
Pattern Recognition Letters 170 (2023) 113–120 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

K-Means for noise-insensitive multi-dimensional feature learning 

Nicholas Pellegrino 

∗, Paul W. Fieguth , Parsin Haji Reza 

PhotoMedicine Labs, Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada 

a r t i c l e i n f o 

Article history: 

Received 12 August 2022 

Revised 29 January 2023 

Accepted 20 April 2023 

Available online 24 April 2023 

Edited by: Jiwen Lu 

MSC: 

41A05 

41A10 

65D05 

65D17 

Keywords: 

Feature learning 

Clustering 

Photoacoustic remote sensing 

a b s t r a c t 

Many measurement modalities which perform imaging by probing an object pixel-by-pixel, such as via 

Photoacoustic Microscopy, produce a multi-dimensional feature (typically a time-domain signal) at each 

pixel. In principle, the many degrees of freedom in the time-domain signal would admit the possibility of 

significant multi-modal information being implicitly present, much more than a single scalar “brightness”, 

regarding the underlying targets being observed. However, the measured signal is neither a weighted-sum 

of basis functions (such as principal components) nor one of a set of prototypes (K-means), which has 

motivated the novel clustering method proposed here. Signals are clustered based on their shape, but not 

amplitude, via angular distance, and centroids are calculated as the direction of maximal intra-cluster 

variance, resulting in a clustering algorithm capable of learning centroids (signal shapes) that are related 

to the underlying, albeit unknown, target characteristics in a scalable and noise-robust manner. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Medical imaging broadly serves as a powerful diagnostic tool, 

ften non-invasively giving medical care providers valuable infor- 

ation that cannot be obtained otherwise [1,2] . Many biomedi- 

al sensing techniques operate by capturing time-domain (TD) sig- 

als from which diagnostically relevant information can be in- 

erred. A list of some of these modalities includes sonography / ul- 

rasound imaging [3,4] , echocardiography [5] , electrocardiography 

6–8] , electromyography [9,10] , phonocardiography [11,12] , phono- 

yography [13] , etc. In many cases, objects are scanned, pixel-by- 

ixel, to produce a TD signal at each pixel. Two such modalities are 

ime-Domain Optical Coherence Tomography (TD-OCT) [14,15] and 

hotoacoustic Microscopy (PAM) [16–18] . 

In principle, the many degrees of freedom available within TD 

ignals admit the possibility of there existing significant multi- 

odal information related to the imaged target, far beyond a single 

calar value used to represent pixel “brightness”. However, extract- 

ng the information from these signals is not necessarily straight- 

orward. Indeed, the work presented in this paper is motivated 

y the TD signals of Photoacoustic Remote Sensing (PARS) Mi- 
Abbreviation: PARS, Photoacoustic remote sensing. 
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roscopy [19–23] , a novel all-optical variation of PAM. The underly- 

ng physics lead to TD signals having shapes specific to tissue type, 

ut where the signals from a given target may vary in amplitude, 

e inverted (negative amplitudes), and suffer from noise. What is 

equired is a set of time-domain features , that adequately capture 

nformation from the underlying target that is present in the TD 

ignals. 

. Background 

This work is motivated by imaging modalities that scan, pixel- 

y-pixel, leading to a measured signal, s j (t) , over time, t , at each

ixel, j: 

 j (t) = 

∑ 

∀ i 
αi, j f i (t) + ν j (t) , (1) 

or weights, αi, j , applied to features, f i , for target type i , where

easurement noise, ν j (t) , is additive. In principle, t is continu- 

us, however in practice, the TD signals are sampled discretely. For 

he purpose of this work, the same notation is used for both the 

iscrete- and continuous-time representations, however all numer- 

cal computations involving the TD signals clearly refer to the mea- 

ured discrete-time representation. 

Conventionally, in PAM and PARS [2,19–21,24–26] , only a scalar 

mplitude is extracted from each TD signal. Recently, other meth- 

ds have been developed to extract additional information related 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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o the frequency content of the signals, as a means of inferring in- 

ormation related to the imaged target [27–29] . This work takes a 

ifferent approach by proposing an unsupervised (clustering) ap- 

roach to learn time-domain features that relate to the underlying 

arget. 

In principle, such a feature inference would seem to have been 

olved. Principal Components Analysis (PCA) and its variations [30–

4] are capable of extracting features (the principal components) 

rom TD data; the principal components yield a representation, 

 j (t) = 

∑ 

i 

α j,i b i (t) , (2) 

ased on a weighted sum of basis elements b i . The principal com- 

onent basis elements are those minimizing the variance of the 

esidual error, but not necessarily those which individually effec- 

ively represent most of the signals, as in Eq. 1 . That is, the prin-

ipal components are unknown weighted combinations of the de- 

ired features, and therefore do not individually necessarily act as 

eaningful features. 

In contrast, clustering methods such as K-Means [35–38] and 

-Medoids [39,40] do seek to produce meaningful features, but as- 

ume that each measured data-point (TD signal) is one of a set of 

rototypes, and has variation only as a consequence of measure- 

ent error and noise. This assumption does not hold in Eq. 1 , as

easured TD signals may be scaled or inverted versions of what 

ould be a prototype relating to a specific target. Furthermore, as 

ill be discussed in Section 3 , some fraction of the signals will be

nfluenced by more than one tissue type, and therefore represent 

 mixture of classes. 

A final clustering issue arises when computing centroids. In K- 

eans, cluster centroids are calculated as the mean of the points 

ssociated to each cluster, and in K-Medoids, the most centrally lo- 

ated data point is chosen to be the centroid. In both cases, high 

mounts of background noise, if included in any cluster, would 

trongly influence the mean, steering it away from a truer repre- 

entation of the non-noise portion of the cluster. 

Addressing these constraints has prompted the development of 

he method proposed in this paper, capable of learning features 

hat relate characteristic signal shapes to individual components of 

he target in a scalable and noise-robust manner. 

. Methods 

We wish to cluster TD signals based on their signal shape , but 

ot amplitude. Building on Eq. 1 , a given pixel (and its correspond- 

ng TD signal) may be expressed in terms of characteristic signal 

hapes of one or more targets { f i } and a residual term, r j (t) , 

 j (t) = 

∑ 

∀ i 
αi, j f i (t) + r j (t) , (3) 

ut where most pixels come from only a single target, such that 

 αi, j } is sparse. The proposed method is based on K-Means, but 

aries in its definition of distance and its method for computing 

luster centroids (the learned features). Our goal is to discover 

haracteristic signals shapes, a set of K centroids, F = { f i (t) } ,
 = 1 , . . . , K, by creatively clustering the TD signals from a given

mage. 

Note that TD signals are just vectors in space, R 

n , where the 

imension, n , of the space is simply the number of discrete TD 

amples. Thus, the equivalences s (t) ≡ �
 s , f (t) ≡ �

 f , etc. are under- 

tood. Because TD signals are treated as Cartesian vectors, the sig- 

al shape is then analogous to the vector angle . 

TD signals associated with a given target may be arbitrarily 

caled and be subject to noise, thus any proposed clustering al- 

orithm must be tolerant to these effects. The assumptions for the 

roposed method are as follows: 
114 
1. Each underlying class (i.e., isolated component) is characterized 

by a single prototype signal. 

2. Most pixels are a member of only one class. Relatively few pix- 

els may be members of several classes (i.e., exhibit a response 

associated with a mixture of underlying components). 

3. The noise level, both in background and in higher-amplitude 

signals, is significant. 

4. A large fraction of the pixels (the background) may be a mem- 

ber of no class, thus containing only noise, and thus should not 

significantly influence or bias the centroid calculation. 

.1. Distance metric 

The clustering algorithm requires a distance metric that is: 

1. Scale (amplitude) invariant, and 

2. Polarity-agnostic (i.e., insensitive to signal inversions). 

Consider an arbitrary TD signal, �
 s = m 

�
 u , for unit-vector �

 u 

hat defines the characteristic signal. The negative of this signal, 

�
 s = (−m ) � u , shares the same direction, �

 u , and therefore has the 

xact same signal shape and thus is associated with the same un- 

erlying imaged target. Therefore, a polarity-agnostic distance met- 

ic must assign a distance of zero between 

�
 s and −�

 s . 

For simplicity, and to achieve symmetry in the distance metric, 

ll angles will be considered to be positive. The angle, ϑ , between 

wo vectors, � v 1 and 

�
 v 2 , is defined as 

 := ∠ ( � v 1 , � v 2 ) = arccos 

( 〈 � v 1 , � v 2 〉 
‖ 

�
 v 1 ‖‖ 

�
 v 2 ‖ 

)
, (4) 

or arccos (·) defined on [ −1 , 1] and mapping to [0 , π ] . The pro-

osed distance metric, satisfying polarity-agnosticism, is 

 ( � v 1 , � v 2 ) = sin (ϑ) , (5) 

or sin (·) defined on the interval [0 , π ] , constraining the range of 

(·) to [0,1]. Note that the function composition sin ( arccos (x ) ) = 

 

1 − x 2 , therefore the distance metric simplifies as 

( � v 1 , � v 2 ) = 

√ 

1 −
( 〈 � v 1 , � v 2 〉 

‖ 

�
 v 1 ‖‖ 

�
 v 2 ‖ 

)2 

. (6) 

.2. Calculation of cluster centroids 

As was mentioned at the end of Section 2 , an alternative 

ethod for computing cluster centroids is required. Although 

ngle-based variations of K-Means do exist — such as Spherical K- 

eans [41–43] whereby data-points are projected onto the unit- 

ypersphere via normalization and distance is defined by cosine 

issimilarity — centroids are still computed by taking the mean of 

ll points within a given cluster, an approach which does not apply 

o the representation given in Eq. 3 : 

• We have a requirement for polarity-agnosticism, whereby an- 

tipodal TD signals are clustered together, and these signals will 

largely cancel (negate each other) if averaged. 
• A large fraction of pixels are background (composed of zero- 

mean noise), having a random angle, and therefore are associ- 

ated to clusters at random, leading to significant biases if in- 

cluded in the sample mean, and it is highly undesirable for 

background noise to dominate (or affect at all) the learned cen- 

troids. 

Similarly, while angular distance metrics can be used with K- 

edoids, centroids are selected to minimize intra-cluster distance 

nd would be strongly influenced by large fractions of background 

oise (random angles). Instead, we desire a unit-vector pointing in 
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Algorithm 1 Proposed Clustering Algorithm. 

Input: 

Set of TD signals, S = { s j (t) } , to be clustered. 

Number of desired clusters, K. 

Minimum allowable moves criterion, MinMoves . 

Difference in mean residual criterion, MinDifference . 

Output: 

Set of cluster labels, L = { � } , associated with each TD signal. 

Set of cluster centroids, F = { � f i } , for i = 1 , ..., K. 

Initialization: 

Randomly select K data-points as initial centroids. 

1: for i = 1 , ..., K do 

2 : �
 f i 

Random ← s (t) ∈ S 

3: end for 

Set previous value of mean residual to 0. 

4: μpre v 
r ← 0 

5: repeat 

Set number of changed cluster labels to 0 . 

6: mov es ← 0 

Membership Update : Finding nearest centroid to each point. 

7: for all s j (t) ∈ S do 

8: � j ← arg min i ∈{ 1 ,...,K} 
{ 

d 

(
s j (t) , � f i 

)} 

Increment mov es if cluster membership changes. 

9: if � j changed this iteration then 

10: mov es ← mov es + 1 

11: end if 

12: end for 

Evaluate mean residual (objective). 

13: μr ← 

1 
‖ S ‖ 

∑ 

s j (t) ∈ S 

d 
(
s j (t) , � f � j 

)
14: �μr ← μr − μpre v 

r 

15: μpre v 
r ← μr 

Centroid Update : Use data-points within clusters to update. 

16: for i = 1 , ..., K do 

Get set of data-points within cluster. 

17: S i ← 

{
s j (t) 

∣∣ � j = i 
}

Take union of set with its negative. 

18: S 

±
i 

← S i 

⋃ 

( −S i ) 
Compute first principal component via SVD. Assign to 

centroid. 

19: �
 f i ← PC 1 

(
S 

±
i 

)
Normalize centroid to fall on unit-hypersphere. 

20: �
 f i ← 

�
 f i / ‖ � f i ‖ 

21: end for 

22: until �μr ≤ MinDifference OR mov es ≤ MinMoves 

t

d

t

d

K

t

s

f

4

t

m

he direction of the non-noise portion of the given cluster to define 

he centroid. The method needs to be polarity-agnostic, however 

e do not actually know, a priori, whether both positive and neg- 

tive examples are present. Given the set of points, S i , associated 

ith cluster, i , we construct the union set, 

 

±
i 

= S i 

⋃ 

( −S i ) , (7) 

ade up of the cluster, S i , and its negated points, −S i . From S 

±
i 

,

nd because of the sparsity of the weights αi, j , the centroid can be 

ound as the direction of greatest variance (the first principal com- 

onent from the sample covariance of S 

±
i 

), allowing higher ampli- 

ude signals (having a greater signal to noise ratio) to have greater 

nfluence, effectively eliminating the influence of background noise 

those random-angle data-points near the origin). 

.3. Algorithm 

With the distance metric and the method for calculating 

entroids now defined, the clustering algorithm, detailed in 

lgorithm 1 , follows fairly naturally from conventional K-Means. 

he calculation of cluster centroids is detailed in Centroid Update 

 line 16 ), and on line 19 an SVD (Singular Value Decomposition) is

sed to extract the first principal component. 

Similar to conventional K-Means, we need to define conver- 

ence criteria: 

1. Sufficiently few data-points change clusters between iterations 

(algorithm parameter MinMoves ), or 

2. The difference in the mean residual is sufficiently small be- 

tween iterations (algorithm parameter MinDifference ). 

Feature amplitude extraction is achieved by performing a 

hange of basis on the TD signals. Given the set of feature vec- 

ors, F = { � f i } , resulting from Algorithm 1 , the TD signals can be

xpressed as a weighted sum of the feature vectors plus a residual 

erm, as in Eq. 3 . Arranging the feature vectors in columns, form- 

ng a matrix of features, F = 

[
�
 f 1 | � f 2 | . . . 

]
, the TD signals can then

e represented concisely as s j (t) = F � α j + 

�
 r j . To solve for the vector

f feature weights / amplitudes, � α, the pseudo-inverse [44] of F is 

sed, thus, � α j = F + s j (t) . 

. Results 

Because ground truth is not available for PARS images of tis- 

ue, synthetic data are used in Subsections 4.1 and 4.2 and anno- 

ated hyperspectral data in Subsection 4.3 to quantitatively evalu- 

te the performance of the proposed method. However, usage on 

ARS data is also demonstrated in Subsection 4.4 to illustrate the 

roposed method’s promise. 

.1. Visual comparison of methods on synthetic data 

We begin by comparing the proposed method to standard Prin- 

ipal Components Analysis (PCA) and Angular-Distance K-Means on 

he basis of synthetic data. 

Given that none of the methods being compared are sensitive to 

orrelations between specific indices / samples of the TD signals, 

andomly generated synthetic data are used. Ground truth proto- 

ype signals are first generated, then scaled (including negatives) 

ersions with added noise are used. Additionally, background noise 

zero-signal with added noise) is included. To improve visual inter- 

retability, temporal correlations are introduced to the prototypes 

sing a first-order auto-regressive model [45] . In total, 300 points 

re generated for this analysis: 100 for each of two classes and 100 

or background noise. 
115 
The synthetic data tests are illustrated in Fig. 1 . For visualiza- 

ion purposes in the bottom row, the data-points, which are 30- 

imensional, are projected onto a 2D plane defined by the ground 

ruth prototypes (except for the case where PCA is used, where the 

ata-points are projected into the principal component space). 

It can clearly be seen that neither PCA nor Angular-Distance 

-Means produce learned features that even resemble the ground 

ruth prototypes, since neither approach is able to produce the de- 

ired sparse-weighted features, whereas the proposed method is in 

act highly effective at doing so. 

.2. Quantitative evaluation of proposed method 

To more comprehensively test the proposed approach, the syn- 

hetic test of Subsection 4.1 is generalized by evaluating perfor- 

ance as a function of key problem parameters, including the 
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Fig. 1. A comparison of methods to learn features from synthetic data. The first column shows the ground truth classes present in the data and the associated true cluster 

prototypes. Note that each data point, shown in the bottom row, is actually 30-dimensional but, for ease of viewing, is projected onto a plane defined by the true prototypes, 

with coordinates p 1 (aligned with the true class 1 prototype) and p 2 (orthogonal). In the PCA case, a projection into the principal component space is used instead. In 

addition to the two well-defined classes, there is low amplitude background noise present in the data set. The remaining columns demonstrate the ability of PCA, Angular- 

Distance K-Means, and the proposed method to recover the true clusters and centroids. In the case of PCA, no such clusters are identified; however, the principal components 

(learned features) can be compared to the true prototypes. 

Fig. 2. For synthetically generated data in 1024-dimensions, the proposed method, Spherical K-Means, Angular-Distance K-Means, and PCA are used to cluster the data and 

learn features / centroids. In all cases, K = 2 features are learned. By comparing to the ground truth, the clustering accuracy with respect to the true classes (top row) and 

centroid similarity to the true prototypes (bottom row) are evaluated for each method. Since PCA does not cluster points, its performance (purple line) is shown only in the 

bottom row, comparing the learned principal components and the true prototypes. In each column, the performance of the methods is evaluated while varying only one data 

parameter, holding the other parameters at their default values (circled). The results are averaged over 50 trials. In nearly every case, our proposed method outperforms the 

competing approaches. 
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e

ominal angular separation of the underlying classes, the noise 

evel, the fraction of points of low amplitude (background noise), 

nd the fraction of points that are a mixture of multiple classes. 

ynthetic data (sets of 500 points) comprising two classes are gen- 

rated in 1024-dimensions, based on ground truth class prototypes 

ith a specified angular separation. To form a comparison, the 

roposed method, Spherical K-Means, Angular-Distance K-Means, 

nd PCA are evaluated using this input data. Problem parameters 

re varied individually, holding all others fixed at a given nominal 
116 
alue, and results are averaged over 50 trials to mitigate random 

ampling error. 

Results are shown in Fig. 2 . In all cases, two ( K = 2 ) features are

earned. With PCA, points are not clustered; however, the principal 

omponents are learned. The task of selecting the number of clus- 

ers, K, is not addressed in this paper, and in principle the same 

ssues apply here as in selecting K in regular K-Means or the di- 

ensionality in PCA, and so K is assumed to be known based on 

xternal information. 
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Table 1 

Tests performed on the hyperspectral data, summarized here as averages taken over five runs. Four tests are performed, as described 

in Subsection 4.3 . In each case, the proposed method is compared against PCA over a range of requested features specified by 

parameter K, where it is seen that results are generally strongest for K = 16 , matching the number of ground truth classes. 

Data Pre-processing Evaluation Metric # Learned Features K

2 4 8 12 16 

None / Raw 

SVM: Accuracy (%) 
Proposed 17 .8 19 .0 24 .8 28 .9 29 .0 

PCA 25 .8 37 .6 41 .3 41 .2 49 .9 

One-hot: Accuracy (%) 
Proposed 8 .3 19 .8 22 .8 31 .8 33 .7 

PCA 2 .2 6 .2 6 .2 6 .2 6 .2 

One-hot: Number of Proposed 2 .0 4 .0 8 .0 10 .8 11 .8 

Unique Output Labels PCA 2 .0 4 .0 6 .4 6 .6 6 .6 

Randomized 

Amplitudes 

One-hot: Accuracy (%) 
Proposed 13 .0 18 .1 26 .7 31 .5 34 .8 

PCA 0 .5 0 .5 0 .5 0 .5 0 .5 

One-hot: Number of Proposed 2 .0 4 .0 7 .8 10 .2 11 .2 

Unique Output Labels PCA 1 .8 2 .0 2 .0 2 .0 2 .0 

Feature Similarity (%) 
Proposed 99 .0 98 .8 98 .8 98 .9 98 .9 

PCA 53 .2 26 .8 13 .5 9 .1 6 .8 
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By comparing to the ground truth classes and prototypes, the 

lustering accuracy (top row) and centroid similarity (bottom row) 

re evaluated for each method. In each column, the performance of 

he methods is evaluated independently for each parameter. It can 

learly be observed that the proposed method significantly outper- 

orms the other three tested methods in nearly all cases. Further 

iscussion is given in Section 5 . 

.3. Application study — Hyperspectral data 

The annotated Indian Pines [46] hyperspectral data set contains 

6 ground truth classes and is used here to quantitatively eval- 

ate and compare the performance of the proposed method to 

CA. Note that while individual signals at each pixel are in the 

pectral -domain (i.e., across discrete wavelength bands) rather than 

he time -domain, this does not preclude the use of the analysis and 

rocessing techniques discussed here. 

Firstly, we learn and extract features using the proposed 

ethod and PCA and evaluate the classification performance of 

 Support Vector Machine (SVM) [47,48] and a simpler ‘One-hot’ 

lassifier. Because SVM (especially in the ‘one-vs-one’ ensemble 

cheme, used here) is capable of learning complex classification 

oundaries, it is relatively insensitive to whether the features pro- 

ided to it are individually meaningful; rather, its performance de- 

ends mainly on the degree to which the provided features explain 

ariation between ground truth classes. As such, we introduce a 

imple ‘One-hot’ classifier that associates each learned feature to 

 ground truth class, and classifies points based on whichever ex- 

racted feature amplitude is greatest (i.e., ‘hottest’). Note that the 

ssociation is made based on whichever ground truth class is most 

elatively abundant for each feature, and multiple learned features 

an be associated to the same class label. The number of unique 

utput labels indicates how many of the ground truth classes have 

ssociated features. This classification scheme has the advantage 

hat its performance depends entirely on how well the learned fea- 

ures relate to ground truth classes. 

Because the hyperspectral data are ‘one-sided’, (only posi- 

ive), we repeat the ‘One-hot’ classification test but with random- 

zed amplitudes, accomplished by first normalizing signals to unit 

ength, and then multiplying by samples from a normal distribu- 

ion. Lastly, because the proposed method is not designed for use 

s a dimensionality reducer / pre-processing step for a subsequent 

lassifier (as is PCA), but is designed to learn independently mean- 

ngful features that relate to ground truth classes, we evaluate the 

imilarity of the learned features to the mean signal of each ground 

ruth class. 
117 
Note that each test is run across a range of requested num- 

ers of features, from K = 2 to 16 (matching the number of ground 

ruth classes), and results are averaged over five trials to mitigate 

andom error. In each trial, the data set is randomly split such that 

0% is used for training and 80% for testing. The results are sum- 

arized in Table 1 . 

.4. Application study — PARS data 

We wish to apply the proposed method to real-world PARS 

icroscopy data. Centroids (representative features) are learned 

nd then are used to extract feature amplitudes from the 1024- 

imensional TD signals of the PARS image. 

The use of the proposed algorithm for performing feature ex- 

raction is demonstrated here on an unstained, formalin-fixed 

araffin-embedded (FFPE) human breast tissue slide. The standard 

rojection PARS image of the slide is shown in Fig. 3 . This image

as captured and provided by Benjamin R. Ecclestone with grati- 

ude from the authors. A boxed-in region indicates the selection of 

D signals that were used for feature learning, and the number of 

esired clusters was set to K = 6 . 

The extracted feature amplitudes (in absolute value, thus ignor- 

ng polarity) are combined as an RGB image in Fig. 4 : Feature 1

aps to red, feature 4 to green, and feature 5 to blue. The same 

s done for features extracted via Spherical and Angular-Distance 

-Means (but with different f eature-to-colour pairings), shown in 

ig. 4 , and discussed in Section 5 . 

. Discussion 

The comparison between methods, shown in Fig. 1 , illustrates 

ualitatively that the learned features of PCA (the principal com- 

onents) and Angular-Distance K-Means do not adequately match 

he ground truth. This can be explained by considering the under- 

ying objective of each method: 

• PCA seeks to learn a minimal basis (set of principal compo- 

nents) that preserves maximal variation in the data, but makes 

no assumption about the underlying basis nor the associated 

sparsity of its weights. The principal components could, in prin- 

ciple, be a linear combination of the true prototypes, however 

information of the true prototypes cannot directly be inferred. 
• Regular K-Means, based on a Euclidean distance in the native- 

dimensional space, fails to assert the appropriate distance met- 

ric, and so is unable to accommodate variable signal amplitudes 

and would, in any event, most likely create a separate class for 

low-amplitude noise. 
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Fig. 3. A standard scalar signal projection of PARS imagery of unstained human breast tissue on a slide. The time-domain signals from the yellow boxed region are used for 

feature learning. Image captured by Benjamin R. Ecclestone. 

Fig. 4. Absolute values of three feature amplitudes, extracted from the time domain signals underlying the imagery in Fig. 3 using the proposed method. The three features 

are combined to produce a colour image: Feature 1 maps to red , Feature 4 maps to green , Feature 5 maps to blue . Quite remarkable structures and tissue differentiation are 

clearly visible in this image, relative to that of Fig. 3 . Insets of images produced via the same process (but with different f eature-to-colour pairings) for features extracted 

using Spherical (SKM) and Angular-Distance (AKM) K-Means are included for comparison. 
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• Angular-Distance K-Means creates clusters such that minimal 

intra-cluster variance and maximal inter-cluster distance are 

achieved, as is intended; however, due to the bi-polar nature 

of the TD signals explored in this report, Angular-Distance K- 

Means cannot group antipodal components of the same class 

together. Even if the distance metric were changed to accom- 

modate such bi-polar samples, K-Means still remains highly 

susceptible to the influence of background noise since its cen- 

troids are not weighted by signal amplitude. 

The quantitative evaluations shown in Fig. 2 remains consistent 

ith the preceding discussion, and broadly matches our expecta- 

ions — performance decreases with higher noise levels or more 
118 
ixed-class points, and increases with greater separation angles. 

otably, the proposed method is able to learn centroids well at low 

eparation angles, even if the clustering accuracy is low, demon- 

trating its ability to learn and discern very similar underlying fea- 

ures. Generally, Spherical and Angular-Distance K-Means perform 

ery similarly, and are outperformed in nearly every circumstance 

y our proposed approach. 

Somewhat counter-intuitively, Spherical and Angular-Distance 

-Means achieve greater centroid similarity at lower angular sep- 

ration or greater fractions of mixed points, and improved cluster- 

ng accuracy at greater fractions of background points. This is be- 

ause the methods tend to learn two antipodal centroids, halfway 

etween (equidistant to) the two ground truth centroids, as was 
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een in Fig. 1 . Thus at low angular separation, the learned cen- 

roids have a very high similarity to ground truth prototypes; 

owever, clustering accuracy is minimal ( ∼50% ) since both classes 

re equidistant. High fractions of mixed-class points aid in learn- 

ng equidistant centroids, and high fractions of background noise 

ull the learned centroids further away from lying directly be- 

ween the ground truth ones, leading to a slight rise in clustering 

ccuracy. 

Results of the tests on the hyperspectral data are summarized 

n Table 1 . On the raw hyperspecral data, PCA strongly outperforms 

he proposed method when used alongside the SVM classifier as a 

esult of the PCA features explaining greater variation in the data. 

ote that the hyperspectral data are highly correlated such that 

he majority of ground truth classes are separated by 20 ◦ or less, 

nd because of this, features extracted by the proposed method 

re also highly correlated and explain less variation than PCA fea- 

ures, leading to the poorer performance in the SVM test. How- 

ver, with the simpler ‘One-hot’ classifier, the proposed method is 

ble to consistently outperform PCA, indicating that the learned 

eatures are more meaningful in their correspondence to ground 

ruth classes. The same conclusion is also confirmed by observing 

he number of unique output labels for each method. Up to K = 8 ,

he number of unique output labels for the proposed algorithm is 

aximal (and continues to rise for larger K) whereas for PCA, the 

umber quickly reaches an upper limit of roughly 6 or 7. 

On tests based on randomized signal amplitudes, PCA again suf- 

ers, resulting in only 0.5% classification accuracy in contrast to 

he proposed method which does not face a significant decline in 

erformance, indicating, as designed, that the proposed method is 

olarity-agnostic. The number of unique output labels is minimally 

ffected for the proposed method, however the PCA features are 

enerally associated to only two classes. Lastly, the feature similar- 

ty scores indicate that the proposed method learns features that 

re highly similar to the ground truth data, whereas PCA does not 

and cannot, given that all principal components must be orthogo- 

al whereas the data are highly correlated). 

Although ground truth is not available for the PARS imagery, 

he proposed method yielded biologically meaningful, spatially 

rouped, highly compelling results. The learned features corre- 

pond to specific tissue structures present in Fig. 4 , and are dis- 

inctly separated in a way that is not at all the case in stan-

ard PARS imagery, as in Fig. 3 . The highlighted details and abil- 

ty to discern tissue structures in the inset images, produced 

rom Spherical and Angular-Distance K-Means features, are far 

ess striking than with the proposed method, indicating that the 

roposed method is able to learn features that more closely re- 

ate to underlying tissue components. A further detailed study in- 

olving commentary from histology experts would be necessary 

o validate the inferred features, and is the subject of ongoing 

esearch. 

. Conclusion 

The method proposed in this paper is capable of learning fea- 

ures from high-dimensional signals that relate to individual com- 

onents of the underlying data, in spite of signal amplitude vari- 

tions, inversions, and noise. When tested on synthetic data, the 

roposed method learned features that closely match the ground 

ruth prototypes, whereas the other compared methods could not. 

The proposed method consistently performed as well or better 

han all other methods, across all four problem parameters, offer- 

ng an attractive, intuitive, amplitude-flexible and class-mixing al- 

ernative to PCA or K-Means, due to its definition of distance, mix- 

ng weight sparsity, and strategy for computing centroids. 

Tests on hyperspectral data resoundingly indicate that the pro- 

osed method learns features that correspond well to ground truth 
119 
lasses, on the basis of having both high feature similarity to mean 

round truth class signals, and high numbers of unique output la- 

els in the ‘One-hot’ classifier. 

When applied to real data from a PARS microscope, the pro- 

osed method yielded features that showed correspondence with 

issue structures, showing significant promise. Clearly the proposed 

ethod is not in any way specific to PARS data, and is far more 

roadly applicable to the analysis of multi-dimensional / multi- 

odal signals. 
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