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Abstract— Learning-based methods for constructing control
barrier functions (CBFs) are gaining popularity for ensuring
safe robot control. A major limitation of existing methods
is their reliance on extensive sampling over the state space
or online system interaction in simulation. In this work we
propose a novel framework for learning neural CBFs through
a fixed, sparsely-labeled dataset collected prior to training.
Our approach introduces new annotation techniques based
on out-of-distribution analysis, enabling efficient knowledge
propagation from the limited labeled data to the unlabeled
data. We also eliminate the dependency on a high-performance
expert controller, and allow multiple sub-optimal policies or
even manual control during data collection. We evaluate the
proposed method on real-world platforms. With limited amount
of offline data, it achieves state-of-the-art performance for
dynamic obstacle avoidance, demonstrating statistically safer
and less conservative maneuvers compared to existing methods.

I. INTRODUCTION

Control Barrier Functions (CBFs) provide an effective
framework for safe robot control [1], [2].The recent develop-
ment of learning-based CBF methods exploit the expressive-
ness of neural networks and data-driven approaches to handle
systems with complex dynamics and high uncertainty, with
promising results [3], [4], [5], [6], [7], [8], [9].

However, the scalability of learning-based methods has
been a major bottleneck. The typical approach for learning
neural CBFs requires sampling over the entire state space to
enforce constraints from the standard CBF conditions [10].
While such methods ensure comprehensive coverage, they
are impractical for high-dimensional domains due to the
need of exponentially many samples. Online methods [11]
have been proposed to mitigate this issue by interacting
with the system during learning, allowing the state space
to be gradually explored. However, the methods still rely
on the availability of high-fidelity simulations and online
interactions for learning at arbitrary system states, and can
not operate with a fixed pre-collected dataset.

Consequently, offline training for constructing CBFs from
a pre-collected dataset is an important and mostly open
problem. Existing methods that consider the offline setting
impose restrictive assumptions on the training data, such as
only utilizing successful trajectories [7], [8], [10], or relying
on a fixed performative controller for data collection [8],
[12], [13], [14]. In contrast, leveraging unlabeled trajectories
collected by untrained controllers, which is the more realistic
setting of data collection, is key to achieving offline learning
in practice. Thus, the core question is how to harness a

This paper has been accepted to ICRA 2025.
1 Affiliation: 1. UCSD, 2. IHI Japan. Email: hoy021@ucsd.edu

Fig. 1: Visualizations on toy datasets, to illustrate the motivation for
utilizing unlabeled data. (a) With sufficient labeled data, the model
can accurately capture the safety boundary. (b) When labeled data
is limited, the learned boundary often misclassifies the safe and
unsafe regions of the system. (c) Unlabeled data is generally more
accessible than labeled data. Our approach leverages unlabeled data,
along with the limited labeled data, to capture the CBF landscape
that best adhere to the constraints inherent in the data.

Fig. 2: Overall learning pipeline of the proposed method. Our
method utilize offline demonstrations - even directly collected from
real-world platforms - to construct neural control barriers, ensuring
their zero-superlevel sets are control-invariant. The red contours
denote the learned zero level set, serving as the safety boundary
the ego-robot must not cross. Optionally, we gather additional
demonstrations to further refine the barrier.

small set of labeled data to train CBFs from a larger set of
unlabeled suboptimally-collected behavior data of the robot
(Figure 1). Note that given the learning-based setting of the
problem, our focus is not to derive complete guarantee of
safety, but to achieve better control performance using CBFs
compared to existing methods.

Overall, we introduce a novel offline learning framework
for constructing neural CBFs (Figure 2). First, we propose
new learning procedures that leverage out-of-distribution
analysis [15] of trained neural models to propagate in-
sights from labeled data, thereby maximizing the utility of
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unlabeled data. Second, we remove the reliance on high-
performance controllers during data collection, enabling sub-
optimal controllers to gather data while still achieving suc-
cessful offline training. To achieve this, we improve the learn-
ing of CBFs to more closely align with their theoretical Lie-
derivative condition. We evaluate the proposed method for
obstacle avoidance with autonomous mobile robots on both
simulation and real-world platforms. With limited amount of
offline data, the proposed methods can achieve state-of-the-
art performance in dynamic obstacle avoidance. The paper
is organized as follows. Sections II and III cover the related
work and the background necessary to support our theory. In
Section IV, we introduce the proposed algorithm and explain
the rationale behind each component. Section V presents the
experimental results, and Section VI concludes the paper.

II. RELATED WORK

Control Barrier Function. Control barrier functions
(CBF) [16] aim to ensure control safety in dynamical systems
by imposing value-landscapes to render the safe set forward
invariant. The key point is to enforce the derivative of the
CBF to satisfy Lyapunov conditions [17]. Traditional CBFs
are manually designed based on domain-specific knowledge
of the system, making them unsuitable for systems with
complex dynamics or high uncertainty [1], [2].

Learning-based methods have been introduced to construct
data-driven CBF candidates [3], [4], [5], [6], [8], [12], [18],
[19] from data. Online algorithms learn CBFs by interacting
with, or sampling from, the controlled system. In [3], the
authors learn barrier certificates to derive the safe region of
an unknown control-affine system. They propose an adaptive
sampling algorithm to iteratively refine the CBF candidate
on the states that have high uncertainty. [5] studies the
multi-agent control problem. They jointly learn the barrier
certificates alongside the multi-agent control policy, while
regulating the policy based on CBF. [6] develops a model-
based approach to learn control Lyapunov barrier functions
based on stability and safety specifications. The training state
are sampled uniformly from the state space. Offline algo-
rithms learn CBFs without new data during the learning. [7]
proposes an incremental learning of a set of linear parametric
CBFs from human demonstrations. In [8], the authors present
an approach to synthesize local valid CBFs for control-affine
systems with known but nonlinear dynamics. The expert
demonstrations contain only safe trajectories collected with
a fixed nominal controller.

Out-of-distribution Analysis. Out-of-distribution (OOD)
analysis is an emerging topic of machine learning that exam-
ines the distribution shifts where test data diverges from the
training data distribution [15]. Unsupervised representation
learning methods focus on learning domain-agnostic features
from unlabeled data [20], [21], [22], [23]. However, these
methods can introduce bias, if the OOD domain distributions
overlap with the unlabeled data distribution [24]. Supervised
learning methods incorporate implicit domain labels from
both in-distribution and OOD data [25], [26]. While these
methods are often more accurate due to the additional

information, they may not generalize well to OOD examples
that differ significantly from those seen during training.

III. PRELIMINARY

We consider ego-robots with underlying dynamics ẋ(t) =
f(x(t), u(t)) where x(t) takes values in an n-dimensional
state space X ⊆ Rn, u(t) ∈ U ⊆ Rm is the control vector,
and f : X × U → X is a Lipschitz-continuous vector field.
We allow the dynamics function f to be generally nonlinear
and not control-affine. Consider an unsafe region of the state
space Xu ⊂ X where safety constraints are violated. We say
the system is safe if none of its trajectories intersects with
Xu. To enforce safety properties of a system, the controller
needs to find a control invariant set for the system that is
disjoint from the unsafe set. A subset of the state space Inv ⊆
X is control invariant, if for any initial state x(0) ∈ Inv
and any t > 0, we have x(t) ∈ Inv. Namely, any trajectory
that starts in the invariant set Inv stays in Inv forever. CBFs
are scalar functions whose zero-superlevel set is a control
invariant set within the safe region of the system, and whose
spatial gradients can be used to enforce the invariance.

Definition 1 (Control Barrier Functions [16]): Consider
a dynamical system defined by vector field f : X ×U → X .
Let B : X → R be a continuously differentiable function.
The Lie derivative of B over f is defined as:

Lf,uB(x) =

n∑
i=1

∂B

∂xi
· ∂xi

∂t
= ⟨∇xB(x), f(x, u)⟩, (1)

where ⟨·, ·⟩ denotes inner product. The Lie derivative mea-
sures the change of B over time along the direction of system
dynamics under control u. If the zero-superlevel set of B,
i.e. C = {x ∈ X : B(x) ≥ 0}, is disjoint from the unsafe
region of the system, i.e. C ∩ Xu = ∅. And if for any safe
state x ∈ C and an extended class-K∞ function α(·) [27]:

max
u∈U

Lf,uB(x) ≥ −α(B(x)). (2)

Then B is a control barrier function (CBF), and its zero-
superlevel set C is control invariant.

Out-of-distribution (OOD) algorithms study whether an
input to the neural model follows the training distribution,
being in-distribution, or deviates from the model’s training
set, making it out-of-distribution. In our work, we use the
unsupervised algorithm [23] to implement OOD detection.
Consider the input space X and the binary output space
Y = {−1,+1}. For a threshold c ∈ (0, 1) ⊆ R, a binary
classifier P : X → (0, 1) is optimized to capture the
correct labels, where the classification decision fc,P (x) is
set to +1 only if P (x) > c. To achieve binary classification
with rejection, [23] proposes learning two binary classifiers,
denoted as P1 and P2, with thresholds c and 1− c, respec-
tively, to satisfy Chow’s rule [28]. The two models share
all the model weights except for the last layer. If the two
classifiers disagree on the classification of a given input x,
i.e. fc,P1

(x) ̸= f1−c,P2
(x), the input is rejected as OOD.



IV. OFFLINE LEARNING OF BARRIER CRITIC

Consider that we have a well-defined CBF B : X → R,
and a discrete control system f : X × U → X . For an
arbitrary unlabeled state o ∈ X that does not violate safety,
i.e. o /∈ Xu, if there exist controls at o that can lead the
system to be in the zero-superlevel set of B:

∃u ∈ U s.t. B(f(o, u)) > 0, (3)

then the state o satisfies the control invariant property, and
thus, assigning a safe label to it must be correct. However, for
the data-driven neural CBF models, following (3) can lead
to incorrect annotations of the unlabeled. This is because
if an unlabeled state o is uncovered by the training set, it
is likely that neither is its one-step reachable set, i.e. X ′

=
{x ∈ X | ∃u ∈ U s.t. f(o, u) = x}, covered fully. Thus, the
model predictions on X ′

are not reliable in determining the
safety of o. This phenomenon is critical for offline methods,
as we cannot interact with the system to acquire on-policy
data to refine on the wrongly-annotated state regions.

In our work, we propose to label an unlabeled state o as
safe if there exists a control u ∈ U such that:

Bθ(x
′) > 0 and x′ is in-distribution w.r.t. θ, (4)

where x′ = f(o, u) and θ represents the parameters of neural
CBF model. Intuitively, if we can derive such a control that
leads the system to a seen & safe state, then there arises no
concern about undermining the annotation steps due to the
OOD samples. In the following sections, we describe the
components for achieving the proposed idea.

A. Rejection-based Out-of-distribution Analysis

We employ [23] to determine whether a given input is
in-distribution. Let the rejection model be denoted by RΦ :
X → R2, which outputs two-dimensional rejection scores
for the given state input. Denote the rejection threshold by
c ∈ (0, 1) ⊆ R. Over the safe set Xs and the unsafe set Xu,
we optimize RΦ to minimize the following objective:

LΦ(Xs,Xu) = LΦ1,c(Xs,Xu) + LΦ2,1−c(Xs,Xu),

LΦi,(·)(Xs,Xu) =
1

|Xs|
∑
x∈Xs

[−RΦi
(x) + (·)]+

+
1

|Xu|
∑
x∈Xu

[RΦi
(x)− (·)]+,

(5)

where RΦi(x) denotes the ith score from RΦ(x) and [·]+ =
max(·, 0). When the rejection model is well trained, we say
that the state x ∈ X is an in-distribution sample if:

RΦ1
(x) > c and RΦ2

(x) > 1− c, (6)

implying no disagreement between the two rejection scores.

B. Actor Model Learning

The rejection model enables us to classify if a given state
is in-distribution or not. However, to realize the annotation
steps proposed in (4), we must be able to efficiently deter-
mine what controls to attempt at one unlabeled state.

Fig. 3: Model component visualization with the proposed training
flows. The optimization of the CBF requires the actor to derive
the maximally-safe controls over which we enforce Lie derivative
condition. The actor is optimized based on both CBF and rejection
models, capturing the control that leads to the safest in-distribution
state. Rejection model’s training does not rely on other models.

We achieve this by learning an actor model AΘ : X → U
that captures the maximally-safe, in-distribution control for
the given state. The term ‘maximally-safe’ is with respect to
the CBF landscape, accounting for the maximal increase to
the learned CBF score led by the control. Denote the CBF
model by Bθ : X → R. With the rejection model RΦ and
the parameter c, we aim at solving the following optimization
problem with the actor at an arbitrary state x ∈ X :

argmax
u∈U

Bθ(f(x, u)),

s.t. RΦ1
(f(x, u)) > c and RΦ2

(f(x, u)) > 1− c.
(7)

Consider that we obtain the control u∗ by solving (7) at an
unlabeled state o. If following u∗ at o cannot satisfy (4),
then no less safe control can satisfy it either. Therefore, we
can label o as unsafe without evaluating any other controls.
Given a training batch X, we optimize Θ by minimizing:

LΘ(X) =
1

|X|
∑
x∈X

[
−Bθ

(
f(x, πΘ

(
x
)
)
)

+ [−RΦ1

(
f(x, πΘ

(
x
)
)
)
+ c]+

+ [−RΦ2

(
f(x, πΘ

(
x
)
)
)
+ 1− c]+

]
.

(8)

Unlike Reinforcement Learning (RL) methods [29], [30], we
do not rely on the actor to generate controls at execution
time. Instead, the actor is used soly as an auxiliary model to
shape the barrier landscape during training.

C. Overall Pipeline
We now discuss the learning pipeline of the CBF model.

We write the CBF model as Bθ : X → R. Given a safe batch
Xs and an unsafe batch Xu, we optimize θ by minimizing:

Lθ(Xs,Xu) (9)

=

(
1

|Xs|
∑
x∈Xs

[−Bθ(x)]+

)
+

(
1

|Xu|
∑
x∈Xu

[Bθ(x)]+

)

+
1

|Xs|
∑
x∈Xs

[
−
〈
∇xBθ(x),∇xf(x, πΘ(x))

〉
− α

(
Bθ(x)

)]
+
.



Fig. 4: Visualization of the learned CBF landscapes. Early in
training, the safety boundary is primarily informed by the collision
states from data, leading the robot to collide. As training progresses,
the CBF model begins to approximate the safe region of the system.
However, jittery robot motions are exhibited due to incomplete
training. Once learning converges, the CBF model satisfies the
Lyapunov condition over its Lie-derivatives, enabling the selection
of more aggressive yet still safe controls.

The first two terms enforce Bθ(x) to take positive values on
safe states and negative values on unsafe states, respectively.
The third term optimizes the model to satisfy the Lie
derivative condition of CBF in (2). Unlike prior work [8],
[12], [19], which optimizes the Lie derivative condition
over the safe controls from data, we optimize it over the
controls generated by the actor πΘ. In fact, optimizing with
maximally-safe controls more closely follows the original
CBF definition (2) which applies a max operator over the
control space on the Lie derivative. In Section V-A, we show
that incorporating the actor allows for training data collected
with diverse controllers without imposing any performance
assumption on them. Figure 3 illustrates the overall training
flow of the proposed models.

We present the full procedures in Algorithm 1. Early in
training, unlabeled data remain unannotated until a sufficient
number of iterations have been completed (Line 4). This is
to prevent false model estimations at the outset. To annotate
an unlabeled state x, we unroll the dynamics function using
the actor’s control output to obtain the next state x̄ (Line
14). We then label x as safe if and only if x̄ is deemed safe
with respect to the CBF model Bθ and in-distribution with
respect to the rejection model RΦ (Line 15).

D. Optimization Regularization
As the learning objective of the CBF model (9) enforces

inequality constraints on the estimated landscape, the training
process can suffer from the collapse problem similar to
that reported in self-supervised learning [31]: as training
proceeds, the magnitude of the learned landscape may shrink
towards near-zero values while still violating the inequality
constraints. This issue is especially pronounced for the offline
methods, as they cannot acquire new data to mitigate the
problem unlike the online methods.

To alleviate the collapse issue, we optimize (9) using the
surrogate CBF values B̄θ defined as follows:

B̄θ(x) = Bθ(x)/Ex∈X̄
[
Bθ(x)

]
, (10)

where X̄ ⊆ Xs is a subset of the safe set sampled in advance.
We do not detach the gradient of the denominator in (10)

Algorithm 1 Neural CBF with Barrier Critic (NCBF-BC)

Input: labeled sets Ds and Du, unlabeled set Dul, training
iteration T , annotation start iteration Ta

1: Initialize the models and data buffer
2: for t = 1 ... T do
3: Sample labeled batches Xs ⊆ Ds and Xu ⊆ Du

4: if (t ≥ Ta) then
5: Sample an unlabeled batch Xul ⊆ Dul

6: Xul,s, Xul,u ← Annotate(Xul)
7: Xs ← Xs ∪ Xul,s, Xu ← Xu ∪ Xul,u

8: end if
9: Model updates over Xs and Xu: RΦ with (5), πΘ with

(8), Bθ with (9)
10: end for
11: return Bθ, RΦ, πΘ

Function Annotate(X):
12: Xs ← {}, Xu ← {}
13: for x in X do
14: x̄← f(x, πΘ(x))
15: if Bθ(x̄) > 0 and RΦ(x̄) satisfies (6) then
16: Xs ← Xs ∪ {x}
17: else
18: Xu ← Xu ∪ {x}
19: end for
20: return Xs, Xu

EndFunction

with respect to model parameters θ, which helps to elevate
the overall magnitude of barrier landscape whenever it begins
to collapse toward zero.

V. EXPERIMENTS

We evaluate the proposed algorithm in both simulation
and real-world experiments. To derive safety-critical controls
from the learned models, we follow Algorithm 2 which
requires a heuristic goal-driven metric to rank controls ac-
cording to task completion progress.

A. Simulation Experiments

We focus the simulation evaluations (Figure 4) on the
task of static obstacle avoidance. We generate training tra-
jectories using potential-field controllers with either fixed or
randomized parameters. A trajectory is considered safe if no
collision occurs. If a trajectory ends in a collision, we add the
collision state to the unsafe set, and its preceding segment
(of unlabel horizon τ ) to the unlabeled set. In our simulation
environments, where the time-step is discretized at △t = 0.2
second, we set the unlabel horizon τ = 9.

We consider three different ego-robot dynamics including
Double Integrator, the Dubins, and the Bicycle models. For
each dynamics model, the system is of 5-dimensions con-
sisting of vehicle linear & angular velocities and yaw angles
besides the coordinates. All the neural network models are 2-
layer Tanh networks with 128 hidden neurons per layer. We
use rejection parameter c = 0.1, and perform optimization
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Fig. 5: Simulation experiments for static obstacle avoidance with different dynamics models of ego-robot. Evaluation metric is the mean
success rate where we follow Algorithm 2 to derive the controls based on trained models, and perform evaluations over 100 randomized
scenarios. When collecting the safe trajectories, we employ the potential-field controller(s) with (a) fixed and (b)-(d) randomized parameters.

regularization with subset size 1000. We employ the linear
mapping α(x) = κ · x with κ = 0.1. The algorithm runs for
2000 iterations in total, while the annotation of unlabeled
data starts at the 200th iteration. We use the orientation
towards the goal as the heuristic goal-driven metric.
Comparisons with Baseline Methods. Figure 5 demon-
strates the experiment results. The baseline is the standard
method for learning CBFs as in [6], [8], [10], [12], [19],
denoted by Neural CBF (NCBF). The Unsafe horizon defines
the number of states near the end of failure trajectories which
we label as unsafe, but only when training the baseline.

First, we show that the baseline underperforms when
training trajectories are generated by multiple controller
polices. When there are multiple controls provided at a state,
it is incorrect to optimize the Lie derivative condition (2)
of CBF over all the provided safe controls. Instead, we
should optimize the condition only along the maximally-safe
control, while those less conservative controls can be allowed
to violate the inequality constraint in (2). In Figure 5(b)-(d),
we show that our method can handle training sets collected
by a diverse range of sub-optimal controllers.

Across all experiments, the proposed method incorporating
both regularization and rejection-based annotation performs
the best in terms of learning rates and training stability. For
the Bicycle and Dubins models, the regularization technique
effectively prevents collapse, thereby avoiding divergence
during training. The Double Integrator does not exhibit
collapse issues, regardless of whether regularization is ap-
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Fig. 6: Ablation experiments on the ratio between training labeled
and unlabeled set sizes for Bicycle. The two numbers in each
label are the sizes of labeled and unlabeled demonstration sets,
respectively. For instance, the blue curve in (a) refers to the setting
with 5000 labeled safe & unsafe states, and 5000 unlabeled states.

plied. Because it has simpler dynamics, the optimization for
satisfying the CBF conditions converges before collapse can
occur. Meanwhile, disabling the rejection-based annotation
noticeably slows convergence. In particular, for the Double
Integrator, the CBF quickly overfits to the available labeled
data, weakening the effectiveness of the annotation process
that relies only on the learned CBF scores.
Ratio of Labeled Data. We conduct ablation experiments on
the Bicycle model to investigate how the ratio of training set
size impacts the proposed method. In Fig. 6(a), we vary the
size of unlabeled set while fixing the labeled size, showing
that the learning can be quickly stimulated even with small
amounts of unlabeled data. This is because the labeled states
that are certainly safe may be derived from conservative
policies whose safety rules deviate from the optimal safety
boundary. Meanwhile, the unlabeled trajectories with uncer-
tain safety often involve aggressive controls that may exceed
the optimal safety boundary, and thus carry more useful
information. In Fig. 6(b), we fix the unlabeled size while
varying the size of labeled set. With sufficient unlabeled data
provided, there appears to be a threshold to the labeled size
beyond which the learning rates become indifferent.

B. Hardware Experiments

In this section, we discuss hardware experiments on dy-
namic obstacle avoidance (Figure 8). The experiments on
static obstacles (Figure 7 Right) are showcased in sup-
plementary video but are not discussed in the paper. The

Goal

Initial

NCBF-BC

ROS1-MPC

ROS2-DWB

PF-1.5m

Fig. 7: Left: Freight robot. Right: Trajectories generated by
different controllers.



Success Rate
(%)

Mean Path
Length (meter)

Mean Completion
Time (sec)

Mean Velocity
(meter/sec)

Minimal Distance to
Obstacles (meter)

NCBF-BC (ours) 93.3 7.23 36.46 0.21 0.578
NCBF 46.7 7.60 35.49 0.21 0.610

PF-1.5m 80.0 7.30 35.06 0.20 0.668
ROS1-MPC 80.0 7.75 44.65 0.17 0.697
ROS2-DWB 86.7 6.68 40.26 0.17 0.677

TABLE I: Real-world experiments for dynamic obstacle avoidance over 30 runs. Statistics are computed over the successful runs only.

platform utilized in our experiments is the Freight (Figure
7 Left), a research variant from Fetch Robotics. We cap the
velocity of the robot at 0.22 m/s. To train our model, we
collected 40-minutes of demonstrations by manually driving
the robot around pedestrians, deliberately splitting the data
into roughly 15-minutes of successful and 25-minutes of
failure trajectories. For applying the proposed method, we
discretize the time-step to be ∆t = 0.15 second, and employ
unlabel horizon τ = 9.

The system state space for dynamic obstacle avoidance
is 11-dimensional, consisting of robot coordinates, yaw and
velocity information, and 3-step past state history of indi-
vidual pedestrian. All the neural models are 2-layer Tanh
networks with 256 hidden neurons per layer. We perform the
learning for 5000 iterations, initiating the annotation steps
over unlabeled data at the 500th iteration. All other training
parameters match those used in simulation experiments.
When optimizing (9) to enforce the Lie derivative condi-
tion of CBF, we only leverage the derivative of ego-robot
dynamics, while taking from data the pedestrian movements
at the future timestamps.

Table I presents the quantitative results. Besides NCBF,
we include one potential-field controller using a repulsive
range of 1.5 meter. We further compare against both the
ROS1 MoveBase (MPC-based) navigation stack and the
ROS2 Nav2 stack. Offline Deep RL algorithms cannot be
directly applied, as the reward labels that can accurately

Algorithm 2 Control using NCBF-BC

Input: state x, CBF model Bθ, rejection model RΦ, goal-
driven metric G : X ) R, sample size N

1: Sample control candidates a = [a1, a2, ..., aN ]
2: g← []
3: for ai in a do
4: Unroll the dynamics x̄ = f(x, ai)
5: if Bθ(x̄ < 0) or RΦ(x̄) does not satisfy (6) then
6: Remove ai from a
7: else
8: Evaluate the goal-driven score, g = g ∪ {G(x̄)}
9: end if

10: end for
11: if a is now empty then
12: return Error - no safe control found
13: end if
14: return control candidate from a with the maximal score

Fig. 8: Visualization of the learned CBF landscapes. Note that the
CBF model trained for dynamic obstacle avoidance exhibits a wider
gap between level sets, which reflects the need to initiate collision
avoidance further from dynamic obstacles compared to static ones.

reproduce manual controls (via RL) are typically unavailable
in real-world data. First, the proposed method achieves the
highest success rate. The failures with our method are always
due to unfamiliar pedestrian movements that deviate from
the training data. Second, we show that the proposed method
completes the scenarios with the highest mean velocity, while
maintaining the lowest distance to the pedestrians without
violating safety. This showcases the robustness of the learned
safety boundary which allows us to select the controls that
are performative, or even aggressive, yet safe. Third, the
performance of potential-field controller degrades when there
involve more pedestrians surrounding the robot. Oscillation
behaviors are observed with potential-field controller in our
experiments. Last, the NCBF baseline shows sub-optimal
performance, producing strange looping behaviors and fre-
quently taking unnecessarily long paths when pedestrians
are present. Since data were collected via manual control,
states could be reached with controls of varying levels
of conservativeness. Consequently, the baseline’s training
objective forces the CBF to accommodate the most conser-
vative control among the provided examples. Moreover, the
NCBF baseline under-utilize failure trajectories, especially
the uncertain states preceding the collisions, thereby limiting
the amount of data it can effectively leverage.

VI. CONCLUSION

This paper presents a novel learning-based approach for
constructing neural control barriers from offline demonstra-
tions. Experiment results show that the proposed algorithm
outperforms the existing methods for offline data-driven
CBFs construction. The results also highlight the benefits of
utilizing unlabeled demonstrations to further refine the learn-
ing of control barriers Future directions include extending
the proposed method to higher-dimensional systems, such as
those incorporating Lidar sensory data or images.
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