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Abstract
Offline optimization aims to maximize a black-
box objective function with a static dataset and
has wide applications. In addition to the objec-
tive function being black-box and expensive to
evaluate, numerous complex real-world problems
entail optimizing multiple conflicting objectives,
i.e., multi-objective optimization (MOO). Never-
theless, offline MOO has not progressed as much
as offline single-objective optimization (SOO),
mainly due to the lack of benchmarks like Design-
Bench for SOO. To bridge this gap, we propose
a first benchmark for offline MOO, covering a
range of problems from synthetic to real-world
tasks. This benchmark provides tasks, datasets,
and open-source examples, which can serve as a
foundation for method comparisons and advance-
ments in offline MOO. Furthermore, we analyze
how the current related methods can be adapted
to offline MOO from four fundamental perspec-
tives, including data, model architecture, learn-
ing algorithm, and search algorithm. Empirical
results show improvements over the best value
of the training set, demonstrating the effective-
ness of offline MOO methods. As no particular
method stands out significantly, there is still an
open challenge in further enhancing the effective-
ness of offline MOO. We finally discuss future
challenges for offline MOO, with the hope of
shedding some light on this emerging field. Our
code is available at https://github.com/
lamda-bbo/offline-moo.

1. Introduction
Creating new designs to optimize specific properties is
a widespread challenge, encompassing various domains
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such as real-world engineering design (Tanabe & Ishibuchi,
2020), protein design (Khan et al., 2023), and molecule
design (Stanton et al., 2022). Many methods generate new
designs by iteratively querying an unknown objective func-
tion that maps a design to its property score. However, in
real-world situations, evaluating the objective function can
be time-consuming, costly, or even dangerous (Dara et al.,
2022). To optimize for the next candidate design based
on accumulated data, a rational approach prefers to build
a model, use it to guide the search, and select a suitable
candidate for the evaluation. This approach is known as
offline model-based optimization (Trabucco et al., 2022).

Offline model-based optimization solely permits access to
an offline dataset and does not permit iterative online evalua-
tion (i.e., only one batch of real evaluations), which presents
notable challenges in comparison to more commonly stud-
ied online optimization. A common approach is to train a
deep neural network (DNN) model fθ(·) on a static dataset
and use the trained DNN as a proxy (also known as a surro-
gate model). The DNN proxy enables gradient descent on
existing designs, which can result in an improved solution
that is even better than the previously seen best one some-
times. However, this approach has a drawback: the trained
proxy is prone to out-of-distribution problems, i.e., it makes
inaccurate predictions when applied to data points that devi-
ate significantly from the training distribution. Besides, in
some cases, the learned proxy has a non-smooth landscape,
posing challenges to optimize in it. Many recent studies
try to address these issues from different perspectives, e.g.,
COMs (Trabucco et al., 2021) uses adversarial training to
create a smooth proxy; RoMA (Yu et al., 2021) employs a
local smoothness prior to alleviate the fragility of the proxy
and achieves robust estimation by model adaptation; Tri-
Mentoring (Chen et al., 2023a) effectively utilizes weak
ranking supervision signals among proxies and achieves
a robust ensemble of proxies by an adaptive soft-labeling
module; just to name a few.

In addition to the objective function being black-box and
the evaluations being costly, numerous complex real-world
problems entail optimizing multiple objectives, frequently
with conflicting requirements, which can be formulated as
multi-objective optimization (MOO) problems (Miettinen,
1998; Ehrgott, 2005). The goal of MOO is to find a set
of solutions that represent the optimal trade-offs among
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the various objectives, thereby significantly augmenting the
complexity of the problem compared to single-objective
optimization (SOO) which aims to obtain a single opti-
mal solution. Indeed, MOO is a more prevalent problem
than SOO. Many single-objective problems are essentially
multi-objective in nature, but they are often converted into
a single objective by assigning weights to multiple objec-
tives, primarily due to the challenges associated with solving
MOO (Stanton et al., 2022; Chen & Li, 2023).

Recently, researchers have recognized the significance of di-
rectly modeling MOO problems (Deb et al., 2002a; Daulton
et al., 2020). The demand for offline MOO is also grad-
ually increasing. However, the progress of offline MOO
is far behind compared to offline SOO. Thanks to the re-
markable benchmark Design-Bench (Trabucco et al., 2022),
several advanced offline SOO algorithms have been pro-
posed, which can perform well even in high-dimensional
and complex search spaces (Chen et al., 2022; Qi et al.,
2022; Yuan et al., 2023; Chen et al., 2023a; Krishnamoorthy
et al., 2023; Kim et al., 2023; Chemingui et al., 2024; Yu
et al., 2024; Uehara et al., 2024). Unfortunately, there has
been no such benchmark available for offline MOO, which
hinders its progress. Even for online MOO, most works
conduct evaluations on synthetic functions with a few ex-
ceptions that include real-world applications. This calls for
a much-needed push towards more challenging benchmarks
for reliable evaluation of MOO, especially in the offline
setting.

In this paper, we propose a first benchmark for offline MOO,
where the tasks range from synthetic functions to real-world
science and engineering problems, as shown in Figure 1. To
facilitate future research, we release our benchmark tasks
and datasets with a comprehensive evaluation of different
approaches and open-source examples. Specifically, we
analyze an offline MOO method from four fundamental
perspectives including data, model architecture, learning
algorithm, and search algorithm, and propose two types of
potential methods, i.e., DNN-based and Gaussian process-
based offline MOO, by learning techniques from related
areas such as offline SOO and multi-objective Bayesian op-
timization. Experimental results show that the proposed
methods can achieve better results than the optimal ones
in the training set. However, as no single method stands
out significantly, how to enhance the effectiveness of of-
fline MOO remains open. Our work serves as a starting
point for offline MOO, and we hope it can encourage more
explorations in this emerging area.

Our contributions can be summarized as follows:

• We propose a first benchmark for offline MOO, pro-
viding not only a large amount of offline data but also
commonly used MOO interfaces. This facilitates the in-
tegration of a wider range of problems and algorithms.

Tasks

Learning 
Algorithm

Evaluations

Performance Rank Visualization

Data

Model 
Architecture

Search 
Algorithm

Synthetic Function MO-NAS

MORL

Scientific Design

MOCO

RE

Methods

𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑚𝑚

Figure 1. Benchmarks for offline MOO.

• We analyze an offline MOO method from four funda-
mental perspectives, including data, model architecture,
learning algorithm, and search algorithm, and compare
various implementations within a unified framework,
making it convenient for researchers to compare their
performance in a clear manner.

• We provide extensive empirical studies, and also dis-
cuss challenges and future directions of offline MOO.

2. Background
2.1. Offline Optimization

Given an offline-collected static dataset D = {(xi, yi)}Ni=1,
offline model-based optimization aims to find an optimal
solution (also called “design” in many scenarios) x∗ that
minimizes the black-box objective function f(·), i.e., x∗ =
argminx∈X f(x).

A common approach for solving offline optimization prob-
lems is approximating the black-box objective function f(·)
using a surrogate model, e.g., DNN. The parameters of
DNN can be trained by minimizing the mean squared er-
ror between the predictions and the true scores. After that,
the trained DNN model is used as a surrogate evaluator to
optimize using a search algorithm, e.g., gradient descent.

2



Offline Multi-Objective Optimization

Since offline optimization does not allow iterative real evalu-
ations, the algorithm is expected to output a proper solution
that is better than the best solution seen in the dataset. How-
ever, in practice, producing a single better design entirely
from offline data is very difficult, so offline optimization
methods are more commonly evaluated in terms of “P per-
centile of top K” performance (Kumar & Levine, 2020),
where the algorithm produces K candidates and the P per-
centile objective value determines the final performance.

Many real-world tasks are inherently multi-objective, but
they are usually simplified and formulated as single-
objective problems. For example, neural architecture search
(NAS) should not only maximize accuracy, but also mini-
mize the scale of the model (Lu et al., 2023); protein design
should take efficacy, toxicity, and yield into consideration
simultaneously (Stanton et al., 2022). In this paper, we aim
to highlight the importance and challenges of offline MOO,
and provide a benchmark and comprehensive empirical stud-
ies on it.

2.2. Multi-Objective Optimization

First, we give a brief introduction to multi-objective opti-
mization problems, which can be defined as

minx∈X f(x) = (f1(x), . . . , fm(x)), (1)

where x = (x1, . . . , xD) is a solution, f : X → Rm

constitutes m objective functions, X is the solution space,
and Rm is the objective space. For a non-trivial problem,
no single solution can optimize all objectives at the same
time, and we have to make a trade-off among them (Qian
et al., 2013; Bian et al., 2023).

Definition 2.1. A solution x∗ is Pareto-optimal with respect
to Eq. (1), if ∄x ∈ X such that ∀i : fi(x) ≤ fi(x

∗) and ∃i :
fi(x) < fi(x

∗). The set of all Pareto-optimal solutions is
called Pareto-optimal set (PS). The set of the corresponding
objective vectors of PS, i.e., {f(x) | x ∈ PS}, is called
Pareto front (PF).

Instead of focusing on a single optimal solution in SOO, the
goal of MOO is to find a set of solutions that can approxi-
mate the PF well. Next, we will briefly introduce two main
kinds of methods for solving MOO problems.

Multi-objective evolutionary algorithm (MOEA). Evo-
lutionary algorithms (Bäck, 1996; Zhou et al., 2019) have
demonstrated their effectiveness in solving MOO problems.
MOEA follows the population-based search by iterative par-
ent selection, reproduction, and survivor selection, which
can approximate the Pareto optimal solutions within one ex-
ecution, with each solution in the population representing a
unique trade-off among the objectives (Deb, 2001). Over the
last decades, there have been a lot of well-known MOEAs
developed (Coello et al., 2007). NSGA-II (Deb et al., 2002a)

is a typical Pareto dominance-based MOEA, using fast non-
dominated sorting for selecting solutions. MOEA/D (Zhang
& Li, 2007) is a decomposition-based MOEA, converting
an MOO problem into multiple SOO sub-problems through
a number of weights, where neighboring solutions work co-
operatively for the optimal solutions of the single-objective
sub-problems. NSGA-III (Deb & Jain, 2013) is proposed to
handle MOO problems with many objectives (having four
or more objectives), by using reference points to assist the
selection within non-dominated solutions.

Multi-objective Bayesian optimization (MOBO). Many
real-world MOO tasks are expensive to evaluate. MOBO is
suitable for these tasks due to its high sample-efficiency.
Based on the observed data, MOBO learns a surrogate
model, e.g., Gaussian process (GP) (Rasmussen & Williams,
2006), searches for new promising candidates based on
an acquisition function built on the surrogate model, and
queries the quality of these candidates with the ground
truth black-box objectives. Existing MOBO methods
mainly fall into the following three types. Hypervolume
based methods consider the widely-used hypervolume met-
rics in acquisition function (Emmerich et al., 2006; Kon-
akovic Lukovic et al., 2020; Daulton et al., 2021; 2023).
Scalaraization based methods reduce the MO acquisition
function into one or multiple SO problems via scalariza-
tion (Knowles, 2006; Zhang et al., 2009; Paria et al., 2020;
Zhang & Golovin, 2020). Information-theoretic methods se-
lect points to reduce the uncertainty of the unknown Pareto
front (Hernández-Lobato et al., 2016; Suzuki et al., 2020;
Hvarfner et al., 2022; Qing et al., 2023). Besides these meth-
ods, there are also works addressing MOBO in other scenar-
ios, such as high-dimensional space (Zhao et al., 2022) and
sequence space (Stanton et al., 2022).

While MOO has made significant progress, most existing
methods either use handcrafted mechanism and lack a learn-
ing mechanism (e.g., MOEA) or are unable to leverage
a large amount of offline data for scalable learning (e.g.,
MOBO), restricting their applications in offline MOO tasks.
Additionally, there is a lack of benchmark for offline MOO.
Note that a good benchmark plays a crucial role in the
advancement of a research field and the development of
state-of-the-art algorithms, such as NASBench (Ying et al.,
2019) and HPO-B (Arango et al., 2021) for BBO, D4RL (Fu
et al., 2020) and NeoRL (Qin et al., 2022) for offline RL,
and Design-bench (Trabucco et al., 2022) for offline SOO.
In the following, we will propose the problem of offline
MOO and provide a large-scale benchmark, covering a wide
range of tasks and methods.

3. Offline MOO Benchmark
We present the problem formulation in Section 3.1 and the
process of collecting the dataset for our Offline MOO Bench-
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mark (Off-MOO-Bench) in Section 3.2. We will introduce
the tasks and methods in our benchmark in Sections 4 and
5, respectively.

3.1. Offline MOO

Given an offline-collected static dataset D = {(xi,yi)}Ni=1,
where xi and yi denotes a solution and its objective vector,
respectively, offline MOO aims to find a set of solutions
to approximate the Pareto front of the MOO problem in
Eq. (1). Similar to offline SOO, offline MOO only allows
access to the offline dataset and does not permit iterative
online evaluation. Besides, the MOO nature makes offline
MOO more challenging.

Due to the goal of finding a set of solutions rather than a sin-
gle solution, the commonly used measure “P percentile of
top K” in offline SOO cannot be directly applied for offline
MOO. In our experiments, each offline MOO algorithm first
outputs a certain number of solutions (e.g., 256 and 32) to
be evaluated. To report the “P percentile” measure, we use
the NSGA-II selection procedure (i.e., first applying non-
dominated sorting then selecting the top solutions) (Deb
et al., 2002a) to eliminate the top 1− P% of solutions and
report the remaining solutions’ metrics as the evaluation
results. There are two commonly used metrics in MOO, i.e.,
inverted generational distance (IGD) (Bosman & Thierens,
2003), which measures the distance between a solution set
and the true Pareto front, and hypervolume (HV) (Zitzler &
Thiele, 1998), which measures the volume of the objective
space between a reference point and the objective vectors
of a solution set, reflecting both convergence and diversity
of the solution set. Because the calculation of IGD requires
knowing the true Pareto front, which cannot be obtained
in real-world tasks, we use HV as the metric in our bench-
mark. The reference point required to calculate HV is set
to the nadir point, each dimension of which corresponds to
the worst value of one objective. Details are provided in
Appendix A.

3.2. Dataset Collection

We use three representative MOEAs, i.e., NSGA-II,
MOEA/D, and NSGA-III, introduced in Section 2.2 to col-
lect the data for all the tasks. For each problem, we run
these three expert algorithms independently and collect the
data as our dataset. However, only using the expert algo-
rithms may result in a significant difference between our
data distribution and diverse reality distribution. Thus, we
introduce a probability of accepting inferior solutions dur-
ing the survivor selection process of the expert algorithms.
In addition, to solve problems with different search spaces,
we also employ various types of evolutionary operators.
Detailed settings are provided in Appendix A.

The complex objective space of real-world problems

presents significant challenges for offline MOO. We pro-
vide the visualizations of the objective space in Appendix C.
Compared to Design-Bench for offline SOO, our benchmark
includes more data due to the inherent challenge of MOO.
Additionally, our framework presents many easy-to-use in-
terfaces to facilitate the integration with other algorithm
implementations, including sub-problem generation, weight
decomposition, HV evaluation, etc.

4. Tasks
In this section, we describe the set of tasks included in our
benchmark. An overview of the tasks is provided in Table 1.
Each task in our benchmark suite comes with a dataset D,
along with a ground-truth oracle objective function f that
can be used for evaluation. An offline algorithm should
not query the ground-truth oracle function during training,
even for hyperparameter tuning. We first discuss the tasks
in our benchmark. Detailed information about these tasks
are provided in Appendix B due to space limitation.

4.1. Synthetic Function

We first use various synthetic functions as our tasks,
which encompass several popular MOO problem sets, i.e.,
DTLZ (Deb et al., 2002b), ZDT (Zitzler et al., 2000), Omni-
test (Deb & Tiwari, 2008), and VLMOP (Van Veldhuizen
& Lamont, 1999). The search space is continuous, and
the objectives are predetermined by the function designers.
Although these synthetic functions may not be considered
“realistic”, they possess certain advantages and are worth
considering for the following reasons: a) Their analytical
expressions are known, allowing us to obtain the actual
Pareto front for better understanding the problem’s charac-
teristic and the algorithm’s behavior; b) They can be easily
configured to any input dimension and any number of ob-
jectives, making them suitable for testing large-scale and
many-objective optimization algorithms; c) They are com-
putationally efficient to evaluate, enabling us to collect lots
of data and assess the scalability of offline MOO algorithms.
We implement these synthetic functions and collect the data.

4.2. Multi-Objective Neural Architecture Search

NAS has paved a promising path towards alleviating the
unsustainable process of designing DNN architectures by
automating the pipeline. Apart from the prediction error,
recent NAS works also consider other objectives, e.g., the
number of parameters. These NAS tasks are intrinsically
MOO problems, aiming to achieve trade-offs of the multiple
design criteria (Lu et al., 2023). We provide a toy exam-
ple named NAS-Bench-201-Test, which uses a categorical
cell-based search space (Dong & Yang, 2020). Besides,
C-10/MOP and IN-1K/MOP from Lu et al. (2023) are also
included, where both micro and macro search spaces are
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Table 1. Properties of the tasks in offline MOO Benchmark.

Task Name Dataset size Dimensions # Objectives Search space

Synthetic Function 60000 2-30 2-3 Continuous
MO-NAS 9735-60000 5-34 2-3 Categorical

MO-Swimmer 8571 9734 2 Continuous
MO-Hopper 4500 10184 2 Continuous

MO-TSP 60000 20-500 2-3 Permutation
MO-CVRP 60000 20-100 2-3 Permutation

MO-KP 60000 50-200 2-3 Permutation
MO-Portfolio 60000 20 2 Continuous

Molecule 49001 32 3 Continuous
Regex 42048 4 2 Sequence
RFP 4937 4 2 Sequence

ZINC 48000 4 2 Sequence
Real-world Application 60000 3-6 2-6 Continuous & Mixed

used. For these tasks, there are three objectives to be min-
imized, i.e., error, number of parameters and edge GPU
latency, which measure the model’s performance, scale, and
the GPU’s efficiency during model execution, respectively.
The data is from Lu et al. (2023). Detailed information
about tasks is provided in Appendix B.2.

4.3. Multi-Objective Reinforcement Learning

Decision making in practical applications usually involves
reasoning about multiple, often conflicting, objectives (Zhu
et al., 2023). For example, when designing a control policy
for a running quadruped robot, we need to consider two
conflicting objectives: running speed and energy efficiency.
Multi-objective reinforcement learning (MORL) aims to
learn agents that can handle such a challenging task. We
consider two locomotion tasks in the popular MORL bench-
mark MuJoCo (Todorov et al., 2012), i.e., MO-Swimmer
and MO-Hopper. Their search space is the parameters of
an agent, which is much larger than other tasks. The two
objectives in MO-Swimmer are speed and energy efficiency,
and MO-Hopper considers two objectives related to run-
ning and jumping. The data is collected by us via running
PG-MORL (Xu et al., 2020).

4.4. Multi-Objective Combinatorial Optimization

Multi-objective combinatorial optimization (MOCO) com-
monly exists in industries, such as transportation, manufac-
turing, energy, and telecommunication (Chen et al., 2023b).
We consider three typical MOCO problems that are com-
monly studied, i.e., multi-objective traveling salesman prob-
lem (MO-TSP), multi-objective capacitated vehicle routing
problem (MO-CVRP), and multi-objective knapsack prob-
lem (MO-KP), and a multi-objective portfolio allocation
(MO-Portfolio) problem. MO-TSP has n nodes, where
each node has two sets of 2-dimensional coordinates. There

are two objectives, each of which corresponds to the travel
cost calculated using one set of 2-dimensional coordinates
of all nodes. MO-CVRP has n customer nodes and a depot
node, with each node featured by a 2-dimensional coor-
dinate and each customer node associated with a demand.
Following the common practice, we consider two objectives,
i.e., the total tour length and the longest length of the route.
MO-KP has n items, with each taking a weight and two
separate values. The goal is to maximize the sum of their
2-dimensional objective vectors (corresponding to two ob-
jectives) under the constraint that the sum of weights does
not exceed a capacity. The search space of these problems
is a permutation space, and we use the corresponding op-
erator in MOEA to search in it. The MO-Portfolio task is
continuous and it is based on the Markowitz Mean-Variance
Portfolio Theory (Fabozzi et al., 2008), where the two ob-
jectives, i.e., expected returns and variance of returns, are
used to illustrate the relations between beliefs and choice of
portfolio. The data is collected by us.

4.5. Scientific Design

Many real-world scientific problems also involve MOO. We
consider molecule design and protein design, which are two
important sequence optimization problems. The data of
these tasks is collected by us.

Molecule design is critical to pharmaceutical drug discov-
ery (Dara et al., 2022). Previous research has typically re-
quired the generated molecules to fulfill several objectives,
e.g., new drugs should generally be non-toxic and ideally
easy-to-synthesize, in addition to their primary purpose. In
this task, we consider two objectives based on prior work
in molecular design (Zhao et al., 2022), i.e., activity against
biological targets GSK3β and JNK3, respectively. The solu-
tion is optimized in a pretrained 32-dimensional continuous
latent space (Jin et al., 2020), which is then decoded into
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molecular strings and fed into the property evaluators.

Protein design is the process of creating new or improved
protein structures for use as biomarkers, therapeutics, etc.
We consider the following three tasks. Regex is a basic task
(around 32 tokens) for protein design, where the objectives
are to maximize the counts of multiple bigrams. ZINC
is a small scale task (around 128 tokens) to optimize the
chemical properties of a small molecule. The two objectives
are to maximizing the logP (the octanol-water partition co-
efficient) and QED (quantitative estimate of druglikeness).
RFP is a large-scale task (around 200 tokens) designed
to simulate searching for improved red fluorescent protein
(RFP) variants, a problem of significant interest to biomed-
ical researchers. The two objectives are maximizing the
solvent-accessible surface area and the stability of RFP, re-
spectively.

4.6. Real-World Application

MOO has applications in many real-world tasks. We select
several real-world multi-objective engineering design prob-
lems from RE suite (Tanabe & Ishibuchi, 2020), including
four bar truss design, pressure vessel design, disc brake de-
sign, vehicle crashworthiness design, rocket injector design,
etc. These tasks provide various challenges for offline MOO,
e.g., they have different number of objectives and different
types of variables. We use the evaluation interface from RE
and collect the data ourselves.

5. Offline MOO Method
This section introduces the approaches for offline MOO.
Though no specific approach has yet been developed to
address offline MOO problems, we can adapt the techniques
from other related topics, such as offline SOO, MOBO,
and surrogate-assisted evolutionary algorithm (SAEA) (Jin
et al., 2019). All of these methods use a surrogate model
and conduct searches within it. Offline SOO uses a neural
network to build a surrogate model, while MOBO typically
uses a Gaussian process (GP). SAEA may use both, with
a focus on “How to properly use the surrogate during the
iterative search process”, which, however, is not consistent
with offline settings that do not support iterative search. As
a result, we consider modifying offline SOO and MOBO
methods to address offline MOO tasks, by using the DNN-
based and GP-based surrogate models, respectively. We will
consider four fundamental components of an offline MOO
method: data, model architecture, learning algorithm, and
search algorithm, which are shown below.

5.1. DNN-Based Offline MOO Method

DNN-based methods (Yu et al., 2021; Trabucco et al., 2021;
2022; Chen et al., 2023a) have shown impressive perfor-

mance in offline SOO due to its ability to learn from a large
amount of historical data, while also being able to perform
search using gradient ascent within it. Model architecture
design is a key aspect in this kind of method, especially for
offline MOO. We consider the following three models.

End-to-end model is a straightforward approach, using a
DNN to learn an approximation of m objectives simulta-
neously, where the model takes x as input and outputs an
m-dimensional objective vector directly.

Multiple models maintains m independent surrogate mod-
els for an m-objective problem, which is a common practice
in MOBO. Each individual model learns an objective func-
tion independently, allowing for the natural use of offline
SOO techniques such as COMs (Trabucco et al., 2021),
RoMA (Yu et al., 2021), IOM (Qi et al., 2022), ICT (Yuan
et al., 2023), and Tri-Mentoring (Chen et al., 2023a).

Multi-head models. We observe that learning multiple
objective functions simultaneously is similar to multi-task
learning (MTL) (Zhang & Yang, 2022), whose aim is to
leverage useful information contained in multiple related
tasks to help improve the generalization performance of
all the tasks. As a commonly used model in MTL, multi-
head models can also serve as a fundamental model for
offline MOO. Furthermore, we propose utilizing training
techniques (e.g., GradNorm (Chen et al., 2018) and Pc-
Grad (Yu et al., 2020)) from MTL to assist model training
of offline MOO.

Data pruning. During the training process, we find that
using all the data for model training results in a signifi-
cant inferior performance: the search algorithm can only
obtain few solutions. This phenomenon occurs across all
model structures, which may be attributed to the training
data quality. Thus, we use data pruning, i.e., selecting some
solutions with better scores for training. The corresponding
experimental validation will be presented in Section 6.3.

Search algorithm. After training the surrogate model, vari-
ous methods can be used to obtain the final solution set. We
default to using the popular NSGA-II (Deb et al., 2002a) as
the search algorithm. Additionally, we also consider employ-
ing other MOO algorithms, such as MOEA/D (Zhang & Li,
2007), NSGA-III (Deb & Jain, 2013), and MOBO (Daulton
et al., 2021).

5.2. GP-Based Offline MOO Method

GP-based methods, often used in MOBO, are also promis-
ing for solving offline MOO problems. However, GP has a
much higher computational complexity compared to DNN.
Specifically, the computational complexity of learning a GP
model is O(N3 +N2D) (Rasmussen & Williams, 2006),
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where N is the number of data points and D is the dimension
of search space. Thus, directly using GP to offline MOO
is not realistic, and data pruning is required. Similar to the
data pruning approach in DNN-based methods, we use the
non-dominated sorting in NSGA-II (Deb et al., 2002a) to
select K data points at the front layers for learning. We will
examine the impact of hyper-parameter K on the perfor-
mance in Figure 4 of Appendix C. We use three mainstream
MOBO frameworks for comparison: 1) Hypervolume-based
method qNEHVI (Daulton et al., 2021) selects solutions
that can maximize the expected improvement in hypervol-
ume, which is our default MOBO. 2) Scalarization-based
method qParEGO (Daulton et al., 2020) randomly samples
q weight vectors to scalarize the objectives into q single-
objective problems and uses expected improvement to select
points within each single-objective problem. 3) Information-
theoretic-based method JES (Hvarfner et al., 2022) consid-
ers the information gain that maximally reduces the uncer-
tainty in both the input and output spaces. On the special
discrete tasks, we use Kendall kernel (Deshwal et al., 2022)
and transformed overlap kernel (Khan et al., 2023) as the
kernel function of GP for permutation and sequence space,
respectively. MOBO employs NSGA-II (Deb et al., 2002a)
to generate a batch of solutions. MOBO-qParEGO uses a
single-objective genetic algorithm with specific operators
to optimize the q single-objective problem. MOBO-JES
requires a stationary kernel, therefore Kendall kernel (Desh-
wal et al., 2022) and transformed overlap kernel (Khan
et al., 2023) cannot be utilized. Details are provided in
Appendix A.4.

6. Experiment
In this section, we empirically examine the performance of
different methods on our benchmark. We first introduce the
experimental settings, and then report the main results on all
the tasks. We also conduct additional experiments to show
the challenges of offline MOO, compare training curves,
study the effectiveness of data pruning, analyze the volume
of data needed for MOBO, and investigate the influence of
the search algorithm.

6.1. Experimental Settings

The compared methods are introduced as follows. For
NN-based methods, we consider the three types of mod-
els discussed in Section 5.1. 1) End-to-End models, in-
cluding End-to-End, End-to-End + GradNorm (Chen et al.,
2018), and End-to-End + PcGrad (Yu et al., 2020). 2)
Multi-Head models, including Multi-Head, Multi-Head +
GradNorm, and Multi-Head + PcGrad. 3) Multiple models,
including Multiple Models, Multiple Models + COMs (Tra-
bucco et al., 2021), Multiple Models + RoMA (Yu et al.,
2021), Multiple Models + IOM (Qi et al., 2022), Mul-

tiple Models + ICT (Yuan et al., 2023), and Multiple
Models + Tri-Mentoring (Chen et al., 2023a). For GP-
based methods, we use the three main types, including
MOBO (i.e., qNEHVI (Daulton et al., 2021)), MOBO-
qParEGO (Knowles, 2006), and MOBO-JES (Hvarfner
et al., 2022). All the advanced methods use data pruning
by default. After training the model, a search algorithm
(which is NSGA-II (Deb et al., 2002a) by default) is run
in the model to generate a set of 256 solutions, which are
then conducted by one batched evaluation and used to cal-
culate the HV value (i.e., 100th percentile evaluations). The
results of other settings, including 256 solutions with 50th
percentile evaluations and 32 solutions with 100th percentile
evaluations are provided in Appendix C. The model archi-
tecture and hyperparameters are consistently maintained
across all tasks. Different operators are used for different
search spaces, while the operator remains the same within
the same search space across all the methods. We report the
mean performance and standard deviation over five identical
seeds (1000, 2000, ..., 5000) for all algorithms on all the
tasks. Note that not all methods can be applied to every
task in Off-MOO-Bench due to the long running time and
high computational resource cost (for example, running out
of GPU memory due to the high complexity), and we in-
dicate this with “N/A”. Detailed experimental settings are
provided in Appendix A.

6.2. Main Results

Table 2 shows the average rank of all the compared methods
on each type of task. Note that D(best) denotes the best
solution set (having the largest HV value) in the training
set. Based on the average rank of all tasks (i.e., the last
column of the table), we can observe that all the NN-based
offline MOO methods outperform the best solution set in
the training set, i.e., D(best), showcasing the feasibility and
effectiveness of offline MOO. Multiple Models + IOM is the
generally the best method (i.e., winner of Tables 2 and 21,
runner-up of Table 14), demonstrating the effectiveness of
advanced offline SOO techniques. However, optimizing in
a discrete space can indeed be challenging, e.g., no method
can achieve a better rank than D(best) on MOCO, whose
search space is a permutation space. This is primarily due
to the complexity of modeling the discrete space in the
surrogate model, which is also a significant challenge in
offline SOO (Kim et al., 2023). Although GP-based meth-
ods can be applied to offline MOO by setting the number
of iterations to 1 with a large batch size, their performance
remains unsatisfactory. MOBO achieves only an average
ranking of 8.64, while MOBO-qParEGO and MOBO-JES
perform even worse than D(best). Targeted MOBO algo-
rithms for offline MOO, such as selecting training data more
effectively based on the statistics of the offline dataset and
designing improved kernel functions, can be proposed based
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Table 2. Average rank of different offline MOO methods on each type of task in Off-MOO-Bench, where the best and runner-up ranks
are bolded and underlined, respectively. Note that D(best) denotes the best set in the training dataset, and the last column reports the
average rank of each method on all the tasks.

Methods Synthetic MO-NAS MORL MOCO Sci-Design RE Average Rank

D(best) 12.17 ± 0.27 12.11 ± 0.05 9.00 ± 0.50 2.00 ± 0.14 8.38 ± 0.38 13.13 ± 0.07 10.03 ± 0.07
End-to-End 6.91 ± 0.03 8.37 ± 0.05 7.50 ± 2.00 6.75 ± 0.46 6.75 ± 1.12 7.50 ± 0.57 7.32 ± 0.01

End-to-End + GradNorm 8.25 ± 0.56 7.71 ± 0.08 4.50 ± 1.00 7.61 ± 0.18 8.62 ± 0.50 10.53 ± 0.07 8.34 ± 0.01
End-to-End + PcGrad 7.88 ± 0.06 7.18 ± 0.39 10.50 ± 1.50 6.07 ± 0.64 8.69 ± 2.69 8.23 ± 0.17 7.51 ± 0.14

Multi-Head 6.38 ± 0.50 5.37 ± 0.37 6.25 ± 2.25 8.29 ± 0.21 9.19 ± 0.44 8.33 ± 0.40 7.00 ± 0.38
Multi-Head + GradNorm 7.78 ± 0.53 10.20 ± 0.04 11.00 ± 3.00 9.98 ± 0.30 9.06 ± 1.19 10.63 ± 0.17 9.63 ± 0.04

Multi-Head + PcGrad 8.61 ± 0.14 6.92 ± 0.55 10.50 ± 3.50 8.21 ± 0.36 9.38 ± 0.50 8.50 ± 0.17 8.09 ± 0.20
Multiple Models 4.05 ± 0.11 4.93 ± 0.28 9.75 ± 0.75 6.34 ± 0.27 5.62 ± 0.75 4.50 ± 0.10 5.02 ± 0.03

Multiple Models + COMs 9.81 ± 0.31 5.92 ± 0.34 7.00 ± 2.00 6.36 ± 0.50 8.38 ± 2.00 10.50 ± 0.50 8.09 ± 0.32
Multiple Models + RoMA 8.95 ± 0.05 5.00 ± 0.00 4.75 ± 2.25 8.14 ± 0.21 8.00 ± 1.38 6.30 ± 0.10 7.07 ± 0.02
Multiple Models + IOM 6.11 ± 0.36 4.34 ± 0.34 3.75 ± 2.75 4.25 ± 0.04 7.19 ± 0.44 3.23 ± 0.03 4.61 ± 0.05
Multiple Models + ICT 9.11 ± 0.27 11.92 ± 0.29 4.75 ± 0.25 9.89 ± 0.46 8.62 ± 0.75 8.43 ± 0.30 9.64 ± 0.11

Multiple Models + Tri-Mentoring 7.83 ± 0.05 11.37 ± 0.47 5.25 ± 2.75 9.50 ± 0.00 9.38 ± 1.00 6.73 ± 0.20 8.77 ± 0.21
MOBO 9.09 ± 0.47 7.18 ± 0.55 10.50 ± 0.00 13.69 ± 0.08 5.44 ± 0.56 6.11 ± 0.29 8.64 ± 0.37

MOBO-qParEGO 10.27 ± 0.23 11.47 ± 0.32 N/A 13.62 ± 0.04 9.44 ± 0.44 12.71 ± 0.33 11.68 ± 0.20
MOBO-JES 12.48 ± 0.05 16.00 ± 0.00 N/A 3.00 ± 0.00 7.50 ± 6.50 8.04 ± 0.37 10.30 ± 0.44

on our benchmark, which represents an interesting direction
for future research. We can also find that no single method
demonstrates a significant advantage, and even the best-
performing method only has an average rank of 4.61. These
findings indicate that there is still an ongoing challenge to
further enhance the effectiveness of offline MOO.

6.3. Additional Results

In this section, we mainly aim to answer the question: What
matters to the performance of offline MOO methods? Other
results, including the analysis of data pruning, and the anal-
ysis on the influence of number of initial points of MOBO
and the search algorithms, are provided in Appendix C due
to space limitation.

A key challenge of offline MOO is that an inaccurate sur-
rogate model will destroy the final performance. The output
of offline MOO is a set of solutions that are non-dominated
to each other. If the surrogate model is inaccurate, the
Pareto-dominance relationship will be largely influenced.
For example, if the model wrongly predicts that one solution
is very good, then the solution will dominate all the other
solutions, resulting in only few solutions in the final solution
set and an extremely low HV value. In our experiments,
we have found that the main reason of inaccurate surrogate
model lies in the poor performance of learning those solu-
tions with better objective values, i.e., elites. To address
this issue, we use data pruning to remove the solutions with
worse objective values, allowing the model to focus more
on learning from good regions and then obtaining a more
accurate model. This will lead to a better final performance,
as shown in Figure 2. The left and right columns denote
the Multi-Head model without and with data pruning on the
task of RE21, respectively. The upper-row shows the search

process in the objective space of the surrogate model (i.e.,
proxy objective space), and the bottom-row shows their map-
ping in the real oracle objective space. We can observe that
the model without data pruning has a phenomenon we dis-
cussed before, i.e., there are only two solutions in the final
solution set. The model with data pruning performs much
better, but still exhibits a certain degree of over-estimation
which is also quite common in offline SOO (Trabucco et al.,
2021). Thus, finding ways to mitigate such phenomenon
is an important future direction in offline MOO. Detailed
experiments and discussions about model collapse and data
pruning are provided in Appendix C.1.

Learning curves. Based on the above analysis, we have
found that the prediction quality of elites has a significant
impact on the final performance. To verify this, we compare
the vanilla Multi-Head model with the Multi-Head model
with GradNorm on two tasks, namely DTLZ1 (from syn-
thetic function) and MO-NAS. Figure 3 shows the changes
of the elites loss during the training phase and the visualiza-
tion of the final solution set in the objective space. It can be
clearly observed from the upper subfigures that GradNorm
achieves smaller elites loss than vanilla Multi-Head. As a
result, the solution set obtained by GradNorm has a gener-
ally better distribution, as shown in the bottom subfigures,
and also has a better HV value.

7. Discussion
Conclusion. In this paper, we emphasize the significance
of offline MOO and provide the first benchmark that en-
compasses a range of crucial offline MOO tasks, from
synthetic functions to real-world applications. Addition-
ally, we introduce a framework of offline MOO methods
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Figure 2. Objective space visualization of Multi-Head model with-
out (left column) and with (right column) data pruning on RE21,
where the upper and bottom rows correspond to the surrogate ob-
jective space and real objective space, respectively. Each point
denotes a solution in the search history, whose color gradually
changes from yellow to blue based on the iteration rounds of the
search algorithm.
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Figure 3. Elites loss changes (upper) and objective space visual-
izations of the final solution set (bottom), for Vanilla Multi-head
model and Multi-head model with GradNorm on the two tasks,
DTLZ1 and NAS-Bench-201-Test.

and analyze the different components. Extensive experi-
ments validate the efficacy of these methods. In the future,
we will incorporate more analysis (e.g., the influence of
reference points (Ishibuchi et al., 2018; 2022)), more de-
manding tasks (e.g., DNA sequence designs and industrial
applications), more learning-based MOO algorithms (e.g.,
Pareto set learning (Lin et al., 2022; Zhang et al., 2023)
and MO-GFlowNets (Jain et al., 2023)), and more advanced
offline SOO algorithms (e.g., LEO (Yu et al., 2024), and
BRAID (Uehara et al., 2024)) into our benchmark.

Future works of offline MOO. Based on our experimental

results and analyses, there are many worthwhile directions
for future exploration. Here we discuss some challenges of
offline MOO and hope to shed some light on future works.

1. Mixed search space. Most search spaces of the current
problems are either continuous or discrete. However, in
practice, many problems involve mixed variables (The-
belt et al., 2022), which pose significant challenges
for offline MOO, especially in constructing accurate
surrogate models.

2. Large-scale (high-dimensional) optimization. The
high-dimensionality of the search space is a com-
mon challenge of black-box optimization (Binois &
Wycoff, 2022). Our experimental results indicate that
the current offline MOO methods do not perform well
on large-scale problems, e.g., no method surpasses
the best value of the training set on MOCO. Explor-
ing effective techniques such as dimensionality reduc-
tion (Wang et al., 2016; Song et al., 2022) to efficiently
solve large-scale problems is an important future direc-
tion.

3. Constrained optimization. Many real-world MOO
tasks come with strict constraints (Afshari et al., 2019),
making surrogate model learning and search challeng-
ing. Our current approach is rather simplistic, which
directly discards solutions that do not satisfy the con-
straints. Employing more efficient constraint han-
dling strategies would significantly improve the perfor-
mance.

4. Noisy optimization. The black-box evaluations of
numerous real-world problems involve intricate pro-
cesses, which often suffer from inaccuracies due to
the inevitable presence of noise (Goh & Tan, 2007;
Qian et al., 2018). The noise may have a detrimental
effect on the quality of the offline dataset, presenting a
significant challenge that needs to be addressed.

5. Few-shot optimization. Some application scenarios
do not have strict limitations on the number of evalua-
tions but allow for a few batches (Wistuba & Grabocka,
2021). How to utilize a limited number of iterative
evaluations to adapt the surrogate model is indeed a
crucial task for future work.
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A. Detailed settings
In this section, we provide detailed settings of Off-MOO-Bench regarding data collection, training set formulation, and
default settings of offline MOO methods.

A.1. Dataset Collection

As discussed in Section 3.2, only using the expert MOEAs, i.e., NSGA-II, MOEA/D, and NSGA-III, may result in obtaining
solutions with good quality, which generates a significant difference between data distribution and diverse reality distribution.
Inspired by (Zhu et al., 2023), we propose an amateur survival operator for MOEAs. We first use the expert MOEAs to
perform generic mating and generate offspring. Assume that the current population has µ individuals and the offspring
population has k individuals. With a given probability p, we choose the µ among (µ + k) individuals according to non-
dominated sorting of NSGA-II (Deb et al., 2002a) to form the next population. Otherwise, with probability 1− p, we survive
the µ best-non-dominated individuals, as the Survival operator in NSGA-II. After a small amount of number of generations
(e.g. 1 or 5), we collect the current population to form the final dataset. Typically, we use NSGA-II with the amateur survival
operator as the amateur collection algorithm for all tasks of synthetic functions, MOCO, scientific design, and most tasks of
RE, except for RE34, where we use NSGA-III due to its better performance in obtaining dataset with diversity.

For NAS-Bench 201 (Dong & Yang, 2020) and NARTS (Dong et al., 2021) in MO-NAS, since the size of their search space
is limited (i.e., 15625 for NAS-Bench 201 and 32678 for NARTS), we directly iterate the whole search space and collect
query-answers of MO-NAS-Bench (Lu et al., 2023). For MORL tasks, since our goal is to learn directly from policies to
rewards, the algorithm for data collection proposed by D4MORL (Zhu et al., 2023) is not suitable for us. Thus, we run
the SOTA MORL algorithm PGMORL (Xu et al., 2020) with 100 different seeds and collect the policies. For the tasks of
scientific design, we use the Amateur-NSGA-II (as discussed above) to collect part of the dataset, and randomly sample over
the whole search space to form the other part.

A.2. Training Set Construction

In realistic scientific and industrial scenarios, we usually hope to use offline collected dataset to obtain better designs than
offline ones. Thus, similar to (Trabucco et al., 2022), we remove the top solutions sorted by NSGA-II ranking with a given
percentile K, where K varies according to different tasks and is usually set 40%, except for Molecule with 1.2%, RFP and
Regex with 20%, and MO-CVRP with 55%. Besides, we perform normalization within each objective of each problem
because different objectives can have different scales, which may result in imbalanced model update.

A.3. Training Details

For NN-based model, similar to Design-Bench (Trabucco et al., 2022), the End-to-End network structure is:

input → MLP(2048) → relu → MLP(2048) → relu → MLP(number of objectives).

The Multi-Head model is constructed by two parts of neural networks, feature extractor and task head. For feature extractor,
the structure is:

input → MLP(2048) → relu → MLP(2048).

For task head, the structure is:

features with 2048 dimensions → relu → MLP(1).

The network structure of multiple models is

input → MLP(2048) → relu → MLP(2048) → relu → MLP(1).

We use MSE as loss function and optimize by Adam with learning rate η = 0.001 and learning-rate decay γ = 0.98. The
DNN model is trained w.r.t. offline dataset for 200 epochs with a batch size of 32.

For the End-to-End + GradNorm method, we perform gradient normalization on the last MLP layer. For the Multi-Head +
GradNorm method, we perform gradient normalization on the last MLP layer of the feature extractor, as in MTL (Chen
et al., 2018).
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For GP-based methods, we choose the top 100 solutions by NSGA-II ranking to initialize the GP model. Since the
performance of a GP model is sensitive to the number of initialized points, we conduct ablation studies in Figure 4.

Among all tasks in Off-MOO-Bench, Molecule and MOCO have constraints. For Molecule, since we optimize in the latent
space following Zhao et al. (2022), we cannot judge if a solution is feasible in the latent space. Thus, we first obtain a batch
of 256 solutions generated by the algorithm and then filter out the infeasible ones during evaluation. For MOCO tasks, since
we use the Start-From-Zero repair operator, the constraint is avoided.

A.4. MOO Settings

For DNN-based surrogate models, after the model is trained, we use multi-objective evolutionary algorithms (MOEAs) to
optimize inside the trained model. To obtain K (approximately) Pareto-optimal solutions, we set the size of population
to K and initialize the population with K non-dominated solutions in the offline dataset, and the algorithm searches for
50 generations. We use different genetic operators for different types of tasks. Specifically, for continuous tasks (i.e.,
synthetic functions, RE, NAS-Bench-201-Test, MO-Portfolio, MORL, and Molecule), we use the default genetic operators of
NSGA-II implemented in PyMOO (Blank & Deb, 2020), i.e., Simulated Binary Crossover (SBX) and Polynomial Mutation
(PM). For discrete tasks in MOCO (i.e., MO-TSP, MO-CVRP, and MO-KP), since the search space is combinatorial, where
each solution in the three problems can be represented as a permutation, we use Order-Crossover as the crossover operator,
Inversion-Mutation as the mutation operator, and for MO-TSP and MO-CVRP problems, we utilize the Start-From-Zero
repair operator to make sure that the salesman starts from the deposit. For C-10/MOP and IN-1K/MOP test suites in
MO-NAS, we use the suggested genetic operators from the source code of Lu et al. (2023), i.e., PM for integer with η = 20
and SBX for integer with η = 30. For Regex, ZINC, and RFP tasks, we use the local mutation operator implemented by
LaMBO (Stanton et al., 2022), and SBX for integer as in Stanton et al. (2022).

For GP-based surrogate models, we use different methods to optimize the acquisition function for different types of tasks.
Specifically, for continuous tasks (i.e., synthetic functions, RE, NAS-Bench-201-Test, MO-Portfolio, MORL, and Molecule),
we use gradient-based methods (i.e., L-BFGS-B (Byrd et al., 1995)) to optimize the acquisition function, which is the
default acquisition function optimization method implemented in BoTorch (Balandat et al., 2020). For discrete tasks, we
use MOEAs to optimize the acquisition function. Our default MOBO employs NSGA-II (Deb et al., 2002a) to generate a
batch of solutions that minimize the lower confidence bound of GP, where we set the size of population to K and initialize
the population with K non-dominated solutions in the offline dataset, and the algorithm searches for 500 generations with
SBX crossover and PM mutation to obtain the final solutions. For MOBO-qParEGO, we use single-objective evolutionary
algorithms to optimize the acquisition function. Specifically, we first initialize the population with 50 randomly sampled
points, and then search for 500 generations to obtain the best solution for each scalarized single-objective problem. The
genetic operators for discrete spaces are as same as the ones in evolutionary search algorithms inside DNN-based surrogate
models. Note that MOBO-JES cannot run in discrete tasks, since it requires a stationary kernel and thus Kendall kernel and
transformed overlap kernels cannot be utilized.

The implementations of NSGA-II, MOEA/D, and NSGA-III are from the open-source repository PyMOO (Blank & Deb,
2020). The implementation of MOBO is inherited from BoTorch (Balandat et al., 2020).

B. Detailed Tasks
In this section, we provide details of different MOO tasks adopted in our experiments. Notably, certain maximization tasks
undergo transformation into minimization problems through the multiplication of −1. The reference points r for majority of
tasks are set in such a way that (ri−zimin)/(z

i
max−zimin) = 1.1 , except that for MORL tasks, (ri−zimin)/(z

i
max−zimin) =

2.0, where ri denotes the value on the i-th dimension of the reference point r, and zimax and zimin are the maximum value
and minimum value of the i-th objective in the collected data, respectively. It means that after normalization, the reference
point becomes (1.1, . . . , 1.1) or (2.0, . . . , 2.0).

B.1. Synthetic Function

Various widely-used synthetic functions in MOO literature are employed to evaluate the algorithms. Specifically, the
following benchmark problems are used: DTLZ1-7 (Deb et al., 2002b), ZDT1-4, ZDT6 (Zitzler et al., 2000) , Omni-
test (Deb & Tiwari, 2008) and VLMOP1-3 (Van Veldhuizen & Lamont, 1999). The solution spaces for all synthetic problems
are continuous. The detailed problem information, Pareto front shape and reference point can be found in Table 3. Note
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that the concave (2d) Pareto front for DTLZ5 and DTLZ6 indicates that the Pareto front takes the form of a degenerated
2-dimensional curve within a 3-dimensional objective space.

Table 3. Problem information and reference point for synthetic functions.

Name D m Type Pareto Front Shape Reference Point

DTLZ1 7 3 Continuous Linear (558.21, 552.30, 568.36)
DTLZ2 10 3 Continuous Concave (2.77, 2.78, 2.93)
DTLZ3 10 3 Continuous Concave (1703.72, 1605.54, 1670.48)
DTLZ4 10 3 Continuous Concave (3.03, 2.83, 2.78)
DTLZ5 10 3 Continuous Concave (2d) (2.65, 2.61, 2.70)
DTLZ6 10 3 Continuous Concave (2d) (9.80, 9.78, 9.78)
DTLZ7 10 3 Continuous Disconnected (1.10, 1.10, 33.43)
ZDT1 30 2 Continuous Convex (1.10, 8.58)
ZDT2 30 2 Continuous Concave (1.10, 9.59)
ZDT3 30 2 Continuous Disconnected (1.10, 8.74)
ZDT4 10 2 Continuous Convex (1.10, 300.42)
ZDT6 10 2 Continuous Concave (1.07, 10.27)
Omnitest 2 2 Continuous Convex (2.40, 2.40)
VLMOP1 1 2 Continuous Concave (4.0, 4.0)
VLMOP2 6 2 Continuous Concave (1.10, 1.10)
VLMOP3 2 3 Continuous Disconnected (9.07, 66.62, 0.23)

B.2. MO-NAS

MO-NAS (Lu et al., 2023) automates the exploration of optimal neural network architectures to enhance multiple model
metrics for specific tasks. In our experiments, we conduct a toy example, named NAS-Bench-201-Test, to optimize three
objectives: prediction error, number of parameters, and edge GPU latency, on the CIFAR-10 dataset (Krizhevsky & Hinton,
2009). The prediction error metric primarily assesses the model’s performance, the number of parameters gauges the model’s
scale, and the GPU latency is a hardware metric evaluating the efficiency of GPU during model execution. The search space
is from Dong & Yang (2020). Given a macro skeleton of the neural network and a directed acyclic graph structure for each
cell, our objective is to explore the operations (edges) within the cell. Each cell contains 6 edges, and there are 5 predefined
operation options for each edge (zeroize, skip-connect, 1 × 1 convolution, 3 × 3 convolution, and 3 × 3 average pool).
Consequently, the search space is a 6-dimensional discrete space, where each dimension can take 5 values, resulting in a
total of 56 = 15625 possible solutions. The data of NAS-Bench-201-Test, corresponding error and number of parameters
are sourced from Dong & Yang (2020). Additionally, the edge GPU latency data is obtained from Li et al. (2021). The
reference point is r = (98.48, 1.68, 12.81) .

Furthermore, we consider two test suites from Lu et al. (2023), i.e., C-10/MOP and IN-1K/MOP, which contain 18 tasks. The
search spaces of these test suites vary from micro search spaces to macro search spaces. Specifically, micro search spaces are
used to create a basic building block, often called a cell, which is used repeatedly to build a full deep neural network (DNN)
based on a set pattern; macro search spaces are used to design the overall structure of the network, while the individual
layers are designed using well-established methods. Micro search spaces include NAS-Bench-101 (Ying et al., 2019),
NAS-Bench-201 (Dong & Yang, 2020), and DARTS (Zela et al., 2020). Macro search spaces include NATS (Dong et al.,
2021), ResNet50 (Cai et al., 2019), Transformer (Chen et al., 2021), and MNV3 (Cai et al., 2019). Detailed information of
these search spaces X can be found in Table 4. The detailed problem information and reference point of C-10/MOP1-9 and
IN-1K/MOP1-9 tasks can be found in Table 5. Note that we transform the discrete search space of NAS-Bench-201-Test
into a continuous logit space, which is the strategy in Design-Bench (Trabucco et al., 2022) for handling discrete categorical
tasks. However, it cannot be applied to all tasks in MO-NAS, since it requires that all dimensions have the same number of
categories, while the number of categories in most tasks of MO-NAS differ from dimensions.
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Table 4. An overview of the search spaces in MO-NAS tasks.

Search space X Type D |X |
NAS-Bench-101 micro 26 423K
NAS-Bench-201 micro 6 15.6K

NATS macro 5 32.8K
DARTS micro 32 ∼ 1021

ResNet50 macro 25 ∼ 1014

Transformer macro 34 ∼ 1014

MNV3 macro 21 ∼ 1020

Table 5. Problem information and reference point for C-10/MOP1-9 and IN-1K/MOP1-9 tasks.

Problem Search space X D m Reference Point

C-10/MOP1 NAS-Bench-101 26 2 (3.49× 10−1, 3.14× 107)
C-10/MOP2 NAS-Bench-101 26 3 (9.05× 10−1, 3.05× 107, 8.97× 109)
C-10/MOP3 NATS 5 3 (2.31× 101, 7.14× 10−1, 2.74× 102)
C-10/MOP4 NATS 5 4 (2.31× 101, 7.14× 10−1, 2.74× 102, 2.12× 10−2)
C-10/MOP5 NAS-Bench-201 6 5 (9.03× 101, 1.53× 100, 2.20× 102, 1.17× 101, 4.88× 101)
C-10/MOP6 NAS-Bench-201 6 6 (9.03× 101, 1.53× 100, 2.20× 102, 1.05× 101, 2.23× 100, 2.76× 101)
C-10/MOP7 NAS-Bench-201 6 8 (9.03× 101, 1.53× 100, 2.20× 102, 1.17× 101,

4.88× 101, 1.05× 101, 2.23× 100, 2.76× 101)
C-10/MOP8 DARTS 32 2 (2.61× 10−1, 1.55× 106)
C-10/MOP9 DARTS 32 3 (4.85× 10−2, 3.92× 105)

IN-1K/MOP1 ResNet50 25 2 (2.81× 10−1, 3.95× 107)
IN-1K/MOP2 ResNet50 25 2 (2.80× 10−1, 1.15× 1010)
IN-1K/MOP3 ResNet50 25 3 (2.81× 10−1, 3.87× 107, 1.26× 1010)
IN-1K/MOP4 Transformer 34 2 (1.83× 101, 7.25× 107)
IN-1K/MOP5 Transformer 34 2 (1.83× 101, 1.49× 1010)
IN-1K/MOP6 Transformer 34 3 (1.83× 101, 7.10× 107, 1.48× 1010)
IN-1K/MOP7 MNV3 21 2 (2.64× 10−1, 9.98× 106)
IN-1K/MOP8 MNV3 21 3 (2.65× 10−1, 1.00× 107, 1.34× 109)
IN-1K/MOP9 MNV3 21 4 (2.65× 10−1, 1.03× 107, 1.31× 109, 6.30× 101)
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B.3. MORL

MORL is an approach where the training of an agent focuses on simultaneously maximizing multiple cumulative rewards
in some control environment. The primary purpose of proposing the MORL problem in our benchmark is to examine the
performance of offline MOO in high-dimensional continuous spaces. Different from the D4MORL benchmark (Zhu et al.,
2023), we focus on direct policy parameter search, ignoring some properties of MDP. Note that using numerous neural
network parameters as a search space for black-box optimization presents a significant optimization challenge, which is
profoundly significant for offline MOO itself. In our experiments, we consider two locomotion tasks namely MO-Swimmer
and MO-Hopper, within the widely used MuJoCo benchmark (Todorov et al., 2012). The search space consists of the
parameters of the policy network for each environment as defined in (Xu et al., 2020), whose dimension is much higher than
other tasks.

MO-Swimmer. This is a two-objective task with an eight-dimensional state space and a two-dimensional action space. The
two objectives are forward speed and energy efficiency, denoted as R = [Rs, Re]. The search space is the 9734-dimensional
policy network for MO-Swimmer. At time t, the agent is at position (xt, yt) and takes an action at. Then, the instantaneous
rewards at time t are defined as:

Rs
t = (xt − xt−1)/0.05,

Re
t = 0.3− 0.15×

∑
k

a2k.

The reference point r = (267.67, 99.05) after multiplying −1.

MO-Hopper. This is a two-objective task with an eleven-dimensional state space and a three-dimensional action space. The
two objectives are forward speed and jumping height, denoted as R = [Rs, Rj ]. The search space is the 10184-dimensional
policy network for MO-Hopper. At time t, the agent is at position (xt, ht) and takes an action at. Then, the instantaneous
rewards at time t are defined as:

Rs
t = 1.5× (xt − xt−1)/0.01 + 1− 2× 10−4

∑
k

a2k,

Rj
t = 12× (ht − h0)/0.01 + 1− 2× 10−4

∑
k

a2k,

where h0 = 1.25 is the initial height. The reference points r = (1489.01, 4734.48) after multiplying −1.

B.4. MOCO

We evaluate the algorithms on three typical discrete MOCO problems, i.e., the multi-objective traveling salesman problem
(MO-TSP) (Lust & Teghem, 2010), multi-objective capacitated vehicle routing problem (MO-CVRP) (Zajac & Huber,
2021) and multi-objective knapsack problem (MO-KP) (Ishibuchi et al., 2014), and one continuous MOCO problem, i.e.,
multi-objective portfolio problem (MO-Portfolio). The search spaces for the three discrete problems are formulated as
permutation spaces, where the parameters of problem instance are randomly generated similar to (Chen et al., 2023b).
Additional, for the MO-TSP problem, we also consider its tri-objective variant, as in (Chen et al., 2023b). The MO-Portfolio
problem has a continuous search space, i.e., [0, 1]n, to represent the weights of portfolio allocation. Historical stock prices
data of each portfolio is provided by Blank & Deb (2020).

MO-TSP has n = 500, 100, 50, 20 nodes, and each node has two sets of two-dimensional coordinates, where the i-th
objective value of the solution is calculated with respect to the i-th set of coordinates. The coordinates are generated
uniformly from [0, 1]2. Hence, this is a n-dimensional two-objective permutation optimization problem. The reference point
is r = (255.18, 248.44).

MO-CVRP has n = 100, 50, 20 customer nodes and a depot node, with each node featured by a two-dimensional coordinate
and each customer node associated with a demand. Following the common practice, we consider two objectives, i.e., the
total tour length and the longest length of the route. The coordinates and demands are generated uniformly from [0, 1]2 and
{0, . . . , 9}, respectively. The capacity of vehicle is set to 50. Each solution is represented as a n-dimensional permutation.
For the evaluation of each solution (permutation), a vehicle departs from the depot and travels in the order specified by
the permutation of customers. It accumulates customer capacity along the path, returning to the depot before reaching a
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customer in the permutation whose capacity exceeds the limit. The vehicle then continues from the depot, following the
point after the last visited customer in the permutation. This process continues until completion. This is a n-dimensional
two-objective permutation optimization problem. The reference point is r = (49.19, 9.58).

MO-KP has n = 200, 100, 50 items, with each taking a weight and two separate values. The i-th objective is to maximize
the sum of the i-th values under the constraint of not exceeding the knapsack capacity. The weight and value of each
item are generated uniformly from [0, 1]. The capacity is set to 25. Each solution is represented as a 200-dimensional
permutation. For the evaluation of each solution (permutation), we put the first k items in the permutation into the knapsack,
such that including the (k + 1)-th item exceeds the knapsack capacity, while the first k items remain within the capacity
limit. This is a n-dimensional two-objective permutation optimization problem. The reference point is r = (−7.85,−8.99)
after multiplying −1.

MO-Portfolio has n = 20 types of portfolios, with each taking an input as its corresponding weight. Here we consider
the portfolio allocation problem based on the Markowitz Mean-Variance Portfolio Theory (Fabozzi et al., 2008) with two
objectives, where the overall performance of a portfolio can be assessed through the expected return and overall risk of its
assets. Geometrically, the expected return of a portfolio is defined as the average return of its assets and the risk is defined as
the standard deviation. Additionally, in order to ensure that portfolio allocations are valid, we provide a repair operator
that modifies the portfolio weights to ensure that they sum to 1 (as a common constraint in portfolio optimization) and no
weights are smaller than a threshold θ = 0.001. The reference point is r = (0.29,−0.13).

B.5. Scientific Design

Molecule design. This is a two-objective molecular generation task (Zhao et al., 2022). The task is to optimize the activity
against biological targets GSK3β and JNK3. The search space is a 32-dimensional continuous latent space. The solutions in
the latent space will be decoded into molecular strings and evaluated by a pre-trained decoder from Jin et al. (2020). The
reference point r = (0.09, 0.04).

Protein design. We have incorporated two protein sequence design challenges outlined in (Stanton et al., 2022). The
sequence optimization task starts with a base sequence pool P of initial sequences, which are modified to produce new
candidate sequences. The optimization problem is restructured into the following nested decisions: 1) Choose a base
sequence from the pool; 2) Choose which positions on the sequence to change; 3) Choose the operations to change the
token at those positions; 4) If the operation is substitution or insertion, then select the tokens to substitute or insert. Hence,
the search space can be formalized as a four-dimensional space, encompassing choices for the base sequence, sequence
positions, operations, and tokens.

For Regex, there are 16 base sequences, 73 sequence positions, 20 types of tokens, and 3 operations (substitution, deletion
or insertion). So the search space has a size of |X | = 16× 72× 20× 3 = 69, 120. The goal is to maximize the counts of
three predetermined bigrams. The reference point r = (1.11, 1.25, 1.21).

For ZINC, there are 16 base sequences, 257 sequence positions, 106 types of tokens, and 3 operations (substitution, deletion
or insertion). So the search space has a size of |X | = 16 × 257 × 106 × 3 = 1, 307, 616. The goal is to maximize
the the octanol-water partition coefficient (logP) and QED (quantitative estimate of druglikeness). The reference point
r = (1.36, 2.25).

For RFP, there are 43 base sequences, 489 sequence positions, 20 types of tokens, and 1 operations (substitution). So the
search space has a size of |X | = 43× 489× 20× 1 = 420, 540. The goal is to maximize the solvent-accessible surface
area (SASA) and the stability of the RFP. The reference point r = (4.80, 4.54).

B.6. RE

We also conduct experiments on seven real-world multi-objective engineering design problems adopted from RE suite (Tan-
abe & Ishibuchi, 2020). These problems serve as practical application in various fields. The search spaces for the problems
are continuous except for RE23, which has a mixed solution space (2 variables as integers and 2 as continuous values). The
detailed problem information and reference points can be found in Table 6.
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Table 6. Problem information and reference point for RE problems.
Name D m Type Pareto Front Shape Reference Point

RE21 (Four bar truss design) 4 2 Continuous Convex (3144.44, 0.05)
RE22 (Reinforced concrete beam design) 3 2 Mixed Mixed (829.08, 2407217.25)
RE23 (Pressure vessel design) 4 2 Mixed Mixed, Disconnected (713710.88, 1288669.78)
RE24 (Hatch cover design) 2 2 Continuous Convex (5997.83, 43.67)
RE25 (Coil compression spring design) 3 2 Mixed Mixed, Disconnected (124.79, 10038735.00)
RE31 (Two bar truss design) 3 3 Continuous Unknown (808.85, 6893375.82, 6793450.00)
RE32 (Welded beam design) 4 3 Continuous Unknown (290.66, 16552.46, 388265024.00)
RE33 (Disc brake design) 4 3 Continuous Unknown (8.01, 8.84, 2343.30)
RE34 (Vehicle crashworthiness design) 5 3 Continuous Unknown (1702.52, 11.68, 0.26)
RE35 (Speed reducer design) 7 3 Mixed Unknown (7050.79, 1696.67, 397.83)
RE36 (Gear train design) 4 3 Integer Concave, Disconnected (10.21, 60.00 , 0.97)
RE37 (Rocket injector design) 4 3 Continuous Unknown (0.99, 0.96, 0.99)
RE41 (Car side impact design) 7 4 Continuous Unknown (42.65, 4.43, 13.08, 13.45)
RE42 (Conceptual marine design) 6 4 Continuous Unknown (-26.39, 19904.90, 28546.79, 14.98)
RE61 (Water resource planning) 3 6 Continuous Unknown (83060.03, 1350.00, 2853469.06,

16027067.60, 357719.74, 99660.36)

C. Detailed Experiments
C.1. Additional Results

Analysis on data pruning We first conduct ablation studies of data pruning on the Multi-Head model, as shown in
Table 7. Although data pruning can alleviate the issue of model collapse in some problems, it does not consistently lead
to improvements in all cases. Due to the severe impact of model collapse (sometimes resulting in only one solution), we
default to using data pruning for all advanced methods. As mentioned in the main paper, exploring methods to mitigate
model collapse is an important future direction in offline MOO.

Table 7. Average rank of Multi-Head and Multiple Models w/ and w/o data pruning on each type of task in Off-MOO-Bench.
Methods Synthetic MO-NAS MORL MOCO Sci-Design RE Average Rank

D(best) 4.34 ± 0.03 4.74 ± 0.21 2.75 ± 1.25 1.21 ± 0.14 3.12 ± 0.12 4.07 ± 0.13 3.67 ± 0.15
Multi-Head 2.66 ± 0.16 2.66 ± 0.24 2.25 ± 0.75 3.71 ± 0.00 3.38 ± 0.00 2.73 ± 0.00 2.90 ± 0.12

Multi-Head + Data Pruning 3.25 ± 0.12 2.16 ± 0.00 4.00 ± 1.00 3.31 ± 0.08 2.38 ± 0.25 3.12 ± 0.12 2.90 ± 0.02
Multiple Models 2.12 ± 0.06 2.61 ± 0.08 3.25 ± 0.25 3.07 ± 0.29 2.00 ± 0.25 1.90 ± 0.03 2.41 ± 0.09

Multiple Models + Data Pruning 2.62 ± 0.06 2.84 ± 0.11 2.75 ± 0.25 3.54 ± 0.23 3.83 ± 0.17 2.85 ± 0.00 2.94 ± 0.10

Analysis of the volume of data needed for MOBO. As we discussed before, the number of data points for GP is important
due to the complexity of learning a GP. Here, we test the influence of the different number of data points, i.e., 50, 100, 200,
and 400, on six randomly selected tasks. As shown in Figure 4 (a), 100 is a proper value. Thus, we use 100 for MOBO in
our experiments on all the tasks.

Influence of the search algorithms. We compare four search algorithms on seven tasks, i.e., NSGA-II, MOEA/D, NSGA-III,
and MOBO, as shown in Figure 4 (b). Their average ranks are 3.28, 2.07, 2.64, and 2.00, respectively. Although NSGA-II
has the worst average ranking, we choose to use it as the default search algorithm due to its ease of use and popularity.
These results also show that if a search algorithm specifically designed for offline MOO is implemented, the performance
can be further improved, which is an interesting future work.

C.2. Detailed Results

Here, we provide the detailed results on different tasks. We provide results for each type of task with 256 solutions and
100th percentile evaluations. Additionally, we provide results for each type of task with 256 solutions and 50th percentile
evaluations to demonstrate the robustness of the algorithms, and results with 32 solutions and 50th percentile evaluations to
show the performance under the low-budget settings. Considering the three settings, Multiple Models + IOM, Multiple
Models, and Multi-head Model are the top three performing algorithms, with average rankings of 4.91, 5.25, and 7.16,
respectively. Note that D(best) achieves the best average rank on MORL, MOCO, and Sci-Design tasks on the 256 solutions

21



Offline Multi-Objective Optimization

50 100 200 400
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
g.

 R
an

k

Average rank over 6 tasks DTLZ5

VLMOP2

RE34

ZDT2 Molecule

OmniTest

MO-NAS

1

2

3

4

NSGA-II
NSGA-III
MOEA/D
MOBO

Figure 4. (a) The average rank of MOBO with different number of initial data points on six tasks. (b) The performance of four search
algorithms on seven tasks.

with 50th percentile evaluations settings, underscoring the need for further enhancements in the robustness of offline MOO
methods in these challenging tasks.

The average rank is calculated as follows: For each type of task (e.g., synthetic functions), we first determine the rankings
for all methods across all sub-tasks (e.g., DTLZ1 and ZDT1) within it. After computing the six rankings for all methods, we
average these values to report the average ranking of each method.

Table 8. Hypervolume results for synthetic functions with 256 solutions and 100th percentile evaluations. For each task, algorithms within
one standard deviation of having the highest performance are bolded.

Methods DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 OmniTest VLMOP1 VLMOP2 VLMOP3 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

D(best) 10.43 9.43 9.71 10.76 9.06 8.20 8.32 3.87 0.08 1.64 45.14 4.04 4.70 5.05 5.46 4.76
End-to-End 10.12 ± 0.02 10.65 ± 0.00 10.65 ± 0.00 10.70 ± 0.05 10.65 ± 0.00 10.65 ± 0.00 10.70 ± 0.01 4.35 ± 0.00 2.57 ± 2.26 4.24 ± 0.01 46.93 ± 0.00 2.69 ± 0.00 3.21 ± 0.00 5.50 ± 0.04 3.12 ± 0.09 4.92 ± 0.00

End-to-End + GradNorm 10.65 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.76 ± 0.00 10.54 ± 0.09 10.64 ± 0.00 10.71 ± 0.00 3.76 ± 0.03 2.33 ± 2.33 2.79 ± 1.34 42.23 ± 0.98 4.77 ± 0.01 5.63 ± 0.02 5.27 ± 0.03 3.23 ± 0.03 3.81 ± 1.02
End-to-End + PcGrad 10.65 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.70 ± 0.05 9.02 ± 0.10 9.45 ± 0.15 10.52 ± 0.00 4.35 ± 0.00 2.57 ± 2.26 4.14 ± 0.07 46.79 ± 0.06 4.84 ± 0.01 5.70 ± 0.01 5.45 ± 0.00 3.12 ± 0.01 2.04 ± 0.22

Multi-Head 10.38 ± 0.25 10.65 ± 0.00 10.65 ± 0.00 10.70 ± 0.05 10.65 ± 0.00 10.65 ± 0.00 10.63 ± 0.11 4.30 ± 0.05 2.57 ± 2.26 4.26 ± 0.00 46.92 ± 0.02 2.69 ± 0.00 4.48 ± 1.27 5.50 ± 0.04 3.23 ± 0.16 4.91 ± 0.00
Multi-Head + GradNorm 10.65 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.76 ± 0.00 9.29 ± 0.86 10.62 ± 0.02 10.61 ± 0.10 4.34 ± 0.00 0.00 ± 0.00 4.13 ± 0.03 46.64 ± 0.22 4.83 ± 0.00 5.68 ± 0.05 5.26 ± 0.04 3.39 ± 0.00 4.87 ± 0.00

Multi-Head + PcGrad 10.64 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.76 ± 0.00 9.08 ± 0.35 10.59 ± 0.01 10.49 ± 0.01 4.35 ± 0.00 2.55 ± 2.24 4.01 ± 0.02 46.91 ± 0.00 2.73 ± 0.03 5.69 ± 0.03 5.45 ± 0.00 3.64 ± 0.17 2.17 ± 0.05
Multiple Models 10.65 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.76 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.73 ± 0.00 4.35 ± 0.00 2.57 ± 2.26 4.28 ± 0.00 46.94 ± 0.00 4.75 ± 0.00 5.58 ± 0.00 5.80 ± 0.01 4.14 ± 0.20 4.91 ± 0.00

Multiple Models + COMs 10.64 ± 0.01 10.39 ± 0.18 10.59 ± 0.05 10.70 ± 0.05 10.57 ± 0.06 10.26 ± 0.25 9.64 ± 0.22 4.29 ± 0.03 2.54 ± 2.25 1.90 ± 0.05 46.78 ± 0.07 4.24 ± 0.01 4.89 ± 0.07 5.54 ± 0.02 4.56 ± 0.04 4.57 ± 0.00
Multiple Models + RoMA 10.64 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.76 ± 0.00 10.18 ± 0.45 10.65 ± 0.00 10.63 ± 0.03 3.03 ± 0.03 2.54 ± 2.24 1.46 ± 0.00 44.15 ± 2.36 4.87 ± 0.00 5.65 ± 0.00 5.78 ± 0.02 3.18 ± 0.05 1.77 ± 0.02
Multiple Models + IOM 10.65 ± 0.00 10.61 ± 0.02 10.62 ± 0.02 10.76 ± 0.00 10.63 ± 0.01 10.50 ± 0.11 10.74 ± 0.08 4.34 ± 0.00 2.55 ± 2.24 3.77 ± 0.01 46.92 ± 0.00 4.66 ± 0.01 5.74 ± 0.01 5.61 ± 0.01 4.65 ± 0.19 4.89 ± 0.02
Multiple Models + ICT 10.64 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.76 ± 0.00 10.63 ± 0.01 10.65 ± 0.00 10.75 ± 0.02 4.30 ± 0.00 0.26 ± 0.06 1.46 ± 0.00 46.74 ± 0.09 4.39 ± 0.01 5.53 ± 0.00 4.37 ± 0.03 3.44 ± 0.16 2.33 ± 0.11

Multiple Models + Tri-Mentoring 10.64 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.76 ± 0.00 10.59 ± 0.04 10.65 ± 0.00 10.67 ± 0.01 3.97 ± 0.00 4.83 ± 0.00 1.46 ± 0.00 46.82 ± 0.02 4.52 ± 0.02 5.55 ± 0.01 5.62 ± 0.09 3.47 ± 0.04 2.36 ± 0.28
MOBO 10.65 ± 0.00 10.27 ± 0.07 10.36 ± 0.11 10.66 ± 0.01 9.28 ± 0.14 9.38 ± 0.01 10.51 ± 0.05 4.35 ± 0.00 0.32 ± 0.00 2.18 ± 0.69 46.91 ± 0.03 4.44 ± 0.09 5.18 ± 0.09 5.41 ± 0.12 4.60 ± 0.13 3.96 ± 0.73

MOBO-qParEGO 10.63 ± 0.00 9.73 ± 0.20 9.80 ± 0.19 10.76 ± 0.00 9.03 ± 0.24 9.16 ± 0.10 10.25 ± 0.05 4.33 ± 0.00 0.29 ± 0.01 2.93 ± 0.06 46.93 ± 0.00 4.32 ± 0.02 5.12 ± 0.17 5.20 ± 0.01 4.81 ± 0.10 3.31 ± 0.03
MOBO-JES 10.61 ± 0.00 10.22 ± 0.08 10.23 ± 0.18 8.56 ± 0.07 9.67 ± 0.01 9.62 ± 0.04 9.36 ± 0.08 3.87 ± 0.00 N/A 1.46 ± 0.00 46.88 ± 0.00 3.97 ± 0.09 4.44 ± 0.07 5.17 ± 0.02 4.43 ± 0.08 3.09 ± 0.02

Table 9. Hypervolume results for MO-NAS with 256 solutions and 100th percentile evaluations. For each task, algorithms within one
standard deviation of having the highest performance are bolded

Methods C-10/MOP1 C-10/MOP2 C-10/MOP3 C-10/MOP4 C-10/MOP5 C-10/MOP6 C-10/MOP7 C-10/MOP8 C-10/MOP9 IN-1K/MOP1 IN-1K/MOP2 IN-1K/MOP3 IN-1K/MOP4 IN-1K/MOP5 IN-1K/MOP6 IN-1K/MOP7 IN-1K/MOP8 IN-1K/MOP9 NasBench201-Test

D(best) 4.78 10.48 9.72 21.15 40.51 92.43 358.27 4.55 10.59 4.97 5.00 11.21 16.63 17.26 44.43 4.69 11.42 21.50 10.07
End-to-End 4.84 ± 0.00 10.49 ± 0.02 10.84 ± 0.01 26.25 ± 0.07 50.20 ± 0.03 112.47 ± 0.01 523.26 ± 0.11 4.56 ± 0.07 10.50 ± 0.15 4.85 ± 0.07 4.70 ± 0.02 10.88 ± 0.10 17.07 ± 0.03 17.93 ± 0.13 45.89 ± 0.16 5.17 ± 0.02 11.15 ± 0.18 23.35 ± 0.30 10.30 ± 0.03

End-to-End + GradNorm 4.84 ± 0.00 10.54 ± 0.01 10.86 ± 0.01 26.46 ± 0.04 50.64 ± 0.00 112.27 ± 0.03 525.63 ± 0.10 4.56 ± 0.08 10.48 ± 0.23 5.21 ± 0.00 5.04 ± 0.02 10.87 ± 0.05 16.93 ± 0.07 17.80 ± 0.09 45.40 ± 0.12 4.96 ± 0.05 10.73 ± 0.08 22.55 ± 0.13 9.94 ± 0.01
End-to-End + PcGrad 4.84 ± 0.00 10.50 ± 0.01 10.81 ± 0.00 26.30 ± 0.04 50.54 ± 0.08 112.15 ± 0.01 526.46 ± 0.12 4.58 ± 0.04 11.10 ± 0.04 5.27 ± 0.04 5.20 ± 0.03 11.11 ± 0.03 16.82 ± 0.01 17.63 ± 0.01 44.47 ± 0.04 5.03 ± 0.07 11.20 ± 0.20 23.43 ± 0.24 10.45 ± 0.09

Multi-Head 4.83 ± 0.01 10.55 ± 0.00 10.60 ± 0.00 26.59 ± 0.01 50.45 ± 0.03 112.72 ± 0.00 529.51 ± 0.36 4.52 ± 0.09 9.88 ± 0.15 5.37 ± 0.00 5.05 ± 0.01 11.55 ± 0.01 17.03 ± 0.04 18.00 ± 0.06 46.01 ± 0.10 5.33 ± 0.00 11.73 ± 0.10 25.31 ± 0.14 10.36 ± 0.01
Multi-Head + GradNorm 4.85 ± 0.00 10.57 ± 0.02 10.23 ± 0.00 24.49 ± 0.06 50.24 ± 0.00 111.16 ± 0.09 525.72 ± 0.21 3.90 ± 0.05 9.43 ± 0.13 5.05 ± 0.01 4.41 ± 0.09 10.07 ± 0.07 17.03 ± 0.19 17.74 ± 0.08 45.25 ± 0.18 4.97 ± 0.01 8.61 ± 0.05 20.78 ± 0.20 10.35 ± 0.00

Multi-Head + PcGrad 4.85 ± 0.00 10.58 ± 0.03 10.86 ± 0.01 24.44 ± 0.11 50.53 ± 0.01 112.13 ± 0.19 520.43 ± 0.27 4.51 ± 0.09 10.51 ± 0.18 4.99 ± 0.10 5.18 ± 0.02 11.40 ± 0.13 17.01 ± 0.06 17.76 ± 0.15 45.14 ± 0.13 5.53 ± 0.05 10.95 ± 0.10 23.69 ± 0.29 10.35 ± 0.01
Multiple Models 4.82 ± 0.00 10.54 ± 0.00 10.83 ± 0.01 26.62 ± 0.02 50.20 ± 0.02 111.91 ± 0.03 525.80 ± 0.28 4.75 ± 0.04 11.17 ± 0.06 5.34 ± 0.00 5.22 ± 0.01 11.57 ± 0.01 17.19 ± 0.04 17.82 ± 0.00 46.02 ± 0.04 5.64 ± 0.11 11.77 ± 0.03 24.92 ± 0.24 10.34 ± 0.02

Multiple Models + COMs 4.84 ± 0.01 10.57 ± 0.03 10.66 ± 0.07 25.66 ± 0.12 50.42 ± 0.01 111.31 ± 0.50 525.66 ± 1.11 4.90 ± 0.00 10.93 ± 0.04 5.26 ± 0.00 5.17 ± 0.00 11.58 ± 0.01 16.79 ± 0.01 17.76 ± 0.00 46.02 ± 0.23 5.57 ± 0.05 12.16 ± 0.06 26.29 ± 0.05 10.40 ± 0.12
Multiple Models + RoMA 4.83 ± 0.00 10.54 ± 0.01 10.63 ± 0.12 26.23 ± 0.04 50.51 ± 0.00 112.44 ± 0.22 527.32 ± 0.45 4.49 ± 0.01 10.77 ± 0.02 5.25 ± 0.04 5.23 ± 0.01 11.55 ± 0.04 17.09 ± 0.02 17.84 ± 0.00 45.90 ± 0.26 5.65 ± 0.02 12.37 ± 0.01 26.55 ± 0.05 10.33 ± 0.03
Multiple Models + IOM 4.83 ± 0.01 10.43 ± 0.02 10.73 ± 0.00 26.04 ± 0.20 50.52 ± 0.01 112.47 ± 0.04 527.83 ± 0.01 4.88 ± 0.05 11.50 ± 0.02 5.28 ± 0.01 5.21 ± 0.02 11.62 ± 0.01 16.97 ± 0.01 17.81 ± 0.07 45.72 ± 0.13 5.27 ± 0.01 12.42 ± 0.02 26.61 ± 0.02 10.54 ± 0.00
Multiple Models + ICT 4.42 ± 0.36 10.49 ± 0.01 10.01 ± 0.03 25.82 ± 0.03 50.36 ± 0.09 108.86 ± 3.66 493.14 ± 0.99 3.62 ± 0.04 8.21 ± 0.14 4.75 ± 0.01 4.99 ± 0.02 9.60 ± 0.23 16.72 ± 0.02 16.85 ± 0.23 45.61 ± 0.01 4.79 ± 0.40 11.41 ± 0.24 21.48 ± 0.31 9.62 ± 0.29

Multiple Models + Tri-Mentoring 4.39 ± 0.33 7.77 ± 0.01 9.87 ± 0.55 25.34 ± 0.16 50.62 ± 0.04 111.60 ± 0.07 526.05 ± 0.78 3.61 ± 0.07 8.04 ± 0.25 4.86 ± 0.10 4.66 ± 0.07 10.19 ± 0.06 16.75 ± 0.10 17.12 ± 0.15 44.75 ± 0.70 5.23 ± 0.02 10.60 ± 0.63 22.54 ± 0.94 10.17 ± 0.15
MOBO 4.82 ± 0.02 10.58 ± 0.01 10.70 ± 0.00 26.35 ± 0.27 50.32 ± 0.01 111.28 ± 0.58 488.97 ± 4.01 4.71 ± 0.00 11.11 ± 0.03 5.25 ± 0.04 5.16 ± 0.02 11.24 ± 0.03 16.74 ± 0.05 17.56 ± 0.10 44.44 ± 0.06 5.21 ± 0.02 12.33 ± 0.14 25.65 ± 0.03 10.49 ± 0.01

MOBO-qParEGO 4.78 ± 0.01 10.44 ± 0.00 8.94 ± 0.05 20.01 ± 0.05 37.21 ± 0.00 94.72 ± 5.91 350.55 ± 0.13 4.50 ± 0.00 10.83 ± 0.13 4.93 ± 0.08 4.70 ± 0.01 10.34 ± 0.16 16.72 ± 0.14 17.62 ± 0.06 44.63 ± 0.27 5.11 ± 0.08 11.39 ± 0.27 23.75 ± 0.25 10.43 ± 0.04
MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 9.16 ± 0.07

C.3. Additional Visualization Results

In this section, we visualize all the tasks with number of objectives less than 3, for better understanding the tasks. We first
show the dataset of tasks in Off-MOO-Bench in Figure 5, and then show the Pareto fronts found by Multi-Head + GradNorm
in Figure 6.
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Table 10. Hypervolume results for MORL with 256 solutions and 100th percentile evaluations. For each task, algorithms within one
standard deviation of having the highest performance are bolded.

Methods MO-Hopper MO-Swimmer

D(best) 4.21 2.85
End-to-End 4.76 ± 0.25 2.77 ± 0.03

End-to-End + GradNorm 5.02 ± 0.04 2.90 ± 0.07
End-to-End + PcGrad 4.60 ± 0.27 2.49 ± 0.05

Multi-Head 4.57 ± 0.28 2.91 ± 0.04
Multi-Head + GradNorm 3.78 ± 0.05 2.69 ± 0.24

Multi-Head + PcGrad 4.27 ± 0.61 2.49 ± 0.25
Multiple Models 4.58 ± 0.19 2.60 ± 0.15

Multiple Models + COMs 4.84 ± 0.17 2.71 ± 0.04
Multiple Models + RoMA 5.23 ± 0.23 2.78 ± 0.20
Multiple Models + IOM 5.32 ± 0.49 2.94 ± 0.11
Multiple Models + ICT 4.67 ± 0.12 3.11 ± 0.08

Multiple Models + Tri-Mentoring 4.93 ± 0.11 2.82 ± 0.10
MOBO 4.43 ± 0.08 2.61 ± 0.02

MOBO-qParEGO N/A N/A
MOBO-JES N/A N/A

Table 11. Hypervolume results for MOCO with 256 solutions and 100th percentile evaluations. For each task, algorithms within one
standard deviation of having the highest performance are bolded.

Methods Bi-CVRP-20 Bi-CVRP-50 Bi-CVRP-100 Bi-KP-50 Bi-KP-100 Bi-KP-200 Bi-TSP-20 Bi-TSP-50 Bi-TSP-100 Bi-TSP-500 Tri-TSP-20 Tri-TSP-50 Tri-TSP-100 MO-Portfolio

D(best) 5.37 5.11 4.93 3.00 3.45 4.68 5.05 4.89 4.55 4.52 11.88 9.82 9.36 3.78
End-to-End 4.85 ± 0.18 4.70 ± 0.17 4.91 ± 0.02 2.98 ± 0.00 3.02 ± 0.00 3.71 ± 0.47 3.64 ± 0.08 4.57 ± 0.08 4.60 ± 0.01 4.20 ± 0.29 6.96 ± 0.52 4.67 ± 0.17 9.26 ± 0.23 3.07 ± 0.16

End-to-End + GradNorm 4.77 ± 0.06 3.68 ± 0.20 3.84 ± 0.05 3.06 ± 0.00 2.84 ± 0.14 3.25 ± 0.01 3.12 ± 0.13 4.33 ± 0.00 4.04 ± 0.06 4.45 ± 0.02 7.84 ± 0.17 8.96 ± 0.07 9.41 ± 0.04 3.28 ± 0.15
End-to-End + PcGrad 4.56 ± 0.06 4.32 ± 0.09 4.15 ± 0.34 3.16 ± 0.02 3.08 ± 0.03 3.52 ± 0.27 3.08 ± 0.03 4.68 ± 0.03 4.55 ± 0.02 4.17 ± 0.12 10.83 ± 0.03 8.15 ± 0.39 9.68 ± 0.15 3.08 ± 0.05

Multi-Head 4.00 ± 0.06 4.03 ± 0.26 4.78 ± 0.16 3.11 ± 0.06 2.88 ± 0.04 4.03 ± 0.41 3.36 ± 0.14 4.60 ± 0.09 4.04 ± 0.00 3.70 ± 0.27 6.31 ± 0.14 6.43 ± 0.42 8.60 ± 0.13 3.18 ± 0.04
Multi-Head + GradNorm 4.50 ± 0.51 3.69 ± 0.12 4.35 ± 0.57 2.88 ± 0.07 2.47 ± 0.01 2.98 ± 0.41 4.39 ± 0.17 3.40 ± 0.02 3.49 ± 0.39 3.83 ± 0.02 7.84 ± 0.20 6.48 ± 0.65 8.48 ± 0.23 3.11 ± 0.11

Multi-Head + PcGrad 4.48 ± 0.48 4.24 ± 0.12 3.45 ± 0.11 3.13 ± 0.06 2.60 ± 0.37 4.34 ± 0.10 2.85 ± 0.10 3.89 ± 0.12 3.59 ± 0.19 2.62 ± 0.88 10.39 ± 0.14 7.46 ± 1.00 10.10 ± 0.07 3.09 ± 0.13
Multiple Models 4.95 ± 0.06 4.88 ± 0.03 4.92 ± 0.00 3.03 ± 0.02 3.19 ± 0.07 3.84 ± 0.54 3.55 ± 0.05 3.27 ± 0.04 4.22 ± 0.18 4.51 ± 0.01 7.26 ± 0.09 6.90 ± 0.08 7.68 ± 0.38 3.69 ± 0.03

Multiple Models + COMs 5.28 ± 0.00 4.27 ± 0.14 4.23 ± 0.10 2.97 ± 0.00 3.11 ± 0.05 4.05 ± 0.46 4.64 ± 0.05 4.54 ± 0.06 4.30 ± 0.07 4.02 ± 0.10 10.94 ± 0.46 8.55 ± 0.40 8.84 ± 0.26 2.20 ± 0.02
Multiple Models + RoMA 4.56 ± 0.01 4.22 ± 0.23 3.97 ± 0.15 2.80 ± 0.06 3.11 ± 0.09 3.74 ± 0.26 4.25 ± 0.36 4.48 ± 0.04 4.31 ± 0.01 2.51 ± 0.69 9.37 ± 0.51 7.77 ± 0.03 9.10 ± 0.09 2.92 ± 0.02
Multiple Models + IOM 5.28 ± 0.01 5.11 ± 0.00 4.93 ± 0.00 2.98 ± 0.02 2.86 ± 0.05 4.12 ± 0.21 4.85 ± 0.04 4.79 ± 0.01 4.53 ± 0.00 4.39 ± 0.09 11.65 ± 0.03 10.19 ± 0.05 9.89 ± 0.02 2.93 ± 0.00
Multiple Models + ICT 4.15 ± 0.21 4.29 ± 0.17 3.96 ± 0.08 2.75 ± 0.11 2.68 ± 0.14 3.56 ± 0.09 4.40 ± 0.34 3.88 ± 0.24 3.75 ± 0.04 4.20 ± 0.11 7.09 ± 0.03 8.37 ± 0.02 7.50 ± 0.12 2.05 ± 0.10

Multiple Models + Tri-Mentoring 4.12 ± 0.16 4.06 ± 0.20 4.09 ± 0.13 2.90 ± 0.10 2.88 ± 0.04 3.32 ± 0.05 3.96 ± 0.18 3.75 ± 0.11 4.17 ± 0.14 3.69 ± 0.39 7.50 ± 0.47 8.16 ± 0.23 8.23 ± 0.27 2.63 ± 0.12
MOBO 3.38 ± 0.23 2.40 ± 0.09 1.58 ± 0.02 2.73 ± 0.14 2.33 ± 0.05 1.89 ± 0.06 2.42 ± 0.16 1.77 ± 0.01 1.56 ± 0.06 N/A 5.64 ± 0.04 3.36 ± 0.12 2.54 ± 0.03 3.29 ± 0.02

MOBO-qParEGO 3.69 ± 0.13 2.77 ± 0.10 1.66 ± 0.02 2.72 ± 0.06 2.33 ± 0.01 N/A 2.70 ± 0.09 2.10 ± 0.01 1.75 ± 0.01 N/A 4.40 ± 0.14 3.54 ± 0.00 2.38 ± 0.01 3.15 ± 0.04
MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 3.53 ± 0.07

Table 12. Hypervolume results for scientific design with 256 solutions and 100th percentile evaluations. For each task, algorithms within
one standard deviation of having the highest performance are bolded.

Methods Molecule Regex RFP ZINC

D(best) 2.26 2.82 3.36 4.01
End-to-End 2.30 ± 0.48 2.80 ± 0.00 3.80 ± 0.04 4.17 ± 0.00

End-to-End + GradNorm 1.10 ± 0.03 2.80 ± 0.00 4.11 ± 0.30 4.17 ± 0.00
End-to-End + PcGrad 1.54 ± 0.53 2.80 ± 0.00 3.84 ± 0.05 4.16 ± 0.08

Multi-Head 2.08 ± 0.00 2.80 ± 0.00 3.75 ± 0.00 4.16 ± 0.00
Multi-Head + GradNorm 1.62 ± 0.61 2.38 ± 0.00 4.08 ± 0.32 4.21 ± 0.05

Multi-Head + PcGrad 1.22 ± 0.10 2.80 ± 0.00 4.19 ± 0.22 4.12 ± 0.02
Multiple Models 2.78 ± 0.00 2.80 ± 0.00 4.40 ± 0.02 4.16 ± 0.00

Multiple Models + COMs 2.30 ± 0.00 2.21 ± 0.17 4.14 ± 0.35 4.12 ± 0.05
Multiple Models + RoMA 1.65 ± 0.02 2.80 ± 0.00 4.13 ± 0.29 4.16 ± 0.01
Multiple Models + IOM 1.75 ± 0.33 2.80 ± 0.00 4.13 ± 0.28 4.17 ± 0.00
Multiple Models + ICT 1.37 ± 0.17 2.80 ± 0.00 4.41 ± 0.00 4.10 ± 0.07

Multiple Models + Tri-Mentoring 2.03 ± 0.00 2.80 ± 0.00 4.12 ± 0.29 4.06 ± 0.01
MOBO 2.22 ± 0.08 5.12 ± 0.17 3.74 ± 0.00 4.26 ± 0.00

MOBO-qParEGO 2.12 ± 0.04 4.26 ± 0.25 3.33 ± 0.00 4.05 ± 0.02
MOBO-JES 2.10 ± 1.04 N/A N/A N/A
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Table 13. Hypervolume results for RE with 256 solutions and 100th percentile evaluations. For each task, algorithms within one standard
deviation of having the highest performance are bolded.

Methods RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 RE41 RE42 RE61

D(best) 4.23 4.78 4.75 4.59 4.79 10.23 10.53 10.59 48.06 10.96 7.57 4.72 36.17 12.53 135.87
End-to-End 4.42 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.38 ± 0.00 4.84 ± 0.00 10.56 ± 0.00 10.64 ± 0.00 10.69 ± 0.00 52.86 ± 0.05 11.69 ± 0.00 9.25 ± 1.00 6.21 ± 0.00 44.13 ± 0.02 20.04 ± 0.01 144.30 ± 0.02

End-to-End + GradNorm 4.81 ± 0.01 4.84 ± 0.00 2.64 ± 0.00 4.38 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.63 ± 0.00 9.90 ± 0.00 51.38 ± 0.03 11.52 ± 0.00 9.16 ± 0.02 6.22 ± 0.01 41.26 ± 0.81 13.46 ± 0.00 141.37 ± 0.03
End-to-End + PcGrad 4.90 ± 0.05 4.84 ± 0.00 4.84 ± 0.00 4.38 ± 0.00 4.60 ± 0.24 10.65 ± 0.00 10.65 ± 0.00 10.41 ± 0.07 52.83 ± 0.08 11.68 ± 0.02 10.02 ± 0.00 5.52 ± 0.00 43.53 ± 0.37 14.27 ± 0.12 142.98 ± 0.38

Multi-Head 4.57 ± 0.15 4.84 ± 0.00 4.74 ± 0.00 4.78 ± 0.00 4.60 ± 0.24 10.65 ± 0.00 10.64 ± 0.00 10.69 ± 0.00 52.93 ± 0.01 11.74 ± 0.00 6.76 ± 0.00 5.78 ± 0.05 44.06 ± 0.02 20.71 ± 0.29 141.28 ± 1.13
Multi-Head + GradNorm 4.91 ± 0.00 4.83 ± 0.01 4.49 ± 0.09 2.64 ± 0.00 3.95 ± 0.00 10.65 ± 0.00 10.63 ± 0.00 5.85 ± 0.00 52.84 ± 0.00 11.52 ± 0.00 0.02 ± 0.00 6.36 ± 0.01 43.77 ± 0.09 19.01 ± 0.04 143.82 ± 0.20

Multi-Head + PcGrad 4.91 ± 0.01 4.84 ± 0.00 4.27 ± 0.12 4.83 ± 0.00 4.35 ± 0.00 7.66 ± 0.00 10.08 ± 0.00 10.61 ± 0.00 52.84 ± 0.02 11.60 ± 0.08 9.95 ± 0.14 6.42 ± 0.00 43.80 ± 0.08 20.39 ± 0.45 142.22 ± 0.38
Multiple Models 4.94 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.82 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.63 ± 0.00 10.67 ± 0.00 54.16 ± 0.01 11.70 ± 0.00 10.52 ± 0.00 6.49 ± 0.00 44.09 ± 0.12 20.89 ± 0.07 144.20 ± 0.02

Multiple Models + COMs 4.20 ± 0.38 4.84 ± 0.00 4.79 ± 0.01 4.59 ± 0.00 4.84 ± 0.00 5.28 ± 5.28 10.64 ± 0.00 10.56 ± 0.03 50.57 ± 1.05 11.55 ± 0.02 8.96 ± 0.02 5.99 ± 0.03 40.84 ± 0.30 15.12 ± 0.32 141.00 ± 0.81
Multiple Models + RoMA 4.92 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.79 ± 0.02 4.69 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.66 ± 0.00 52.73 ± 0.02 11.78 ± 0.00 8.08 ± 0.40 6.49 ± 0.01 43.80 ± 0.08 19.53 ± 0.21 143.61 ± 0.20
Multiple Models + IOM 4.94 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.68 ± 0.00 54.12 ± 0.02 11.75 ± 0.01 10.02 ± 0.01 6.54 ± 0.00 43.92 ± 0.01 20.78 ± 0.02 143.30 ± 0.14
Multiple Models + ICT 4.75 ± 0.17 4.84 ± 0.00 2.77 ± 0.00 4.67 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 2.77 ± 0.00 10.51 ± 0.00 53.53 ± 0.01 11.70 ± 0.02 8.94 ± 0.01 6.25 ± 0.07 43.96 ± 0.11 20.59 ± 0.20 143.11 ± 0.23

Multiple Models + Tri-Mentoring 4.91 ± 0.00 4.84 ± 0.00 2.76 ± 0.00 4.83 ± 0.00 4.70 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.54 ± 0.00 53.39 ± 0.02 11.75 ± 0.00 9.72 ± 0.06 6.38 ± 0.06 43.81 ± 0.13 20.30 ± 0.11 143.82 ± 0.07
MOBO 4.70 ± 0.08 4.84 ± 0.00 4.84 ± 0.00 4.83 ± 0.00 4.84 ± 0.00 10.19 ± 0.00 10.64 ± 0.01 10.69 ± 0.00 52.06 ± 0.00 11.75 ± 0.00 0.00 ± 0.00 6.60 ± 0.00 53.86 ± 0.06 15.82 ± 0.64 N/A

MOBO-qParEGO 4.65 ± 0.04 4.61 ± 0.00 4.84 ± 0.00 3.74 ± 0.00 4.71 ± 0.00 10.64 ± 0.01 9.77 ± 0.02 10.61 ± 0.03 49.27 ± 1.14 0.00 ± 0.00 0.00 ± 0.00 5.87 ± 0.05 N/A N/A N/A
MOBO-JES 4.85 ± 0.03 4.84 ± 0.00 4.83 ± 0.00 4.82 ± 0.00 4.84 ± 0.00 10.28 ± 0.00 10.65 ± 0.00 10.61 ± 0.03 50.30 ± 0.00 11.59 ± 0.02 9.43 ± 0.10 6.20 ± 0.03 N/A N/A N/A

Table 14. Average rank of different offline MOO methods on each type of task with 256 solutions and 50th percentile evaluations, where
the best and runner-up results are bolded and underlined, respectively.

Methods Synthetic MO-NAS MORL MOCO Sci-Design RE Average Rank

D(best) 9.20 ± 0.42 9.58 ± 0.11 1.75 ± 0.25 1.07 ± 0.00 1.88 ± 0.62 10.50 ± 0.30 7.22 ± 0.14
End-to-End 8.50 ± 0.38 7.53 ± 0.21 9.50 ± 2.00 7.38 ± 0.38 9.25 ± 1.00 6.33 ± 0.13 7.55 ± 0.19

End-to-End + GradNorm 9.34 ± 0.34 8.34 ± 0.29 5.75 ± 1.75 8.08 ± 0.92 8.00 ± 0.25 9.67 ± 0.00 8.76 ± 0.12
End-to-End + PcGrad 8.61 ± 0.17 8.08 ± 0.34 10.00 ± 1.00 8.50 ± 0.43 7.62 ± 0.12 7.77 ± 0.57 8.29 ± 0.18

Multi-Head 7.47 ± 1.09 5.16 ± 0.05 5.75 ± 1.75 9.46 ± 0.39 7.25 ± 0.25 7.90 ± 0.50 7.19 ± 0.48
Multi-Head + GradNorm 8.48 ± 0.52 10.46 ± 0.20 10.75 ± 2.75 8.64 ± 0.43 12.25 ± 0.25 10.07 ± 0.40 9.67 ± 0.23

Multi-Head + PcGrad 7.95 ± 0.52 8.97 ± 0.66 7.25 ± 2.75 8.49 ± 0.28 11.79 ± 0.54 8.43 ± 0.10 8.55 ± 0.33
Multiple Models 3.92 ± 0.58 3.99 ± 0.38 8.75 ± 0.25 6.72 ± 0.43 9.56 ± 0.81 4.40 ± 0.27 5.01 ± 0.01

Multiple Models + COMs 8.81 ± 0.06 5.66 ± 0.08 8.00 ± 0.00 6.63 ± 0.94 7.62 ± 0.62 9.75 ± 0.22 7.63 ± 0.11
Multiple Models + RoMA 9.23 ± 0.36 4.97 ± 0.29 5.25 ± 1.25 7.04 ± 0.54 7.25 ± 0.50 8.13 ± 0.00 7.26 ± 0.12
Multiple Models + IOM 5.98 ± 0.45 4.16 ± 0.79 6.25 ± 0.75 4.21 ± 0.00 7.00 ± 0.12 5.03 ± 0.43 5.00 ± 0.36
Multiple Models + ICT 8.88 ± 0.47 12.92 ± 0.03 6.50 ± 0.00 9.14 ± 0.14 9.25 ± 0.00 8.53 ± 0.20 9.89 ± 0.09

Multiple Models + Tri-Mentoring 7.95 ± 0.02 12.13 ± 0.13 6.75 ± 0.25 8.71 ± 0.14 8.50 ± 0.25 5.30 ± 0.23 8.64 ± 0.06
MOBO 9.73 ± 0.40 6.42 ± 0.47 12.75 ± 0.25 12.35 ± 0.12 6.81 ± 0.19 9.32 ± 0.50 9.13 ± 0.36

MOBO-qParEGO 9.78 ± 0.09 11.24 ± 0.34 N/A 13.12 ± 0.21 6.12 ± 0.12 12.52 ± 0.31 11.15 ± 0.12
MOBO-JES 11.50 ± 0.57 15.00 ± 1.00 N/A 5.50 ± 2.50 14.00 ± 0.00 10.42 ± 0.08 11.06 ± 0.20

Table 15. Hypervolume results for synthetic functions with 256 solutions and 50th percentile evaluations. For each task, algorithms within
one standard deviation of having the highest performance are bolded.

Methods DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 OmniTest VLMOP1 VLMOP2 VLMOP3 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

D(best) 10.43 9.43 9.71 10.76 9.06 8.20 8.32 3.87 0.08 1.64 45.14 4.04 4.70 5.05 5.46 4.76
End-to-End 10.06 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 9.98 ± 0.35 8.63 ± 2.01 9.42 ± 0.00 6.37 ± 0.07 4.35 ± 0.00 0.00 ± 0.00 4.18 ± 0.02 46.76 ± 0.09 2.69 ± 0.00 3.21 ± 0.00 5.46 ± 0.00 3.04 ± 0.02 4.87 ± 0.02

End-to-End + GradNorm 10.65 ± 0.00 10.36 ± 0.28 10.63 ± 0.02 10.28 ± 0.48 8.50 ± 2.07 8.69 ± 0.68 8.62 ± 2.08 2.32 ± 0.04 0.00 ± 0.00 2.67 ± 1.21 38.20 ± 0.17 4.76 ± 0.00 4.01 ± 0.17 5.27 ± 0.03 3.02 ± 0.02 2.55 ± 0.23
End-to-End + PcGrad 10.62 ± 0.02 8.22 ± 1.99 10.65 ± 0.00 10.76 ± 0.00 8.01 ± 0.07 7.80 ± 0.80 10.52 ± 0.00 4.32 ± 0.03 1.36 ± 1.36 4.08 ± 0.10 34.65 ± 0.06 4.37 ± 0.29 5.70 ± 0.01 4.45 ± 0.94 2.99 ± 0.02 1.87 ± 0.10

Multi-Head 10.37 ± 0.24 10.64 ± 0.01 10.63 ± 0.01 10.14 ± 0.19 6.62 ± 0.00 9.39 ± 0.03 10.61 ± 0.09 4.29 ± 0.05 0.95 ± 0.95 4.18 ± 0.01 46.78 ± 0.16 2.69 ± 0.00 4.48 ± 1.27 5.50 ± 0.03 2.94 ± 0.08 4.90 ± 0.00
Multi-Head + GradNorm 10.64 ± 0.00 10.37 ± 0.13 10.50 ± 0.12 10.76 ± 0.00 7.97 ± 0.95 8.67 ± 0.78 9.58 ± 0.93 3.43 ± 0.90 0.00 ± 0.00 4.06 ± 0.01 29.52 ± 0.54 4.82 ± 0.01 4.32 ± 0.24 4.14 ± 1.07 3.16 ± 0.06 4.83 ± 0.03

Multi-Head + PcGrad 10.61 ± 0.01 10.64 ± 0.00 10.58 ± 0.04 10.76 ± 0.00 6.73 ± 0.51 9.22 ± 0.13 10.36 ± 0.02 4.34 ± 0.00 1.47 ± 1.47 2.66 ± 1.21 45.33 ± 1.58 2.69 ± 0.01 5.68 ± 0.04 5.38 ± 0.02 3.49 ± 0.18 2.06 ± 0.15
Multiple Models 10.64 ± 0.00 10.63 ± 0.02 10.64 ± 0.00 10.76 ± 0.00 8.52 ± 1.90 10.19 ± 0.37 10.56 ± 0.03 4.35 ± 0.00 0.56 ± 0.56 4.22 ± 0.00 46.93 ± 0.00 4.75 ± 0.00 5.56 ± 0.00 5.71 ± 0.01 3.70 ± 0.38 4.87 ± 0.01

Multiple Models + COMs 10.55 ± 0.04 9.83 ± 0.37 9.76 ± 0.10 10.72 ± 0.03 9.93 ± 0.22 9.10 ± 0.65 8.73 ± 0.01 3.85 ± 0.21 0.00 ± 0.00 1.68 ± 0.01 46.03 ± 0.26 3.82 ± 0.16 4.66 ± 0.11 5.44 ± 0.07 4.31 ± 0.05 4.33 ± 0.01
Multiple Models + RoMA 10.53 ± 0.06 10.47 ± 0.05 10.62 ± 0.01 10.76 ± 0.00 6.63 ± 0.01 10.57 ± 0.02 10.01 ± 0.08 2.60 ± 0.01 0.00 ± 0.00 1.46 ± 0.00 40.48 ± 0.34 4.86 ± 0.01 5.62 ± 0.01 5.40 ± 0.18 2.87 ± 0.09 1.76 ± 0.02
Multiple Models + IOM 10.61 ± 0.00 8.93 ± 0.23 9.63 ± 0.07 10.76 ± 0.00 9.66 ± 0.36 9.25 ± 0.27 10.55 ± 0.15 4.34 ± 0.00 0.58 ± 0.58 3.73 ± 0.03 46.92 ± 0.00 4.62 ± 0.03 5.72 ± 0.00 5.50 ± 0.01 4.39 ± 0.44 4.86 ± 0.00
Multiple Models + ICT 10.63 ± 0.00 10.52 ± 0.01 10.63 ± 0.01 10.76 ± 0.00 9.61 ± 0.50 9.42 ± 0.00 9.94 ± 0.05 3.93 ± 0.00 0.06 ± 0.06 1.46 ± 0.00 43.55 ± 2.98 3.45 ± 0.07 5.50 ± 0.01 4.14 ± 0.12 3.27 ± 0.09 1.88 ± 0.01

Multiple Models + Tri-Mentoring 10.61 ± 0.01 10.65 ± 0.00 10.48 ± 0.07 10.76 ± 0.00 8.26 ± 0.02 9.42 ± 0.00 9.76 ± 0.01 3.39 ± 0.00 3.73 ± 0.07 1.46 ± 0.00 46.56 ± 0.08 4.33 ± 0.05 5.53 ± 0.01 5.45 ± 0.04 3.21 ± 0.22 1.90 ± 0.00
MOBO 10.64 ± 0.00 9.81 ± 0.14 8.85 ± 0.25 10.22 ± 0.00 8.73 ± 0.26 8.89 ± 0.35 8.00 ± 0.03 4.25 ± 0.01 0.00 ± 0.00 1.46 ± 0.00 46.91 ± 0.00 4.30 ± 0.01 4.34 ± 0.01 4.99 ± 0.04 3.88 ± 0.00 2.63 ± 0.11

MOBO-qParEGO 10.55 ± 0.08 8.62 ± 0.15 8.84 ± 0.48 10.76 ± 0.00 8.10 ± 0.10 7.55 ± 0.83 9.85 ± 0.14 4.19 ± 0.09 0.00 ± 0.00 1.46 ± 0.00 46.82 ± 0.03 4.11 ± 0.08 4.66 ± 0.06 4.96 ± 0.11 4.31 ± 0.07 2.51 ± 0.65
MOBO-JES 10.26 ± 0.10 10.13 ± 0.11 9.89 ± 0.48 8.31 ± 0.12 9.20 ± 0.10 9.39 ± 0.06 8.75 ± 0.07 2.98 ± 0.00 N/A 1.46 ± 0.00 45.77 ± 0.64 3.87 ± 0.04 3.90 ± 0.02 4.72 ± 0.10 3.97 ± 0.24 1.87 ± 0.10

Table 16. Hypervolume results for MO-NAS with 256 solutions and 50th percentile evaluations. For each task, algorithms within one
standard deviation of having the highest performance are bolded.

Methods C-10/MOP1 C-10/MOP2 C-10/MOP3 C-10/MOP4 C-10/MOP5 C-10/MOP6 C-10/MOP7 C-10/MOP8 C-10/MOP9 IN-1K/MOP1 IN-1K/MOP2 IN-1K/MOP3 IN-1K/MOP4 IN-1K/MOP5 IN-1K/MOP6 IN-1K/MOP7 IN-1K/MOP8 IN-1K/MOP9 NasBench201-Test

D(best) 4.78 10.48 9.72 21.15 40.51 92.43 358.27 4.55 10.59 4.97 5.00 11.21 16.63 17.26 44.43 4.69 11.42 21.50 10.07
End-to-End 4.80 ± 0.00 10.38 ± 0.10 10.66 ± 0.02 24.71 ± 0.03 48.81 ± 0.31 109.63 ± 0.09 513.62 ± 1.06 4.41 ± 0.07 9.29 ± 0.16 4.75 ± 0.01 4.04 ± 0.00 10.27 ± 0.13 16.81 ± 0.01 17.68 ± 0.06 45.13 ± 0.21 4.66 ± 0.22 10.33 ± 0.25 22.45 ± 0.31 10.22 ± 0.00

End-to-End + GradNorm 4.78 ± 0.00 10.51 ± 0.00 10.72 ± 0.00 24.11 ± 0.34 49.40 ± 0.08 110.13 ± 0.06 517.76 ± 1.15 4.25 ± 0.23 9.52 ± 0.34 5.11 ± 0.05 4.96 ± 0.03 10.29 ± 0.03 15.29 ± 0.00 17.40 ± 0.05 44.18 ± 0.00 4.60 ± 0.15 10.56 ± 0.24 22.07 ± 0.17 9.17 ± 0.03
End-to-End + PcGrad 4.80 ± 0.00 10.49 ± 0.01 10.65 ± 0.01 23.78 ± 0.15 50.02 ± 0.08 107.50 ± 0.05 512.26 ± 0.83 3.97 ± 0.01 10.72 ± 0.08 4.72 ± 0.01 5.16 ± 0.04 10.06 ± 0.57 15.42 ± 0.04 17.35 ± 0.02 43.51 ± 0.02 4.84 ± 0.01 10.15 ± 0.78 22.68 ± 0.10 10.01 ± 0.22

Multi-Head 4.80 ± 0.00 10.52 ± 0.01 10.36 ± 0.06 24.79 ± 0.47 49.91 ± 0.07 111.62 ± 0.00 519.26 ± 1.09 4.17 ± 0.04 9.03 ± 0.00 5.31 ± 0.01 4.93 ± 0.05 11.49 ± 0.02 16.72 ± 0.03 17.69 ± 0.02 45.25 ± 0.07 5.07 ± 0.01 11.33 ± 0.07 23.48 ± 0.53 9.99 ± 0.31
Multi-Head + GradNorm 4.79 ± 0.00 10.44 ± 0.05 9.05 ± 0.00 22.13 ± 0.41 48.51 ± 0.28 106.59 ± 0.06 515.87 ± 1.16 3.45 ± 0.06 7.92 ± 0.36 5.00 ± 0.03 4.30 ± 0.08 9.90 ± 0.05 16.76 ± 0.12 17.55 ± 0.08 41.23 ± 2.98 4.80 ± 0.02 7.93 ± 0.10 19.15 ± 0.26 10.24 ± 0.00

Multi-Head + PcGrad 4.80 ± 0.00 10.34 ± 0.18 9.71 ± 0.02 19.72 ± 0.19 49.20 ± 0.67 107.25 ± 0.06 504.65 ± 1.50 4.23 ± 0.06 9.36 ± 0.05 4.91 ± 0.05 5.12 ± 0.01 11.30 ± 0.11 16.66 ± 0.08 16.87 ± 0.44 44.17 ± 0.05 5.35 ± 0.07 10.53 ± 0.11 22.51 ± 0.48 9.69 ± 0.07
Multiple Models 4.78 ± 0.01 10.52 ± 0.01 10.72 ± 0.01 24.85 ± 0.08 49.34 ± 0.09 109.68 ± 0.35 519.10 ± 0.05 4.56 ± 0.05 10.04 ± 0.19 5.30 ± 0.02 5.17 ± 0.01 11.54 ± 0.02 16.82 ± 0.02 17.67 ± 0.02 45.30 ± 0.13 5.47 ± 0.08 11.27 ± 0.36 22.29 ± 1.00 10.24 ± 0.00

Multiple Models + COMs 4.78 ± 0.03 10.51 ± 0.00 10.42 ± 0.05 24.42 ± 0.08 48.71 ± 0.56 108.69 ± 0.12 508.52 ± 1.36 4.75 ± 0.01 10.40 ± 0.00 5.14 ± 0.03 5.10 ± 0.01 11.43 ± 0.05 16.53 ± 0.00 17.56 ± 0.01 44.51 ± 0.04 5.24 ± 0.09 11.96 ± 0.17 25.68 ± 0.19 10.21 ± 0.02
Multiple Models + RoMA 4.80 ± 0.00 10.52 ± 0.00 10.44 ± 0.12 24.52 ± 0.04 47.08 ± 0.11 108.04 ± 0.10 517.85 ± 1.26 4.26 ± 0.10 10.21 ± 0.02 5.02 ± 0.05 5.18 ± 0.03 11.48 ± 0.05 16.86 ± 0.03 17.51 ± 0.01 45.05 ± 0.11 5.43 ± 0.06 12.27 ± 0.01 26.22 ± 0.04 10.23 ± 0.00
Multiple Models + IOM 4.80 ± 0.01 10.38 ± 0.00 10.53 ± 0.00 24.63 ± 0.24 48.43 ± 0.72 110.39 ± 1.00 518.27 ± 0.04 4.64 ± 0.13 11.05 ± 0.06 5.20 ± 0.03 5.14 ± 0.02 11.57 ± 0.01 16.76 ± 0.01 17.64 ± 0.08 45.23 ± 0.16 4.94 ± 0.01 12.31 ± 0.09 26.08 ± 0.01 10.43 ± 0.08
Multiple Models + ICT 2.31 ± 2.31 10.22 ± 0.24 8.34 ± 0.03 21.97 ± 0.06 48.94 ± 0.05 93.35 ± 2.86 447.32 ± 2.89 3.24 ± 0.07 7.31 ± 0.18 4.65 ± 0.02 4.91 ± 0.01 9.25 ± 0.11 15.14 ± 0.01 14.82 ± 0.26 43.85 ± 0.28 4.57 ± 0.39 10.44 ± 0.07 20.49 ± 0.17 9.14 ± 0.03

Multiple Models + Tri-Mentoring 4.38 ± 0.32 3.89 ± 3.89 8.65 ± 0.96 23.69 ± 0.01 48.86 ± 0.02 107.89 ± 0.47 506.44 ± 1.45 3.27 ± 0.02 7.32 ± 0.15 4.69 ± 0.01 4.52 ± 0.08 9.93 ± 0.10 15.24 ± 0.01 15.35 ± 0.37 41.14 ± 0.99 4.89 ± 0.00 9.65 ± 0.73 21.11 ± 0.99 9.74 ± 0.56
MOBO 4.79 ± 0.00 10.46 ± 0.02 10.56 ± 0.00 24.46 ± 0.48 50.27 ± 0.02 107.95 ± 2.80 482.04 ± 6.29 4.66 ± 0.00 10.97 ± 0.01 5.21 ± 0.01 5.12 ± 0.05 10.96 ± 0.06 16.44 ± 0.06 17.40 ± 0.06 44.05 ± 0.19 5.17 ± 0.03 12.12 ± 0.27 25.10 ± 0.18 9.53 ± 0.04

MOBO-qParEGO 4.69 ± 0.07 10.39 ± 0.04 8.45 ± 0.19 19.62 ± 0.44 37.17 ± 0.02 94.55 ± 5.93 337.57 ± 8.91 4.13 ± 0.06 10.23 ± 0.15 4.60 ± 0.00 4.30 ± 0.12 9.93 ± 0.53 16.47 ± 0.03 17.37 ± 0.01 44.19 ± 0.06 4.74 ± 0.11 11.33 ± 0.27 23.52 ± 0.35 10.01 ± 0.09
MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 8.96 ± 0.16
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Table 17. Hypervolume results for MORL with 256 solutions and 50th percentile evaluations. For each task, algorithms within one
standard deviation of having the highest performance are bolded.

Methods MO-Hopper MO-Swimmer

D(best) 4.21 2.85
End-to-End 3.68 ± 0.00 2.04 ± 0.10

End-to-End + GradNorm 3.94 ± 0.23 2.08 ± 0.02
End-to-End + PcGrad 3.72 ± 0.01 1.90 ± 0.05

Multi-Head 3.74 ± 0.07 2.66 ± 0.04
Multi-Head + GradNorm 3.67 ± 0.00 1.98 ± 0.12

Multi-Head + PcGrad 3.86 ± 0.18 2.08 ± 0.02
Multiple Models 3.76 ± 0.01 1.91 ± 0.02

Multiple Models + COMs 3.72 ± 0.02 1.98 ± 0.01
Multiple Models + RoMA 4.74 ± 0.00 1.95 ± 0.06
Multiple Models + IOM 4.17 ± 0.18 1.96 ± 0.06
Multiple Models + ICT 3.70 ± 0.01 2.38 ± 0.11

Multiple Models + Tri-Mentoring 3.82 ± 0.03 1.98 ± 0.01
MOBO 3.68 ± 0.00 1.49 ± 0.02

MOBO-qParEGO N/A N/A
MOBO-JES N/A N/A

Table 18. Hypervolume results for MOCO with 256 solutions and 50th percentile evaluations. For each task, algorithms within one
standard deviation of having the highest performance are bolded.

Methods Bi-CVRP-20 Bi-CVRP-50 Bi-CVRP-100 Bi-KP-50 Bi-KP-100 Bi-KP-200 Bi-TSP-20 Bi-TSP-50 Bi-TSP-100 Bi-TSP-500 Tri-TSP-20 Tri-TSP-50 Tri-TSP-100 MO-Portfolio

D(best) 5.37 5.11 4.93 3.00 3.45 4.68 5.05 4.89 4.55 4.52 11.88 9.82 9.36 3.78
End-to-End 3.48 ± 0.08 3.30 ± 0.22 4.14 ± 0.02 2.40 ± 0.03 1.87 ± 0.00 3.69 ± 0.00 2.54 ± 0.22 4.12 ± 0.01 3.83 ± 0.58 3.35 ± 0.01 4.43 ± 0.35 3.69 ± 0.04 6.27 ± 0.56 2.97 ± 0.14

End-to-End + GradNorm 3.26 ± 0.05 2.93 ± 0.15 2.95 ± 0.02 2.23 ± 0.30 2.35 ± 0.22 1.90 ± 0.00 2.26 ± 0.10 3.21 ± 0.27 3.03 ± 0.18 4.19 ± 0.06 4.84 ± 0.36 4.66 ± 0.30 8.02 ± 0.11 3.14 ± 0.14
End-to-End + PcGrad 3.15 ± 0.07 3.39 ± 0.05 3.14 ± 0.24 2.02 ± 0.05 1.95 ± 0.04 2.35 ± 0.00 2.29 ± 0.03 3.86 ± 0.24 3.32 ± 0.02 3.65 ± 0.09 7.04 ± 1.00 5.06 ± 0.93 8.50 ± 0.48 1.99 ± 0.27

Multi-Head 3.09 ± 0.11 3.21 ± 0.01 3.84 ± 0.26 2.45 ± 0.01 1.75 ± 0.04 2.49 ± 0.00 2.45 ± 0.07 4.00 ± 0.08 3.25 ± 0.05 3.04 ± 0.09 3.90 ± 0.14 4.22 ± 0.14 6.29 ± 0.94 2.02 ± 0.22
Multi-Head + GradNorm 3.10 ± 0.14 3.12 ± 0.22 2.64 ± 0.16 2.21 ± 0.02 2.18 ± 0.17 2.20 ± 0.17 3.23 ± 0.05 2.80 ± 0.04 2.92 ± 0.11 3.18 ± 0.03 4.50 ± 0.09 5.43 ± 0.47 6.52 ± 0.51 3.06 ± 0.09

Multi-Head + PcGrad 2.97 ± 0.15 3.11 ± 0.03 2.97 ± 0.03 2.33 ± 0.03 2.06 ± 0.14 2.35 ± 0.00 2.24 ± 0.02 3.20 ± 0.05 3.02 ± 0.19 2.27 ± 0.78 6.97 ± 0.02 4.75 ± 0.27 9.39 ± 0.00 3.00 ± 0.05
Multiple Models 3.37 ± 0.03 3.38 ± 0.13 4.24 ± 0.03 2.42 ± 0.05 2.07 ± 0.01 2.47 ± 0.00 2.45 ± 0.09 2.48 ± 0.20 3.40 ± 0.19 4.34 ± 0.03 4.32 ± 0.13 4.63 ± 0.20 6.34 ± 0.42 3.66 ± 0.01

Multiple Models + COMs 3.89 ± 0.00 3.49 ± 0.14 3.27 ± 0.22 2.14 ± 0.03 2.10 ± 0.06 2.30 ± 0.00 3.06 ± 0.05 3.93 ± 0.05 3.35 ± 0.20 3.71 ± 0.13 7.18 ± 0.37 5.88 ± 0.92 7.31 ± 0.23 2.10 ± 0.08
Multiple Models + RoMA 3.23 ± 0.03 3.41 ± 0.08 2.95 ± 0.05 2.17 ± 0.13 2.01 ± 0.09 2.49 ± 0.03 2.90 ± 0.14 3.60 ± 0.20 3.84 ± 0.03 1.53 ± 0.03 6.08 ± 0.11 6.04 ± 0.07 7.67 ± 0.11 2.88 ± 0.03
Multiple Models + IOM 3.50 ± 0.22 3.54 ± 0.02 4.55 ± 0.14 2.15 ± 0.03 2.02 ± 0.02 2.45 ± 0.10 3.62 ± 0.30 4.54 ± 0.03 4.33 ± 0.03 4.01 ± 0.26 9.25 ± 0.08 9.07 ± 0.21 9.17 ± 0.05 2.88 ± 0.02
Multiple Models + ICT 3.16 ± 0.02 3.23 ± 0.20 3.19 ± 0.04 2.01 ± 0.15 2.03 ± 0.22 2.46 ± 0.11 2.67 ± 0.01 2.89 ± 0.11 2.97 ± 0.08 3.38 ± 0.10 4.72 ± 0.16 5.71 ± 0.04 5.96 ± 0.20 1.75 ± 0.30

Multiple Models + Tri-Mentoring 3.10 ± 0.06 3.03 ± 0.01 3.26 ± 0.20 2.25 ± 0.02 1.97 ± 0.00 2.35 ± 0.31 2.69 ± 0.03 2.98 ± 0.26 3.57 ± 0.16 3.31 ± 0.14 4.53 ± 0.30 5.74 ± 0.35 5.65 ± 0.18 2.50 ± 0.08
MOBO 2.77 ± 0.05 2.26 ± 0.14 1.42 ± 0.07 2.38 ± 0.05 1.97 ± 0.12 2.04 ± 0.07 2.14 ± 0.24 1.61 ± 0.05 1.51 ± 0.05 N/A 3.47 ± 0.16 2.69 ± 0.03 2.20 ± 0.07 2.89 ± 0.01

MOBO-qParEGO 2.79 ± 0.01 2.21 ± 0.01 1.20 ± 0.01 2.15 ± 0.01 2.05 ± 0.00 N/A 2.18 ± 0.07 1.71 ± 0.01 1.52 ± 0.00 N/A 3.52 ± 0.09 2.70 ± 0.02 2.11 ± 0.02 2.90 ± 0.06
MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 3.15 ± 0.21

Table 19. Hypervolume results for scientific design with 256 solutions and 50th percentile evaluations. For each task, algorithms within
one standard deviation of having the highest performance are bolded.

Methods Molecule Regex RFP ZINC

D(best) 2.26 3.05 3.75 4.06
End-to-End 1.07 ± 0.07 2.05 ± 0.00 3.64 ± 0.05 3.95 ± 0.04

End-to-End + GradNorm 1.07 ± 0.07 2.05 ± 0.00 3.73 ± 0.04 3.92 ± 0.00
End-to-End + PcGrad 2.12 ± 0.04 2.05 ± 0.00 3.70 ± 0.05 3.89 ± 0.06

Multi-Head 2.08 ± 0.00 2.05 ± 0.00 3.74 ± 0.00 3.86 ± 0.02
Multi-Head + GradNorm 1.00 ± 0.00 2.05 ± 0.00 3.69 ± 0.01 3.82 ± 0.01

Multi-Head + PcGrad 1.00 ± 0.00 2.05 ± 0.00 3.68 ± 0.02 3.86 ± 0.01
Multiple Models 1.10 ± 0.09 2.05 ± 0.00 3.70 ± 0.01 3.84 ± 0.00

Multiple Models + COMs 1.76 ± 0.14 2.38 ± 0.33 3.70 ± 0.00 3.86 ± 0.02
Multiple Models + RoMA 1.03 ± 0.00 2.05 ± 0.00 3.79 ± 0.04 3.91 ± 0.02
Multiple Models + IOM 1.02 ± 0.01 2.05 ± 0.00 3.76 ± 0.03 3.91 ± 0.02
Multiple Models + ICT 1.02 ± 0.02 2.05 ± 0.00 3.67 ± 0.00 3.96 ± 0.07

Multiple Models + Tri-Mentoring 1.41 ± 0.17 2.05 ± 0.00 3.75 ± 0.03 3.75 ± 0.00
MOBO 1.02 ± 0.02 3.42 ± 0.25 3.70 ± 0.01 3.90 ± 0.01

MOBO-qParEGO 1.96 ± 0.12 3.17 ± 0.11 3.33 ± 0.00 4.00 ± 0.03
MOBO-JES 1.00 ± 0.00 N/A N/A N/A
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Table 20. Hypervolume results for RE with 256 solutions and 50th percentile evaluations. For each task, algorithms within one standard
deviation of having the highest performance are bolded.

Methods RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 RE41 RE42 RE61

D(best) 4.23 4.78 4.75 4.59 4.79 10.23 10.53 10.59 48.06 10.96 7.57 4.72 36.17 12.53 135.87
End-to-End 4.42 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.38 ± 0.00 4.73 ± 0.04 10.56 ± 0.00 10.64 ± 0.00 10.68 ± 0.00 50.27 ± 0.40 11.69 ± 0.00 8.86 ± 0.79 4.67 ± 0.35 43.75 ± 0.07 19.89 ± 0.05 143.86 ± 0.14

End-to-End + GradNorm 4.39 ± 0.02 4.84 ± 0.00 2.64 ± 0.00 4.29 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.61 ± 0.00 9.72 ± 0.03 47.25 ± 3.23 11.47 ± 0.01 5.74 ± 0.00 6.02 ± 0.07 40.63 ± 1.01 13.46 ± 0.00 137.59 ± 3.59
End-to-End + PcGrad 4.61 ± 0.32 4.52 ± 0.32 4.84 ± 0.00 4.22 ± 0.02 4.35 ± 0.00 10.65 ± 0.00 10.64 ± 0.00 9.86 ± 0.36 52.17 ± 0.55 11.67 ± 0.01 9.46 ± 0.03 4.00 ± 0.18 41.87 ± 0.01 15.81 ± 1.68 140.21 ± 2.41

Multi-Head 4.56 ± 0.14 4.83 ± 0.01 4.59 ± 0.10 4.11 ± 0.01 3.82 ± 0.30 10.64 ± 0.00 10.64 ± 0.00 10.47 ± 0.22 51.24 ± 0.12 11.73 ± 0.00 6.76 ± 0.00 4.43 ± 0.01 43.62 ± 0.02 20.20 ± 0.15 140.38 ± 0.56
Multi-Head + GradNorm 4.84 ± 0.01 3.75 ± 0.06 3.70 ± 0.09 2.64 ± 0.00 3.14 ± 0.01 10.65 ± 0.00 10.62 ± 0.01 6.12 ± 0.49 52.50 ± 0.14 11.52 ± 0.00 0.02 ± 0.00 5.90 ± 0.44 43.41 ± 0.16 15.25 ± 1.79 142.41 ± 0.63

Multi-Head + PcGrad 4.79 ± 0.03 4.84 ± 0.00 3.42 ± 0.57 3.77 ± 0.00 4.35 ± 0.00 7.64 ± 0.00 10.08 ± 0.00 10.11 ± 0.35 52.48 ± 0.05 11.50 ± 0.00 9.64 ± 0.00 6.32 ± 0.05 43.60 ± 0.02 19.69 ± 0.96 139.81 ± 2.17
Multiple Models 4.93 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.79 ± 0.01 4.83 ± 0.01 10.63 ± 0.00 10.63 ± 0.00 9.62 ± 0.62 54.02 ± 0.00 11.65 ± 0.01 10.31 ± 0.03 6.45 ± 0.01 42.97 ± 0.42 20.55 ± 0.01 143.59 ± 0.17

Multiple Models + COMs 3.90 ± 0.10 4.83 ± 0.00 4.76 ± 0.02 4.59 ± 0.00 4.84 ± 0.00 5.28 ± 5.28 10.62 ± 0.00 10.26 ± 0.31 48.14 ± 2.03 11.41 ± 0.02 8.18 ± 0.15 5.68 ± 0.20 39.96 ± 0.64 13.00 ± 0.46 138.74 ± 0.89
Multiple Models + RoMA 4.88 ± 0.00 4.84 ± 0.00 4.83 ± 0.00 3.66 ± 0.01 3.40 ± 0.01 10.60 ± 0.00 10.64 ± 0.00 10.11 ± 0.05 50.37 ± 0.46 11.76 ± 0.01 3.76 ± 0.05 6.37 ± 0.04 43.33 ± 0.04 17.14 ± 0.23 131.51 ± 4.58
Multiple Models + IOM 4.93 ± 0.01 4.84 ± 0.00 4.81 ± 0.02 4.28 ± 0.01 4.14 ± 0.01 10.65 ± 0.00 10.65 ± 0.00 10.64 ± 0.03 53.83 ± 0.06 11.68 ± 0.05 9.33 ± 0.09 6.33 ± 0.08 42.93 ± 0.11 20.54 ± 0.02 141.76 ± 0.13
Multiple Models + ICT 4.70 ± 0.15 4.84 ± 0.00 2.76 ± 0.00 3.23 ± 0.00 4.74 ± 0.00 10.62 ± 0.01 2.77 ± 0.00 9.80 ± 0.50 53.26 ± 0.07 11.68 ± 0.04 8.00 ± 0.16 6.14 ± 0.09 43.33 ± 0.15 16.04 ± 0.41 142.65 ± 0.50

Multiple Models + Tri-Mentoring 4.89 ± 0.01 4.84 ± 0.00 2.76 ± 0.00 4.81 ± 0.01 4.70 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.54 ± 0.00 50.66 ± 0.02 11.75 ± 0.00 8.47 ± 0.15 6.35 ± 0.07 43.25 ± 0.23 18.95 ± 0.91 143.33 ± 0.31
MOBO 4.31 ± 0.05 4.84 ± 0.00 4.18 ± 0.01 3.32 ± 0.02 4.83 ± 0.00 10.03 ± 0.00 10.53 ± 0.12 10.48 ± 0.02 43.92 ± 2.75 11.42 ± 0.07 0.00 ± 0.00 6.40 ± 0.08 45.03 ± 0.60 12.08 ± 0.00 N/A

MOBO-qParEGO 4.44 ± 0.15 4.21 ± 0.40 4.75 ± 0.01 0.00 ± 0.00 4.12 ± 0.29 5.31 ± 5.31 8.82 ± 0.37 10.46 ± 0.09 43.07 ± 0.74 0.00 ± 0.00 0.00 ± 0.00 5.52 ± 0.04 N/A N/A N/A
MOBO-JES 3.89 ± 0.03 4.57 ± 0.03 4.66 ± 0.05 4.54 ± 0.00 4.80 ± 0.00 10.01 ± 0.01 10.63 ± 0.01 10.52 ± 0.03 48.52 ± 0.00 11.12 ± 0.03 6.46 ± 0.34 5.24 ± 0.17 N/A N/A N/A

Table 21. Average rank of different offline MOO methods on each type of task with 32 solutions and 100th percentile evaluations, where
the best and runner-up results are bolded and underlined, respectively.

Methods Synthetic MO-NAS MORL MOCO Sci-Design RE Average Rank

D(best) 12.03 ± 0.16 10.58 ± 0.32 4.00 ± 0.00 1.07 ± 0.00 4.25 ± 0.25 13.20 ± 0.07 8.95 ± 0.12
End-to-End 7.03 ± 0.09 7.35 ± 0.13 7.00 ± 1.00 5.68 ± 0.68 3.81 ± 0.31 8.47 ± 0.13 6.95 ± 0.13

End-to-End + GradNorm 7.80 ± 0.02 8.29 ± 0.24 6.00 ± 2.00 7.82 ± 0.18 12.25 ± 0.25 10.43 ± 0.50 8.71 ± 0.00
End-to-End + PcGrad 8.05 ± 0.67 7.69 ± 0.52 4.00 ± 0.00 6.99 ± 0.15 6.52 ± 0.35 8.30 ± 0.03 7.63 ± 0.34

Multi-Head 6.48 ± 0.33 6.55 ± 0.76 11.25 ± 0.75 7.88 ± 0.05 6.23 ± 0.40 8.40 ± 0.00 7.30 ± 0.13
Multi-Head + GradNorm 8.14 ± 0.27 9.42 ± 0.32 10.00 ± 0.50 10.50 ± 0.43 13.25 ± 0.50 10.10 ± 0.70 9.71 ± 0.42

Multi-Head + PcGrad 8.52 ± 0.30 7.76 ± 0.24 9.50 ± 2.00 8.39 ± 0.61 10.75 ± 0.12 7.93 ± 0.13 8.31 ± 0.32
Multiple Models 5.23 ± 0.14 4.89 ± 0.53 11.25 ± 0.75 5.42 ± 0.73 10.75 ± 0.25 5.65 ± 0.08 5.74 ± 0.02

Multiple Models + COMs 8.88 ± 0.06 4.95 ± 0.27 1.25 ± 0.25 6.11 ± 0.25 10.31 ± 0.94 9.95 ± 0.02 7.29 ± 0.07
Multiple Models + RoMA 9.20 ± 0.27 5.24 ± 0.29 5.50 ± 1.00 8.82 ± 0.89 8.88 ± 0.00 7.40 ± 0.40 7.55 ± 0.36
Multiple Models + IOM 6.56 ± 0.09 5.39 ± 0.23 7.50 ± 1.00 3.88 ± 0.05 6.06 ± 0.69 4.10 ± 0.10 5.12 ± 0.05
Multiple Models + ICT 8.08 ± 0.36 12.35 ± 0.26 6.75 ± 0.25 10.18 ± 0.18 5.75 ± 1.38 7.90 ± 0.10 9.28 ± 0.01

Multiple Models + Tri-Mentoring 6.27 ± 0.61 11.35 ± 1.31 11.50 ± 0.00 10.46 ± 0.11 7.88 ± 0.00 6.63 ± 0.30 8.74 ± 0.11
MOBO 10.41 ± 0.09 5.37 ± 0.37 9.50 ± 0.50 13.11 ± 0.68 5.75 ± 0.00 7.89 ± 0.04 8.76 ± 0.02

MOBO-qParEGO 10.52 ± 0.39 10.32 ± 0.11 N/A 12.00 ± 0.25 6.94 ± 0.19 8.54 ± 0.04 10.14 ± 0.08
MOBO-JES 12.27 ± 0.06 14.50 ± 0.50 N/A 2.00 ± 0.00 7.50 ± 5.50 7.75 ± 0.17 9.99 ± 0.31

Table 22. Hypervolume results for synthetic functions with 32 solutions and 100th percentile evaluations. For each task, algorithms within
one standard deviation of having the highest performance are bolded.

Methods DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 OmniTest VLMOP1 VLMOP2 VLMOP3 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

D(best) 10.43 9.43 9.71 10.76 9.06 8.20 8.32 3.87 0.08 1.64 45.14 4.04 4.70 5.05 5.46 4.76
End-to-End 10.64 ± 0.00 10.65 ± 0.00 10.64 ± 0.00 10.76 ± 0.00 10.64 ± 0.01 10.62 ± 0.03 10.60 ± 0.09 4.35 ± 0.00 2.54 ± 2.25 4.05 ± 0.05 46.90 ± 0.01 2.70 ± 0.00 3.19 ± 0.01 5.33 ± 0.03 3.72 ± 0.36 4.90 ± 0.00

End-to-End + GradNorm 10.63 ± 0.01 10.64 ± 0.01 10.65 ± 0.00 10.76 ± 0.00 10.54 ± 0.09 10.64 ± 0.00 10.71 ± 0.00 3.76 ± 0.03 1.26 ± 1.08 2.79 ± 1.34 42.23 ± 0.98 4.77 ± 0.01 5.63 ± 0.02 5.22 ± 0.02 3.23 ± 0.03 4.73 ± 0.11
End-to-End + PcGrad 10.63 ± 0.01 10.57 ± 0.04 10.65 ± 0.00 10.76 ± 0.00 9.02 ± 0.10 9.45 ± 0.15 10.52 ± 0.00 4.35 ± 0.00 4.80 ± 0.02 4.06 ± 0.01 46.79 ± 0.06 4.84 ± 0.01 5.70 ± 0.01 5.45 ± 0.00 3.12 ± 0.01 2.04 ± 0.22

Multi-Head 10.37 ± 0.26 10.65 ± 0.00 10.64 ± 0.00 10.76 ± 0.00 10.61 ± 0.03 10.65 ± 0.00 10.52 ± 0.00 4.24 ± 0.00 2.57 ± 2.25 4.08 ± 0.01 46.93 ± 0.00 2.72 ± 0.00 5.72 ± 0.00 5.41 ± 0.10 3.70 ± 0.23 4.87 ± 0.01
Multi-Head + GradNorm 10.62 ± 0.01 10.63 ± 0.01 10.64 ± 0.00 10.76 ± 0.00 9.29 ± 0.86 10.62 ± 0.02 10.61 ± 0.10 4.33 ± 0.00 0.00 ± 0.00 4.13 ± 0.03 46.64 ± 0.22 4.83 ± 0.00 5.68 ± 0.05 5.26 ± 0.04 3.39 ± 0.00 4.87 ± 0.00

Multi-Head + PcGrad 10.63 ± 0.00 10.63 ± 0.00 10.61 ± 0.03 10.76 ± 0.00 9.08 ± 0.35 10.59 ± 0.01 10.49 ± 0.01 4.35 ± 0.00 4.80 ± 0.01 3.99 ± 0.01 46.91 ± 0.00 2.72 ± 0.04 5.69 ± 0.03 5.45 ± 0.00 3.64 ± 0.17 2.05 ± 0.18
Multiple Models 10.61 ± 0.01 10.64 ± 0.00 10.65 ± 0.00 10.76 ± 0.00 10.63 ± 0.01 10.65 ± 0.00 10.67 ± 0.03 4.35 ± 0.00 2.52 ± 2.21 4.09 ± 0.02 46.97 ± 0.00 4.80 ± 0.03 5.51 ± 0.01 5.51 ± 0.14 4.26 ± 0.07 4.88 ± 0.00

Multiple Models + COMs 10.63 ± 0.00 10.48 ± 0.08 10.55 ± 0.04 10.76 ± 0.00 9.14 ± 0.44 9.50 ± 0.15 9.14 ± 0.10 4.41 ± 0.00 4.78 ± 0.01 4.87 ± 0.00 46.81 ± 0.12 4.21 ± 0.07 4.85 ± 0.02 5.25 ± 0.24 3.99 ± 0.10 4.59 ± 0.02
Multiple Models + RoMA 10.63 ± 0.01 10.57 ± 0.03 10.64 ± 0.00 10.76 ± 0.00 9.10 ± 0.48 10.60 ± 0.00 10.12 ± 0.05 3.97 ± 0.06 4.78 ± 0.01 1.46 ± 0.00 44.15 ± 2.36 4.83 ± 0.01 5.65 ± 0.00 5.80 ± 0.00 3.18 ± 0.05 1.84 ± 0.07
Multiple Models + IOM 10.62 ± 0.01 10.56 ± 0.08 10.46 ± 0.02 10.76 ± 0.00 10.08 ± 0.04 10.15 ± 0.45 10.48 ± 0.00 4.41 ± 0.00 4.79 ± 0.00 3.29 ± 1.58 46.97 ± 0.00 4.73 ± 0.00 5.45 ± 0.02 5.52 ± 0.05 4.84 ± 0.00 4.87 ± 0.02
Multiple Models + ICT 10.63 ± 0.00 10.62 ± 0.01 10.56 ± 0.09 10.76 ± 0.00 7.98 ± 0.53 10.61 ± 0.01 10.54 ± 0.01 4.41 ± 0.00 0.31 ± 0.00 1.46 ± 0.00 46.97 ± 0.00 4.25 ± 0.15 5.54 ± 0.01 4.35 ± 0.08 4.84 ± 0.00 2.79 ± 0.56

Multiple Models + Tri-Mentoring 10.63 ± 0.01 10.65 ± 0.00 10.63 ± 0.01 10.76 ± 0.00 9.48 ± 0.20 10.62 ± 0.02 10.58 ± 0.08 4.41 ± 0.00 4.82 ± 0.00 1.46 ± 0.00 46.97 ± 0.00 4.51 ± 0.01 5.55 ± 0.01 5.59 ± 0.06 4.84 ± 0.00 2.31 ± 0.01
MOBO 10.64 ± 0.00 9.82 ± 0.23 9.68 ± 0.19 10.24 ± 0.00 8.83 ± 0.19 8.42 ± 0.16 10.34 ± 0.01 4.34 ± 0.00 0.30 ± 0.00 2.73 ± 0.02 46.92 ± 0.00 4.30 ± 0.00 5.08 ± 0.00 5.26 ± 0.01 4.52 ± 0.10 3.20 ± 0.00

MOBO-qParEGO 10.63 ± 0.00 9.56 ± 0.02 9.43 ± 0.00 10.76 ± 0.00 8.48 ± 0.03 8.43 ± 0.00 10.17 ± 0.00 4.33 ± 0.00 0.26 ± 0.02 3.34 ± 0.33 46.92 ± 0.01 4.25 ± 0.02 5.22 ± 0.06 5.20 ± 0.01 4.85 ± 0.02 3.36 ± 0.00
MOBO-JES 10.61 ± 0.00 10.22 ± 0.08 10.23 ± 0.18 8.56 ± 0.07 9.67 ± 0.01 9.62 ± 0.04 9.36 ± 0.08 3.87 ± 0.00 N/A 1.46 ± 0.00 46.88 ± 0.00 3.97 ± 0.09 4.44 ± 0.07 5.17 ± 0.02 4.43 ± 0.08 3.09 ± 0.02

Table 23. Hypervolume results for MO-NAS with 32 solutions and 100th percentile evaluations. For each task, algorithms within one
standard deviation of having the highest performance are bolded.

Methods C-10/MOP1 C-10/MOP2 C-10/MOP3 C-10/MOP4 C-10/MOP5 C-10/MOP6 C-10/MOP7 C-10/MOP8 C-10/MOP9 IN-1K/MOP1 IN-1K/MOP2 IN-1K/MOP3 IN-1K/MOP4 IN-1K/MOP5 IN-1K/MOP6 IN-1K/MOP7 IN-1K/MOP8 IN-1K/MOP9 NasBench201-Test

D(best) 4.78 10.48 9.72 21.15 40.51 92.43 358.27 4.55 10.59 4.97 5.00 11.21 16.63 17.26 44.43 4.69 11.42 21.50 10.07
End-to-End 4.82 ± 0.00 10.22 ± 0.26 10.63 ± 0.00 24.21 ± 0.12 49.48 ± 0.00 109.05 ± 0.00 512.31 ± 1.40 4.61 ± 0.07 10.68 ± 0.00 4.80 ± 0.02 5.11 ± 0.00 10.93 ± 0.06 16.88 ± 0.04 17.68 ± 0.03 45.39 ± 0.33 5.07 ± 0.07 11.07 ± 0.04 22.38 ± 0.37 10.28 ± 0.01

End-to-End + GradNorm 4.83 ± 0.00 10.49 ± 0.03 10.45 ± 0.06 24.96 ± 0.30 50.35 ± 0.02 108.57 ± 0.41 508.72 ± 0.60 4.55 ± 0.01 10.26 ± 0.17 5.14 ± 0.00 4.88 ± 0.03 10.62 ± 0.07 16.87 ± 0.16 17.49 ± 0.25 44.38 ± 0.63 4.97 ± 0.00 10.44 ± 0.06 22.71 ± 0.19 9.39 ± 0.32
End-to-End + PcGrad 4.83 ± 0.00 10.50 ± 0.00 10.53 ± 0.06 25.30 ± 0.15 50.17 ± 0.01 108.22 ± 0.52 501.11 ± 0.00 4.34 ± 0.18 10.93 ± 0.27 5.01 ± 0.17 5.05 ± 0.01 11.14 ± 0.13 16.16 ± 0.61 17.44 ± 0.04 44.07 ± 0.26 4.93 ± 0.00 10.95 ± 0.01 23.39 ± 0.00 10.32 ± 0.02

Multi-Head 4.83 ± 0.01 10.53 ± 0.01 9.59 ± 0.00 25.78 ± 0.15 49.77 ± 0.07 109.47 ± 0.83 493.13 ± 4.07 4.31 ± 0.04 9.73 ± 0.40 5.15 ± 0.03 4.84 ± 0.04 11.35 ± 0.04 16.79 ± 0.10 17.80 ± 0.02 44.91 ± 0.45 5.15 ± 0.07 11.26 ± 0.17 24.00 ± 0.06 10.39 ± 0.09
Multi-Head + GradNorm 4.84 ± 0.00 10.54 ± 0.00 9.59 ± 0.01 23.47 ± 0.12 49.49 ± 0.62 107.76 ± 0.09 499.69 ± 3.16 4.41 ± 0.21 10.19 ± 0.61 4.66 ± 0.02 4.37 ± 0.02 10.40 ± 0.24 16.80 ± 0.09 17.74 ± 0.01 45.10 ± 0.00 4.90 ± 0.07 8.11 ± 0.27 17.78 ± 0.01 9.99 ± 0.09

Multi-Head + PcGrad 4.84 ± 0.00 10.55 ± 0.00 10.64 ± 0.06 23.50 ± 1.02 49.62 ± 0.09 108.33 ± 1.09 480.47 ± 0.00 4.28 ± 0.08 10.46 ± 0.00 4.90 ± 0.00 5.16 ± 0.01 11.32 ± 0.05 16.91 ± 0.14 17.45 ± 0.18 44.78 ± 0.05 5.25 ± 0.07 10.32 ± 0.35 21.32 ± 0.14 10.18 ± 0.15
Multiple Models 4.83 ± 0.01 10.53 ± 0.02 10.67 ± 0.03 25.56 ± 0.01 49.96 ± 0.00 110.94 ± 0.29 509.96 ± 1.58 4.69 ± 0.17 10.38 ± 0.32 5.13 ± 0.04 5.07 ± 0.03 11.26 ± 0.02 16.84 ± 0.11 17.70 ± 0.04 45.82 ± 0.14 5.30 ± 0.09 11.40 ± 0.22 23.48 ± 0.51 10.28 ± 0.00

Multiple Models + COMs 4.82 ± 0.00 10.53 ± 0.00 10.59 ± 0.00 24.66 ± 0.12 49.96 ± 0.14 110.40 ± 0.19 507.19 ± 2.53 4.77 ± 0.01 10.77 ± 0.03 5.19 ± 0.04 5.11 ± 0.00 11.33 ± 0.01 16.84 ± 0.04 17.59 ± 0.07 45.20 ± 0.20 5.40 ± 0.07 11.93 ± 0.06 25.18 ± 0.21 10.27 ± 0.06
Multiple Models + RoMA 4.81 ± 0.01 10.51 ± 0.00 10.56 ± 0.00 24.89 ± 0.09 50.04 ± 0.07 108.37 ± 0.28 506.10 ± 2.55 4.37 ± 0.04 10.20 ± 0.00 5.23 ± 0.02 5.17 ± 0.01 11.39 ± 0.02 16.97 ± 0.06 17.77 ± 0.05 45.35 ± 0.03 5.37 ± 0.03 12.11 ± 0.07 25.48 ± 0.05 10.03 ± 0.03
Multiple Models + IOM 4.82 ± 0.00 10.44 ± 0.01 10.65 ± 0.04 24.55 ± 0.00 50.23 ± 0.06 111.25 ± 0.08 493.81 ± 15.32 4.78 ± 0.02 10.80 ± 0.07 5.15 ± 0.01 5.07 ± 0.00 11.40 ± 0.00 16.57 ± 0.08 17.71 ± 0.02 45.73 ± 0.11 5.03 ± 0.04 12.01 ± 0.05 24.94 ± 0.33 10.13 ± 0.16
Multiple Models + ICT 4.06 ± 0.00 10.51 ± 0.01 10.01 ± 0.03 24.16 ± 0.00 48.33 ± 0.35 104.07 ± 1.13 477.25 ± 1.44 3.65 ± 0.00 7.93 ± 0.22 4.71 ± 0.06 4.65 ± 0.02 9.96 ± 0.05 16.23 ± 0.00 16.03 ± 0.00 45.34 ± 0.14 4.59 ± 0.39 9.53 ± 0.07 20.68 ± 0.03 9.09 ± 0.19

Multiple Models + Tri-Mentoring 4.06 ± 0.00 7.76 ± 0.00 9.48 ± 0.17 23.83 ± 0.10 49.02 ± 0.00 110.23 ± 0.25 481.97 ± 1.83 3.27 ± 0.13 8.22 ± 0.00 4.97 ± 0.19 4.90 ± 0.17 9.82 ± 0.00 15.61 ± 0.00 15.88 ± 0.00 44.90 ± 0.00 4.63 ± 0.51 10.66 ± 0.04 21.85 ± 1.10 8.09 ± 2.16
MOBO 4.61 ± 0.08 10.48 ± 0.03 10.79 ± 0.00 25.87 ± 0.14 50.24 ± 0.02 111.83 ± 0.40 513.76 ± 2.91 4.75 ± 0.00 11.03 ± 0.08 5.35 ± 0.02 5.16 ± 0.01 11.18 ± 0.02 16.70 ± 0.09 17.51 ± 0.07 44.01 ± 0.41 5.24 ± 0.05 11.53 ± 0.13 22.64 ± 0.89 10.30 ± 0.06

MOBO-qParEGO 4.78 ± 0.01 10.44 ± 0.00 8.94 ± 0.05 20.01 ± 0.05 37.21 ± 0.00 94.72 ± 5.91 350.55 ± 0.13 4.50 ± 0.00 10.83 ± 0.13 4.93 ± 0.08 4.70 ± 0.01 10.34 ± 0.16 16.72 ± 0.14 17.61 ± 0.07 45.27 ± 0.31 5.11 ± 0.08 11.39 ± 0.27 23.25 ± 0.25 9.43 ± 0.02
MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 9.16 ± 0.07
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Table 24. Hypervolume results for MORL with 32 solutions and 100th percentile evaluations. For each task, algorithms within one
standard deviation of having the highest performance are bolded.

Methods MO-Hopper MO-Swimmer

D(best) 4.21 2.85
End-to-End 4.04 ± 0.24 2.56 ± 0.13

End-to-End + GradNorm 4.42 ± 0.36 2.61 ± 0.03
End-to-End + PcGrad 4.51 ± 0.27 2.71 ± 0.05

Multi-Head 3.81 ± 0.04 2.36 ± 0.13
Multi-Head + GradNorm 3.71 ± 0.03 2.59 ± 0.04

Multi-Head + PcGrad 4.40 ± 0.24 2.18 ± 0.19
Multiple Models 3.87 ± 0.00 2.28 ± 0.11

Multiple Models + COMs 4.90 ± 0.06 2.85 ± 0.04
Multiple Models + RoMA 4.18 ± 0.03 2.67 ± 0.18
Multiple Models + IOM 4.63 ± 0.33 2.23 ± 0.02
Multiple Models + ICT 3.95 ± 0.03 2.69 ± 0.02

Multiple Models + Tri-Mentoring 3.70 ± 0.01 2.41 ± 0.02
MOBO 4.20 ± 0.01 2.27 ± 0.10

MOBO-qParEGO N/A N/A
MOBO-JES N/A N/A

Table 25. Hypervolume results for MOCO with 32 solutions and 100th percentile evaluations. For each task, algorithms within one
standard deviation of having the highest performance are bolded.

Methods Bi-CVRP-20 Bi-CVRP-50 Bi-CVRP-100 Bi-KP-50 Bi-KP-100 Bi-KP-200 Bi-TSP-20 Bi-TSP-50 Bi-TSP-100 Bi-TSP-500 Tri-TSP-20 Tri-TSP-50 Tri-TSP-100 Portfolio

D(best) 5.37 5.11 4.93 3.00 3.45 4.68 5.05 4.89 4.55 4.52 11.88 9.82 9.36 3.78
End-to-End 5.05 ± 0.17 4.30 ± 0.12 4.53 ± 0.36 2.70 ± 0.04 2.33 ± 0.30 3.37 ± 0.00 3.44 ± 0.03 4.68 ± 0.12 4.48 ± 0.02 4.48 ± 0.05 6.87 ± 1.32 5.56 ± 0.70 9.07 ± 0.04 2.95 ± 0.01

End-to-End + GradNorm 4.02 ± 0.27 3.75 ± 0.21 3.63 ± 0.00 2.67 ± 0.01 2.67 ± 0.02 2.69 ± 0.00 3.06 ± 0.30 3.87 ± 0.13 3.53 ± 0.00 4.11 ± 0.16 5.61 ± 0.01 6.29 ± 0.00 8.47 ± 0.12 3.13 ± 0.00
End-to-End + PcGrad 3.59 ± 0.17 3.52 ± 0.40 3.63 ± 0.12 2.75 ± 0.00 2.58 ± 0.22 2.84 ± 0.15 3.14 ± 0.24 4.49 ± 0.02 4.18 ± 0.17 3.98 ± 0.02 9.31 ± 0.08 8.11 ± 0.00 8.54 ± 0.18 3.02 ± 0.00

Multi-Head 4.65 ± 0.00 3.75 ± 0.12 4.88 ± 0.01 2.73 ± 0.03 2.45 ± 0.14 2.99 ± 0.24 3.10 ± 0.14 4.50 ± 0.02 3.48 ± 0.32 3.19 ± 0.04 5.14 ± 0.05 6.65 ± 1.16 8.34 ± 0.32 2.98 ± 0.16
Multi-Head + GradNorm 3.77 ± 0.33 3.21 ± 0.07 3.04 ± 0.17 2.29 ± 0.16 2.24 ± 0.22 1.64 ± 0.00 3.69 ± 0.08 3.23 ± 0.01 3.27 ± 0.17 3.18 ± 0.08 5.96 ± 0.47 5.53 ± 0.30 6.73 ± 0.00 3.11 ± 0.11

Multi-Head + PcGrad 4.22 ± 0.23 3.53 ± 0.73 3.09 ± 0.05 2.81 ± 0.00 2.35 ± 0.12 3.54 ± 0.00 3.78 ± 1.21 2.91 ± 0.15 3.26 ± 0.08 3.03 ± 0.20 6.93 ± 1.64 6.73 ± 0.27 8.67 ± 0.20 3.09 ± 0.13
Multiple Models 5.01 ± 0.27 4.64 ± 0.13 4.62 ± 0.27 2.84 ± 0.10 2.73 ± 0.27 3.63 ± 0.58 2.71 ± 0.03 4.12 ± 0.54 4.23 ± 0.00 4.45 ± 0.00 6.36 ± 1.17 7.16 ± 0.68 8.65 ± 0.68 3.16 ± 0.06

Multiple Models + COMs 5.28 ± 0.00 4.21 ± 0.23 3.52 ± 0.24 2.66 ± 0.02 2.73 ± 0.07 2.79 ± 0.38 4.60 ± 0.15 4.63 ± 0.07 3.96 ± 0.24 3.76 ± 0.15 10.28 ± 0.86 8.07 ± 0.15 8.11 ± 0.02 2.20 ± 0.02
Multiple Models + RoMA 4.63 ± 0.11 3.55 ± 0.03 3.03 ± 0.20 2.57 ± 0.08 2.51 ± 0.33 2.38 ± 0.13 4.14 ± 0.11 3.72 ± 0.42 3.85 ± 0.23 1.76 ± 0.07 8.40 ± 0.76 5.89 ± 0.72 7.85 ± 0.69 2.92 ± 0.02
Multiple Models + IOM 5.28 ± 0.00 5.11 ± 0.00 4.92 ± 0.00 2.64 ± 0.12 2.68 ± 0.23 3.39 ± 0.22 4.86 ± 0.01 4.70 ± 0.01 4.46 ± 0.06 4.00 ± 0.36 9.79 ± 0.09 8.91 ± 0.24 9.01 ± 0.37 2.93 ± 0.00
Multiple Models + ICT 3.55 ± 0.17 4.01 ± 0.01 4.01 ± 0.37 2.36 ± 0.15 2.12 ± 0.00 2.31 ± 0.15 3.37 ± 0.21 3.09 ± 0.18 3.13 ± 0.07 4.11 ± 0.00 5.60 ± 0.15 6.12 ± 0.25 5.85 ± 0.20 2.05 ± 0.10

Multiple Models + Tri-Mentoring 3.48 ± 0.20 3.82 ± 0.05 3.65 ± 0.00 2.04 ± 0.04 2.44 ± 0.11 2.45 ± 0.31 3.19 ± 0.20 2.99 ± 0.33 3.31 ± 0.10 3.34 ± 0.05 5.85 ± 0.97 6.15 ± 0.44 5.70 ± 0.19 2.63 ± 0.12
MOBO 3.19 ± 0.38 2.50 ± 0.04 1.34 ± 0.02 2.54 ± 0.21 2.17 ± 0.14 2.08 ± 0.05 2.33 ± 0.08 1.81 ± 0.09 1.62 ± 0.01 1.26 ± 0.00 4.18 ± 0.37 3.20 ± 0.04 2.20 ± 0.09 3.03 ± 0.06

MOBO-qParEGO 3.45 ± 0.03 2.63 ± 0.00 1.46 ± 0.01 2.65 ± 0.11 2.43 ± 0.11 N/A 2.53 ± 0.01 1.96 ± 0.01 1.73 ± 0.04 N/A 4.69 ± 0.10 3.14 ± 0.01 2.52 ± 0.08 3.15 ± 0.04
MOBO-JES N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 3.53 ± 0.07

Table 26. Hypervolume results for scientific design with 32 solutions and 100th percentile evaluations. For each task, algorithms within
one standard deviation of having the highest performance are bolded.

Methods Molecule Regex RFP ZINC

D(best) 2.26 3.05 3.75 4.06
End-to-End 1.95 ± 0.13 2.80 ± 0.00 4.34 ± 0.03 4.12 ± 0.01

End-to-End + GradNorm 1.05 ± 0.00 2.38 ± 0.00 3.46 ± 0.08 4.00 ± 0.01
End-to-End + PcGrad 3.33 ± 0.00 2.47 ± 0.00 3.62 ± 0.00 4.04 ± 0.04

Multi-Head 2.20 ± 0.38 2.80 ± 0.00 3.67 ± 0.00 4.12 ± 0.00
Multi-Head + GradNorm 1.06 ± 0.05 2.38 ± 0.00 3.67 ± 0.00 3.82 ± 0.00

Multi-Head + PcGrad 1.04 ± 0.00 2.47 ± 0.00 3.71 ± 0.00 3.92 ± 0.00
Multiple Models 1.19 ± 0.14 2.38 ± 0.00 3.70 ± 0.00 4.01 ± 0.01

Multiple Models + COMs 2.16 ± 0.09 2.05 ± 0.00 3.65 ± 0.00 3.97 ± 0.10
Multiple Models + RoMA 1.84 ± 0.10 2.47 ± 0.00 3.71 ± 0.00 3.95 ± 0.00
Multiple Models + IOM 1.72 ± 0.36 2.47 ± 0.00 4.06 ± 0.35 4.08 ± 0.03
Multiple Models + ICT 2.65 ± 1.31 2.47 ± 0.00 3.76 ± 0.00 4.05 ± 0.02

Multiple Models + Tri-Mentoring 2.03 ± 0.00 2.47 ± 0.00 3.75 ± 0.00 3.94 ± 0.00
MOBO 1.15 ± 0.02 4.52 ± 0.18 3.69 ± 0.01 4.18 ± 0.08

MOBO-qParEGO 2.12 ± 0.04 4.26 ± 0.25 3.33 ± 0.00 4.05 ± 0.02
MOBO-JES 2.10 ± 1.04 N/A N/A N/A
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Table 27. Hypervolume results for RE with 32 solutions and 100th percentile evaluations. For each task, algorithms within one standard
deviation of having the highest performance are bolded.

Methods RE21 RE22 RE23 RE24 RE25 RE31 RE32 RE33 RE34 RE35 RE36 RE37 RE41 RE42 RE61

D(best) 4.23 4.78 4.75 4.59 4.79 10.23 10.53 10.59 48.06 10.96 7.57 4.72 36.17 12.53 135.87
End-to-End 4.42 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.38 ± 0.00 4.82 ± 0.02 10.58 ± 0.03 10.56 ± 0.08 10.68 ± 0.00 52.82 ± 0.05 11.61 ± 0.01 8.24 ± 0.00 6.20 ± 0.00 42.53 ± 0.05 17.09 ± 2.14 140.13 ± 1.42

End-to-End + GradNorm 4.81 ± 0.01 4.84 ± 0.00 2.64 ± 0.00 4.38 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.63 ± 0.00 9.90 ± 0.00 51.98 ± 0.63 11.51 ± 0.00 8.63 ± 0.71 6.11 ± 0.10 39.21 ± 0.12 13.46 ± 0.00 140.24 ± 0.25
End-to-End + PcGrad 4.86 ± 0.01 4.84 ± 0.00 4.84 ± 0.00 4.40 ± 0.00 4.35 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.41 ± 0.07 52.78 ± 0.04 11.66 ± 0.01 9.76 ± 0.11 5.52 ± 0.00 41.64 ± 0.31 15.92 ± 1.75 139.60 ± 0.28

Multi-Head 4.61 ± 0.13 4.84 ± 0.00 4.70 ± 0.04 4.78 ± 0.00 4.35 ± 0.00 10.65 ± 0.00 10.64 ± 0.00 10.65 ± 0.01 52.63 ± 0.22 11.70 ± 0.00 6.76 ± 0.00 5.72 ± 0.00 42.45 ± 0.40 19.30 ± 0.32 141.50 ± 0.03
Multi-Head + GradNorm 4.91 ± 0.00 4.65 ± 0.12 4.83 ± 0.00 3.51 ± 0.87 4.31 ± 0.53 10.65 ± 0.00 10.63 ± 0.00 5.82 ± 0.02 52.81 ± 0.00 11.51 ± 0.00 0.02 ± 0.00 6.26 ± 0.01 42.56 ± 0.11 15.82 ± 2.36 140.23 ± 0.66

Multi-Head + PcGrad 4.91 ± 0.01 4.84 ± 0.00 4.39 ± 0.01 4.83 ± 0.00 4.35 ± 0.00 7.66 ± 0.00 10.08 ± 0.00 10.52 ± 0.04 52.77 ± 0.01 11.71 ± 0.02 9.76 ± 0.18 6.34 ± 0.03 42.23 ± 0.17 20.19 ± 0.14 140.00 ± 0.12
Multiple Models 4.89 ± 0.01 4.84 ± 0.00 4.84 ± 0.00 4.82 ± 0.00 4.82 ± 0.00 10.65 ± 0.00 10.63 ± 0.00 10.61 ± 0.00 53.58 ± 0.08 11.61 ± 0.07 10.38 ± 0.04 6.30 ± 0.01 42.04 ± 0.28 20.70 ± 0.98 141.04 ± 0.60

Multiple Models + COMs 5.19 ± 0.00 4.82 ± 0.00 4.80 ± 0.00 4.59 ± 0.00 4.84 ± 0.00 10.56 ± 0.00 10.64 ± 0.00 10.39 ± 0.07 51.15 ± 0.13 11.57 ± 0.01 8.57 ± 0.20 5.85 ± 0.07 39.82 ± 0.10 21.13 ± 0.55 134.26 ± 1.43
Multiple Models + RoMA 4.81 ± 0.04 4.84 ± 0.00 4.84 ± 0.00 4.77 ± 0.05 4.69 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.46 ± 0.04 52.07 ± 0.16 11.74 ± 0.00 8.95 ± 0.01 6.31 ± 0.01 41.87 ± 0.20 16.32 ± 0.06 139.91 ± 0.72
Multiple Models + IOM 5.19 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 4.83 ± 0.01 4.84 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.67 ± 0.00 53.55 ± 0.08 11.72 ± 0.02 9.79 ± 0.07 6.34 ± 0.01 42.46 ± 0.20 21.68 ± 0.00 139.47 ± 1.09
Multiple Models + ICT 5.19 ± 0.00 4.84 ± 0.00 2.87 ± 0.03 4.67 ± 0.00 4.82 ± 0.00 10.65 ± 0.00 2.77 ± 0.00 10.51 ± 0.00 52.81 ± 0.18 11.67 ± 0.00 9.75 ± 0.19 6.08 ± 0.05 42.06 ± 0.03 21.68 ± 0.00 139.24 ± 1.09

Multiple Models + Tri-Mentoring 5.19 ± 0.00 4.84 ± 0.00 2.65 ± 0.00 4.78 ± 0.03 4.74 ± 0.00 10.65 ± 0.00 10.65 ± 0.00 10.49 ± 0.00 52.91 ± 0.40 11.73 ± 0.01 8.92 ± 0.24 6.06 ± 0.12 42.18 ± 0.26 21.68 ± 0.00 141.87 ± 0.26
MOBO 4.49 ± 0.07 4.84 ± 0.00 4.84 ± 0.00 4.81 ± 0.01 4.84 ± 0.00 9.50 ± 0.00 10.63 ± 0.00 10.69 ± 0.00 51.79 ± 0.00 11.61 ± 0.02 0.00 ± 0.00 6.50 ± 0.00 51.83 ± 0.12 13.77 ± 0.13 N/A

MOBO-qParEGO 4.67 ± 0.06 4.84 ± 0.00 4.84 ± 0.00 4.82 ± 0.00 4.84 ± 0.00 10.64 ± 0.01 10.18 ± 0.05 10.61 ± 0.00 47.81 ± 1.93 11.60 ± 0.00 10.19 ± 0.23 5.81 ± 0.11 N/A N/A N/A
MOBO-JES 4.85 ± 0.03 4.84 ± 0.00 4.83 ± 0.00 4.82 ± 0.00 4.84 ± 0.00 10.28 ± 0.00 10.65 ± 0.00 10.61 ± 0.03 50.30 ± 0.00 11.59 ± 0.02 9.43 ± 0.10 6.20 ± 0.03 N/A N/A N/A
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Figure 5. Visualization of datasets in Off-MOO-Bench. Blue points represent the offline dataset, and red points represent the 256
best-non-dominated solutions over the dataset. Note that some red dots are not visible in the graph due to the plot perspective.
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Figure 6. Visualization of Pareto fronts found by Multi-Head + GradNorm. Blue points represent the initial population, which are the
256 best-non-dominated solutions over the offline dataset. Red points represent the Pareto fronts found by algorithm, and green points
represent the reference points (i.e., nadir points) that are set by us manually.
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