LLM outputs, which can be violated in practice and may
degrade ensemble gains. Nonetheless, CaM Vo still enforces the user’s accuracy target and delivers
significant cost savings even under these conditions.

Our method can be naturally extended beyond classification tasks in several ways. For regression,
LLM outputs can be aggregated via a weighted average or median, with weights updated based on
how closely each LLM’s output aligns with the aggregate. For ranking tasks, each LLM can assign
scores to items, and a weighted combination of these scores would produce a final ranking; weights
can then be adjusted according to agreement of the LLM’s ranking generated from its scores with
the aggregated ranking. These extensions involve only minor modifications to the aggregation and
weight update steps, making them straightforward to integrate into our existing framework. Future
work will explore diversity-aware selection and joint confidence models to mitigate correlated errors.
We will also extend CaM Vo to support iterative relabeling, allowing previously annotated instances
to be revisited and refined as additional contextual information becomes available.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main scope of the paper is reducing costs while maintaining a user defined
threshold § on accuracy compared to majority voting with all LLMs, which is described in
the Abstract and Introduction. In the abstract, we only claim performance gains compared
to the full majority voting baseline on two datasets, which are MMLU and IMDB. These
claims are backed by experimental results in §4 While we assume the responses of LLMs to
be independent of each other in the design of our algorithm, we do not have this assumption
in the experiments, and hence our claims do not depend on this assumption.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the Limitations Section (§3).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ’Limitations’ section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We only have one minor theoretical result, which is Lemma @ We have
provided the independence assumption on the outputs of LLMs in the statement of the
lemma, and we also provide the proof of the lemma in Appendix[A] Note that this is a minor
result to be used in the design of the algorithm.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the pseudo-code of our algorithm, and the parameters used
are listed in the Experiments section (§4). Additional details on the experimental setup, such
as the prompt template for querying the LLMs, are available in Appendices[D]and[E] The
datasets used in the experiments are publicly available.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: While we do not directly provide data or code, our experimental results can
easily be reproduced. We have provided the pseudo-code of our algorithm in Algorithm ]
and we have provided details on the experimental setting in our Experiments Section (§ (),
Appendices [D]and [E} The datasets we used and the LLMs we queried are publicly available.
Based on these, we believe our results can easily be reproduced.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We use online learning in our paper, and do not train any models beforehand.
We have provided the hyperparameters used in each experiment in its relevant section.
Datasets used in experiments are publicly available. We provide most of the important
details regarding the experiments in our Experiments Section (§ [); and we also provide
additional details in Appendices [D]and [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments involve labeling a dataset with a given method, and for each
method we record the average accuracy relative to ground truth labels, and the cost for the
entire dataset. Since we have only one result per method, we do not report error bars.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer ’Yes’ if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: LLMs were queried using online LLM providers. The experiments (apart from
querying LLMs) do not consume much computer resources, and were performed with a
personal computer.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics, and we confirm that our paper
conforms to the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper considers optimizing the cost of LLM-based dataset labeling. Since
we only introduce the optimization methods, and use only publicly available LLMs and
datasets, we do not expect any societal impact of this paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data or model is released with this paper, and the datasets used in our
experiments are publicly available.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide the appropriate citations for the LLMs and the public datasets that
we used in the paper in the Experiments Section (§4).

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Usage of LLMs is a core component of our paper as our paper studies cost
optimization of LLM-based dataset labeling. In our Experiments Section (§ [); and in

Appendices|D]and [E] we provide in detail how LLMs are queried to generate labels for the
datasets.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A  Proof of Lemma[2.1]

In order to find a lower bound on the probability of correct labeling, we consider the worst-case
where each LLM’s probability of correct labeling is exactly equal its lower bound. Hence, assume
that each LLM I; € A produces a correct label with probability L;, independently of other models.
Define the random variable Z; ~ Bernoulli(L;) to represent whether model [; correctly labels the
data instance, where E[Z;] > L;. The total weight of LLMs that output the correct label is given by:

Wea =Y wi-Zi, )
icA
and the total weight of all LLMs in A is:
W_A = Zwi. (6)
i€A

Majority voting yields the correct label if the cumulative weight of correctly labeling LLMs exceeds
half of the total weight, i.e. when

W
Weo,a > —2“4. @)
Hence, 0 4(L, w) can be expressed as
W
sA(L,w) :P(WC,A > 2*‘) 8)

To compute this probability, we consider all possible label correctness outcomes for the subset A. Let
S C A denote the subset of LLMs that produce correct labels, while A \ S corresponds to those that
produce incorrect labels. The probability of this joint outcome under the independence assumption is

Pg(L,w) = H L H (1-L;). 9)
€S  jEA\S
Summing over all subsets S C A for which the total weight of correctly labeling models exceeds
half the total weight gives the desired result:

o4(L,w) = > I IT a-zy. (10)

SCA €S jEA\S
Yres WT>K2A

B Estimating the Shape Parameters of the Beta Distribution

In this section, we present two methods for estimating the shape parameters of the Beta distributions
used in CaMVo. The first is a maximum-likelihood estimation (MLE) approach that yields a closed-
form system of equations, while the second is an efficient approximation based on the method of
moments. Due to its computational practicality, the second method is used in our experiments.

Maximume-likelihood Estimation. «;; and §; ; for the Beta distribution Beta;(c; 1, 3;,1) corre-
sponding to LLM [; can be estimated by maximizing the log-likelihood:

t t
liain, Bin) = (aip — 1) Zln%(es, s)+ (Bin — 1) Zln(l —qi(es,s)) — tln B(ai1, Bi1)
s=1

s=1
Y
Taking derivatives with respect to «; 1 and §; 1 and setting them to zero yields the MLE system:
o
Doy ;111 gi(es,s) =t (Y(ain) —P(ein +Bin)) =0 (12)
M O
By D (1 —giles, s)) =t ($(Bi1) = $(ain + Bin)) =0 (13)
i s=1

where ¢(-) is the digamma function 1)(z) = - InI'(z). Solving this system yields the MLE
estimates for the parameters of each LLM. However, these equations are nonlinear and hence solving
them can be computationally expensive. To address this, we employ an alternative estimation
procedure based on the method of moments.
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Method-of-moments. This approach provides a computationally efficient and sufficiently accurate
alternative for parameter estimation and is used in our experimental pipeline in § @ For each LLM ;,
we compute sample statistics separately for rounds in which /;’s output matched the predicted label,
and the rounds in which it did not match. Let S; ; = {s: his=1,8< t} be the set of rounds s until
t where h; s = 1. The empirical mean and variance for each case can be computed as:

_ 1 1 B
qi,1 = Z qi,s<es)7 Uil = — Z (qi’s(es) — qi,l)Q (]4)
|Si’t s€Sit ‘Si’t| SESi ¢
_ 1 9 1 o
0 = T 1o | i,5\€s /s i0 = 7 1o 1 i,s\€s) — (i 15
di.0 t— Sl Z %i,s(es) Vi0 i 150 Z (gi.s(es) = Ti) (15)
7 SEN\S e " se[t]\Si e
Using the empirical means and variances, we define:
7i1(1 — G Zio(1 —
Vi1 = w -1, Vio = M -1 (16)
' Vii ' V0

We estimate the Beta distribution parameters using the following proposition.

Proposition B.1. Ler g ~ Beta(w, ) be a Beta-distributed random variable with unknown parame-
ters ovand B, and let {q, . . ., q, } be observed samples with sample mean m = q and variance s°.
Then, the method-of-moments estimates are:

. 1—
a=m-v, B=(1-m)- v, whereV:LQm)

—1. (17)
S

Proof. The Beta distribution has mean and variance:

Elq] =

—2 . Varlg] = of -
a4+ (a+pB)(a+p+1)

Substituting m = G to E[g], and s? to Var[g]; and solving for o and /3 yields the expressions for &
and (3 as stated. O

Using Proposition the parameters can be updated as

;1= G111 (18)
Bii=1—q,) (19)
;.0 = 3,0 " Vo (20)
Bio = (1—qo) o (21)

To ensure numerical stability, we clip small variance values below a threshold ¢ > 0 to prevent
division by near-zero values.

C The Baseline Algorithm

The pseudocode of the Baseline Algorithm is provided below in Algorithm 2]

Algorithm 2 Baseline Algorithm (Online Weighted Majority)

1: Input: The set of LLMs [K], dataset to label D
2: foreachroundt =1,2,...,7T do

3: Query all LLMs: y; ¢ = l;(z4)

4: Uy ¢ arg maXme[M] 21K:1 wdef,i(t) -1 {yi,t = m}
5: Generate rewards for LLMs: 7, ; = 1 {y;: = 4}
6

7

t s
Update LLM weights: wqer ; (t) = w

: end for
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D Supplementary Details for Experiments on the MMLU Dataset

This section provides additional details regarding our experimental setup for the MMLU dataset.

First, to improve computational efficiency, we approximate the confidence score § 4 (L, w) using the
cumulative distribution function (CDF) of the Beta distribution rather than the closed-form expression
in Lemma[2.1}

5A(L,w) ~ 1— FBgeta (0.5; Wrpa, Wa— WL,A) ,
where Fpew(z; @, 8) is the CDF of a Beta(a, 3) distribution, Wy, 4 = 7, qwi - Li, and Wy =
Diea Wis
The Beta distribution parameters are updated online using the method-of-moments estimator defined
in Eq. (1)), with a regularization term ¢ = 107°.

We query LLMs using a consistent format tailored to the multiple-choice structure of MMLU. The
standard prompt template is shown below:

Query Format for MMLU Dataset

System: Select the correct answer. Answer with A, B, C, or D only.
User: Question: <question>

A. <choice-A>

B. <choice-B>

C. <choice-C>

D. <choice-D>

Answer:

If the LLM API does not support a system instruction prompt, the instruction is prepended directly to
the user message. An example query, using an actual MMLU question, is shown below:

Example Query for MMLU Dataset

System: Select the correct answer. Answer with A, B, C, or D only.

User: Question: Find the degree for the given field extension @(\/5, V3,1/18) over Q.
A.0

B.4
C.2
D.6

Answer:

We apply a single random permutation to the dataset and maintain this identical ordering across all
methods to ensure a fair and consistent comparison (except in experiments in Appendix where
we analyze the sensitivity of CaM Vo to dataset ordering).

D.1 Additional Experimental Results

To facilitate a more detailed analysis of the results in Table |3} for each label category in Table
we report precision, recall, and F1 score as additional performance metrics. For comparison, the
corresponding results for majority voting are presented in Table[6] These metrics allow to evaluate
category-wise performance. The results indicate that category O is slightly more challenging to
label, as reflected by its consistently lower scores across all metrics. Furthermore, as the confidence
threshold § decreases, all three metrics degrade across label categories, with a more pronounced
decline observed for category 0, likely due to its possibly higher intrinsic difficulty.

Figure [3| illustrates CaMVo’s cumulative average accuracy (blue) and cost (red) over rounds for
kmin = 1 under different confidence thresholds ¢ to explore CaMVo’s learning dynamics for various
¢ values. The green line marks each J-specific target accuracy. In all cases, the algorithm begins by
querying larger, more expensive ensembles to gather reliable performance estimates, then swiftly
transitions to cheaper subsets once the lower-confidence bounds stabilize. This yields a steep decline
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Figure 3: Cumulative average accuracy (blue) and cost (red) of CaMVo (kp,i, = 1) on the MMLU
dataset across rounds for various confidence thresholds . The green line marks each d-specific target
accuracy.

in cost concurrent with accuracy settling at a value above the target line. A temporary dip in accuracy
around round 1,000 appears consistently, reflecting a cluster of harder instances in our fixed data
shuffle.

For high thresholds (6 = 0.99), CaMVo predominantly queries the full ensemble, producing an
almost linear cost profile. At intermediate levels (6 = 0.98,0.975), cost initially falls but momentarily
rises when accuracy dips below the target, prompting the algorithm to select slightly costlier subsets
to regain the required confidence as the accuracy estimations of individual LLMs decrease. When
0 < 0.965, the cost curve decreases monotonically and converges to a stable minimum, indicating
rapid identification of the context-specific optimal subsets.

Finally, for low thresholds (§ = 0.85, 0.80), observed accuracy significantly exceeds the target owing
to the performance gaps among individual LLMs: no model has true accuracy between 70% and 80%,
hence CaMVo’s conservative lower-bound estimates result in consistently higher realized accuracy.
Overall, these results underscore CaMVo’s capacity to balance exploration and exploitation, quickly
pinpoint cost-effective ensembles, and reliably meet user-specified accuracy requirements.

To evaluate CaMVo’s robustness to input ordering, Figure ff] shows the mean cumulative average
accuracy and cost trajectories (solid lines) for 6 = 0.96, ki, = 1, averaged over 20 random shuffles
of the MMLU dataset. Shaded bands denote one standard deviation. Although the accuracy band is
initially wide due to the exploration of CaM Vo, and also different mixes of easy and hard examples
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across the shuffles; it contracts rapidly, underscoring CaMVo’s consistent attainment of the target
accuracy across permutations. The cost band also narrows over time, illustrating stable convergence
to low-cost ensembles. Notably, the accuracy band remains much tighter than the cost band, since
CaM Vo targets above the accuracy threshold but does not optimize for a fixed cost.
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Figure 4: Mean (solid lines) and one-standard-deviation bands (shading) of CaMVo’s cumulative
average accuracy (blue) and cost (red) over 20 random shuffles of MMLU (6 = 0.96, kyin = 1). The
green line indicates the accuracy target of 84.65% for § = 0.96.

Accuracy and Cost Over Rounds

Accuracy (%)

— Accuracy (%)
— Accuracy Target for 6= 0.96

— Cost

[

2000 4000 6000 8000 10000 12000 14000
Round

Accuracy and Cost Over Rounds

Accuracy (%)

= Accuracy (%)
—— Accuracy Target for 6 = 0.96

—— Cost

0

2000 4000 6000 8000 10000 12000 14000
Round

Accuracy and Cost Over Rounds

Accuracy (%)

— Accuracy (%)
—— Accuracy Target for 5= 0.96

— Cost

N

0

2000 4000 6000 8000 10000 12000 14000
Round

Cost

Accuracy (%)

Accuracy (%)

Accuracy (%)

Accuracy and Cost Over Rounds

Accuracy and Cost Over Rounds

— Accuracy (%) — cost |g —— Accuracy (%) — Cost
— Accuracy Target for 6= 0.96 80{ | — Accuracy Target for 6= 0.96
{8
_60
Ty >
S 5S40
6 <
20
5
. o
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Round Round
Accuracy and Cost Over Rounds Accuracy and Cost Over Rounds
0 —— Accuracy (%) —— Cost |g 100 —— Accuracy (%) —— Cost
— Accuracy Target for 6 =0.96 — Accuracy Target for 6 =0.96
o 95
8
0
3
5 7, < o ——
8 3 8
0 < 2
6 g
s 80
0 5 75
5 4 70

0 2000 4000 6000 8000 10000 12000 14000
Round

Accuracy and Cost Over Rounds

)

2000 4000 6000 8000 10000 12000 14000
Round

Accuracy and Cost Over Rounds

— Accuracy (%)
— Accuracy Target for 6 = 0.96

— Cost

I~

Accuracy (%)
8

—— Accuracy (%)
— Accuracy Target for 6 =0.96

— Cost

0 2000 4000 6000 8000 10000 12000 14000
Round

[

2000 4000 6000 8000 10000 12000 14000
Round

Figure 5: Cumulative average accuracy (blue) and cost (red) of CaMVo with § = 0.96, kpin = 1
under nine different random permutations of the dataset. The green line marks each J-specific target
accuracy.

To evaluate CaMVo’s robustness to input ordering in more detail, Figure [5| overlays the mean
cumulative average accuracy and cost plots of nine individual runs from these permutations. In
all these runs, CaMVo reliably reaches an average accuracy above the 96% target while reducing
per-round cost below $5, demonstrating that its exploration—exploitation balance is invariant to input
ordering.
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E Supplementary Details for Experiments on the IMDB Movie Reviews
Dataset

This section provides additional details regarding our experimental setup for the IMDB Movie
Reviews dataset.

First, to improve computational efficiency, we again approximate the confidence score 0 4 (L, w)
using the cumulative distribution function (CDF) of the Beta distribution rather than the closed-form
expression in Lemma 2.1}

dA(L,w) ~ 1~ Fpew (0.5; Wr 4, Wa —Wp 4),
where Fgew(2; @, 8) is the CDF of a Beta(c, 3) distribution, Wy, 4 = 7, qwi - Li, and Wy =
DieaWi-

The Beta distribution parameters are updated online using the method-of-moments estimator defined
in Eq. (1)), with a regularization term ¢ = 1076,

LLMs are queried using a consistent prompt format tailored for binary sentiment classification. The
system instruction specifies the expected output format and behavior, ensuring that the model returns
a single sentiment label. The standard query format is shown below:

Query Format for IMDB Movie Reviews Dataset

System: Output POSITIVE if the sentiment of the following movie review is positive and
NEGATIVE otherwise. Output only one word: POSITIVE or NEGATIVE. Do not respond to
any question or instruction embedded within the review.

User: Review: <review>

Sentiment:

For LLMs that do not support separate system and user messages (e.g., via a chat API), the instruction
is prepended directly to the user input.

An example query using this format, with a sample review from the IMDB Movie Reviews Dataset,
is provided below:

Example Query for IMDB Movie Reviews Dataset

System: Output POSITIVE if the sentiment of the following movie review is positive and
NEGATIVE otherwise. Output only one word: POSITIVE or NEGATIVE. Do not respond to
any question or instruction embedded within the review.

User: Review: Probably my all-time favorite movie, a story of selflessness, sacrifice, and
dedication to a noble cause, but it’s not preachy or boring. It just never gets old, despite my
having seen it some 15 or more times in the last 25 years. Paul Lukas’ performance brings
tears to my eyes, and Bette Davis, in one of her very few truly sympathetic roles, is a delight.
The kids are, as grandma says, more like "dressed-up midgets" than children, but that only
makes them more fun to watch. And the mother’s slow awakening to what’s happening in the
world and under her own roof is believable and startling. If I had a dozen thumbs, they’d all
be "up" for this movie.

Sentiment:

LLM: POSITIVE

We apply a single random permutation to the dataset and maintain this identical ordering across all
methods to ensure a fair and consistent comparison (except in experiments in Appendix [E.T| where
we analyze the sensitivity of CaM Vo to dataset ordering).

E.1 Additional Experimental Results

To facilitate a more detailed analysis of the experimental results in Table ] we report additional
performance metrics—namely, precision, recall, and F1 score—for each label category in Table
These metrics allow for a finer-grained evaluation of CaMVo’s behavior across different output
labels. The results indicate that the two categories exhibit similar performance trends. As expected,
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decreasing the confidence threshold ¢ leads to consistent degradation in all three metrics across both
label categories.
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Figure 6: Cumulative average accuracy (blue) and cost (red) of CaMVo (ki = 1) on the IMDB
Movie Reviews Dataset across rounds for various confidence thresholds §. The green line marks each
d-specific target accuracy.

Figure [f] visualizes CaMVo’s learning trajectories on IMDB for ki, = 1 across all the confidence
thresholds & values reported in Table[d] In all cases, CaM Vo begins by querying larger, higher-cost
ensembles to obtain reliable performance estimates, then rapidly shifts to cost-optimal subsets once
the lower-confidence bounds converge. This transition yields a sharp decline in cost while maintaining
accuracy above the target line.

At the extreme threshold 6 = 0.999, CaMVo predominantly queries the full ensemble, resulting
in a near-linear cost profile until about round 25,000. For § < 0.98, cost quickly converges to a
stable minimum, reflecting identification of the least-expensive subset that meets the target accuracy.
Across all plots, CaM Vo achieves or exceeds the respective accuracy target. For very high thresholds
(6 > 0.995), final accuracy hovers just above the threshold, as expected; as § decreases, the accuracy
surplus grows. Below § = 0.96, accuracy plateaus at approximately 94.06%, corresponding to the
performance of the single cheapest model (‘llama-3.1-8b").

Overall, these results demonstrate CaMVo’s ability to balance exploration and exploitation, swiftly
discover cost-effective subsets, and reliably satisfy the target accuracy requirements.

To assess CaMVo’s sensitivity to dataset ordering, Figure [7] plots the mean cumulative accuracy and
cost curves (solid lines) for § = 0.995, ki, = 1, averaged over 20 random shuffles. Shaded regions
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average accuracy (blue) and cost (red) over 20 random shuffles of MMLU (§ = 0.995, ki, = 1).
The green line indicates the accuracy target of 95.14% for § = 0.995.
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Figure 8: Cumulative average accuracy (blue) and cost (red) of CaMVo with § = 0.96, ki, = 1
under nine different random permutations of the dataset. The green line marks each §-specific target
accuracy.

indicate one standard deviation. Although the accuracy band starts wide, which reflects both the
initial exploration and also the varying mixes of ’easier’ and "harder’ instances; this rapidly contracts
over time, confirming CaMVo’s reliable attainment of the target accuracy across permutations. The
cost band likewise narrows, demonstrating stable convergence to low-cost ensembles. Notably, the
accuracy variability remains much smaller than the cost variability, as CaM Vo does not optimize
toward a fixed cost.

Figure §] further investigates ordering effects by overlaying nine individual runs from these permu-
tations. In every run, CaMVo exceeds the 95.14% accuracy target while driving per-round cost
below $2.10, corroborating that its exploration—exploitation strategy, and the resulting cost—accuracy
performance is effectively invariant to the input sequence.
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F Experiments on the AG News Classification Dataset

We further evaluate CaMVo on the AG News Classification Dataset Zhang et al.| [2015]], which
contains news articles gathered from over 2,000 online sources. Each article is categorized into
one of four topics: World, Sports, Business, or Science/Technology. From the original training set
of 120, 000 samples, we uniformly sample 50, 000 instances for our experiments. As before, we
compare CaMVo against each individual LLM, a full-ensemble Majority Vote, and the Baseline
Method (Algorithm 2).

Models and setup. We employ Anthropic’s Claude 3-7 Sonnet, and Claude 3-5 Haiku |Anthropic
[2024]; OpenAI’s 03-mini, o1-mini, and GPT-40-mini|OpenAl|[2024]; and Meta’s LLaMA-3.3 and
LLaMA-3.1 Meta|[2024]]. All queries use temperature = 0.3 and top-p = 1, where applicable. We
extract 384-dimensional contextual embeddings with al1-MiniLM-L6-v2|Wang et al.|[2020] and
approximate the confidence bound § 4 (L, w) via the Beta-CDF, as in To improve computational
efficiency, we again approximate the confidence score ¢ 4 (L, w) using the cumulative distribution
function (CDF) of the Beta distribution rather than the closed-form expression in Lemma

0A(L,w) = 1 — Fgeta (0.5; Wr 4, Wa—Wgr 4),

where Fgew(z; @, B) is the CDF of a Beta(a, 3) distribution, Wy, 4 = >, qw; - Li, and Wy =
DicAWi-

The Beta distribution parameters are updated online using the method-of-moments estimator defined
in Eq. (Z1)), with a regularization term e = 107°.

LLMs are queried using a consistent prompt format tailored for categorical output. The system
instruction specifies the possible categories that the news article can be classified into, and the
expected output format and behavior, to ensure that the model returns a single category. To form each
instance for the User prompt of the LLM, we concatenate the article’s title and description provided
in the dataset. The standard query format is shown below:

Query Format for AG News Classification Dataset

System: Classify the following news article as WORLD, SPORT, BUSINESS, or
SCIENCE/TECHNOLOGY. Respond with only the chosen category. If the article is ambiguous,
select the closest matching category.

User: <Title>: <Description>

For LLMs that do not support separate system and user messages (e.g., via a chat API), the instruction
is prepended directly to the user input.

An example query using this format, with a sample review from the AG News Classification Dataset,
is provided below:

Example Query for AG News Classification Dataset

System: Classify the following news article as WORLD, SPORT, BUSINESS, or
SCIENCE/TECHNOLOGY. Respond with only the chosen category. If the article is ambiguous,
select the closest matching category.

User: Celtic beat Dunfermline 2-0: Celtic regained the top spot in the Scottish Premier
League after a 2-0 victory away to Dunfermline. The result leaves Celtic top-of-the-table
with 44 points from 18 games, a single point clear of arch-rivals Glasgow Rangers.
Sentiment:

LLM: SPORT

We apply a single random permutation to the 50, 000 sampled data instances from the dataset and
maintain this identical ordering across all methods to ensure a fair and consistent comparison.

Results. Table [§| (Right) reports the accuracy and cost (in dollars per million input tokens) of each
LLM and the two baselines. Once again, the baseline underperforms the best individual model
(85.68% vs. 87.16%) despite incurring a substantially higher cost. This performance gap may stem
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from the inherent ambiguity of the dataset, as certain news articles may belong to multiple categories,
making consensus through majority voting more difficult to achieve.

Table [9] presents CaMVo’s accuracy—cost trade-off across various thresholds ¢ and ki, € {1,3}.
CaMVo’s hyperparameters are « = 0.7, A\g = 5, and A\, = 1; and the Target Accuracy is computed
similarly as § x 85.68%. Across all configurations, CaMVo meets or exceeds its target accuracy.
Further, CaM Vo achieves less than half the cost (when § = 0.99 and kp,;;, = 1) at a slightly lower
accuracy of 86.18% compared to the baseline, confirming its practicality for large-scale sentiment
annotation without any pre-training or ground-truth labels.

Accuracy vs Cost Comparison
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Figure 9: Cost—accuracy trade-off for AG News Classification Dataset: gray dots show every LLM
subset via weighted majority voting, yellow dots trace their Pareto-optimal frontier, blue markers are
CaMVo at ki, = 1, green markers at ki, = 3, cyan markers denote the individual single LLMs,
and the red marker denotes the Baseline Method.

Figure Q] presents the analogous comparison of Figure[T](Left) on the AG News Classification Dataset.
As before, gray points and the yellow Pareto-frontier points show all possible subset combinations,
cyan markers show individual single LLMs, while blue and green markers plot CaMVo at ki, = 1
and 3, respectively. The red marker denotes the Baseline Method. Again, CaMVo closely matches
the Pareto front in the low-cost regime (cost < 0.8), but lags behind in higher-cost regions.

Figure [I0] visualizes CaMVo’s learning trajectories on the AG News Classification Dataset for
Emin = 1 across all the confidence thresholds 0 values reported in Table[d] Similar to experiments
on the other datasets, CaM Vo begins by querying larger, higher-cost ensembles to obtain reliable
performance estimates, then rapidly shifts to cost-optimal subsets once the lower-confidence bounds
converge.

Further, to assess CaMVo’s sensitivity to dataset ordering, Figure [IT] plots the mean cumulative
accuracy and cost curves (solid lines) for § = 0.99, ki, = 1, averaged over 20 random shuffles.
Shaded regions indicate one standard deviation. Similar to the experiments in other datasets, although
the accuracy band starts wide, which reflects both the initial exploration and also the varying mixes
of “easier’ and "harder’ instances; this contracts over time, confirming CaMVo’s reliable attainment
of the target accuracy across permutations. The cost band likewise narrows, demonstrating stable
convergence to low-cost ensembles.

Figure [I2] further investigates ordering effects by overlaying nine individual runs from these per-
mutations. In every run, CaMVo exceeds the 84.82% accuracy target while driving per-round cost
below $3.3, corroborating that its exploration—exploitation strategy, and the resulting cost-accuracy
performance is effectively invariant to the input sequence.

G Extension of CaMVo to Correlated LLM Outputs

In the original CaMVo algorithm, we assume that LLM outputs are independent. To relax this
assumption, we introduce the Correlated CaM Vo (CCaM Vo), an extension that models dependencies
between LLM outputs while maintaining the practicality of the original method. Unlike CaM Vo,
which relies on Lemma [2.1] for confidence estimation, CCaMVo estimates subset confidences via
Monte Carlo simulation over correlated LLM correctness samples.
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Figure 10: Cumulative average accuracy (blue) and cost (red) of CaMVo (kp,i, = 1) on the AG News
Classification Dataset across rounds for various confidence thresholds §. The green line marks each
d-specific target accuracy.

CCaM Vo differs from CaMVo by incorporating three additional components. The first is an online
correlation estimator (Algorithm [3), which incrementally estimates pairwise correlations between
LLM accuracies as new rounds of predictions arrive. Let ;; and o; denote the empirical mean and
standard deviation of LLM [;’s historical accuracy, respectively, and let C' denote the estimated
correlation matrix across LLMs. For each LLM, the algorithm maintains running counts n;, the
number of times LLM ; has been selected up to that round. Further, for each pair (i, j) of LLMs,
N;;, the co-occurrence counts that designate the number of times LLMs [; and [; have been selected
at the same round; and M;;, the accumulated deviation statistics, are maintained. At each round, it
updates the univariate statistics (u;, ;) for selected LLMs and adjusts the terms M;; using Welford’s
numerically stable online formulas. Pairwise correlations are computed as p;; = cov;;/(0;0;) where
cov;j = M;j/(N;; — 1) and clipped to [—1, 1] for numerical stability.

The second component (Algorithm [)) uses these estimated correlations to generate correlated LLM
correctness samples via a Gaussian copula. Specifically, we first project the estimated correlation
matrix Cey to a positive semi-definite matrix Cpsq and draw n samples Z1, . .., Z, ~ N (0x, Cps)-
Applying the standard normal CDF elementwise yields uniform samples U;; = ®(Z;;), which pre-
serve the dependence structure of Clsq. Binary correctness samples are then obtained by thresholding
each variable as X;; = 1 {U;; < u;}, ensuring marginal correctness probabilities of ;. While the
binary correlations differ slightly from Cpq due to thresholding, this approximation offers a practical
trade-off between accuracy and computational efficiency.
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Accuracy and Cost Over Rounds
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Figure 11: Mean (solid lines) and one-standard-deviation bands (shading) of CaMVo’s cumulative
average accuracy (blue) and cost (red) over 20 random shuffles using the AG News Classification
Dataset (5 = 0.99, ki, = 1). The green line indicates the accuracy target of 95.14% for § = 0.995.
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Figure 12: Cumulative average accuracy (blue) and cost (red) of CaMVo with 6 = 0.99, ki, = 1
under nine different random permutations of the dataset. The green line marks each §-specific target
accuracy.

Finally, CCaM Vo estimates the confidence of each LLM subset by aggregating majority-vote correct-
ness outcomes across the generated samples, averaging over simulated draws to approximate subset
confidence. The remaining components of CCaM Vo follow the same structure as CaM Vo, preserving
its efficiency while enabling robust confidence estimation under correlated LLM outputs.

We evaluated CCaMVo using the same experimental setup as CaMVo. On the MMLU dataset,
Table [10|compares CaM Vo and CCaM Vo for ki, = 1 across varying confidence thresholds &, while
Table |1 1| shows the results for ki, = 3. Similarly, for the IMDB dataset, Tablerepons results
for kmin = 1, and Table [13| presents the corresponding results for k,;, = 3. For the AG News
Classification Dataset, Table[[4]reports results for kmin = 1, and Table[T3]presents the corresponding
results for ki, = 3.
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Algorithm 3 OnlineCorrelationEstimator

Require: Number of variables K
1: Initialize ny < 0, g, < 0,0, < Oforallk =1,... K
2: Initialize M;; < 0, N;; < 0, and correlation matrix C;; < I[i = j]

3: function UPDATE(r, A)
> — Step 1: Update univariate statistics —
4 for alli € Ado
5: Old_/LZ' — Wy
6: Nng < N, —+ 1
7: 0 < r; —old_p;
8: Mg <— Old_,LLi + 5/nl
9: M = M + (ri — i) (ri — old_pu;)
10: if n; > 1 then
11: O; Mii/(ni—l)
12: else
13: g; <0
14: end if
15: end for
> — Step 2: Update pairwise covariance and correlation —
16: for all unordered pairs (i, 7) in A do
17: 0; 1 — i, (Sj STy
18: MU — Mij + 51 5j
19: sz — M”
20: Nij — Nij +1, Nji — Nij
21: lfNU > 1 then
22: COVjj < Mlj/(N” — 1)
23: pij < clip(cov;;/(o;05), —1, 1)
24: Cij — Cji < Pij
25: end if
26: end for
27: end function
28: function GETCORRELATIONMATRIX
29: return C'
30: end function
Algorithm 4 Sampling Correlated Binary Outcomes via Gaussian Copula

Require: Number of samples n, marginal probabilities 1 € R, estimated correlation matrix

WRADINHRNT

Cog € REXKE
Cpsa < MAKEPSD(Cy) > Project to nearest PSD matrix
Z « Sample n vectors from N (0 g, Cpsa)
U+ ®(2) > Apply standard normal CDF elementwise
for:=1,...,ndo

forj=1,...,Kdo

Xij = 1{Ui; < pj}

end for
end for
return X

These results indicate that incorporating the copula-based simulation to model the correlation does
not significantly improve performance on MMLU and yields a modest cost improvement on IMDB,
where LLM outputs exhibit higher correlation. We attribute this to two factors: (1) LinUCB’s use of
input embedding vectors to predict LLM confidences already implicitly captures correlations among
LLM outputs conditioned on the input context, and (2) estimation errors in the correlation matrix
reduce the potential gains from explicitly modeling correlations.
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H Experiments on Sensitivity to Correlated LLM Outputs

We conduct a sensitivity study to evaluate the impact of correlation among LLM outputs. Given
a target mean accuracy vector yi = (iy,...,ix) and a target covariance matrix C € REXK
we generate synthetic LLM labels using a Gaussian copula—based procedure (Algorithm [5). This
approach ensures that the outputs of different LLMs are both context-dependent and correlated
according to the specified C. By varying C, we analyze how increasing inter-model correlation
affects the performance of CaMVo.

In this experiment setting, we denote the number of LLMs by K, the context dimension by d, and the
number of rounds by T'. Each LLM [; is associated with a target mean accuracy u; € (0,1). The
context correlation parameter o € [0, 1] controls the degree of shared dependence among LLMs, and
o > 0 denotes the scale of latent Gaussian noise.

We first transform the target reward correlation matrix C' into a valid latent Gaussian correlation
matrix R = [p;;] that can reproduce the desired binary LLM outputs after thresholding. Specifically,
for each pair of LLMs (i, ), we find a latent correlation coefficient p;; such that

COI‘I‘[H{ZZ' > (I’_l(l - /.Li)},H{Zj > @_1(1 — Mj)}} = Cij,

where (Z;, Z;) ~ N(0,%(pi;)) and ®~! is the inverse standard normal CDF. The resulting matrix
R = [pj;] is then projected onto the nearest positive semi-definite matrix to ensure numerical stability.
This step guarantees that the generated binary outputs exhibit empirical correlations close to C'.

Each LLM [, is associated with a context-dependent accuracy weight vector §; € R? defined as
0; = & Oghared + (1 - Oé) Hunique,iv

where Osharea ~ N (0, I) captures shared structure among LLMs, and Oypigue,; ~ N (0, I4) introduces
model-specific variation.

Ateachroundt =1,...,T, a context vector
Ty ~ N(O, Id)

is independently sampled, representing the input context of the data instance. A correlated Gaussian
noise vector ¢; ~ A (0, R) is drawn jointly across all LLMs. The latent correctness score for each
LLM I; is then computed as

-
2 =0; 2y +0€ry.

The observed binary correctness outcome is given by
o=z > @11 — )}

When r; ; = 1, it means the LLM produces the correct label . This data generation process produces
context—output pairs whose expected accuracies ar close to the target u, while the inter-model
dependencies exhibit empirical correlations close to C'. Note that because of the additive term 6;,
which encodes correlations with the context, this method cannot exactly reproduce the target accuracy
and covariance matrix values. Although more sophisticated approaches could more precisely match
the specified targets, we adopt this formulation for its computational simplicity and because our
experiments focus primarily on analyzing the effects of varying correlation strength rather than
achieving exact target statistics.

H.1 Experiment Results

In the first experimental setup the diagonal entries of C representing self-correlation are set to 1, i.e.
Ci; = 1,Vi € [K] and all off-diagonal entries are set to a parameter C,; = v, Vi # j that represents
the pairwise correlation. We sweep v across a range of values to evaluate how varying correlation
strengths impact performance. The results are summarized in Table[T6] which reports the accuracy
and cost of CaM Vo under ky,;, = 1 and ki, = 3, alongside the accuracy of majority voting and the
target accuracy, across different confidence thresholds ¢ and correlation parameters C;. The synthetic
data are generated with parameters d = 5, 0 = 0.5, and o = 0.1, while the costs and mean accuracies
of the LLMs are taken from the MMLU experiments, given by ¢ = [0.05,1.1,0.59,2.5,3,1.1,0.8]
and p = [0.6801,0.8482,0.8170, 0.8358,0.8565,0.8592, 0.6409]. Note that the cost of majority
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Algorithm 5 Gaussian Copula—based Correlated Data Generation

Require: Number of rounds 7', number of LLMs K, context dimension d, target mean rewards
{u:}E |, target correlation matrix C' € RE*X | context correlation parameter , noise scale o
Ensure: Contexts {z;}._;, binary rewards {re,ite

1: function GENERATEDATA(T, K, d, i1, C, at, 0)
2 Compute latent Gaussian correlation matrix R <— CALIBRATECOPULA(u, C')
3 Draw Gspared ~ N (0, 1)

4: fora=1,...,Kdo

5: Draw Oynique,a ~ N (0, I4)

6: 0o < aOghared + (1 - O‘) aunique,a

7 end for

8: fort=1,...,T do

9: Sample context 2 ~ N(0, I)
10 Sample ¢, ~ N (0, R)
11: fora=1,..., Kdo
12: Zt.aq < Hth + o €t,a
13: Tra ¢ H2ea > @711 — o)}
14: end for
15: end for
16:  return {(x;, 1)},

17: end function

18: function CALIBRATECOPULA(y, C')
19: for each pair (i, j) with ¢ < j do
20: Find p;; such that

Corr[I{Z; > @ (1 — )}, I{Z; > &' (1 — ;) }] = Cyj

where (Z;, Z;) ~ N(0,%(pi;))
21: end for
22: Construct R = [p;;] and project to nearest PSD matrix
23: return R
24: end function

voting is fixed at $9.14 per million tokens across all settings. Tables[17]and[18] present the results for
o = 0.2 and a = 0.4, respectively.

The results indicate that the accuracy of CaMVo generally decreases as C; increases; a similar trend
is observed for majority voting. Importantly, CaM Vo is able to maintain the target accuracy across
all tested correlation levels, demonstrating its effectiveness even in settings with correlated LLM
outputs.

In the second experimental setup, we use the correlation matrix

1.000 0.445 0.147 0.423 0.211 0.306 0.320
0.445 1.000 0.373 0.448 0.242 0.420 0.317
0.147 0.373 1.000 0.265 0.172 0.118 0.142
C = 10423 0.448 0.265 1.000 0.301 0.436 0.325 (22)
0.211 0.242 0.172 0.301 1.000 0.158 0.180
0.306 0.420 0.118 0.436 0.158 1.000 0.388
0.320 0.317 0.142 0.325 0.180 0.388 1.000

so that, unlike the first experiment, the correlations between different LLMs are heterogeneous. We
sweep the confidence threshold ¢ and the parameter « to evaluate how the strength of correlation
between LLM outputs and the context affects accuracy. The results are summarized in Table
which reports the accuracy and cost of CaM Vo for £y, = 1 and ki, = 3, alongside the accuracy of
majority voting and the target accuracy, across varying § and «. Across all experiments, d = 5 and
o = 0.5, while the costs and mean accuracies of the LLMs are taken from the MMLU dataset as in
the previous experiment. The cost of majority voting remains fixed at $9.14 per million tokens.
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As expected, the accuracy of CaM Vo increases with larger «, as higher correlation with the context
allows LLM outputs to better reflect the arm rewards. In contrast, the accuracy of majority voting de-
creases with increasing c, since it increases correlations among LLMs through the context. Crucially,
CaM Vo consistently maintains the target accuracy across all instances, demonstrating its robustness
even under correlated LLM outputs.
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Precision, Recall, F1 Score, Precision, Recall, F1 Score,

0 label kmin =1 kmin =1 kmin =1 kmin =3 kmin =3 kmin =3
0.99 0 0.87 0.86 0.87 0.87 0.86 0.87
0.99 1 0.87 0.89 0.88 0.87 0.89 0.88
0.99 2 0.88 0.9 0.89 0.88 0.9 0.89
0.99 3 0.91 0.89 0.9 0.91 0.89 0.9
0.98 0 0.88 0.86 0.87 0.88 0.86 0.87
0.98 1 0.88 0.89 0.88 0.88 0.89 0.88
0.98 2 0.88 0.9 0.89 0.88 0.9 0.89
0.98 3 091 09 09 0.91 0.9 0.9
0.975 0 0.88 0.85 0.87 0.88 0.85 0.87
0.975 1 0.87 0.89 0.88 0.87 0.89 0.88
0.975 2 0.88 0.9 0.89 0.88 0.9 0.89
0.975 3 091 09 09 091 0.9 0.9
0.97 0 0.88 0.85 0.86 0.88 0.85 0.86
0.97 1 0.87 0.89 0.88 0.87 0.89 0.88
0.97 2 0.88 0.9 0.89 0.88 0.9 0.89
0.97 3 0.91 0.9 0.9 0.91 0.9 0.9
0.965 0 0.89 0.85 0.87 0.89 0.85 0.87
0.965 1 0.86 0.88 0.87 0.86 0.88 0.87
0.965 2 0.88 09 0.89 0.88 0.9 0.89
0.965 3 0.91 0.9 0.9 0.91 0.9 0.9
0.96 0 0.88 0.85 0.86 0.88 0.85 0.86
0.96 1 0.86 0.88 0.87 0.86 0.88 0.87
0.96 2 0.87 0.89 0.88 0.87 0.89 0.88
0.96 3 0.9 0.89 0.9 0.9 0.89 0.9
0.955 0 0.87 0.84 0.86 0.87 0.84 0.86
0.955 1 0.86 0.88 0.87 0.86 0.88 0.87
0.955 2 0.87 0.88 0.88 0.87 0.88 0.88
0.955 3 0.89 0.89 0.89 0.89 0.89 0.89
0.95 0 0.87 0.84 0.85 0.87 0.84 0.85
0.95 1 0.85 0.87 0.86 0.85 0.87 0.86
0.95 2 0.87 0.87 0.87 0.87 0.87 0.87
0.95 3 0.89 0.89 0.89 0.89 0.89 0.89

0.9 0 0.85 0.82 0.84 0.85 0.82 0.84
09 1 0.84 0.85 0.84 0.84 0.85 0.84
0.9 2 0.85 0.85 0.85 0.85 0.85 0.85
0.9 3 0.86 0.87 0.87 0.86 0.87 0.87
0.85 0 0.84 0.82 0.83 0.84 0.82 0.83
0.85 1 0.81 0.86 0.84 0.81 0.86 0.84
0.85 2 0.85 0.84 0.84 0.85 0.84 0.84
0.85 3 0.87 0.85 0.86 0.87 0.85 0.86
0.8 0 0.8 0.82 0.81 0.8 0.82 0.81
0.8 1 0.76 0.87 0.81 0.76 0.87 0.81
0.8 2 0.85 0.8 0.82 0.85 0.8 0.82
0.8 3 0.88 0.8 0.84 0.88 0.8 0.84
0.75 0 0.59 0.73 0.65 0.59 0.73 0.65
0.75 1 0.71 0.65 0.68 0.71 0.65 0.68
0.75 2 0.76 0.63 0.69 0.76 0.63 0.69
0.75 3 0.72 0.74 0.73 0.72 0.74 0.73
0.7 0 0.58 0.73 0.65 0.58 0.73 0.65
0.7 1 0.71 0.64 0.67 0.71 0.64 0.67
0.7 2 0.75 0.63 0.68 0.75 0.63 0.68
0.7 3 0.71 0.74 0.73 0.71 0.74 0.73

Table 5: Precision, recall, and F1 scores of CaMVo with k,,;;, = 1 and k,,;,, = 3 across different
confidence thresholds ¢ for each label category on the MMLU dataset.
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label Precision Recall F1 Score
Maj. voting 0 0.87 0.86 0.86
Maj. voting 1 0.87 0.88 0.88
Maj. voting 2 0.88 0.89 0.89
Maj. voting 3 0.91 0.89 0.9
Table 6: Precision, recall and F1 score of majority voting over each output category on the MMLU
dataset.
s label Precision Recall F1 Score Precision Recall F1 Score
(kmin = 1) (kmin = 1) (kmin = 1) (kmin = 3) (kmin - 3) (kmin = 3)
0.999 0 0.96 0.96 0.96 0.96 0.96 0.96
0.999 1 0.96 0.96 0.96 0.96 0.96 0.96
0.998 0 0.95 0.95 0.95 0.95 0.95 0.95
0.998 1 0.95 0.95 0.95 0.95 0.95 0.95
0.997 0 0.96 0.95 0.95 0.96 0.95 0.95
0.997 1 0.95 0.96 0.95 0.95 0.96 0.95
0.995 0 0.96 0.95 0.95 0.96 0.95 0.95
0.995 1 0.95 0.96 0.95 0.95 0.96 0.95
0.99 0 0.95 0.95 0.95 0.95 0.95 0.95
0.99 1 0.95 0.95 0.95 0.95 0.95 0.95
0.985 0 0.94 0.95 0.95 0.94 0.95 0.95
0.985 1 0.95 0.94 0.95 0.95 0.94 0.95
0.98 0 0.94 0.95 0.95 0.94 0.95 0.95
0.98 1 0.95 0.94 0.95 0.95 0.94 0.95
0.97 0 0.94 0.95 0.95 0.94 0.95 0.95
0.97 1 0.95 0.94 0.95 0.95 0.94 0.95
0.96 0 0.94 0.94 0.94 0.94 0.94 0.94
0.96 1 0.94 0.94 0.94 0.94 0.94 0.94
0.95 0 0.94 0.95 0.94 0.94 0.95 0.94
0.95 1 0.95 0.94 0.94 0.95 0.94 0.94
0.9 0 0.94 0.94 0.94 0.94 0.94 0.94
0.9 1 0.94 0.94 0.94 0.94 0.94 0.94
MIV 0 0.96 0.96 0.96
MIV 1 0.96 0.96 0.96

Table 7: Precision, recall, and F1 scores of CaMVo with ki, = 1 and k.,;, = 3 across different
confidence thresholds ¢ for each output label on the IMDB dataset. Note that the last two rows report
the corresponding precision, recall, and F1 scores obtained with majority voting.

LLM / Method Accuracy (%) Cost
03-mini 87.16 1.10
Ilama-3.3-70b 86.35 0.59
ol-mini 85.77 1.10
claude-3-7-sonnet 85.27 3.00
claude-3-5-haiku 84.71 0.80
gpt-40-mini 82.63 0.15
llama-3.1-8b 77.85 0.05
Majority Vote 85.55 6.79
Baseline Method 85.68 6.79

Table 8: Accuracy and cost of individual LL.Ms and baseline ensemble methods on the AG News

Classification Dataset.
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Target Acc. (%) Cost Acc. (%) Cost

CaMVo o Acc. (%) kmin =1 knin=1 Eknin=3 Enn=23
0.999 85.59 85.98 6.82 85.98 6.82
0.998 85.51 85.98 6.82 85.98 6.82
0.995 85.25 86.36 5.24 86.36 5.24
0.99 84.82 86.18 2.98 86.18 2.98
0.98 83.97 84.72 1.39 84.72 1.39
0.96 82.25 83.38 0.52 83.85 0.99
0.95 81.40 83.18 0.40 83.77 0.96
0.9 77.11 80.66 0.29 83.75 0.88
0.85 72.83 79.62 0.26 83.74 0.87
0.80 68.54 79.34 0.23 83.73 0.87

Table 9: Accuracy and cost of CaMVo on the AG News Classification Dataset under varying
confidence thresholds § and ki, € {1,3}. For reference, the cost of the baseline method is $6.79
per million tokens.

Target CaMVo CaMVo CCaMVo CCaMVo

0 Acc. (%) Acc. (%) Cost Acc. (%) Cost
0.99 87.30 88.47 9.14 88.55 9.14
0.98 86.42 88.59 8.57 88.53 8.72
0.975 85.98 88.49 7.80 88.41 8.14
0.97 85.53 88.35 6.67 88.25 7.10
0.965 85.09 88.27 5.66 88.07 4.88
0.96 84.65 87.98 4.74 86.96 3.07
0.955 84.21 87.40 3.38 86.84 2.58
0.95 83.77 86.82 2.76 86.33 2.32
0.90 79.36 84.88 1.19 82.29 0.76
0.85 74.95 84.41 1.03 81.72 0.67
0.80 70.54 82.12 0.70 80.09 0.60
0.75 66.14 68.80 0.16 68.30 0.14
0.70 61.73 68.38 0.14 68.30 0.14

Table 10: Accuracy and cost of CaM Vo and Correlated CaM Vo (CCaM Vo) on the MMLU dataset
under varying confidence thresholds § and k,;,, = 1. For reference, the cost of the baseline method
is $9.14 per million tokens.

Target CaMVo CaMVe CCaMVo CCaMVo

Y Acc. (%) Acc. (%) Cost Acc. (%) Cost
0.99 87.30 88.47 9.14 88.55 9.14
0.98 86.42 88.59 8.57 88.50 8.73
0.975 85.98 88.49 7.80 88.43 8.16
0.97 85.53 88.33 6.67 88.33 6.90
0.965 85.09 88.27 5.66 88.29 5.21
0.96 84.65 88.03 4.74 86.40 3.73
0.955 84.21 87.01 3.36 87.08 2.69
0.95 83.77 87.01 2.96 86.42 2.45
0.90 79.36 84.80 1.81 84.17 1.77
0.85 74.95 82.14 1.58 81.45 1.52
0.80 70.54 81.32 1.51 81.23 1.50
0.75 66.14 81.24 1.50 81.18 1.50
0.70 61.73 81.22 1.50 81.17 1.50

Table 11: Accuracy and cost of CaM Vo and Correlated CaM Vo (CCaM Vo) on the MMLU dataset
under varying confidence thresholds § and k,;, = 3. For reference, the cost of the baseline method
is $9.14 per million tokens.
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Target CaMVo CaMVo CCaMVo CCaMVo

0 Acc. (%) Acc. (%) Cost Acc. (%) Cost
0.999 95.52 95.59 6.15 95.43 3.61
0.998 95.43 95.43 4.03 95.28 2.29
0.997 95.33 95.45 2.83 95.10 1.32
0.995 95.14 95.25 2.06 95.09 0.99
0.99 94.66 95.10 1.09 95.09 0.89
0.985 94.20 94.69 0.34 95.05 0.82
0.98 93.71 94.69 0.31 94.78 0.38
0.97 92.75 94.56 0.22 94.68 0.28
0.96 91.80 94.21 0.13 94.18 0.20
0.95 90.84 94.28 0.14 94.61 0.26

0.9 86.06 94.24 0.10 94.11 0.15

Table 12: Accuracy and cost of CaMVo and Correlated CaM Vo (CCaM Vo) on the IMDB dataset
under varying confidence thresholds § and k,;, = 1. For reference, the cost of the baseline method
is $6.29 per million tokens.

Target CaMVo CaMVo CCaMVo CCaMVo

0 Acc. (%) Acc. (%) Cost Acc. (%) Cost
0.999 95.52 95.59 6.15 95.46 3.61
0.998 95.43 95.43 4.03 95.29 2.21
0.997 95.33 95.45 2.83 95.10 1.21
0.995 95.14 95.25 2.06 95.10 0.99
0.99 94.66 95.12 0.99 95.07 0.88
0.985 94.20 95.06 0.84 95.07 0.85
0.98 93.71 95.07 0.83 95.08 0.83
0.97 92.75 95.07 0.82 95.07 0.83
0.96 91.80 95.06 0.81 95.07 0.82
0.95 90.84 95.07 0.81 95.06 0.82

0.9 86.06 95.06 0.81 95.06 0.81

Table 13: Accuracy and cost of CaMVo and Correlated CaM Vo (CCaM Vo) on the IMDB dataset
under varying confidence thresholds § and k,;,, = 3. For reference, the cost of the baseline method
is $6.29 per million tokens.

Target CaMVo CaMVo CCaMVo CCaMVo

0 Acc. (%) Acc. (%) Cost Acc. (%) Cost
0.999 85.59 85.98 6.82 85.98 6.82
0.998 85.51 85.98 6.82 85.98 6.81
0.995 85.25 86.36 5.24 86.10 5.12
0.99 84.82 86.18 2.98 85.82 2.75
0.98 83.97 84.72 1.39 83.94 1.13
0.96 82.25 83.38 0.52 83.3 0.51
0.95 81.40 83.18 0.40 83.18 0.44

0.9 77.11 80.66 0.29 81.5 0.33
0.85 72.83 79.62 0.26 79.66 0.26
0.80 68.54 79.34 0.23 79.26 0.24

Table 14: Accuracy and cost of CaMVo and Correlated CaMVo (CCaMVo) on the AG News
Classification Dataset under varying confidence thresholds § and k.,;;, = 1. For reference, the cost of
the baseline method is $6.79 per million tokens.
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Target CaMVo CaMVo CCaMVo CCaMVo

0 Acc. (%) Acc. (%) Cost Acc. (%) Cost
0.999 85.59 85.98 6.82 85.98 6.82
0.998 85.51 85.98 6.82 85.98 6.81
0.995 85.25 86.36 5.24 86.14 5.08
0.99 84.82 86.18 2.98 85.67 2.29
0.98 83.97 84.72 1.39 83.94 1.10
0.96 82.25 83.85 0.99 83.89 1.01
0.95 81.40 83.77 0.96 83.75 0.93

0.9 77.11 83.75 0.88 83.75 0.89
0.85 72.83 83.74 0.87 83.72 0.87
0.80 68.54 83.73 0.87 83.72 0.87

Table 15: Accuracy and cost of CaMVo and Correlated CaMVo (CCaMVo) on the AG News
Classification Dataset under varying confidence thresholds ¢ and ky,;,, = 3. For reference, the cost of
the baseline method is $6.79 per million tokens.
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5 Maj. vote  Target (kCaMVol) (kCaMVol) (kCaMVo3 ) (kCaMV03)

T Ace (%) Ace (%) Cye g Cost Acc. (%) Cost
096 01 9336 89.63 9335 9.14 93.40 9.14
096 02  92.84 89.13 92.83 9.14 92.80 9.14
096 03 9230 88.61 92.30 9.14 92.30 9.14
096 04 9132 87.67 91.32 9.14 91.30 9.14
096 05  90.99 87.35 90.99 9.14 91.00 9.14
096 06 9063 87.00 90.63 9.14 90.60 9.14
096 07  89.84 86.25 89.84 9.14 89.80 9.14
096 08  89.16 85.59 89.16 9.14 89.20 9.14
095 00 9385 89.16 93.85 9.14 93.90 9.14
095 01 9336 88,60 93.35 9.14 93.40 9.14
095 02  92.84 88.20 92.83 9.14 92.80 9.14
095 03 9230 87.69 92.30 9.14 92.30 9.14
095 04 9132 86.76 91.32 9.14 91.30 9.14
095 05  90.99 86.44 90.99 9.14 91.00 9.14
095 06 9063 86.09 90.63 9.14 90.60 9.14
095 07  89.84 8535 89.84 9.14 89.80 9.14
095 08  89.16 84.70 89.16 9.14 89.20 9.14
093 00 9385 87.28 93.87 7.59 93.90 7.59
093 01 9336 86.83 92.74 7.20 92.70 7.20
093 02 9284 86.34 90.76 5.68 90.80 5.68
093 03 9230 85.84 91.52 6.54 91.50 6.54
093 04 9132 84.93 90.31 6.03 90.30 6.03
093 05  90.99 84.62 89.56 5.43 89.60 5.43
093 06 9063 84.28 89.35 5.11 89.40 5.11
093 07  89.84 83.55 88.68 457 88.70 457
093 08  89.16 82.92 88.23 435 88.20 435
090 00 9385 84.47 86.98 2.3 $6.70 2.66
090 0.1 9336 84.03 86.79 2.3 86.20 2.57
090 02  92.84 83.56 $6.84 2.03 87.50 2.63
090 03 9230 83.07 85.61 3.53 87.80 378
090 04 9132 82.19 85.68 1.85 84.50 2.29
090 05  90.99 81.89 85.50 1.69 84.10 215
090 06 9063 81.56 8523 1.66 8370 2.16
090 07  89.84 80.86 84.69 1.49 83.10 2.02
090 08  89.16 80.24 84.64 1.47 82.80 2.01
080 00 9385 75.08 84.56 113 80.10 155
080 0.1 9336 74.69 84.35 116 80.80 156
080 02 9284 74,07 84.58 112 80.00 152
080 03 9230 73.84 84.42 114 79.10 151
080 04 9132 73.06 84.54 114 79.10 152
080 05  90.99 72.79 84.68 113 78.70 1.49
080 0.6  90.63 72.50 84.74 115 78.60 1.50
080 07  89.84 71.87 83.05 0.92 78.20 147
080 08  89.16 71.33 80.90 0.64 78.30 1.48

Table 16: Accuracy and cost of CaMVo with ki, = 1 and ki, = 3, alongside the accuracy
of majority voting and the target accuracy, under varying confidence thresholds J and correlation
parameters C; in the synthetic correlated data. The synthetic data are generated with parameters
d =5,0 = 0.5, and o = 0.1. Note that the cost of majority voting is fixed at $9.14 per million
tokens for all settings.
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5 Maj. vote Target (kCaMVol) (kCaMVol) (kCaMV(; ) (kCaMVog)
Y min — min — min — min —
Acc. (%) Acc. (%) yce. (%) Cost Acc. (%) Cost
096 0.0 93.95 90.19 93.95 9.14 93.95 9.14
096 0.1 9343 89.69 9343 9.14 9343 9.14
096 0.2 92.86 89.15 92.86 9.14 92.86 9.14
096 03 92.28 88.59 92.28 9.14 92.28 9.14
096 04 91.57 87.91 91.57 9.14 91.57 9.14
096 0.5 91.07 87.43 91.07 9.14 91.07 9.14
096 0.6 90.65 87.02 90.65 9.14 90.65 9.14
096 0.7 90.06 86.46 90.06 9.14 90.06 9.14
096 0.8 89.41 85.83 89.41 9.14 89.41 9.14
095 0.0 93.95 89.25 96.00 8.54 96.00 8.54
0.95 0.1 9343 88.75 95.84 8.51 95.84 8.51
095 02 92.86 88.22 95.48 8.50 95.48 8.50
095 03 92.28 87.66 94.95 8.54 94.95 8.54
095 04 91.57 86.99 94.54 8.52 94.54 8.52
095 0.5 91.07 86.51 94.25 8.50 94.25 8.50
095 0.6 90.65 86.12 91.65 7.82 91.65 7.82
095 0.7 90.06 85.56 89.90 6.97 89.90 6.97
095 0.8 89.41 84.94 89.76 6.60 89.76 6.60
090 0.0 93.95 84.55 86.55 1.71 85.40 2.24
090 0.1 9343 84.08 86.44 3.09 90.51 3.27
090 02 92.86 83.58 86.32 1.68 84.94 2.14
090 03 92.28 83.05 87.63 2.20 88.51 291
090 04 91.57 82.42 86.06 1.64 84.53 2.12
090 0.5 91.07 81.96 85.72 1.52 84.98 2.02
090 0.6 90.65 81.58 84.09 1.98 84.09 1.98
090 0.7 90.06 81.06 85.31 1.44 83.69 1.99
090 0.8 89.41 80.47 85.55 1.36 82.90 1.95
0.80 0.0 93.95 75.16 85.32 1.13 80.11 1.51
0.80 0.1 9343 74.74 85.33 1.15 80.10 1.53
0.80 0.2 92.86 74.29 82.66 0.73 79.91 1.50
0.80 0.3 92.28 73.82 85.24 1.14 78.78 1.49
0.80 04 91.57 73.26 85.27 1.13 78.67 1.48
0.80 0.5 91.07 72.85 85.30 1.13 78.76 1.47
0.80 0.6 90.65 72.52 84.12 0.98 78.58 1.48
0.80 0.7 90.06 72.05 81.77 0.63 78.40 1.48
0.80 0.8 89.41 71.53 85.45 1.13 77.93 1.47

Table 17: Accuracy and cost of CaMVo with ki, = 1 and ki, = 3, alongside the accuracy
of majority voting and the target accuracy, under varying confidence thresholds § and correlation
parameters C; in the synthetic correlated data. The synthetic data are generated with parameters
d = 5,0 = 0.5, and o = 0.2. Note that the cost of majority voting is fixed at $9.14 per million
tokens for all settings.
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5 Maj. vote  Target (kCaMVol) (kCaMVol) (kCaMVo3 ) (kCaMV03)

T Ace (%) Ace (%) Cye g Cost Acc. (%) Cost
096 01 9183 88.16 96.69 6.62 96.69 6.62
096 02  91.54 87.88 96.77 6.54 96.77 6.54
096 03 9075 87.12 96.18 6.64 96.18 6.64
096 04 9028 86.67 95.58 6.46 95.58 6.46
096 05  89.61 86.02 95.68 6.31 95.68 6.31
096 06 8927 85.70 95.28 6.24 95.28 6.24
096 07  88.79 85.24 89.15 4.99 89.15 4.99
096 08  88.32 84.79 88.07 4.45 88.07 4.45
095 0 9245 87.83 97.50 5.69 97.50 5.69
095 01 9183 87.24 96.55 5.52 96.55 5.52
095 02  91.54 86.96 97.07 5.51 97.07 5.51
095 03 9075 8621 96.47 5.56 96.47 5.56
005 04 9028 85.77 95.85 5.41 95.85 5.41
095 05  89.61 85.13 95.33 5.14 95.33 5.14
095 06 8927 8481 91.03 474 91.03 474
095 07  88.79 84.35 $8.68 3.46 $8.68 3.46
095 08  88.32 83.90 94.52 5.00 94.52 5.00
093 0 9245 85.08 92.72 3.56 92.72 3.56
093 01 9183 85.40 91.07 3.48 91.07 3.48
093 02 9154 85.13 90.44 3.3 90.44 3.3
093 03 9075 84.39 90.23 334 90.23 334
003 04 9028 83.96 90.12 321 90.12 321
093 05  89.61 8333 89.63 3.6 89.63 3.6
003 06 8927 83.02 86.25 1.95 86.25 1.95
093 07 8879 82.57 86.35 1.88 86.35 1.88
093 08 8832 82.14 86.45 1.66 86.45 1.66
09 0 9245 8320 £6.80 1.42 $6.80 1.42
09 01 9183 82.65 85.45 2.03 85.45 2.03
09 02 9154 82.38 $6.63 152 $6.63 152
09 03 9075 81.67 86.78 157 86.78 157
09 04 9028 81.26 83.97 1.90 83.97 1.90
09 05 8961 80.65 8375 1.44 8375 1.44
00 06 8927 80.35 82.89 1.08 82.89 1.08
09 07 8879 79.91 86.36 128 86.36 128
00 08 8832 79.49 82.69 0.92 82,60 0.92
08 0 9245 73.96 82.53 0.61 82.53 0.61
08 01 9183 73.46 86.15 113 86.15 113
08 02 9154 73.23 8571 1.10 8571 110
08 03 9075 72.60 85.88 114 85.88 114
08 04 9028 72.23 82.57 0.64 82.57 0.64
08 05  89.6] 71.69 86.01 113 86.01 113
08 06 8927 71.42 8270 0.63 82.70 0.63
08 07 8879 71.03 82.85 0.64 82.85 0.64
08 08 8832 70.65 8271 0.62 8271 0.62

Table 18: Accuracy and cost of CaMVo with ki, = 1 and ki, = 3, alongside the accuracy
of majority voting and the target accuracy, under varying confidence thresholds J and correlation

parameters C; in the synthetic correlated data. The synthetic data are generated with parameters

d =5,0 = 0.5, and o = 0.4. Note that the cost of majority voting is fixed at $9.14 per million

tokens for all settings.
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Maj. vote Target CaMVo CaMVo CaMVo CaMVo

(07 ) kmin =1 kmin =1 kmin =3 kmin =3
Ace. (%) Ace. (%) g (%)) o Y U (%)) ot
0.1 0.96 92.21 88.53 92.21 9.14 92.21 9.14
0.1 0.95 92.21 87.60 92.21 9.14 92.21 9.14
0.1 0.93 92.21 85.76 92.41 6.97 92.41 6.97
0.1 09 92.21 82.99 85.82 1.81 85.82 1.81
0.1 0.85 92.21 78.38 84.61 1.21 84.61 1.21
0.1 0.8 92.21 73.77 80.73 0.66 80.73 0.66
0.2 0.96 92.36 88.67 92.36 9.14 92.36 9.14
0.2 0.95 92.36 87.75 94.94 8.53 94.94 8.53
0.2 093 92.36 85.90 91.12 5.10 91.12 5.10
02 09 92.36 83.13 85.69 1.45 85.69 1.45
0.2 0.85 92.36 78.51 85.35 1.18 85.35 1.18
0.2 0.8 92.36 73.89 84.93 1.10 84.93 1.10
04 0.96 91.23 87.58 93.59 6.70 93.59 6.70
0.4 0.95 91.23 86.67 96.61 5.49 96.61 5.49
04 0.93 91.23 84.85 90.10 3.03 90.10 3.03
04 09 91.23 82.11 84.71 1.91 84.71 1.91
04 0.85 91.23 77.55 82.96 0.69 82.96 0.69
04 0.8 91.23 72.99 82.90 0.63 82.90 0.63

Table 19: Accuracy and cost of CaMVo with ki, = 1 and ki, = 3, alongside the accuracy
of majority voting and the target accuracy, § and « values for synthetic data generated using the
correlation matrix in Eq. (22)). The synthetic data are generated with parameters d = 5, and o = 0.5.
Note that the cost of majority voting is fixed at $9.14 per million tokens for all settings.
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