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ABSTRACT

As a distribution-free uncertainty quantification method for machine learning
models, conformal prediction constructs prediction sets with statistical coverage
guarantees. However, in real deep-learning systems, the deep learners could be af-
fected by training label noise, which leads to inefficiently large prediction sets. In
this work, focusing on the classification task, we study and address such a robust
learning issue within conformal prediction. We first empirically and theoretically
analyze this problem. Then, to alleviate this issue, we propose an efficiency-aware
conformalized meta-learning-based method, which directly minimizes the empir-
ical size of prediction sets on meta data, aiming at rectifying the training loss. Ex-
periments on datasets with both synthetic and real-world noise demonstrate that
the proposed method can effectively enhance the efficiency of the prediction sets
against training label noise.

1 INTRODUCTION

Nowadays, deep neural networks are widely used in various fields, such as healthcare and medicine
(Ahmad et al., 2018; Berg et al., 2019). Despite their strong performance for single-point prediction,
such models lack security guarantees. For example, the output of a single diagnosis is not always
a good aid to the doctor’s decision-making in medical diagnosis. It would be better for doctors to
judge among a range of possible diagnoses relying on their experiences, which calls for uncertainty
qualification (Abdar et al., 2021; Hüllermeier & Waegeman, 2021; Rudner & Toner, 2021). Such un-
certainty can be classified by its source into two types: epistemic uncertainty, which can be reduced
with more data or improved models, and aleatory uncertainty, which is inherent in data random-
ness (Fisch et al., 2022). Common uncertainty quantification methods include Bayesian modeling
(Houlsby et al., 2011; Gal & Ghahramani, 2016; Kuleshov et al., 2018) and calibration techniques
like Temperature Scaling (Guo et al., 2017) and Platt Scaling (Platt et al., 1999). Among them,
Conformal Prediction (Vovk et al., 2005; Angelopoulos et al., 2023) stands out as a distribution-
free framework that provides rigorous finite-sample coverage guarantees—predicting regions (e.g.,
intervals for regression and sets for classification) without requiring strong statistical assumptions.
It requires only exchangeability (a weaker condition than i.i.d.) and is model-agnostic, making it
directly applicable to any black-box machine learning model.

In multiclass classification tasks, valid, adaptive, and efficient prediction sets are highly desirable
(Romano et al., 2020; Messoudi et al., 2020), which means that the obtained prediction sets should
achieve desired marginal and conditional coverage, and also contain as few labels as possible. While
all three aspects are important for conformal prediction, the efficiency is particularly of practical in-
terest (Angelopoulos et al., 2021; Stutz et al., 2022; Bai et al., 2022; Dey et al., 2023; Sharma et al.,
2023; Liu et al., 2024; Correia et al., 2024; Feldman & Romano, 2024b; Huang et al., 2024). In
specific, provided the coverage properties are guaranteed, smaller prediction sets are generally more
informative and help the decision-making process such as medical diagnosis, where such smaller
prediction sets would enable doctors to make more accurate decisions and save time (Straitouri et al.,
2023; Kapuria et al., 2024; Cresswell et al., 2024). Currently, two kinds of approaches have been
developed to reduce the inefficiency, i.e., the size of prediction sets: designing novel non-conformity
(NC) scores (Angelopoulos et al., 2021; Ding et al., 2023; Huang et al., 2024) and improving the un-
derlying model, i.e., designing differentiable set size as part of the learning objective (Bellotti, 2021;
Stutz et al., 2022; Liu et al., 2024). However, these studies generally assume that the training data
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are noise-free, ignoring the training label noise, in which case the classifiers could be misleadingly
trained.

In this work, we are trying to analyze and address the efficiency issue of the conformalized predictor
under training label noise. Specifically, we first formally set up the problem of conformal prediction
under training label noise. Then we provide empirical evidence and theoretical analysis to show
how the training label noise could affect the prediction inefficiency. To enhance the efficiency of the
conformalized predictor under training label noise, we propose an efficiency-aware meta-learning-
based sample re-weighting method, such that the classifier can be robustly trained on the noisy
training data guided by the efficiency-aware meta-objective, and thus is expected to produce smaller
prediction sets in the test phase. Empirical evaluations on both synthetic and real noisy datasets
demonstrate the effectiveness of the proposed method in reducing the inefficiency without sacrificing
the coverage properties. To the best of our knowledge, this is the first attempt to directly explore the
effect of training label noise on the inefficiency of prediction sets.

2 RELATED WORK

The label noise problem has been noted in recent advances of conformal prediction, particularly
focusing on scenarios where noise contaminates the calibration set and consequently breaks the ex-
changeability assumption that is essential for marginal coverage guarantees (Penso & Goldberger,
2024; Cauchois et al., 2024; Einbinder et al., 2024; Sesia et al., 2024; Feldman & Romano, 2024b;
Clarkson et al., 2024; Gong et al., 2025). For example, (Cauchois et al., 2024) introduced weak
supervision conformal prediction, which preserves noise-consistent predictions by explicitly model-
ing the label corruption process in both calibration and test data. Then (Sesia et al., 2024) proposed
coverage-robust calibration algorithms for clean test data through modified NC scores. More re-
cently, (Einbinder et al., 2024) established theoretical bounds showing standard conformal methods
remain valid but conservative with certain forms of label contamination. While existing approaches
primarily address calibration-set noise, we study a distinct yet practically important scenario. In
this setting, classifiers are trained on noisy data (reflecting real-world constraints) while maintaining
exchangeability through a small, clean calibration set obtained via cost-effective manual verification
(Ren et al., 2018)) at the test phase. This configuration inherently ensures marginal coverage, al-
lowing us to focus on improving prediction efficiency. It should be mentioned that if the calibration
set is also unfortunately contaminated with noise, existing methods (Sesia et al., 2024; Penso &
Goldberger, 2024; Penso et al., 2025; Bortolotti et al., 2025) can be applied at the test phase to the
predictors learned by our method, as illustrated in Section 6.1.

3 PRELIMINARIES

In this work, we consider multiclass classifiaction tasks. Let X ⊂ Rd be the input space and Y =
{1, . . . ,K} be the label space. Imagining that we have a model f : X → RK parametered by w,
such as neural networks, and it approximately estimates the conditional probability P(Y = y|X =
x). Then for each input x ∈ X , we can use f to predict the most likely label ŷ = argmaxy∈Y f(x)y ,
where f(x)y is the y-th component of f(x;w). Similar to most previous studies (Angelopoulos
et al., 2021; Stutz et al., 2022; Einbinder et al., 2022; Huang et al., 2023), we focus mainly on
Split Conformal Prediction which can be applied end-to-end directly after model training (Vovk
et al., 2005). This method starts by splitting the training data D0 into two disjoint subsets: D0 =
Dtr

⊎
Dcal, where Dtr := {(Xtr

i , Y tr
i )}Ni=1 and Dcal := {(Xi, Yi)}ni=1. With such a splitting, we

train the model only on Dtr while reserving a small number of i.i.d. data in Dcal unseen during
model training for calibration. Following the convention of deep classifiers, we denote f as the
output of the softmax layer. Then we can compute a NC score Si = S(Xi, Yi) ∈ R for each
calibration datum (Xi, Yi), i = 1, . . . , n. Generally, the NC score is high when the softmax value of
the true label is low, i.e., when the model is badly wrong, and vice versa. After that, for a new test
data Xn+1, its prediction set Cα(Xn+1;Dcal) is constructed as follows:

Cα(Xn+1;Dcal) :=
{
y ∈ Y : S(Xn+1, y) ≤ Q1−α

(
{Si}ni=1)

}
, (1)

where Q1−α({Si}ni=1) denotes the ⌈(1 + n)(1 − α)⌉/n-th quantile of NC scores {Si}ni=1, and α
is the user-specified error rate. Then the constructed prediction sets provably achieve the 1 − α
marginal coverage, as formally guaranteed by the following theorem. In practical applications, the
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Figure 1: Empirical coverage and inefficiency of prediction sets by classifiers trained on datasets
with training label noise for baseline (CE). The inefficiency is normalized by the number of all
possible labels.

selection of NC score is extremely crucial. The two most classic methods are HPS (Sadinle et al.,
2019), and APS (Romano et al., 2020). More details on NC scores can be found in Appendix A.1.

Theorem 3.1 ((Vovk et al., 2005)). Assume that examples (Xi, Yi), i = 1, . . . , n+1 are exchange-
able. For any NC score function, the prediction set Cα(Xn+1;Dcal) is defined in Eq. (1). Then, the
following holds:

P(Yn+1 ∈ Cα(Xn+1;Dcal)) ≥ 1− α. (2)

4 LEARNING CONFORMALIZED PREDICTORS FROM NOISY LABELS

4.1 PROBLEM SETUPS

In this work, we consider the situation that the training set is with label noise to train neural network
models, while the calibration set is clean for constructing the prediction sets. In this setting, the
marginal coverage guarantee in Eq. (2) still holds under the assumption of exchangeability between
calibration and test data in Theorem 3.1. As mentioned in Section 1, this configuration allows
us to focus on the effect of training label noise on prediction efficiency. Note that in practice, the
calibration set may also contain label noise. Nevertheless, in such situations, we can manually refine
the labels at an affordable cost since the calibration set is generally small. In addition, previously
developed methods dealing with calibration label noise (Sesia et al., 2024; Penso & Goldberger,
2024; Penso et al., 2025; Bortolotti et al., 2025) can also be applied at the test phase, as illustrated
in Section 6.1. In the following part, we first empirically show the effect of training label noise on
the size of the prediction set, and then theoretically analyze it.

4.2 EMPIRICAL OBSERVATION

We conduct a series of experiments to empirically study the effect of training label noise on the
prediction set’s size. Specifically, we train deep classifiers on noisy training sets and construct the
prediction sets using HPS (Sadinle et al., 2019) for test points with clean calibration sets, and then
observe the average set sizes. For CIFAR-10 and CIFAR-100 datasets, we manually add symmetric
noise with different ratios (see Section 6.1 for its generation). The empirical results are shown in
Figure 1.

We can see that, in all situations, the marginal coverage can be guaranteed, since the exchangeability
assumption between calibration and test data still holds. However, the average size of the prediction
sets, i.e., inefficiency, becomes larger as the noise ratio increases. For example, under a noise ratio of
80%, the prediction set contains over 85% of all candidate labels. These results could be intuitively
explained by Figure 2: on the one hand, the classifier trained on the noisy training data tends to make
poor predictions on the calibration set, and thus the distribution of NC scores can largely deviates
from that of the training noise-free situation; on the other hand, such a classifier also tends to make
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Set A: {airplane, cat, dog, frog}

Set B: {airplane, automobile, 
bird, cat, deer, dog, frog,  

horse, ship, truck}
HPS

HPS APS

APSNoisy Labels Exist

All Clean Labels 𝑌𝑡𝑒𝑠𝑡

𝑌𝑡𝑒𝑠𝑡

Test Sample A 

𝑌𝑡𝑒𝑠𝑡: dog

(i) Training Classifiers (ii) NC Score Distributions on 𝓓𝒄𝒂𝒍 (iii) Prediction Sets for 𝑿𝒕𝒆𝒔𝒕

…

…

dog

dog

airplane

ship

horse

truck automobile

Set A: {dog}     Set B: {cat, dog}

Test Sample B 

𝑌𝑡𝑒𝑠𝑡: dog

Figure 2: Intuitive illustration for the effects of label noise on split conformal prediction. Left:
Training images with all clean labels v.s. presence of noisy labels. Middle: The empirical distri-
butions of NC scores on the calibration set. When training label noise exists, the scores by HPS
tend to take higher values, and the distributions of scores by APS tend to be non-uniform. Right:
Prediction sets for test data. Under the same 1 − α marginal coverage, the prediction sets become
larger by the classifier trained with label noise due to its confused prediction.

confused prediction on the test points, which, together with the deviated NC score distribution,
results in large prediction sets to achieve desired coverage.

4.3 THEORETICAL ANALYSIS

Now we try to anlayze the previous observations with mathematical tools. Following the previous
studies (Dhillon et al., 2024; Zecchin et al., 2024), we analyze the expected prediction set size
E
[∣∣Cα(Xn+1;Dcal)

∣∣] for the finite sample, where | · | denotes the counting measure for the discrete
label space Y in classification tasks. For any NC score function S(X,Y ) and s ∈ R, Fcal(s) is
defined as Fcal(s) = P[S(X,Y ) < s], where the probability is computed over the calibration data
Dcal ∼ P(X,Y ). And we define nα = ⌈(1 − α)(n + 1)⌉ − 1, where α is the user-specified error
rate. Then the expected prediction set size satisfies Theorem B.1 (Dhillon et al., 2024) in Appendix
B.1. For convenience, we denote Ŷ is the most likely predicted label by the classifier f for the
input X , while Y is the true label. When the NC score is simply computed using the 0-1 loss,
i.e., S(X,Y ) = I{Ŷ ̸= Y }, we can derive the following conclusions (whose proof is given in
Appendices B.2 and B.3):

Theorem 4.1 (0-1 NC score). Under the assumptions of Theorem B.1, if the NC score is 0-1 loss
defined as S(X,Y ) = I{Ŷ ̸= Y }, the expected size of the split conformal prediction sets satisfies

E
[∣∣Cα(Xn+1;Dcal)

∣∣] = 1 + P
[
B
(
n, pcal

)
≤ nα

](
|Y| − 1

)
, (3)

where pcal ≜ Pcal

[
Ŷ = Y

]
denotes the test accuracy, and B(n, π) denotes a binomial random

variable with n trials and success probability π.

Theorem 4.1 explicitly associates the classification accuracy on the calibration data with the ex-
pected set size. Specifically, the higher accuracy lowers the probability P

[
B
(
n, pcal

)
≤ nα

]
and

thus the expected size E
[∣∣Cα(Xn+1;Dcal)

∣∣], and vice versa. Consider two extreme cases, in which
the classifier is perfect with 100% accuracy, and the classifier purely randomly guesses the label,
we can get the expected sizes 1 and |Y|, respectively. In addition, as suggested by Proposition 4.2
(Appendix B.3 for asymmetric noise), if we further assume that the Bayes optimal classifier can
be obtained, then the expected size of the predictions can solely depend on the noise ratio of the
training data.

Proposition 4.2. Assuming that the classifier is Bayes optimal on training set Dtr, and the clean
posterior satisfies P [Y = k|X = x] > P [Y = i|X = x](i ̸= k), for the true label k of X . If Dtr
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contains symmetric noise defined in Appendix A.2, then

pcal ≈
K∑

k=1

πkmk(X)

1 +
∑

i̸=k b

(
mk(x)−mi(x)

)(
K

K−1 ϵ−1
) , (4)

where πk ≜ Pcal[Y = k], mk(x) ≜ Pcal[Y = k
∣∣X = x]. The accuracy of the classifier on the

clean test data pcal decreases as the noise ratio ϵ increases.

As suggested by Dhillon et al. (2024) and Zecchin et al. (2024), unlike 0-1 loss, the expected set size
for other NC scores couldn’t be derived without additional assumptions. So when analyzing other
NC scores, such as HPS and APS, we turn to focus on their empirical distributions under training
noise. We find that as the noise ratio increases, HPS scores become larger and APS scores become
non-uniform in Figure 3 (in Appendix B.4). It could be explained that a higher noise ratio reduces
the conformity between training and calibration data, which indeed leads to larger prediction sets.
More discussions of score distribution are given in Appendix B.4. Furthermore, Stutz et al. (2022)
also found that the accuracy didn’t directly control the set size in general experiments.

5 EFFICIENCY-AWARE CONFORMALIZED META-WEIGHT-NET

It suggests that existing traditional robust learning methods (Song et al., 2022), such as robust learn-
ing function or loss adjustment, try to improve accuracy; however, they don’t focus on prediction
uncertainty. As a post-hoc framework, CP can be directly combined with these robust strategies, but
our experimental results in Section 6 show that the set size of these methods, such as Meta-Weight-
Net (CE-MWN) (Shu et al., 2019), could be rather large. The main issue lies in the decoupling of
the training stage and the CP calibration. This motivates us to develop a new method to address this
problem using a meta-learning strategy.

5.1 LEARNING OBJECTIVE

Recently, the meta-learning (Finn et al., 2017; Hospedales et al., 2022; Vettoruzzo et al., 2024)
methodology has been applied to deal with the robust learning problem and has shown its effec-
tiveness (Ren et al., 2018; Shu et al., 2019; Wu et al., 2021; Wang et al., 2020; Tu et al., 2023).
The main idea of meta-learning-based robust learning is first to maintain a small set of clean meta
data, which can be obtained by manual label refinement (Ren et al., 2018), to simulate the test dis-
tribution, and then to use a certain loss evaluated on the meta data to specify the mechanism for
rectifying the training loss, such as example re-weighting (Ren et al., 2018; Shu et al., 2019), label
correction (Wu et al., 2021; Tu et al., 2023) and noise transition estimation (Wang et al., 2020).
Following this methodology, we propose to use a small set of clean meta data to simulate the pro-
cess of split conformal prediction and construct an efficiency-aware meta loss to guide the classifier
training on the noisy training data. Denoting Dtr := {(xtr

i , ytri )}Ni=1 as noisy training data and
Dmeta := {xmeta

j , xmeta
j }Mj=1 as the clean meta data, the overall learning objective can be formu-

lated as the following bi-level optimization:

Θ∗ = argmin
Θ

1

M

M∑
j=1

∣∣Cα(x
meta
j ;w∗(Θ))

∣∣, s.t. w∗(Θ) = argmin
w

1

N

N∑
i=1

V
(
Ltr

i (w)
)
; Θ

)
Ltr

i (w), (5)

where Ltr
i (w) = ℓ

(
ytri , f(xtr

i ;w)
)

for simplicity, and V
(
·; Θ
)

is the weighting function parameter-
ized by a multilayer perception (MLP), whose parameters are Θ.

Before presenting the algorithm for solving the above model, we first discuss more about it. Com-
pared with Meta-Weight-Net (MWN) (Shu et al., 2019), we adopt the same example re-weighting
strategy to rectify the training loss, but use the empirical set size as the meta loss instead of the cross-
entropy (CE) loss, which better fits our goal of improving the efficiency. Specifically, the CE loss
mainly focuses on the accuracy of the predictor. Therefore, directly minimizing the set size in the
meta objective would be more reasonable, and its advantages over the CE loss will be empirically
illustrated in Section 6. As for training loss rectification, other mechanisms such as label correction
(Wu et al., 2021) and noise transition estimation (Wang et al., 2020) may also be applied and should
be worth exploring in the future. Nevertheless, the simple example re-weighting strategy has shown
effectiveness in our empirical studies.
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5.2 OBJECTIVE RELAXATION

The meta loss in Eq. (5) can be explicitly written as∣∣Cα(xmeta
j ;w∗(Θ))

∣∣ =∑
y∈Y

I{Q1−α

(
{Si}ni=1

)
≥ S(xmeta

j , y)}, (6)

which is non-differentiable due to the discrete value it takes and the sorting operation in the quantile
computation. Therefore, we first need to relax it to a differentiable function.

Inspired by ConfTr (Stutz et al., 2022) and several studies thereafter (Huang et al., 2023; Yan
et al., 2024), we split meta data into two subsets: D̃cal = {(xj1 , yj1)}

M/2
j1=1 and D̃pred =

{(xj2 , yj2)}
M/2
j2=1. D̃cal is first leveraged to compute the quantile Q̃1−α(w(Θ)) through differen-

tiable sorting networks (Cuturi et al., 2019; Blondel et al., 2020), and then D̃pred is used to compute
the smoothed set size as our meta loss. Specially, the loss for the j2-th datum can be relaxed to

Ωα,j2

(
w(Θ)

)
≜
∑

y∈Y σ

(
Q̃1−α

(
w(Θ)

)
−S(xj2 ,y)

T

)
, where σ(·) is the sigmoid function defined as

σ(z) = 1/(1 + exp(−z)), and T is the temperature hyperparameter. If T → 0, Ωα,j2

(
w(Θ)

)
will

approach
∣∣Cα(xj2 ;w(Θ))

∣∣. Using such a differentiable relaxation, the learning goal becomes the
following bi-level optimization:

Θ∗ = argmin
Θ

1

M/2

M/2∑
j2=1

Ωα,j2

(
w∗(Θ)

)
, s.t. w∗(Θ) = argmin

w

1

N

N∑
i=1

V(Ltr
i (w); Θ)Ltr

i (w). (7)

5.3 LEARNING PROCESS

The bi-level optimization presented in the previous subsection is still difficult to solve due to its
nested structure. There are various studies devote to solving such a bi-level optimization (Liu et al.,
2022), while we adopt the one-step gradient approximation strategy presented in MAML (Finn et al.,
2017), which has shown its simplicity and effectiveness in the meta-learning-based robust learning
methods (Ren et al., 2018; Shu et al., 2019; Wang et al., 2020).

Specially, in each iteration during the training process, a mini-batch of training data {(xtr
i , ytri )}n0

i=1
and a mini-batch of meta data {(xmeta

j , ymeta
j )}m0

j=1 are sampled. Then we use the one-step gradient
update (Finn et al., 2017) to approximate the lower-level optimization:

ŵ(t)(Θ) = w(t) − β1 ×
1

n0

∑n0

i=1
V
(
Ltr
i (w(t)); Θ

)
∇wLtr

i (w)
∣∣
w(t) . (8)

Next, we update Θ with one-step gradient descent:

Θ(t+1) = Θ(t) − β2 ×
1

m0/2

∑m0/2

j2=1
∇ΘΩα,j2

(
ŵ(t)(Θ)

)∣∣
Θ(t) , (9)

where ŵ(t)(Θ) is used to approximate w∗(Θ). After updating Θ, the current weight function
V
(
Ltr
i (w(t)); Θ(t+1)

)
is used to update the parameter of the classifier w:

w(t+1) = w(t) − β1 ×
1

n0

∑n0

i=1
V
(
Ltr
i (w(t)); Θ(t+1)

)
∇wLtr

i (w)
∣∣
w(t) . (10)

The whole learning process referred to as Conformalized Meta-Weight-Net (Conf-MWN), is sum-
marized in Algorithm 1 .

5.4 THEORETICAL PROPERTIES

Inspired by Zhao et al. (2019), we provide the generalization result in Theorem 5.1 (proof is given
in Appendix C.1). It indicates that the proposed meta-learning model approaches the optimal weight
at a rate O(

√
d ln(M)/M).

Theorem 5.1. Assume that meta loss Ω(Xmeta; ŵ(Θ)) is λ-Lipschitz continuous with respect to
Θ. Let Θ ∈ Bd be the parameter of training weighting function in a d-dimensional unit ball, and M
be the number of meta data. If (Xmeta, Y meta) ∼ Pcal, then define the generalization risk as:

R(ŵ(Θ)) = E
[
Ω(Xmeta; ŵ(Θ))

]
. (11)
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Algorithm 1 The Conf-MWN Learning Algorithm
Input: Training data set Dtr, meta data set Dmeta, batch size n0, m0, and max iteration T .
Output: The weight-net’s parameters Θ(T ), and the classifier’s parameters w(T ).

1: for t = 0 to T − 1 do
2: {xtr

i , ytri }
n0
i=1 ← Sample mini-batch (Dtr, n0) # Training data with noisy labels.

3: {xmeta
j , ymeta

j }m0
j=1 ← Sample mini-batch (Dmeta,m0) # Meta data with clean labels.

4: Formulate the classifier parameter ŵ(t)(Θ) by Eq. (8).
5: Randomly split {xmeta

j , ymeta
j }m0

j=1 in half.
6: For D̃cal: update differentiable quantile Q̃1−α(ŵ

(t)(Θ)).
7: For D̃pred: compute Ωα,j2

(
ŵ(t)(Θ)

)
.

8: Update Θ(t+1) by Eq. (9).
9: Update w(t+1) by Eq. (10).

10: end for

Let Θ∗ = arg min
Θ∈Bd

R(ŵ(Θ)) be the optimal parameter in the unit ball, and Θ̂ = arg min
Θ∈A

R̂(ŵ(Θ))

be the empirically optimal among a candidate set A. With probability at least 1− δ, we have

R(ŵ(Θ̂))−R(ŵ(Θ∗)) ≤
3λ+

√
4d ln(M) + 8 ln(2/δ)√

M
. (12)

In addition, we can show the theoretical convergence of the learning process (see Appendix C.2).

6 EXPERIMENTS

To verify the effectiveness of Conf-MWN, we conduct experiments on datasets with both synthetic
training label noise and real-world noise. We mainly compare our method with direct training using
CE on noisy data, while also considering the CE-based MWN (Shu et al., 2019), denoted as CE-
MWN, as a reference. Three metrics are used for evaluation, which are empirical coverage (Cov.),
inefficiency (Ineff.) and accuracy (Acc.), defined as Cov. := 1

|Dtest|
∑

Xi∈Dtest
I
[
Yi ∈

Cα(Xi;Dcal)
]
, Ineff. := 1

|Dtest|
∑

Xi∈Dtest

∣∣Cα(Xi;Dcal)
∣∣ and Acc. := 1

|Dtest|
∑

Xi∈Dtest
I[Ŷi =

Yi], respectively. Among them, it always holds that Cov. ≈ 1 − α due to the marginal coverage
guarantee (Angelopoulos et al., 2023), and thus we focus mainly on Ineff., i.e., the average size
of the prediction sets. Acc. is also reported as a reference since it is correlated to Ineff.. We
mainly focus on HPS with α = 0.01 in the main text, and put the extended results, including more
error rates and other scores, in the Appendices E.1 and E.2.

6.1 DATASETS WITH SYNTHETIC LABEL NOISE

We adopt two common datasets CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), and consider two
settings of label noise (Song et al., 2022): (1) Symmetric Noise. The true label is corrupted by a
noise transition matrix T ∈ [0, 1]K×K , whose element Tij := p(Y ′ = j|Y = i) is the probability
of the true label i being flipped into a corrupted label j with equal probability. For a noise rate
τ ∈ [0, 1], Tij = 1 − τ for j = i and Tij = τ

K−1 for any j ̸= i. (2) Asymmetric Noise. The true
label is more likely to be mislabeled into a particular label, and thus Tij = 1 − τ for j = i, while
Tij = τ for a specific j ̸= i. We randomly split 1000 images with clean labels from the training
set as meta-data Dmeta and calibration data Dcal respectively, and add label noise to the rest as the
noisy training data Dtr. More detailed experimental settings are provided in Appendix D.1.

Decreasing of the prediction set’s size with Conf-MWN. Tables 1 and 2 show the average per-
formance of different methods on CIFAR-10 and CIFAR-100 datasets, respectively, with symmetric
(sym.) noise (results with asymmetric noise are shown in Tables 9 and 10 in Appendix E.3). It
can be observed that our Conf-MWN outperforms CE in Ineff. under almost all noise types and
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Table 1: Results on CIFAR-10 datasets with symmetric (sym.) noise. The performance is averaged
over 3 random runs and the best is highlighted in Bold.

No Noise Sym.-20% Sym.-40%

Methods Cov.% Ineff. Acc.% Cov.% Ineff. Acc.% Cov.% Ineff. Acc.%

CE 98.81 1.51 92.01 98.95 5.31 87.55 99.03 7.42 83.78
CE-MWN 98.89 1.50 92.29 98.98 2.66 89.78 98.81 3.03 86.62
Conf-MWN 99.03 1.50 92.68 98.82 1.98 90.18 98.99 2.85 87.08

Table 2: Results on CIFAR-100 datasets with symmetric (sym.) noise. The performance is averaged
over 3 random runs and the best is highlighted in Bold.

No Noise Sym.-20% Sym.-40%

Methods Cov.% Ineff. Acc.% Cov.% Ineff. Acc.% Cov.% Ineff. Acc.%

CE 98.87 13.20 69.18 99.01 40.69 62.23 98.96 58.67 55.71
CE-MWN 98.87 12.08 69.79 98.94 27.15 64.68 98.86 42.09 58.32
Conf-MWN 98.95 12.57 69.73 99.03 24.50 65.44 98.91 33.60 60.20

all noise ratios. For example, under 20% symmetric noise on CIFAR-10, the average prediction
sets’ size by Conf-MWN is only 1.98, which achieves over 60% reduction compared with that of
CE, greatly improving the efficiency and informativeness of prediction sets. Besides, we also ob-
serve that while CE-MWN already performs well, our method can further consistently improve the
Ineff. metric, since it directly minimizes the efficiency-aware meta loss. The convergence curves
of inner and outer loss are shown in Figure 4 (Appendix C.3). More analysis of hyperparameters
such as different classifiers, the number of meta and calibration data, the temperature T can be found
in Appendix F.

The improvement in the distribution of HPS and APS scores. In addition to these quantitative re-
sults, we draw the empirical probability density function (PDF) of the NC scores (HPS and APS) on
the calibration set by Conf-MWN across different noise ratios in Appendix E.4 (Figure 5). The fig-
ure empirically suggests the mechanism of the effectiveness of Conf-MWN, that it can promisingly
correct the distribution of the NC scores, though the classifier is trained on noisy data.

Comparison with robust learning or conformal training methods. More experimental com-
parisons with classic robust learning methods such as GCE (Zhang & Sabuncu, 2018) and Co-
teaching (Han et al., 2018) are provided in Appendix E.5 (Tables 11 and 12). We also find that when
CIFAR-100 training set contains 40% symmetric noise, GCE has an accuracy rate 13.46% higher
than Co-teaching, but the set size is larger. This highlights that traditional robust learning methods
aimed at improving accuracy may not be fully adapted to improving the efficiency of the prediction
set. We also conduct experiments with only ConfTr at 99% coverage and show the results in Ap-
pendix E.6 (Tables 13). The results show that, without the robust consideration, ConfTr tends to be
significantly affected by training label noise.

Both training and calibration data contain label noise. In practice, we also face the situation
that the calibration set contains label noise. In this case, we can still apply Conf-MWN to train the
classifier, and then use methods dealing with calibration noise (Cauchois et al., 2024; Clarkson et al.,
2024; Einbinder et al., 2024; Feldman & Romano, 2024a; Sesia et al., 2024; Penso & Goldberger,
2024; Penso et al., 2025) to do split conformal prediction, instead of the standard way. Here, we
show some empirical results by using the NACP (Penso et al., 2025) method in Table 3, and more re-
sults are provided in Appendix E.7 (Tables 14, 15 and 16). It can be seen that, due to the violation of
exchangeability between the calibration and test sets, the coverage is no longer guaranteed with the
standard conformal prediction. Nevertheless, with NACP, the coverage can be ameliorated toward
the target, and Conf-MWN can still significantly enhance the efficiency of the prediction sets.

The adaptiveness of the prediction sets using Conf-MWN. We also show examples of prediction
sets under training with CE and our method in Appendix G (Figures. 9 and 10). As can be seen, our
method effectively excludes the irrelevant labels in the prediction sets. Besides, some interesting ob-
servations can be drawn, for example, from Figure 9: (1) Our method exactly reflects the ambiguity
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Table 3: Results on CIFAR-100 datasets with both training and calibration sets containing symmetric
(sym.) label noise. The best performance is highlighted in Bold.

Sym.-20% Sym.-40%

Cov.% Ineff. Cov.% Ineff.

Scores CE Conf-MWN CE Conf-MWN CE Conf-MWN CE Conf-MWN

HPS 99.95 99.97 9.48 9.19 99.92 99.95 9.68 9.58
HPS+NACP 99.21 99.35 6.85 2.56 99.33 99.26 8.20 5.40

between deer and horse for the third example; (2) Comparing the first and second ones, the ears of
the dog in the second are shorter, and thus can reasonably be confused with a cat. These examples
suggest that our method not only provides more informative prediction sets but also more faithfully
reflects the prediction uncertainty for a test point. As conditional coverage is also an important as-
pect of conformal prediction, we have also empirically studied it, and the corresponding results are
provided in Appendix E.8. It can be observed that Conf-MWN obtains at least comparable results
against the CE baseline, showing that it can maintain a reasonable conditional coverage in general.
The above results suggest that our method can produce prediction sets with desired adaptiveness.

6.2 DATASETS WITH REAL-WORLD LABEL NOISE

We consider three real-world noisy datasets: CIFAR-10N, CIFAR-100N (Wei et al., 2022), and
Food-101N (Lee et al., 2018). CIFAR-10N and CIFAR-100N are respectively generated from the
training datasets of CIFAR-10 and CIFAR-100 with human-annotated real-world noisy labels col-
lected from Amazon Mechanical Turk. For CIFAR-10N datasets, there are three types of noise,
which are aggregate, random and worst, and the noise ratio of the three types are 9.03%, ≈ 18%
and 40.21%, respectively. The details of the adopted models and training settings are provided in
Appendix D.2.

We report partial results on CIFAR-10N datasets in Table 4, and put more results in Appendix
E.9 (Tables 23, 24 and 25) due to page limitation. Similar to the previous analysis, Conf-MWN
performs better than CE and CE-MWN in Ineff. under all scenarios. Besides, compared with the
CE baseline, the reduction in Ineff. is also very significant. All the above results demonstrate the
robustness and efficiency of the proposed Conf-MWN against training label noise.

Table 4: Results on CIFAR-10N datasets with real noise. The performance is averaged over 3
random runs and the best is highlighted in Bold.

Aggressive-9.03% Random 1-17.23% Worst-40.21%

Method Cov.% Ineff. Acc.% Cov.% Ineff. Acc.% Cov.% Ineff. Acc.%

CE 98.89 3.63 89.06 99.09 4.28 87.26 98.94 5.70 80.24
CE-MWN 99.07 2.71 90.09 98.93 2.68 89.07 99.03 3.64 83.19
Conf-MWN 98.94 2.19 90.66 98.95 2.55 89.20 98.95 3.53 82.67

7 CONCLUSION

In this paper, we have studied the problem of conformal prediction under training label noise. We
have first empirically shown that the training label noise can make the prediction sets less effi-
cient, and then provided explanations with mathematical tools. To alleviate such an efficiency issue,
we have proposed an efficiency-aware conformalized meta-learning method, Conf-MWN, which
directly minimizes the empirical prediction set’s size on the meta data to guide re-weighting the
training loss against label noise. Experiments on multiple diverse datasets have demonstrated the
effectiveness of Conf-MWN in enhancing the efficiency of the prediction sets under training label
noise. In the future, we will explore more training rectification mechanisms within the meta-learning
framework.
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REPRODUCIBILITY STATEMENT

We have provided the experimental designs and details in Section 6 and Appendix D. The theoretical
results can be found in Sections 4.3 and 5.4, and more analysis are in Appendices B and C. The real
datasets used in the experiments is publicly accessible, and we have provided a detailed description
in Sections 6.1 and 6.2. Although the code is not included in this submission, the specific experi-
mental details are explained in Appendix D, and the code will be publicly available if the paper is
accepted.
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A MORE DETAILS

A.1 THE NC SCORES

To obtain prediction sets with minimal average size under exact 1−α marginal coverage guarantees,
HPS (Homogeneous Prediction Set) (Sadinle et al., 2019) uses the NC score

S(Xi, Yi) = 1− f(Xi)Yi
, (13)

and penalizes low-probability predictions of the true label. For achieving conditional coverage, APS
(Adaptive Prediction Set) (Romano et al., 2020) implements a distinct strategy via the randomized
NC score:

S(Xi, Yi) =
∑

y∈Y
f(Xi)y · I{f(Xi)y > f(Xi)Yi}+ f(Xi)Yi · u, (14)

where the auxiliary randomness u ∼ Uniform(0, 1) enables exact finite-sample coverage. To further
reduce the size of the prediction set and thereby enhance the efficiency, RAPS (Regularized Adaptive
Prediction Set) (Angelopoulos et al., 2021) and SAPS (Sorted Adaptive Prediction Set) (Huang
et al., 2024) based on APS were developed. Furthermore, the conditional coverage P(Yn+1 ∈
Cα(Xn+1;Dcal)|Xn+1) ≥ 1 − α is satisfied if and only if S(Xi, Yi) in Eq. (14) follows a uniform
distribution for each Xi (Romano et al., 2020; Einbinder et al., 2022).

A.2 THE LABEL NOISE ASSUMPTIONS FOR PROPOSITIONS 4.2

Similar to previous label noise studies (Shu et al., 2019; Oyen et al., 2022), we introduce the noise
assumptions for the training label made in Propositions 4.2. Given the noise ratio ϵ (0 ≤ ϵ ≤ 1), the
distribution of symmetric noisy labels is defined as

ηki =

{
1− ϵ, for i = k

ϵ
K−1 , ∀i ∈ {1, . . . ,K}\k. (15)

The asymmetric noisy label distribution is defined as

ηki =

{
1− ϵ, for i = k

ϵ · tki, ∀i ∈ {1, . . . ,K} \ k and
∑

i̸=k |tki|0 = s and
∑

i̸=k tki = 1,
(16)

where s(1 ≤ s ≤ K − 1) denotes the spread of the noisy label distribution.

B THEORETICAL ANALYSIS OF THE EXPECTED SET SIZE

B.1 THE EXPECTED SIZE OF PREDICTION SETS

Theorem B.1 ((Dhillon et al., 2024)). If the test and the calibration NC scores are independent of
each other, and the calibration NC scores are i.i.d., the expected size of the split conformal prediction
sets satisfies

E
[∣∣Cα(Xn+1;Dcal)

∣∣] = ∑
y∈Y

E
{
P
[
B

(
n, Fcal

(
S(Xn+1, y)

))
≤ nα

]}
, (17)

where B(n, π) denotes a binomial random variable with n trials and success probability π.

B.2 PROOF OF THEOREM 4.1

Proof. For any specified error rate α, the expected set size, according to Theorem B.1, is

E
[∣∣Cα(Xn+1;Dcal)

∣∣] = ∑
y∈Y

∫
R
P
[
B
(
n, Fcal(s)

)
≤ nα

]
pS(Xn+1,y)(s)ds (18)

=

∫
R
P
[
B
(
n, Fcal(s)

)
≤ nα

]∑
y∈Y

pS(Xn+1,y)(s)ds, (19)
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whereR is the space of NC scores and pS(Xn+1,y)(s) ≜ P
[
S(Xn+1, y) = s

]
. If the NC score is 0-1

loss, i.e. S(X,Y ) = I{Ŷ ̸= Y }, we further have
∑
y∈Y

pS(Xn+1,y)(0) = 1 and
∑
y∈Y

pS(Xn+1,y)(1) =

|Y| − 1. Then

E
[∣∣Cα(Xn+1;Dcal)

∣∣] = P
[
B
(
n, Fcal(0)

)
≤ nα

]
· 1 + P

[
B
(
n, Fcal(1)

)
≤ nα

]
·
(
|Y| − 1

)
(20)

= 1 + P
[
B
(
n, pcal

)
≤ nα

](
|Y| − 1

)
. (21)

B.3 PROOF OF PROPOSITION 4.2

Proof. For symmetric noise define in subsection A.2, we have

pcal =

K∑
k=1

Pcal

[
Ŷ = Y, Y = k

]
(22)

=

K∑
k=1

Pcal

[
Ŷ = k

∣∣Y = k
]
Pcal[Y = k] (23)

≈
K∑

k=1

πkmk(X)

1 +
∑

i̸=k b

(
mk(x)−mi(x)

)(
K

K−1 ϵ−1
) , (24)

where πk ≜ Pcal[Y = k], mk(x) ≜ Pcal[Y = k
∣∣X = x] and the derivation of Pcal

[
Ŷ = k

∣∣Y = k
]

in Eq. (24) relies on the analysis of clean accuracy in Theorem 3.3 of (Oyen et al., 2022). The
smoothing parameter b controls the sharpness of the softmax approximation to argmax.

Similarly, for asymmetric noise, we also have

pcal ≈
K∑

k=1

πkmk(X)

1 +
∑

i̸=k b

(
mk(x)−mi(x)

)(
s+1
s ϵ−1

) . (25)

Under the assumption of P [Y = k|X = x] >P [Y = i|X = x](i ̸= k), pcal decreases as the noise
ratio ϵ increases for both symmetric and asymmetric noise.

B.4 THE DISTRIBUTION OF HPS AND APS UNDER TRAINING LABEL NOISE

It can be observed that distributions by CE with training label noise can significantly deviate from
that of the noise-free case. In Figure 3a, the higher HPS scores under training label noise indicates
that the conformity between calibration and test data is poor. In Figure 3b, we show the empirical
distributions of APS scores on the clean calibration set with different ratios of training labels. It can
be seen that, with the CE baseline, the distribution behaves from being uniform to non-uniform as
the noise ratio increases.

As the noise ratio increases, HPS scores for calibration data {Si}ni=1 become larger due to the lower
conformity with training data in Proposition B.2. So the quantile threshold Q1−α

(
{Si}ni=1) is also

larger. For any unlabeled test data Xn+1, the poor classifier tends to predict a uniform probability
for all classes. Then, based on Eq. (1), the prediction set contains more redundant labels. Previous
studies (Romano et al., 2020; Einbinder et al., 2022) show that the classifier ia perfect if and only
if APS scores follows a uniform distribution for each Xi. And we find that APS scores tend to be
non-uniform due to the poor classifier under training label noise.
Proposition B.2. Denote Sϵ as the corresponding functions defined by the Bayes optimal classifiers
trained on noisy training setDtr with noise ratio ϵ. Assume the clean posterior P [Y =k|X=x] < 1

K
and 0 ≤ ϵ1 < ϵ2 ≤ 1, then for HPS score of any calibration data (x, y),

Sϵ1(x, y) < Sϵ2(x, y). (26)
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Figure 3: Histogram of HPS and APS scores on CIFAR-10 calibration datasets when training with
CE under symmetric training label noise for different noise ratios.

Proof. If training labels contain symmetric noise defined in Eq. (15), we have the noisy posterior
Pϵ[Y ′ = k|X = x] satisfies

Pϵ[Y ′ = k|X = x] = P[Y = k|X = x]− Kϵ

K − 1
P[Y = k|X = x] +

ϵ

K − 1
(27)

= P[Y = k|X = x] +
1−KP[Y = k|X = x]

K − 1
· ϵ, (28)

where Eq. (27) is derived by Oyen et al. (2022) in Eq. (5) in their work. Under the assumption of
the clean posterior P[Y = k|X = x] < 1

K for any noisy label k ∈ Y\Y , if 0 ≤ ϵ1 < ϵ2 ≤ 1, then

Sϵ1(x, k) = 1− Pϵ1 [Y ′ = k|X = x] > Pϵ2 [Y ′ = k|X = x] = Sϵ2(x, k). (29)

For true label Y = y,

Sϵ1(x, y) = 1−
∑

k∈Y\y

Sϵ1(x, k) < 1−
∑

k∈Y\y

Sϵ2(x, k) = Sϵ2(x, y). (30)

C MORE ANALYSIS OF GENERALIZATION AND CONVERGENCE

C.1 PROOF OF THEOREM 5.1

Proof. Define:

ϵ :=
3√
M

, (31)

∆ :=

√
2d ln(3/ϵ) + 2 ln(2/δ)√

M
. (32)

Using Hoeffiding’s inequality we have for any fixed Θ,

P
{∣∣R̂(ŵ(Θ))−R(ŵ(Θ))

∣∣ > ∆
}
≤ 2 exp

(
−M∆2

2

)
=

δ

(3/ϵ)d
. (33)

Let A be an ϵ-cover of Bd, we have |A| ≤ (1 + 2/ϵ)d. By the assumption of ϵ ≤ 1, then |A| ≤
(3/ϵ)d. Using the above and union bounding over all elements of A, we have

P
{
∀Θ ∈ A :

∣∣R̂(ŵ(Θ))−R(ŵ(Θ))
∣∣ ≤ ∆

}
≥ 1− δ, (34)
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i.e., for any Θ in A, we have∣∣R̂(ŵ(Θ))−R(ŵ(Θ))
∣∣ ≤√2d ln(3/ϵ) + 2 ln(2/δ)

M
. (35)

Thus, for any Θ′ in A,

R(ŵ(Θ̂)) ≤ R̂(ŵ(Θ̂)) +

√
2d ln(3/ϵ) + 2 ln(2/δ)

M
(36)

≤ R̂(ŵ(Θ′)) +

√
2d ln(3/ϵ) + 2 ln(2/δ)

M
(37)

≤ R(ŵ(Θ′)) + 2

√
2d ln(3/ϵ) + 2 ln(2/δ)

M
. (38)

As Θ̂,Θ′ ∈ A, we get Eq. (36) and Eq. (38) use the bound in Eq. (35), and Eq. (37) is by the
definition of Θ̂, i.e. Θ̂ = argmin

Θ∈A
R̂(ŵ(Θ)). Then, under the assumption Ω(Xmeta; ŵ(Θ)) is

λ-Lipschitz continuous w.r.t. Θ, ∀Θ ∈ Bd, we have

R(ŵ(Θ)) ≥ R(ŵ(Θ′))− λϵ (39)

≥ R(ŵ(Θ̂))− 2

√
2d ln(3/ϵ) + 2 ln(2/δ)

M
− λϵ (40)

≥ R(ŵ(Θ̂))−
3λ+

√
4d ln(M) + 8 ln(2/δ)√

M
. (41)

For Θ∗ = argmin
Θ∈Bd

R(ŵ(Θ)) be the optimal parameter in the unit ball, obviously,

R(ŵ(Θ̂))−R(ŵ(Θ∗)) ≤
3λ+

√
4d ln(M) + 8 ln(2/δ)√

M
. (42)

C.2 THE CONVERGENCE GUARANTEE OF CONF-MWN

We can provide the convergence guarantee for the training loss and the meta loss based on Theorem
1 and Theorem 2 in CE-MWN (Shu et al., 2019). All we need to do is to verify the Lipschitz
smoothness of the meta loss.
Assumption C.1 (Lipschitz Smoothness). Assume that the k-th output value fk of the classifier
is Lipschitz smooth with respect to the classifier parameters ŵ(t)(Θ), then Ωα,j2(ŵ

(t)(Θ)) is also
Lipschitz smooth with respect to the classifier parameters ŵ(t)(Θ).

For convenience, let ∇fk(ŵ(t)(Θ)) = ∂fk
∂ŵ(t)(Θ)

. By the Lipschitz smoothness of fk, there exists a

constant L1 such that for any ŵ(t)(Θ)1 and ŵ(t)(Θ)2, we have

∥∇fk(ŵ(t)(Θ)1)−∇fk(ŵ(t)(Θ)2)∥2 ≤ L1∥ŵ(t)(Θ)1 − ŵ(t)(Θ)2∥2. (43)

Since σ(x) ∈ (0, 1), ∀x ∈ R, then for any ŵ(t)(Θ), xj and y,

σ

(
Q̃1−α(ŵ

(t)(Θ)− S(xj , y))

T

)[
1− σ

(
Q̃1−α(ŵ

(t)(Θ)− S(xj , y))

T

)]
≤ 1

4
. (44)

So there exists L2 = K
4T L1 such that

∥∇Ωα,j2(ŵ
(t)(Θ)1)−∇Ωα,j2(ŵ

(t)(Θ)2)∥2 ≤
K

4T
× ∥∇fk(ŵ(t)(Θ)1)−∇fk(ŵ(t)(Θ)2)∥2

≤ L2∥ŵ(t)(Θ)1 − ŵ(t)(Θ)2∥2. (45)
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C.3 THE EMPIRICAL CONVERGENCE OF CONF-MWN

We plot the empirical loss convergence curves for Conf-MWN both in the upper level and lower level
with different random seeds in Figure 4. It can be seen that both the inner and outer optimizations
emprically tend to converge.
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Figure 4: The convergence of Train Loss and Meta Loss for our proposed Conf-MWN method on
CIFAR-10 datasets with 20% symmetric noise.

D MORE EXPERIMENTAL DETAILS

D.1 CIFAR-10 AND CIFAR-100 DATASETS WITH SYNTHETIC LABEL NOISE

Models and training settings. For both CIFAR-10 and CIFAR-100 datasets, we adopt ResNet-
32 (He et al., 2016) as the classifier, and an MLP with one hidden layer as the weighting function.
Both the classifier and weight networks are trained using SGD with a momentum of 0.9, a weight
decay of 5× 10−4, and an initial learning rate of 0.1. The learning rate of the classifier is divided by
10 after 80 epochs and 100 epochs (for total 120 epochs). The learning rate of weight-net is fixed as
10−3 in the meta-training stage. We repeated all experiments 3 times with different random seeds.
To better compare the results, we follows the experimental design of CE-MWN (Shu et al., 2019).

D.2 CIFAR-10N, CIFAR-100N AND FOOD-101N DATASETS WITH REAL-WORLD NOISE

Datasets. We randomly split 1000 data from the training datasets with their true labels got from the
original CIFAR-10 training set as meta data, and randomly split 5000 the test datasets as calibration
data. For CIFAR-100N datasets, the meta data and the calibration data are obtained in a similar way
as that for CIFAR-10N. Food-101N datasets contain about 310K images of food recipes classified
into 101 class and about 20% of the data are mislabeled. 25K images with curated annotations are
selected from Food-101 datasets (Bossard et al., 2014) as the test set. We split 2020 images from it
as the meta data.

Models and training settings. For CIFAR-10N and CIFAR-100N datasets, we use the same mod-
els and training settings as in Section 6.1. For Food-101N, we adopt ResNet-50 (pre-trained on
ImageNet) as the classifier network. On the first 5 epochs, we directly train the classifier network
with CE for all comparison methods, while on later epochs (a total of 30 epochs), Conf-MWN and
CE-MWN are trained with the meta-learning model. All the networks were trained using SGD with
a weight decay of 1× 10−3 and an initial learning rate of 5 × 10−3. The learning rate in the meta-
training stage is fixed as 10−3 for both Conf-MWN and CE-MWN. We repeat the experiments 3
times with different random seeds for CIFAR-10N and CIFAR-100N datasets, as well as 5 times for
Food-101N datasets.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 OTHER ERROR RATES

In addition to setting the error rate to α = 0.01 for 99.00% coverage in our main experiments, we
also test with α taking 0.05 and 0.1 on CIFAR-10 and CIFAR-100 datasets with synthetic noise. The
results in Tables 5 and 6 show the efficiency of our method in reducing the set size under training
label noise.

Table 5: Results on CIFAR-10 datasets with symmetric (sym.) noise for α = 0.5 or α = 0.1. The
performance is averaged over 3 random runs and the best is highlighted in Bold.

α=0.05 α=0.1

Sym.-20% Sym.-40% Sym.-20% Sym.-40%

Methods Cov.% Ineff. Cov.% Ineff. Cov.% Ineff. Cov.% Ineff.

CE 95.39 1.46 95.03 2.16 90.64 1.09 90.43 1.28
Conf-MWN 95.14 1.19 95.12 1.14 90.57 1.01 90.29 1.10

Table 6: Results on CIFAR-100 datasets for α = 0.1 with different symmetric (sym.) noise ratios.
The performance is averaged over 3 random runs and the best is highlighted in Bold.

Sym.-20% Sym.-40% Sym.-60% Sym.-80%

Methods Cov.% Ineff. Cov.% Ineff. Cov.% Ineff. Cov.% Ineff.

CE 90.86 5.64 90.85 9.40 90.63 18.93 90.71 48.32
Conf-MWN 91.14 4.28 91.44 6.33 90.53 11.80 90.30 47.82

E.2 THE PREDICTION SET SIZES WITH APS, RAPS AND SAPS SCORES

We further show the results of APS (Romano et al., 2020), RAPS (Angelopoulos et al., 2021) and
SAPS (Huang et al., 2023) (with the optimal parameters) under the condition of alpha = 0.01 in
Tables 7 and 8. We find that the set size is affected by training label noise, regardless of which NC
score is used, and Conf-WMN could improve the efficiency of the prediction set significantly.

Table 7: Results on CIFAR-10 datasets with symmetric (sym.) noise for different NC scores at
α = 0.01. The performance is averaged over 3 random runs and the smallest size is highlighted in
Bold.

Sym.-20% Sym.-40%

Cov.% Ineff. Cov.% Ineff.

Scores CE Conf-MWN CE Conf-MWN CE Conf-MWN CE Conf-MWN

APS 99.98 98.69 6.30 2.35 99.25 98.74 7.57 3.39
RAPS 99.00 98.76 6.17 2.22 99.15 98.73 7.44 3.00
SAPS 98.80 98.67 7.42 3.01 98.85 98.67 8.39 3.71

E.3 THE RESULTS OF ASYMMETRIC NOISE

Tables 9 and 10 summarize the results with asymmetric noise on CIFAR-10 and CIFAR-100 datasets,
respectively. The effectiveness of the proposed method in improving the efficiency of the prediction
sets can be observed.
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Table 8: Results on CIFAR-100 datasets with symmetric (sym.) noise for different NC scores at
α = 0.01. The performance is averaged over 3 random runs and the smallest size is highlighted in
Bold.

Sym.-20% Sym.-40%

Cov.% Ineff. Cov.% Ineff.

Scores CE Conf-MWN CE Conf-MWN CE Conf-MWN CE Conf-MWN

APS 98.81 98.95 43.27 29.66 98.74 98.88 57.88 40.69
RAPS 98.88 98.93 42.61 27.46 98.80 98.84 58.60 37.38
SAPS 98.88 99.08 42.20 31.79 98.89 99.17 55.76 36.73

Table 9: Results on CIFAR-10 datasets with asymmetric (asy.) noise. The performance is averaged
over 3 random runs and the best is highlighted in Bold.

Asy.-20% Asy.-40%

Methods Cov.% Ineff. Acc.% Cov.% Ineff. Acc.%

CE 98.96 2.84 89.43 98.87 2.91 81.34
CE-MWN 98.93 2.88 90.26 98.85 3.45 86.16
Conf-MWN 98.98 2.74 90.48 98.76 2.80 83.19

Table 10: Results on CIFAR-100 datasets with asymmetric (asy.) noise. The performance is aver-
aged over 3 random runs and the best is highlighted in Bold.

Asy.-20% Asy.-40%

Methods Cov.% Ineff. Acc.% Cov.% Ineff. Acc.%

CE 98.82 22.72 63.53 98.86 27.02 48.98
CE-MWN 98.74 21.72 64.45 98.88 25.76 50.39
Conf-MWN 98.82 21.14 64.32 98.88 25.10 50.73
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E.4 THE DISTRIBUTION OF HPS AND APS USING CONF-MWN

See Figure 5. Compared with Figure 3a, when using our method for training, most of the HPS scores
are concentrated around small values, even when the noise ratio is 40%. And APS scores tend to be
uniform as we expected.
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Figure 5: Histogram of HPS and APS scores on CIFAR-10 calibration datasets when training using
Conf-MWN under symmetric training label noise for different noise ratios.

E.5 COMPARISONS WITH OTHER ROBUST LEARNING METHODS

See Tables 11 and 12.

Table 11: Results on CIFAR-10 datasets with symmetric (sym.) noise at α = 0.01. The performance
is averaged over 3 random runs and the best is highlighted in Bold.

Sym.-20% Sym.-40%

Methods Cov.% Ineff. Acc.% Cov.% Ineff. Acc.%

CE 98.95 5.31 87.55 99.03 7.42 83.78
CE-MWN 98.98 2.66 89.78 98.81 3.03 86.62
GCE 98.45 2.08 89.06 98.92 3.18 86.99
Co-teaching 98.74 3.35 78.40 98.60 4.61 74.45
Conf-MWN 98.82 1.98 90.18 98.99 2.85 87.08

Table 12: Results on CIFAR-100 datasets with symmetric (sym.) noise at α = 0.01. The perfor-
mance is averaged over 3 random runs and the best is highlighted in Bold.

Sym.-20% Sym.-40%

Methods Cov.% Ineff. Acc.% Cov.% Ineff. Acc.%

CE 99.01 40.69 62.23 98.96 58.67 55.71
CE-MWN 98.94 27.15 64.68 98.86 42.09 58.32
GCE 98.90 31.86 61.06 99.03 42.78 56.13
Co-teaching 98.88 36.48 44.65 99.01 41.11 42.67
Conf-MWN 99.03 24.50 65.44 98.91 33.60 60.20

E.6 COMPARISONS WITH CONFORMAL TRAINING METHODS

See Table 13.
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Table 13: Results on CIFAR-10 datasets with symmetric (sym.) noise at α = 0.01. The performance
is averaged over 3 random runs and the best is highlighted in Bold.

Sym-20% Sym-40%

Methods Cov.% Ineff. Acc.% Cov.% Ineff. Acc.%

CE 98.95 5.31 87.55 99.03 7.42 83.78
ConfTr Size Loss 99.12 8.08 33.28 99.44 7.96 39.03
CE+0.1×ConfTr Size Loss 98.86 5.08 88.13 99.19 7.30 84.22
CE+1e−5×ConfTr Size Loss 99.24 6.09 87.87 98.83 7.23 82.94
Conf-MWN 98.82 1.98 90.18 98.99 2.85 87.08

E.7 BOTH TRAINING AND CALIBRATION DATA CONTAIN LABEL NOISE

See Tables 14, 15 and 16.

Table 14: Results on CIFAR-10 datasets with both training and calibration sets containing label
noise (α = 0.01). The best performance is highlighted in Bold.

Sym.-20% Sym.-40%

Cov.% Ineff. Cov.% Ineff.

Scores CE Conf-MWN CE Conf-MWN CE Conf-MWN CE Conf-MWN

HPS 99.95 99.97 9.48 9.19 99.92 99.95 9.68 9.58
NACP+HPS 99.21 99.35 6.85 2.56 99.33 99.26 8.20 5.40

APS 99.96 99.98 9.57 9.38 99.93 100.0 9.80 9.72
NACP+APS 99.58 99.72 7.90 4.71 99.15 99.53 7.41 6.71

Table 15: Results on CIFAR-10 datasets with both training and calibration sets containing label
noise (α = 0.1). The best performance is highlighted in Bold.

Sym.-20% Sym.-40%

Cov.% Ineff. Cov.% Ineff.

Scores CE Conf-MWN CE Conf-MWN CE Conf-MWN CE Conf-MWN

HPS 98.87 99.73 5.53 4.50 99.24 99.93 7.62 6.94
NACP-HPS 91.62 91.92 1.15 1.05 92.14 92.58 1.51 1.20

APS 98.70 99.70 5.52 4.74 99.41 99.90 7.79 7.08
NACP-APS 90.41 89.72 1.86 1.18 91.56 91.93 2.57 1.44

E.8 DISCUSSIONS OF CONDITIONAL COVERAGE

Define {Cj}sj=1 as disjoint size strata partitioning {1, . . . , |Y|} and index sets Jj = {i :
|Cα(Xi;Dcal)| ∈ Cj} grouping examples by prediction set size. Then SSCV (Angelopoulos et al.,
2021) is defined over these strata as on strata {Cj}sj=1 as

SSCV(Cα, {Cj}sj=1) = sup
j

∣∣∣∣ |i : Yi ∈ Cα(Xi;Dcal), i ∈ Jj |
|Jj |

− (1− α)

∣∣∣∣. (46)

And we denote J y = {i : Yi = y} as the indices of test examples with label y and ĉy =
1

|J y|
∑

i∈J y I{Yi ∈ Cα(Xi;Dcal)} as the empirical class-conditional coverage of class y. Then
CovGap (Ding et al., 2023) is defined as:

CovGap = 100× 1

|Y|
∑
y∈Y
|ĉy − (1− α)|. (47)
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Table 16: Results on CIFAR-100 datasets with both training and calibration sets containing label
noise (α = 0.1). The best performance is highlighted in Bold.

Sym.-20% Sym.-40%

Cov.% Ineff. Cov.% Ineff.

Scores CE Conf-MWN CE Conf-MWN CE Conf-MWN CE Conf-MWN

HPS 100.0 100.0 93.05 94.49 99.99 100.0 96.16 96.72
NACP-HPS 99.64 99.44 62.51 34.73 98.86 99.74 56.97 40.24

APS 100.0 100.0 94.14 94.58 99.99 100.0 96.39 96.30
NACP-APS 99.47 99.39 58.45 38.34 99.14 98.88 66.52 40.94

To measure SSCV on CIFAR-10 and CIFAR-100 datasets, we divide prediction sets into s = 5
groups based on sizes: 0-1, 2-3, 4-10, 11-100 and 101-1000. The results in terms of these two
metrics are summarized in Tables 17, 18, 19 and Tables 20, 21, 22. As can be seen, our method
has comparable results to the CE baseline, showing that it can maintain a reasonable conditional
coverage in general, though not its main focus.

Table 17: Comparisons between CE and Conf-MWN in terms of CovGap (%) ↓ and SSCV ↓ for
HPS and APS at α = 0.01 on CIFAR-10 datasets.

No Noise Sym-20% Sym-40%

CovGap SSCV CovGap SSCV CovGap SSCV

Methods HPS APS HPS APS HPS APS HPS APS HPS APS HPS APS

CE 0.54 0.53 0.01 0.01 0.47 0.50 0.02 0.03 0.37 0.50 0.03 0.04
Conf-MWN 0.55 0.50 0.01 0.01 0.53 0.66 0.00 0.00 0.49 0.63 0.01 0.01

Table 18: Comparisons between CE and Conf-MWN in terms of CovGap (%) ↓ and SSCV ↓ for
HPS and APS at α = 0.05 on CIFAR-10 datasets.

No Noise Sym-20% Sym-40%

CovGap SSCV CovGap SSCV CovGap SSCV

Methods HPS APS HPS APS HPS APS HPS APS HPS APS HPS APS

CE 2.17 0.99 0.07 0.01 1.92 1.64 0.04 0.04 1.86 1.86 0.01 0.05
Conf-MWN 2.43 1.23 0.05 0.01 2.15 1.35 0.05 0.02 2.37 1.43 0.02 0.02

E.9 ADDITIONAL RESULTS ON DATASETS WITH REAL-WORLD LABEL NOISE

Tables 23, 24 and 25 show more experimental results on CIFAR-10N, CIFAR-100N and Food-101N
datasets. These results further substantiate the effectiveness of the proposed method.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 19: Comparisons between CE and Conf-MWN in terms of CovGap (%) ↓ and SSCV ↓ for
HPS and APS at α = 0.1 on CIFAR-10 datasets.

No Noise Sym-20% Sym-40%

CovGap SSCV CovGap SSCV CovGap SSCV

Methods HPS APS HPS APS HPS APS HPS APS HPS APS HPS APS

CE 3.86 1.56 0.01 0.03 3.64 2.32 0.07 0.05 3.58 2.49 0.06 0.05
Conf-MWN 4.54 1.03 0.01 0.08 4.01 1.76 0.01 0.01 4.36 2.39 0.10 0.03

Table 20: Comparisons between CE and Conf-MWN in terms of CovGap (%) ↓ and SSCV ↓ for
HPS and APS at α = 0.01 on CIFAR-100 datasets.

No Noise Sym-20% Sym-40%

CovGap SSCV CovGap SSCV CovGap SSCV

Methods HPS APS HPS APS HPS APS HPS APS HPS APS HPS APS

CE 0.62 0.85 0.01 0.00 0.77 0.95 0.00 0.03 0.80 0.82 0.01 0.03
Conf-MWN 0.81 0.77 0.01 0.00 0.83 0.84 0.01 0.01 0.82 0.86 0.01 0.01

Table 21: Comparisons between CE and Conf-MWN in terms of CovGap (%) ↓ and SSCV ↓ for
HPS and APS at α = 0.05 on CIFAR-100 datasets.

No Noise Sym-20% Sym-40%

CovGap SSCV CovGap SSCV CovGap SSCV

Methods HPS APS HPS APS HPS APS HPS APS HPS APS HPS APS

CE 2.34 2.27 0.05 0.03 2.57 2.13 0.04 0.04 2.65 2.22 0.03 0.07
Conf-MWN 2.44 2.23 0.06 0.02 2.57 2.16 0.04 0.01 2.88 2.40 0.04 0.03

Table 22: Comparisons between CE and Conf-MWN in terms of CovGap (%) ↓ and SSCV ↓ for
HPS and APS at α = 0.1 on CIFAR-100 datasets.

No Noise Sym-20% Sym-40%

CovGap SSCV CovGap SSCV CovGap SSCV

Methods HPS APS HPS APS HPS APS HPS APS HPS APS HPS APS

CE 4.30 2.74 0.16 0.02 4.48 3.00 0.11 0.06 4.53 3.42 0.08 0.11
Conf-MWN 3.86 2.95 0.16 0.02 4.28 3.34 0.11 0.03 4.49 3.80 0.08 0.04

Table 23: Results on CIFAR-10N datasets with real noise. The performance is averaged over 3 ran-
dom runs and the best is highlighted in Bold. Green represents the reduction in Ineff. compared
to CE.

Random 2-18.12% Random 3-17.64%

Methods Cov.% Ineff. Acc.% Cov.% Ineff. Acc.%

CE 99.02 4.44 87.57 98.94 3.84 87.51
CE-MWN 98.94 2.51 (-43.47%) 89.27 98.93 2.52 (-34.38%) 89.08
Conf-MWN 98.99 2.47 (-44.37%) 89.41 99.07 2.45 (-36.20%) 88.83
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Table 24: Results on CIFAR-100N datasets with real noise. The performance is averaged over 3
random runs and the best is highlighted in Bold. Green represents the reduction compared to CE.

Fine Label-40.20%

Methods Cov.% Ineff. Acc.%

CE 98.95 34.28 54.43
CE-MWN 99.13 31.40 (-8.40%) 56.35
Conf-MWN 98.99 28.03 (-18.23%) 56.56

Table 25: Results on Food-101N datasets with real noise. The performance is averaged over 5
random runs and the best is highlighted in Bold. Green represents the reduction compared to CE.

≈ 20%

Methods Cov.% Ineff. Acc.%

CE 99.01 14.28 78.54
CE-MWN 99.00 8.17 (-42.79%) 85.27
Conf-MWN 99.00 7.96 (-44.26%) 85.30

F EFFECTS OF HYPERPARAMETERS

F.1 DIFFERENT CLASSIFIERS

We conduct experiments with different networks, including ResNet-18, ResNet-34, and ResNet-50
(pre-trained on ImageNet), on CIFAR-10 with symmetric noise. The results in terms of Ineff.
and Acc. with noise ratio 20% and 40% against CE are shown in Figure 6. It can be seen that
our method can consistently improve the Ineff. over CE with different networks. Besides, as
the model architecture becomes more complex, CE tends to produce worse results, indicating that it
overfits the noisy training data, and our method can well alleviate this issue.

F.2 THE NUMBER OF CLEAN META DATA

In Figure 7, we show the results of the set sizes on CIFAR-10N datasets by varying the number of
clean meta data, which are randomly selected. It can be seen that, even with a very small amount of
meta data, i.e., 100, the performance improvement over the CE baseline can be observed.

F.3 THE TEMPERATURE T IN META LOSS

We also analyze on CIFAR-10 datasets with 20% symmetric label noise by varying the temperature
T in the differentiable relaxation of the meta loss, and the results are summarized in Table 26. It can
be seen that the results are not very sensitive to this hyperparameter when it is not too large (T ≤ 1).
We also show the convergence curve of training loss and meta loss with different T in Figure 8.

Table 26: Results of Conf-MWN by varying temperature T on CIFAR-10 datasets with 20% sym-
metric noise.

T 0.01 0.1 0.5 1 5 10

Ineff. 2.04 1.97 2.01 1.98 2.49 2.30
Cov.% 98.91 98.95 98.98 98.82 99.09 98.89
Acc.% ↑ 90.34 90.16 90.27 90.18 90.20 89.69
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Figure 6: Ineff. and Acc. on CIFAR-10 datasets with 20% and 40% symmetric noise using
different classifiers.
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Figure 7: Inefficiency results of Conf-MWN by varying the number of meta data on CIFAR-10N
datasets (”Worst” noise).
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Figure 8: The convergence of Train Loss and Meta Loss for our proposed Conf-MWN method on
CIFAR-10 datasets with 20% symmetric noise, showing results across different random trials under
varying temperature parameters T .
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F.4 THE NUMBER OF CALIBRATION DATA

We have also conducted experiments on the CIFAR-10N datasets by varying the number of calibra-
tion data and the results are respectively summarized in Table 27. As can be observed from these
results, a very small amount of data is sufficient for achieving a promising performance.

Table 27: Ineff. and Cov. results of Conf-MWN by varying the number of calibration data n
on CIFAR-10N datasets (”Worst” noise).

n 5000 3000 1000 500

Ineff. 3.53 3.33 3.70 3.16
Cov.(%) 98.95 98.82 99.02 98.70

G PREDICTION SET EXAMPLES UNDER CE AND CONF-MWN

This section provides examples of prediction sets by CE and Con-MWN on CIFAR-10 (Figure 9)
and CIFAR-100 datasets (Figure 10) with training label noise.

H THE USE OF LLMS

Large language models were used solely as a general-purpose tool for minor grammatical checks
and assistance in generating visualization code. They played no role in the intellectual substance of
this work.
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CE: {airplane, automobile, 
bird, cat, deer, dog, frog,  
horse, ship, truck} (10)

Conf-MWN: {cat, dog} (2)

CE: {airplane, cat, dog, frog,  
ship} (5)

Conf-MWN: {dog} (1)

CE: {airplane, bird, cat, deer, 
dog} (5)

Conf-MWN: {deer, horse} (2)

CE: {airplane, automobile, 
cat, deer, dog, frog, horse, 
ship, truck} (9)

Conf-MWN: {airplane} (1)

CE: {airplane, cat, deer, dog} 
(4)

Conf-MWN: {dog} (1)

CE: {airplane, automobile, 
bird, cat, deer, dog, frog, 
horse, ship, truck} (10)

Conf-MWN: {automobile, 
truck} (2)

CE: {airplane, automobile, 
cat, deer, dog, frog, horse, 
ship, truck} (9)

Conf-MWN: {dog} (1)

CE: {airplane, automobile, 
bird, cat, deer, dog, frog, 
horse, ship} (9)

Conf-MWN: {ship} (1)

CE: {automobile, dog, frog, 
horse, ship} (5)

Conf-MWN: {dog, horse} (2)

CE: {airplane, automobile, 
bird, cat, deer, dog, frog, 
horse, ship, truck} (10)

Conf-MWN: {airplane, 
automobile, bird, cat, deer, 
dog, frog, horse, ship, truck} 
(10)

CE: {airplane, automobile, 
cat, deer, dog, frog, ship, 
truck} (8)

Conf-MWN: {frog} (1)

CE: {automobile, bird, deer, 
truck} (4)

Conf-MWN: {automobile, 
truck} (2)

CE: {airplane, automobile, 
bird, cat, deer, dog, frog, 
horse, ship, truck} (10)

Conf-MWN: {airplane, bird, 
cat, deer, dog, frog, horse, 
ship} (8)

CE: {airplane, automobile, 
bird, cat, deer, dog, frog, 
horse, ship, truck} (10)

Conf-MWN: {airplane, bird, 
cat, deer, dog, frog, horse, 
ship, truck} (9)

CE: {airplane, automobile, 
bird, cat, deer, dog, frog, ship, 
truck} (9)

Conf-MWN: {cat, deer} (2)

CE: {airplane, automobile, 
bird, cat, deer, dog, frog, 
horse, ship, truck} (10)

Conf-MWN: {truck} (1)

CE: {airplane, automobile, 
cat, deer, dog, frog, horse, 
ship, truck} (9)

Conf-MWN: {deer, dog,  
horse} (3)

CE: {airplane, automobile, 
bird, cat, deer, dog, frog,  
horse, ship, truck} (10)

Conf-MWN: {truck} (1)

CE: {airplane, bird, deer} (3)

Conf-MWN: {bird, deer} (2)

CE: {airplane, automobile, 
bird, dog, horse, ship, truck} 
(7)

Conf-MWN: {airplane, bird, 
cat,  deer, dog, horse, ship,  
truck} (8)

CE: {airplane, deer, dog} (3)

Conf-MWN: {airplane} (1)

CE: {airplane, bird, cat} (3)

Conf-MWN: {bird, cat, frog} 
(3)

CE: {airplane, automobile, 
bird, cat, deer, dog, frog,  
horse, ship, truck} (10)

Conf-MWN: {deer, dog, horse} 
(3)

CE: {automobile, bird, cat, 
horse, ship} (5)

Conf-MWN: {cat} (1)

CE: {truck} (1)
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CE: {airplane, automobile, 
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ship, truck} (9)

Conf-MWN: {airplane, 
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(10)

CE: {airplane, bird, cat, deer, 
dog, horse, ship, truck} (8)

Conf-MWN: {airplane, ship} 
(2)

Figure 9: Examples of prediction sets obtained by CE and Conf-MWN (true labels are in green and
the red numbers denote sizes). Models are trained on CIFAR-10 datasets with 40% symmetric noise.
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CE: {aquarium fish, baby, bear, bed, beetle, bowl, bus, 
castle, caterpillar, clock, cloud, couch, crocodile, fox, 
hamster, house, keyboard, leopard, lobster, maple tree, 
mouse, mushroom, oak tree, orange, pear, pickup truck, 
pine tree, plain, porcupine, raccoon, ray, seal, shark, shrew, 
skyscraper, snake, streetcar, tank, telephone, tiger, tulip, 
willow tree, worm} (43)

Conf-MWN: {keyboard} (1)

CE: {baby, beaver, bed, bee, beetle, bicycle, bottle, boy, 
bridge, butterfly, camel, can, cattle, chair, clock, cockroach, 
couch, crab, crocodile, cup, dinosaur, flatfish, forest, girl, 
kangaroo, lawn mower, lizard, lobster, man, motorcycle, 
mouse, orchid, otter, pear, plate, rabbit, rocket, rose, seal, 
shrew, snail, snake, spider, streetcar, table, tank, television, 
tiger, tractor, train, trout, tulip, wardrobe, whale} (54)

Conf-MWN: {apple, beetle, bicycle, bottle, can, clock, 
cockroach, cup, dinosaur, forest, lamp, lizard, lobster, 
motorcycle, mouse, mushroom, orchid, pear, plate, rabbit, 
rose, snail, spider, table, telephone, television, tiger, tractor, 
tulip, willow tree} (30)

CE: {apple, aquarium fish, baby, beaver, bed, bee, beetle, 
bottle, bowl, boy, bus, can, caterpillar, hair, chimpanzee, 
clock, cockroach, crab, crocodile, dinosaur, dolphin, flatfish, 
forest, fox, girl, lamp, lawn mower, lizard, lobster, maple 
tree, motorcycle, mouse, oak tree, orchid, otter, pickup 
truck, plain, poppy, porcupine, possum, raccoon, rose, 
shark, shrew, snail, snake, sunflower, sweet pepper, table, 
tank, telephone, television, tiger, tractor, train, trout, turtle, 
wardrobe, whale, wolf, woman} (61)

Conf-MWN: {baby, bed, beetle, bowl, boy, bus, chair, 
cockroach, couch, crab, dinosaur, amp, lawn mower, 
lobster, maple tree, motorcycle, orchid, pickup truck, 
porcupine, rose, snake, sweet pepper, table, tank, telephone, 
tractor, trout} (27)

CE: {bear, beaver, castle, cattle, chimpanzee, crocodile, 
elephant, forest, kangaroo, leopard, lobster, mouse, oak tree, 
otter, plain, poppy, porcupine, possum, rabbit, raccoon, ray, 
road, sea, seal, shrew, skunk, squirrel, streetcar, sweet 
pepper, turtle, wolf} (31)

Conf-MWN: {bear, beaver, chimpanzee, crocodile, dinosaur, 
elephant, leopard, porcupine, possum, rabbit, raccoon, 
shrew, squirrel} (13)

CE: {apple, baby, bear, beaver,  bed, bee, beetle,  bottle, boy, 
butterfly, camel, can, caterpillar, cattle,  chimpanzee, clock, 
cloud, cockroach, couch, crab, elephant, flatfish, forest, girl, 
kangaroo, lamp, leopard, lion, lizard, lobster, man, maple 
tree, mountain, mouse, mushroom, otter, palm tree, pine 
tree, porcupine, possum, rabbit, raccoon ,ray, sea, seal, 
shrew, skunk, skyscraper, snail, snake, spider, squirrel, 
streetcar, sunflower, sweet pepper, table, telephone, 
television, tiger, tractor, train, trout, tulip, turtle, wardrobe, 
willow tree, woman} (67)

Conf-MWN: {bear, beaver, boy, butterfly, camel,  girl,  
mouse, mushroom, otter,  porcupine, possum, rabbit, ray, 
seal, shrew, skunk, snail, squirrel, turtle, woman} (20)

CE: {bottle, can, :caterpillar,  lamp, pear, rocket,  
sunflower, sweet pepper} (8)

Conf-MWN: {bottle} (1)

CE: {apple, baby, beaver, beetle, boy, cloud, forest, girl, 
hamster, lizard, lobster, man, mouse, oak tree, otter, pear, 
pickup truck, possum, ray, woman, worm} (21)

Conf-MWN: {baby, boy,  girl, hamster} (27)

CE: {apple, baby, bear, beaver, bed, bee, beetle, bicycle, 
bottle, bowl, boy, bridge, bus, butterfly, can, castle, 
caterpillar, cattle, chair, chimpanzee, clock, cloud, 
cockroach, couch, crab, crocodile, cup, dinosaur, dolphin, 
elephant, forest, fox, girl, hamster, house, kangaroo, 
keyboard, lawn mower, leopard, lion, lizard, lobster, man, 
maple tree, motorcycle, mountain, mouse, mushroom, oak 
tree, orange, orchid, otter, pickup truck, pine tree, plain, 
plate, poppy, porcupine, possum, raccoon, ray, road, rocket, 
rose, sea, shark, shrew, skunk, snail, snake, spider, squirrel, 
streetcar, sunflower, sweet pepper, table, tank, telephone, 
television, tiger, tractor, train, tulip, turtle, wardrobe, 
willow tree, wolf, woman, worm} (89)

Conf-MWN: {leopard, tiger} (2)

CE: {baby, bear, beaver, bicycle, bottle,  boy,  bridge, bus, 
butterfly, camel, castle, caterpillar, cattle, chimpanzee, 
clock, cloud,  dinosaur, dolphin, elephant, flatfish, forest, 
girl, house, kangaroo, lamp, leopard, lion, lizard, man, 
mountain, mouse, oak tree, orange, otter, pear, pickup 
truck, pine tree, plate, poppy, porcupine, possum, raccoon, 
ray, road, rocket, sea, seal, shark, shrew, skunk, skyscraper, 
spider, streetcar, sunflower, sweet pepper, tank, telephone, 
television, tiger, train, tulip, turtle, : wardrobe, whale, 
willow tree, wolf, woman, worm} (68)

Conf-MWN: {camel, castle, flatfish, lamp, mountain,  
possum, ray, road,  rocket,  seal, shark, skyscraper, tulip, 
turtle, worm} (15)

CE: {bear, bee, boy, bus, motorcycle, plain, poppy, rocket, 
shark, shrew, sunflower, tulip} (12)

Conf-MWN: {sunflower} (1)

CE: {butterfly, clock, girl, rose, snail, spider, television, 
tulip} (8)

Conf-MWN: {beetle, butterfly,  lizard, rose, snail, spider} (6)

CE: {apple, aquarium fish, baby, bear, beetle, boy, castle, 
caterpillar, cockroach, couch, dinosaur, dolphin, elephant, 
flatfish, forest, fox, girl, hamster, keyboard, lion, lizard, 
lobster, man, mouse, mushroom, oak tree, orange, orchid, 
otter, palm tree, pear, plain, poppy, porcupine, possum, sea, 
skunk, skyscraper, snail, snake, spider, streetcar, table, 
television, tiger, tractor, train, tulip, turtle, willow tree, wolf, 
woman, worm} (53)

Conf-MWN: {apple, baby, boy, caterpillar, cockroach, girl, 
keyboard, lizard, man, mushroom, orange, pear, snail, 
squirrel, woman, worm} (16)

Figure 10: Examples of prediction sets obtained by CE and Conf-MWN (true labels are in green
and the red numbers denote sizes). Models are trained on CIFAR-100 datasets with 20% symmetric
noise.
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