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ABSTRACT

Diffusion Transformers (DiTs) have emerged as the state-of-the-art architecture for
video generation, yet their computational and memory demands hinder practical de-
ployment. While post-training quantization (PTQ) presents a promising approach
to accelerate Video DiT models, existing methods suffer from two critical limita-
tions: (1) dependence on computation-heavy and inflexible calibration procedures,
and (2) considerable performance deterioration after quantization. To address these
challenges, we propose DVD-Quant, a novel Data-free quantization framework
for Video DiTs. Our approach integrates three key innovations: (1) Bounded-init
Grid Refinement (BGR) and (2) Auto-scaling Rotated Quantization (ARQ)
for calibration data-free quantization error reduction, as well as (3) δ-Guided Bit
Switching (δ-GBS) for adaptive bit-width allocation. Extensive experiments across
multiple video generation benchmarks demonstrate that DVD-Quant achieves an
approximately 2× speedup over full-precision baselines on advanced DiT mod-
els while maintaining visual fidelity. Notably, DVD-Quant is the first to enable
W4A4 PTQ for Video DiTs without compromising video quality. Code and models
will be released to facilitate future research.
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Figure 1: DVD-Quant generates high-fidelity videos under both W4A6 (mixed-precision) and
W4A4 settings, while baseline methods fail under low-bit activation quantization. DVD-Quant
remains effective even in such extreme scenarios.

1 INTRODUCTION

Recent advances in diffusion transformers (DiTs) (Peebles & Xie, 2023) have revolutionized video
generation (Singer et al., 2023), enabling high-fidelity synthesis through iterative denoising processes.
Innovations such as Sora’s unified framework (OpenAI, 2024) and SkyReels-V2’s infinite-length
generation (Chen et al., 2025a) demonstrate enhanced controllability, while efficiency gains emerge
from quantization (Zhao et al., 2025), sparse attention mechanisms (Xi et al., 2025; Zhang et al.,
2025) and cache techniques (Wu et al., 2025; Liu et al., 2024a). The emergence of large-scale
models like HunyuanVideo (Kong et al., 2024) has further improved video generation quality with
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its causal 3D VAE architecture and full-attention mechanisms, achieving film-grade quality and
physics-aware generation. These developments collectively demonstrate enhanced controllability in
temporal coherence and resolution, though challenges persist in computational efficiency.

Prior work in diffusion model quantization has approached these challenges through two distinct
paradigms. Quantization-Aware Training (QAT) requires full model fine-tuning but achieves supe-
rior low-bit performance. Ter-DiT (Lu et al., 2024) introduces RMSNorm-enhanced adaLN modules
for stable ternary training of Diffusion Transformers. In contrast, Post-Training Quantization
(PTQ) methods (Li* et al., 2025; Chen et al., 2025b; Zhao et al., 2025) offer deployment-friendly
solutions without retraining. SVDQuant (Li* et al., 2025) employs low-rank SVD decomposition to
absorb outliers into 16-bit branches for 4-bit weight/activation quantization on FLUX.1 models (Labs,
2024). ViDiT-Q (Zhao et al., 2025) introduces a set of techniques for DiT-based generative models
and achieves negligible performance drop under W8A8 quantization. These approaches demonstrate
the trade-off between QAT’s higher accuracy and PTQ’s faster deployment in DiT compression.

Although PTQ offers a plug-and-play alternative, existing PTQ methods still face two critical
limitations. First, the calibration-based pre-scaling adopted by most video-specific quantization
techniques (Zhao et al., 2025; Wu et al., 2024; Chen et al., 2025b) not only demands extensive
calibration time but also struggles to adapt to timestep-dependent scale variations in DiTs. Second,
aggressive W4A4 quantization results in significant performance degradation (Fig. 1), with VBench
metrics dropping by 27.5% to 61.3%. Our analysis reveals three key insights to overcome these
limitations: (i) Weights exhibit Gaussian-like distributions (Fig. 3), making fixed quantization
ranges suboptimal for preserving critical parameters. (ii) Activation scales vary significantly across
denoising timesteps, necessitating dynamic rather than static quantization strategies. (iii) Latent
feature variations exist across diffenrent denoising timesteps, enabling the possibility of adaptive
bit-width allocation during online inference.

Building on these insights, we propose DVD-Quant, a comprehensive quantization framework
tailored for DiTs. To approximate the Gaussian-like weight distribution, we propose an iterative
grid refinement strategy, which progressively adjusts the quantization scale and zero-point starting
from their bounded-search initialization. For handling the timestep-variant activations scales, we
combined online scaling with Hadamard rotation. Compared to calibration-based pre-scaling, it
can achieve notably lower quantization error. Furthermore, to adapt to the latent feature variations
across denoising steps, we propose a mechanism that automatically allocate appropriate bit-widths
for activations at different timesteps. Our contributions can be summarized as follows:

• We conduct a systematic analysis of quantization challenges in large-scale Video DiTs, iden-
tifying three key characteristics: Gaussian-like weight distributions, substantial activation
scale discrepancies, and latent feature variations across denoising timesteps.

• We propose Bounded-init Grid Refinement (BGR), a novel weight quantization scheme
for Gaussian-like distributions. By iteratively refining quantization grid upon tightening
bounds, BGR significantly reduces the quantization error compared to fixed-range methods.

• We propose Auto-scaling Rotated Quantization (ARQ), a calibration-free activation
quantization method designed to address timestep-dependent scale variations. Leveraging
online scaling with Hadamard rotation, ARQ maintains high model accuracy without
requiring extensive calibration procedures.

• We propose δ-Guided Bit Switching, an adaptive temporal-wise mixed-precision mech-
anism that allocates activation bit-widths by leveraging timestep feature variations. This
mechanism optimizes bit allocation while incurring negligible additional inference overhead.

2 RELATED WORKS

2.1 DIFFUSION TRANSFORMERS (DIT)

Diffusion Transformers (DiTs) (Peebles & Xie, 2023) represent a paradigm shift in generative
modeling, replacing the traditional U-Net (Chitwan Saharia, 2022; Andreas Blattmann, 2023;
Aditya Ramesh & Chen, 2022) backbone with transformer architectures. This breakthrough was
attributed to the self-attention mechanism’s ability to model long-range dependencies (Vaswani et al.,
2023), proving especially beneficial for high-resolution synthesis.
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Figure 2: Overview of DVD-Quant. Bounded-init Grid Refinement and Auto-scaling Rotated
Quantization are data-free methods designed to reduce quantization errors for weights and activations,
respectively. δ-Guided Bit Switching adaptively assigns bit-widths to different time steps.

The success of DiTs in image generation quickly extended to video synthesis. Latte (Ma et al., 2025)
pioneered this transition by adapting the DiT framework for temporal modeling, achieving unprece-
dented coherence in text-to-video generation. This was followed by Sora (OpenAI, 2024), which
scaled DiTs to massive parameter counts and dataset sizes, demonstrating remarkable capabilities
in long video generation with complex dynamics. Open-source implementations like Hunyuan-
Video (Kong et al., 2024), Open-Sora (Zheng et al., 2024; Peng et al., 2025) and CogvideoX (Yang
et al., 2024) further democratized these advancements, making them widely accessible.

Despite their impressive results, DiTs inherit fundamental challenges from both transformer architec-
tures and diffusion processes. Attention’s quadratic complexity is particularly problematic for video
generation, where sequence length scales with spatial resolution and frame count. Moreover, the
iterative nature of diffusion models requires multiple forward passes through the entire architecture
(typically 50-100 steps), with each step processing increasingly refined features. These limitations
have driven efforts to boost DiTs’ efficiency, such as caching (Wu et al., 2025; Liu et al., 2024a), and
quantization (Li* et al., 2025; Chen et al., 2025b; Zhao et al., 2025).

2.2 MODEL QUANTIZATION

Model quantization (Xiao et al., 2023; Li* et al., 2025; Liu et al., 2024b; Benoit Jacob &
Kalenichenko., 2018; Li et al., 2023) has emerged as a fundamental technique for compressing
deep neural networks by converting full-precision parameters into low-bit representations, signifi-
cantly reducing memory footprint and computational costs. Post-Training Quantization (PTQ) (Li
et al., 2025; Frantar et al., 2023; Yan et al., 2025) has proven particularly effective as it compresses
pre-trained models without requiring extensive retraining.

Significant progress has been made to address quantization challenges in transformers (Vaswani et al.,
2017). SmoothQuant (Xiao et al., 2023) introduces channel-wise scaling to balance weight and activa-
tion quantization difficulty, while Quarot (Ashkboos et al., 2024) employs orthogonal matrix rotations
to distribute values evenly across channels. For diffusion models, quantization presents unique chal-
lenges due to their time-dependent nature. Q-Diffusion (Li et al., 2023) and PTQ4DM (Shang et al.,
2023) address this by collecting timestep-wise activation statistics to determine optimal quantization
parameters. Q-DiT (Chen et al., 2025b) tackles channel-wise imbalance via customized quantization
parameters. Subsequent work such as SVDQuant (Li* et al., 2025) introduces low-rank branches to
handle activation outliers, enabling 4-bit quantization without performance degradation. For video
generation, ViDiT-Q (Zhao et al., 2025) achieves lossless W8A8 quantization.

Despite these advances, text-to-video generation with quantized DiTs still suffers from two persistent
limitations. First, offline calibration for activation pre-scaling in existing video quantization meth-
ods (Zhao et al., 2025; Wu et al., 2024; Chen et al., 2025b) imposes heavy computational burdens
and struggles to adapt to large activation vatiants. Second, pushing quantization precision below 8
bits for activations (W4A4) triggers significant quality degradation. Our framework overcomes these
obstacles through three key innovations presented in Sec. 3.
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Algorithm 1 Bounded-init Grid Refinement
Input: W ∈ Rn×m, n ∈ N, ϵ ∈ R
Output: ∆∗ ∈ Rn, z∗ ∈ Zn

1: δl = δu = (max(W)−min(W))/n
2: E∗ =∞,∆∗ = z∗ = 0
3: for i = 1, 2, ..., n do
4: Wc = clamp(W,min(W) + i · δl,max(W)− i · δu)
5: ∆(0) = (max(Wc)−min(Wc))/(2

b − 1), z(0) = −⌊min(Wc)⊘∆(0)⌉
6: W

(0)
q = clamp(⌊W ⊘∆(0)⌉+ z(0), 0, 2b − 1)

7: E(0) = ∥W −∆(0) ⊙ (W
(0)
q − z(0))∥F , j = 0

8: repeat
9: ∆(j) = ⟨W(j−1)

q − z(j−1),W⟩row ⊘ ⟨W(j−1)
q − z(j−1),W

(j−1)
q − z(j−1)⟩row

10: z(j) = clamp(W
(j−1)

q −W ⊘∆(j), 0, 2b − 1)

11: W
(j)
q = clamp(⌊W ⊘∆(j)⌉+ z(j), 0, 2b − 1)

12: E(j) = ∥W −∆(j) ⊙ (W
(j)
q − z(j))∥F , j = j + 1

13: until E(j−1) − E(j−2) < ϵ
14: if E(j−1) < E∗ then
15: E∗ ← E(j−1), ∆∗ ← ∆(j−1), z∗ ← z(j−1)

16: end if
17: end for
18: return ∆∗, z∗

3 METHOD

Overview. As shown in Fig. 2, Bounded-init Grid Refinement (BGR) iteratively refines quantization
grid upon progressive tightening bounds, which preserves Gaussian-distributed DiT weights with
minimal error (Sec. 3.1). Auto-scaling Rotated Quantization (ARQ) eliminates calibration overhead
by jointly optimizing rotation and online scaling for activation outliers, which also offers greater
flexibility for timestep-dependent scale variants (Sec. 3.2). Additionally, δ-Guided Bit Switching
further allocates bit-widths adaptively across timesteps by tracking feature evolution (Sec. 3.3). The
synergy of these techniques achieves lower bit-widths (e.g., W4A4 and W4A6) with negligible quality
degradation, overcoming limitations of prior quantization approaches.

3.1 BOUNDED-INIT GRID REFINEMENT (BGR)

For weight matrix W ∈ Rn×m, vanilla MinMax (per-channel) quantization (Jacob et al., 2018)
directly adopts the extreme values for range calculation through Quant/DeQuant processes:

Quant: Wq = clamp(⌊W ⊘∆⌉+ z, 0, 2b − 1), (1)

DeQuant: Ŵ = ∆⊙ (Wq − z), (2)
where ∆ = (max(W)−min(W))/(2b−1) ∈ Rn, z = −⌊min(W)⊘∆⌉ ∈ Zn denote the step-size
and zero-point for each channel respectively.

This approach is particularly problematic for Gaussian-distributed weights, as fixed ranges amplify
quantization errors in two ways: (i) by allocating excessive bins to outlier regions (only 0.3% of
parameters), and (ii) by creating suboptimal interval spacing around the zero-mean concentration. To
address this, we revisit the optimization objective for low-bit quantization, which is

∆∗, z∗ = argmin∆,z∥W −∆⊙ (Wq − z)∥F . (3)

Notably, the heuristic solution from MinMax algorithm provides an initialization for this optimization
problem. As post-training quantization aims to avoid computationally expensive process (e.g.,
gradient descent), we seek a closed-form solution for the quantization objective. Assuming we
have obtained the initial state of ∆, z, and Wq, our goal is to refine one or all of them to reduce
quantization error. Refining them simultaneously is highly challenging, instead, we can refine one
parameter while fixing the other two. For instance, we first fix z and W, then derive a better solution

4
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Figure 3: Quantization error comparison: MinMax (Jacob et al., 2018) vs. BGR across layers on
HunyuanVideo (Kong et al., 2024).

for ∆ by solving the least squares problem for Eq. 3:
∆′ = ⟨Wq − z,W⟩row ⊘ ⟨Wq − z,Wq − z⟩row, (4)

where ⟨·, ·⟩row denotes the row-wise inner product, with details provided in the supplementary file.

Once ∆′ is refined, we further refine z with ∆′ and Wq fixed. However, z is restricted to integers
and this discreteness precludes a closed-form derivative solution. We thus first relax the range of z
and then apply rounding:

z′ = clamp(Wq −W ⊘∆′, 0, 2b − 1). (5)

After refining ∆′ and z′, Wq is also updated under the new quantization grid:
W′

q = clamp(⌊W ⊘∆′⌉+ z′, 0, 2b − 1), (6)
notably, this refinement of Wq aligns with its definition in Eq. 1.

This sequential refinement procedure can be further extended to multiple rounds and combined with
various initialization algorithms. Beyond MinMax, search bound methods (Liu et al., 2024b; Shao
et al., 2023) also serve as valid initial strategies, which exclude outliers by progressively clipping
full-precision weights:

Wc = clamp(W,min(W) + δl,max(W)− δu), (7)

∆c = (max(Wc)−min(Wc))/(2
b − 1), zc = −⌊min(Wc)⊘∆c⌉, (8)

where δl and δu denote the shrink step sizes for lower and upper bounds, respectively. Since search
bound algorithm provides a better initial state for quantization step-size and zero-point, our grid
refinement algorithm is built on this initialization (see Alg. 1).

Our experiments in Fig. 3 quantitatively show a substantial 86% reduction in quantization error, effec-
tively preserving the critical parameters within high-density regions. These gains incur no additional
inference-time computational overhead, making BGR more accurate than previous approaches.

3.2 AUTO-SCALING ROTATED QUANTIZATION (ARQ)

Activation quantization in Diffusion Transformers (DiTs) poses two fundamental challenges: First,
the dynamic variation of activations across denoising timesteps renders offline scaling factor calibra-
tion ineffective. Second, traditional rotation-based methods incur substantial online computational
overhead while risking the amplification of quantization errors via value redistribution.Notably,
existing approaches fail to address these two challenges comprehensively.

Pre-scaling methods (Xiao et al., 2023; Zhao et al., 2025; Wu et al., 2024) introduce a channel-wise
mask s ∈ RC to alleviate quantization difficulty by transferring it from activations to weights:

Y = (Xdiag(s)−1) · ((diag(s)W)) = X̃ · W̃, si = max(|Xi|)α/max(|Wi|)1−α, (9)
where α is a hyperparameter that controls the degree of difficulty mitigation. Moreover, these methods
typically require a calibration dataset to compute scaling factors offline. When applied to DiT models
(which involve 50 denoising steps (Xiao et al., 2023; Zhao et al., 2025)), the calibration set often
fails to capture the full dynamic range of activation distributions across all timesteps, introducing
substantial quantization errors and potential bias.

5
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Figure 4: Visualization of activation distribution before and after rotation.

Rotation-based methods (Ashkboos et al., 2024; Liu et al., 2025; Zhao et al., 2025) employ an
orthogonal rotation matrix Q satisfying QQ⊤ = I and |Q| = I. While multiplying by Q can
effectively suppress large outliers, the rotation operation may inadvertently amplify certain activation
values. This risks introducing new quantization errors in the transformed space, as shown in Fig. 4.

To address these challenges, we propose Auto-scaling Rotated Quantization (ARQ) for activation
quantization. Our approach combines the strengths of both rotation-based and scaling-based methods
while overcoming their individual limitations. We first incorporate Hadamard matrix multiplica-
tion (Tseng et al., 2024) on both sides of activations and weights to preserve computational invariance:
Y = XW⊤ = (XH)(H⊤W). Hadamard rotation is computed by fast Hadamard transform, which
introduces marginal overhead to the inference latency. Subsequently, per-channel scaling factors are
computed online and applied directly to activations (rather than being transferred to weights):

X̂ = Q(XHΛ−1), Ŵ = BGR(WH), Y = X̂ΛŴ⊤, (10)

where X̃ = XH, sj = ∥X̃j∥∞ = max
i

(|x̃i,j |), and Λ = diag(s1, . . . , sc).

We analyze how ARQ addresses the massive outliers and channel-wise outliers inherent in DiT
activations. For massive outliers, rotation redistributes these extreme values across multiple channels.
For channel-wise outliers, the post-rotation online scaling reinforces channel-wise consistency and
mitigates the limitation of rotation shown in Fig. 4. Furthermore, our online scaling strategy eliminates
reliance on offline calibration datasets. For DiT models, where activation distributions vary drastically
across denoising steps, this runtime adaptation ensures optimal quantization parameters at every
timestep, sustaining generation quality throughout the entire diffusion process.

In practice, ARQ is implemented under a hardware-aligned constraint that ensures full compatibility
with low-bit Tensor Cores. While eq. (10) presents a per-channel scaling formulation for theoretical
completeness, our deployed kernels adopt a block-wise scaling variant aligned with Tensor Core’s
GEMM granularity (more details in supplementary file). All latency and accuracy results in Sec. 4
are derived under this hardware-aligned, block-wise ARQ configuration.

3.3 δ-GUIDED BIT SWITCHING (δ-GBS)

The denoising process in video DiTs exhibits non-uniform feature evolution across timesteps. Uni-
form quantization wastes computational resources on these redundant timesteps while potentially
compromising quality during critical transformation phases. Existing adaptive quantization methods
either depend on expensive calibration analysis (Zhao et al., 2025) or adopt static timestep segmenta-
tion (Wu et al., 2024). Neither of them can capture dynamic feature changes with respect to different
input prompts in video generation.

To further enhance video generation quality, we propose δ-Guided Bit Switching, tailored to input
characteristics. Prior work (Kahatapitiya et al., 2024; Liu et al., 2024a; Wu et al., 2025; Junhyuk So &
Park, 2024; Ma et al., 2024) found that denoising process of DiTs contains redundant timesteps, where
latent feature changes are marginal. For these redundant timesteps, we can apply lower bit-width
quantization across the entire model. In contrast, we use higher precision for critical timesteps with
significant feature transformations. Specifically, our mixed-precision mechanism operates as follows:

Bti =

{
blow

∑ti−1

t=tp
L1(F , t) < δ

bhigh
∑ti−1

t=tp
L1(F , t) ≥ δ

, L1(F , t) =
∥Ft −Ft−1∥1
∥Ft−1∥1

, (11)

where tp denotes the most recent timestep at which cumulative error tracking is reset, and Ft

represents the model’s output features at timestep t. Our algorithm works by continuously monitoring
normalized L1 distances between successive outputs. When cumulative feature changes remain below
the threshold δ, we apply blow-bit quantization, indicating marginal feature evolution can tolerate
lower precision. Once the accumulated error exceeds δ, we switch to bhigh-bit quantization to preserve
critical details, while simultaneously resetting the cumulative error counter to zero. This adaptive

6
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Table 1: Performance comparison of various quantization methods on VBench (Huang et al., 2024).

Method Bit-width
(W/A)

Aesthetic
Quality

Imaging
Quality

Overall
Consist.

Scene
Consist.

BG.
Consist.

Subject.
Consist.

Dynamic
Degree

Motion
Smooth.

HunyuanVideo (Kong et al., 2024) 16/16 62.53 64.78 25.86 42.81 97.01 96.05 51.39 99.30

MinMax (Jacob et al., 2018) 4/8 59.44 60.62 25.78 36.41 97.61 95.83 52.78 98.89
SmoothQuant (Xiao et al., 2023) 4/8 60.50 64.47 25.56 28.85 97.72 96.29 51.39 99.05
Quarot (Ashkboos et al., 2024) 4/8 58.80 56.86 25.33 34.30 98.10 95.72 55.56 99.03
ViDiT-Q (Zhao et al., 2025) 4/8 57.01 59.74 24.77 27.11 97.37 95.16 48.61 99.06
DVD-Quant 4/6 62.27 64.22 25.83 33.07 97.89 96.57 58.33 99.05

MinMax (Jacob et al., 2018) 4/4 24.20 24.78 4.27 0.00 98.05 96.27 0.00 99.03
SmoothQuant (Xiao et al., 2023) 4/4 48.41 59.46 21.09 7.84 96.72 94.97 1.39 98.79
Quarot (Ashkboos et al., 2024) 4/4 44.85 54.30 17.33 0.94 97.69 92.64 87.5 92.22
ViDiT-Q (Zhao et al., 2025) 4/4 45.36 40.10 19.66 7.85 97.19 97.29 0.00 99.43
DVD-Quant 4/4 61.96 61.82 25.68 29.94 97.82 96.61 56.94 99.15
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Figure 5: Visual comparisons between DVD-Quant and BF16 baseline (Kong et al., 2024), along-
side with quantization methods: MinMax (Jacob et al., 2018), SmoothQuant (Xiao et al., 2023),
Quarot (Ashkboos et al., 2024) and ViDiT-Q (Zhao et al., 2025) on HunyuanVideo. * indicates 8 for
baselines (W4A8) and 6 for DVD-Quant (W4A6, mixed-precision).

approach optimizes bit allocation while incurring negligible additional inference overhead, with the
threshold δ acting as a hyperparameter to balance performance and efficiency.

4 EXPERIMENTS

4.1 SETUP

Video Generation Evaluation Settings: We apply DVD-Quant to HunyuanVideo (Kong et al.,
2024) and generate videos using a 50-step flow matching scheduler (Lipman et al., 2023) with em-
bedded CFG (Ho & Salimans, 2022) scale 6.0 and flow shift factor 7.0. We also apply DVD-Quant
to Wan2.1 (Wan et al., 2025), detailed configurations and results are shown in the supplementary
file. For evaluation, we adpot the benchmark suite provided by VBench (Huang et al., 2024) to
comprehensively assess the quality of the generated videos. Specifically, we evaluate the model
across eight major dimensions (Ren et al., 2024) that reflect key aspects of video generation. These
metrics are designed to align closely with human perception, ensuring a reliable and standardized
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Table 3: Ablation studies of BGR and ARQ under W4A6 and W4A4 quantizations.

Methods Bit Width
(W/A)

Aesthetic
Quality

Imaging
Quality

Subject
Consist.

Motion
Smooth.

BG.
Consist.BGR ARQ

✓ W4A6 58.15 58.68 98.04 98.49 98.21
✓ W4A6 57.85 57.72 98.23 97.86 98.10
✓ ✓ W4A6 60.46 61.93 98.91 98.95 98.40

✓ W4A4 53.95 52.67 97.92 98.71 97.89
✓ W4A4 43.26 58.31 95.36 96.08 97.35
✓ ✓ W4A4 59.57 58.93 98.67 99.00 98.47

assessment of model performance. We compare DVD-Quant with MinMax (Jacob et al., 2018),
SmoothQuant (Xiao et al., 2023), Quarot (Ashkboos et al., 2024), and the current SOTA video PTQ
method ViDiT-Q (Zhao et al., 2025). All experiments are conducted on a single RTX4090 GPU.

4.2 MAIN RESULTS

VBench Quantitative Comparison. As shown in Tab. 1, DVD-Quant achieves significant
improvements over several state-of-the-art quantization methods under two configurations. (1)
High Precision Regime: When weights are set to 4 bits, existing methods require 8-bit activations
to maintain basic functionality, while our configuration demonstrates superior performance with
25% lower activation precision. Notably, our W4A6 mixed-precision configuration nearly matches
the BF16 HunyuanVideo model while significantly outperforming all W4A8 baselines across most
metrics. (2) Low Precision Challenge: In the extremely challenging W4A4 setting where all baseline
methods either fail completely or suffer severe degradation, DVD-Quant maintains remarkable
stability. For example, we achieve 58.94 Aesthetic Quality and 60.38 Imaging Quality, outperforming
the best W4A4 baseline by +10.53 in Aesthetic Quality. Besides, our method preserves temporal
dynamics while maintaining high motion smoothness, whereas prior works either degrade visually or
fail to generate coherent motion.

Qualitative Comparison. In W4A8 settings, while baseline methods preserve only coarse outlines,
they still suffer from significant loss of fine details. As illustrated in Fig. 5, ViDiT-Q’s W4A8 outputs
show washed-out textures in elements like launch towers. In contrast, our method consistently
recovers these subtle features, demonstrating robust performance. The advantage becomes more
evident in more challenging W4A4 settings, where conventional methods fail completely, generating
either incoherent noise patterns or severely distorted outputs. Our method maintains remarkable
visual coherence with marginal quality degradation compared to the BF16 baseline.

4.3 ABLATION STUDY

BGR and ARQ. We validate the effectiveness of BGR and ARQ in Tab. 3. The full model
with both BGR and ARQ achieves optimal performance across all metrics, demonstrating their
synergistic effects. Removing only BGR leads to significant drops in VBench scores, indicating the
critical role of progressively narrowing the weight quantization bound to preserve perceptual fidelity.
Conversely, disabling ARQ components results in comparable declines, highlighting the importance
of dynamically adjusting quantization scales during inference. Both BGR and ARQ maintain their
effectiveness irrespective of δ-GBS.

Table 2: Performance comparison of Different
mixed-precision Strategies.

Method δ-GBS STP ITP ABS SBA

Imaging Quality 61.93 61.33 61.40 61.03 61.26

Comparison with other mixed-precision
strategies. In the experiment, we set blow = 4
bit and bhigh = 8 bit in Eq. 11. Our method
achieves an average bit width of 6 across 50
timesteps. We compare the proposed δ-Guided
Bit Switching with other fixed-pattern mixed-
precision strategies. Specifically, we compare with four representative approaches: (1) Static
Temporal Partitioning (STP): allocate 4-bit precision for the first 25 timesteps and 8-bit precision
for the subsequent 25 timesteps; (2) Inverse Temporal Partitioning (ITP): reverse the bitwidth
allocation order of STP with 8-bit initially and 4-bit later; (3) Alternating Bitwidth Switching (ABS):
dynamically alternate between 4-bit and 8-bit precision at each timestep; (4) Stochastic Bitwidth
Allocation (SBA): randomly assign 4-bit or 8-bit precision to each timestep while maintaing the
average bit number 25. As shown in Tab. 2, δ-Guided Bit Switching surpasses other static mixed-
precision strategies in imaging quality. This error-driven dynamic decision mechanism effectively
resolves the challenge of bit allocation in conventional mixed-precision strategies.
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Table 4: Performance and speedup of DVD-Quant + TeaCache (Liu et al., 2024a).

Method Bit-width
(W/A)

Aesthetic
Quality

Imaging
Quality

BG.
Consist.

Subject.
Consist.

Motion
Smooth. Speedup

DVD-Quant+TeaCache W4A8 61.39 62.96 98.24 98.73 98.75 4.01×
W4A4 58.78 58.20 98.43 98.68 98.92 4.85×

� = 0.06 Avg. Imaging Quality = 62.11

� = 0.09 Avg. Imaging Quality = 61.93

� = 0.12 Avg. Imaging Quality = 61.43

� = 0.15 Avg. Imaging Quality = 61.19

� = 0.18 Avg. Imaging Quality = 61.00

Figure 6: Comparison of different δ.

Threshold of δ-Guided Bit Switching. In our mixed-
precision strategy, the threshold δ determines when to
switch bit-width during inference. Empirically, a lower δ
leads to more time steps using high-bit quantization, im-
proving visual quality at the cost of increased bit-width.
This presents a trade-off between performance and re-
source usage. Thus, we conduct a series of experiments
with different thresholds. As shown in Fig. 6, our exper-
iments demonstrate that as δ increases, the average bit-
width decreases, leading to a gradual reduction in imaging
quality. Notably, a key advantage of δ-GBS over existing
methods is its smooth and continuous bit-width adaptation:
when δ → 0, the model consistently uses W4A8; when
δ →∞, it reduces to W4A4. Critically, for intermediate
δ values, δ-GBS dynamically interpolates between 4-bit
and 8-bit at the activation level, ensuring a continuous
precision transition based on input characteristics. This
smooth adaptation is in stark contrast to conventional ap-
proaches, which typically switch abruptly between discrete
bit-widths, causing instability in output quality.

4.4 MEMORY AND LATENCY

Table 5: Memory saving and la-
tency speedup of DVD-Quant
on HunyuanVideo.

Bit-width Memory Latency
(W/A) Opt. Opt.

16/16 1.00× 1.00×
4/8 (ours) 3.68× 1.75×
4/6 (ours) 3.68× 1.93×
4/4 (ours) 3.68× 2.12×

DVD-Quant achieves significant improvements in both memory
efficiency and inference speed. As shown in Tab. 5, compared
to the BF16 baseline (16/16 bit-width), our W4A8 configuration
reduces memory usage by 3.68× while accelerating latency by
1.75×. More aggressive quantization (W4A4) maintains the same
memory savings but further boosts latency speedup to 2.12×. No-
tably, W4A6 means roughly half the denoising steps use W4A8
and the other half use W4A4. This allows direct use of the widely
adopted W4A4 and W4A8 GEMM kernels, eliminating the need
to design dedicated mixed-precision kernels.

4.5 INTEGRATE WITH CACHE MECHANISM

To demonstrate the orthogonal compatibility of DVD-Quant with other compression paradigms, we
integrate it with one of the SOTA cache methods TeaCache (Liu et al., 2024a). As illustrated in Tab. 4,
DVD-Quant maintains its compression efficiency alongside TeaCache (Liu et al., 2024a), achieving
additive speedup (up to 4.85×) without degrading key video generation metrics. This validates
the practicality of DVD-Quant in resource constrained scenarios where multiple optimization
dimensions could be jointly addressed.

5 CONCLUSION

In this work, we propose DVD-Quant, a comprehensive quantization framework including three
main innovations. The Bounded-init Grid Refinement (BGR) automatically adapts to weight dis-
tributions through iterative grid refinement upon bound tightening, while Auto-scaling Rotated
Quantization (ARQ) eliminates calibration dependencies through online rotation and scaling. The
δ-Guided Bit Switching further optimizes computational efficiency through content-aware precision
allocation. Extensive experiments demonstrate that DVD-Quant achieves 2× speedup on advanced
DiT models while maintaining visual quality, becoming the first framework to successfully enable
W4A4 post-training quantization for video generation tasks.
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