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ABSTRACT

Multimodal contrastive learning (MCL) aims to embed data from different modali-
ties in a shared embedding space. However, empirical evidence shows that represen-
tations from different modalities occupy completely separate regions of embedding
space, a phenomenon referred to as the modality gap. Moreover, experimental
findings on how the size of the modality gap influences downstream performance
are inconsistent. These observations raise two key questions: (1) What causes
the modality gap? (2) How does it affect downstream tasks? To address these
questions, this paper introduces the first theoretical framework for analyzing the
convergent optimal representations of MCL and the modality alignment when train-
ing is optimized. Specifically, we prove that without any constraint or under the
cone constraint, the modality gap converges to zero. Under the subspace constraint
(i.e., representations of two modalities fall into two distinct hyperplanes due to
dimension collapse), the modality gap converges to the smallest angle between
the two hyperplanes. This result identifies dimension collapse as the fundamental
origin of the modality gap. Furthermore, our theorems demonstrate that paired
samples cannot be perfectly aligned under the subspace constraint. The modality
gap influences downstream performance by affecting the alignment between sample
pairs. We prove that, in this case, perfect alignment between two modalities can
still be achieved via two ways: hyperplane rotation and shared space projection.

1 INTRODUCTION

Pre-trained vision–language models (VLMs) (Radford et al., 2021; Mu et al., 2022; Li et al., 2022)
have achieved remarkable success across a wide range of tasks, including zero-shot image classifi-
cation, zero-shot cross-modal retrieval, and visual question answering. These models are typically
trained with multimodal contrastive learning on large-scale image–text pairs. Despite their strong
empirical performance, our theoretical understanding of how VLMs learn representations and how
these representations relate to downstream performance remains limited. In this work, we provide a
theoretical study of these issues.

Our understanding of unimodal contrastive representation learning (Chen et al., 2020; Khosla et al.,
2020) has advanced considerably. From a theoretical standpoint, when training is optimized (i.e., the
training loss reaches its minimum), the learned representations converge to an optimal configuration.
We refer to this process as representational convergence and to its limiting configuration as the con-
vergent optimal representation (COR). Prior work has demonstrated that the COR of self-supervised
learning (SSL) corresponds to a uniform distribution on the surface of an h-dimensional unit hy-
persphere (Sh−1) (Wang & Isola, 2020). For supervised contrastive learning (SupCon), the COR
forms a regular simplex inscribed in Sh−1 (Graf et al., 2021), and a skewed simplex when the data
is imbalanced (Yi et al., 2025b). (See additional related work in Sec. A.1.) These prior research on
unimodal data demonstrate that examining the geometric and distributional properties of CORs yields
critical insights into how pretraining with contrastive learning affects downstream performance.

This motivates us to investigate the COR of multimodal contrastive learning (MCL). Intuitively, MCL
intends to align representations from different modalities in a shared embedding space. However,
this is not supported by empirical evidence. Instead, representations of different modalities cluster
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Figure 1: The COR of MCL. Orange and blue dots represent X and Y . Starts are centers of X
and Y (i.e., cx, cy). ∆θ denotes the size of modality gap. (a): When a model is initialized, (X,Y )
are within two distinct cones. (b): Without any constraint, (X,Y ) converge to a paired uniform
distribution and ∆θ → 0. (c): Under the cone constraint, ∆θ → 0. (d): (X,Y ) collapse into two
distinct subspaces SX ∈ A (orange circle) and SY ∈ B (blue circle), respectively. ϕ is the angle
between A and B. Green line represent the shared space C. See Definition 5 for details. (e): Under
the subspace constraint, when training is optimized, cx, cy ⊥ C and ∆θ → ϕmin.

into disjoint cones in Sh−1, forming a geometric phenomenon called the modality gap (Liang et al.,
2022). To explain the origin of this gap, several hypotheses have been proposed, including the
cone effect (Liang et al., 2022), the contrastive learning object (Fahim et al., 2024), insufficient
training (Shi et al., 2023) and information bias (Schrodi et al., 2025).The impact of the modality gap
on downstream performance also remains unclear. Some studies (Liang et al., 2022; Schrodi et al.,
2025) show that narrowing the modality gap pos hoc may lead to degraded downstream performance,
indicating that such reduction is not always beneficial. (See Sec. A.1 for more details). Prior work
have mostly focused on numerical analysis. None of them has offered a satisfactory theoretical
explanation of what causes the modality gap and how it affects downstream performance.

In this paper, we in turn focus on the theoretical explanation of the modality gap. We establish
the first theoretical framework to systematically analyze the COR of MCL. In particular, we prove
(Theorem 1) that, without any distributional constraints, representations of two modalities converge
to a paired uniform distribution on Sh−1 (Fig. 1b). As a result, the modality gap converges to zero.
Meanwhile, the dispersion degree (i.e., how wild a distribution is spread) of the learned representation
becomes infinite (Corollary 1). This shows that the contrastive learning objective tends to close
the modality gap. However, we observe that dispersion degrees of the learned representation always
remain finite in practice. Therefore, representations of each modality fall into a cone in Sh−1 (Fig. 1a),
a phenomenon known as cone effect. We prove (Theorem 2) that even under this cone constraint, the
modality gap still converges to zero, regardless of the initial locations or sizes of the cones (Fig. 1c).
This elucidates that the cone effect is not the cause of the modality gap.

The preceding analysis prompts us to ask whether there are any other geometric or distributional
constraints on representations that ultimately give rise to the modality gap. Jing et al. (2022) show
that the SSL learned representations collapse into a lower-dimensional subspace rather than spanning
the entire embedding space, a phenomenon referred to as dimension collapse. Inspired by this insight,
we observe that dimension collapse also arises in the MCL learned representations. We then prove
(Theorem 3) that if representations of two modalities collapse into distinct hyperplanes (Fig. 1d),
the modality gap converges to the smallest angle between these hyperplanes (Fig. 1e). This finding
demonstrates that the true origin of the modality gap is dimension collapse.

That how modality gap influences downstream tasks still confuses researchers. We argue that
downstream performance is determined by the alignment between all paired samples, i.e., modality
alignment. First, we prove (Theorem 4 and Corollary 2) that when representations converge, the
mutual information between two modalities in the shared space is maximized and in this case
paired samples cannot be perfectly aligned. Next, we demonstrate that changes in the size of the
modality gap alter the representation distribution, which in turn affects modality alignment. Then,
we show that existing translation approaches, e.g., shifting image embeddings toward language
embeddings by the average distance between image–language pairs, modify the representation
distribution in arbitrary ways. This explains the worsen downstream performance observed when
such methods are applied. Lastly, we prove derive two methods, hyperplane rotation (Corollary 3) and
shared subspace projection (Corollary 4), that achieve perfect alignment and modality gap reduction
without harming downstream performance. The major contributions of our work are listed below:
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• We theoretically show that the contrastive learning objective tends to close the modality gap
regardless of the existence of the cone effect.

• We reveal that the origin of the modality gap is dimension collapse. And under the subspace
constraint, the modality gap converges to the smallest angle between two hyperplanes.

• We prove that paired samples cannot be perfectly aligned under the subspace constraint.
• We derive that perfect alignment can be achieved via hyperplane rotation or shared subspace

projection.

2 PRELIMINARY

Suppose we have a dataset D = {(In, Tn)}Nn=1 of N image-text pairs, where I = (i1, . . . , iN ) ∈
(I)N and T = (t1, . . . , tN ) ∈ (T )N . The unit hypersphere in Rh is defined as Sh−1 ={
z ∈ Rh : ∥z∥ = 1

}
. An image encoder fI (·) : I → Rh and a text encoder fT (·) : T → Rh map

image and text data, respectively, into a shared embedding space. The resulting representations are de-
noted as X = (fI (i1) , . . . fI (iN )) = (x1, . . . , xN ) ∈ (Sh−1)N and Y = (fT (t1) , . . . fT (TN )) =
(y1, . . . , yN ) ∈ (Sh−1)N .

Multimodal Contrastive Learning (MCL). MCL aims to embed data from different modalities into
a shared embedding space. This is achieved by minimizing the MCL loss, defined as:
Definition 1 (Multimodal Contrastive Loss (MCL Loss)). Let (X,Y ) be an N -pair configuration,
where X = (x1, . . . , xN ) ∈ (Sh−1)N and Y = (y1, . . . , yN ) ∈ (Sh−1)N . ∀τ > 0, the multimodal
contrastive loss LMCL(·, ·) : (Sh−1)N × (Sh−1)N → R is defined as:

LMCL =
1

N

N∑
i=1

Li
MCL, where Li

MCL = LX→Y(xi;Y ) + LY→X (yi;X). (1)

Here, LX→Y is the X -to-Y alignment and LY→X is the Y-to-X alignment, defined respectively as:

LX→Y(xi;Y ) = − log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

, LY→X (yi;X) = − log
exp (xi · yi/τ)∑N
j=1 exp (xj · yi/τ)

.

(2)
In practice, contrastive learning is performed in a batch-wise manner due to memory limitations. For
analytical simplicity, we assume unlimited memory to train on all samples in a single batch.

Modality Gap. Define µx = 1
N

∑N
i=1 xi, cx = µx

∥µx∥ as the mean and the center representation of X ,

µy = 1
N

∑N
i=1 yi, cy =

µy

∥µy∥ as the mean and the center representation of Y .

Definition 2 (Modality Gap). Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈
(Sh−1)N and Y = (y1, . . . , yN ) ∈ (Sh−1)N . The modality gap between X and Y can be defined as
the difference between their mean representations:

∆µ = ∥µx − µy∥2 , (3)
or as the angle between their center representations:

∆θ = cos−1(cx · cy). (4)

In this study, we use Eq. (4) to define the modality gap.

3 REPRESENTATIONAL CONVERGENCE AND MODALITY GAP

In this section, we study the relationship between MCL and the modality gap. To understand this,
we establish a theoretical framework for analyzing the convergent optimal representations (COR) of
(X,Y ). We prove that, with or without the cone constraint, as the MCL loss approaches its minimum,
the modality gap converges to zero.

Both cases implicitly assume that X and Y are embedded in the same space Sh−1. Empirical evidence,
however, shows that X and Y tend to collapse into different subspaces. We further demonstrate that
if X and Y lie in two distinct hyperplanes, then when the MCL loss is minimized, the modality gap
converges to the smallest angle between the two hyperplanes.
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3.1 VON MISES–FISHER (VMF) DISTRIBUTIONS

As shown in (Liang et al., 2022), when a model is initialized, the representations of each modality
reside within a hypercone (Fig. 1a). During training, the representation distribution evolves as the
size and shape of the hypercone change. The von Mises-Fisher (vMF) distribution (Mardia & Jupp,
2009),a generalization of the normal distribution on the surface of a hypersphere, also concentrates
its samples within a hypercone. Hence, this distribution provides as an effective proxy for studying
the geometric and distributional properties of representations learned by MCL.
Definition 3 (vMF Distribution). ∀c ∈ Sh−1 and κ ≥ 0, the probability density of a random
h-dimensional unit vector z ∼ vMF(c, κ) is given by:

fh(z; c, κ) = Dh(κ)e
κc⊤z, where Dh(κ) =

κν

(2π)ν+1Iν(κ)
. (5)

Here, ν = h/2 − 1, and Iν (·) : R → R is the modified Bessel function of the first kind of order ν,
which is defined as:

Iν(x) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(x
2

)2k+ν

. (6)

c denotes the center vector and 1
κ denotes the dispersion degree. When 1

κ = ∞, the samplesare
maximally dispersed and uniformly distributed on Sh−1. As 1

κ decreases, the samples become
increasingly concentrated and cluster within a smaller hypercone. When 1

κ = 0, the samples are fully
concentrated and collapse to a single point. Throughout this work, we assume that (X,Y ) are iid
samples from two vMF distributions, that is, xi ∼ vMF(cx, κx) and yi ∼ vMF(cy, κy).

3.2 REPRESENTATIONAL CONVERGENCE WITHOUT DISTRIBUTIONAL CONSTRAINT

First, we assume that the encoders, fI and fT , are sufficiently powerful, capable of realizing any
representation distribution without any constraints. Theorem 1 reveals that when the limit of LMCL

attains its minimum, the representations of each paired sample (xi, yi) converge to the same point,
while the representations of all pairs converge to the uniform distribution in Sh−1 (Fig. 1b).
Theorem 1. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (Sh−1)N are iid
samples from µx and Y = (y1, . . . , yN ) ∈ (Sh−1)N are iid samples from µy. Let ν = h/2− 1, it
holds that:

lim
N→∞

LMCL − 2 log(N) = Exi∼µx

[
−xi · yi

τ

]
+ Exi∼µx

[
logEyi∼µy

[
exp

(xi · yi
τ

)]]
+ Eyi∼µy

[
−xi · yi

τ

]
+ Eyi∼µy

[
logExj∼µx

[
exp

(xi · yi
τ

)]]
≥ −2/τ + 2 log (Γ (ν + 1) (2τ)νIν (1/τ)) ,

(7)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A1) ∀i ∈ [N ], xi = yi.

(A2) µx = σh−1 and µy = σh−1.

Here, σh−1 denotes the uniform probability measure on Sh−1. The proof is provided in Sec. E.1.
Under the assumption that X and Y are drawn from two vMF distributions, Corollary 1 implies that
when the limit of LMCL attains its minimum, the modality gap converges to zero (∆θ → 0), and both
κx and κy converge to zero. This result follows directly from Theorem 1.
Corollary 1. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (Sh−1)N are iid
samples from vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (Sh−1)N are iid samples from vMF(cy, κy).
limN→∞ LMCL − 2 log(N) attains its minimum if and only if the following conditions hold:

(A3) ∀i ∈ [N ], xi = yi (⇒ ∆θ = cos−1 (cx · cy) = 0).

(A4) κx = κy = 0.

Convergence 1: Without any distributional constraints, X and Y converge to a paired uniform
distribution on Sh−1, and the modality gap converges to zero.
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Figure 2: Distributional Constraints. CLIP ViT-B/32 embeddings of MSCOCO validation set. (a):
Density plot of cosine similarities between image and image (I2I), text and text (T2T), paired image
and text (P I2T) and unpaired image and text (NP-I2T). (b): UMAP plot. (c): Explained variance
ratio of singular values of X − µX and Y − µY . (d): Valuse of principal angles.

3.3 REPRESENTATIONAL CONVERGENCE UNDER THE CONE CONSTRAINT

However, in practice, sufficiently powerful encoders are not available. Fig. 2b reveals that intra-modal
similarities between two modalities are larger than inter-model similarities. Fig. 2a further shows that
(X,Y ) separate into two clusters. Both indicate that X and Y lie in two hypercones on Sh−1.

In this subsection, we assume that the encoders, fI and fT , are powerful to the extent that (X,Y ) are
embedded in two hypercones spanning all dimensions of Sh−1, i.e., (X,Y ) are subject to the cone
constraint. In this case, κx > 0 and κy > 0. Since the modality gap depends solely on the angle
between the two center vectors, we focus on the configuration of (cx, cy) and their corresponding
loss terms: Lc

MCL = LX→Y(cx;Y ) + LY→X (cy;X). We first define a convergence function J .
Definition 4. ∀κ, ν, τ > 0, a function J (·;κ, ν) : [−1, 1] → R is defined as:

J (w;κ, ν) = −w

τ
+ log

(
Iν (Mκ (w))

Mκ (w)
ν

)
− log

(
Iν (κ)

κν

)
, (8)

where the function Mκ (·) : [−1, 1] → R+
0 is defined as:

Mκ (w) =

√
κ2 +

2κw

τ
+

1

τ2
. (9)

Then, Theorem 2 shows that when the limit of Lc
MCL attains its minimum, the modality gap converges

to zero (∆θ → 0) (Fig. 1c).
Theorem 2. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (Sh−1)N are
iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (Sh−1)N are iid samples from
µy = vMF(cy, κy). Let ν = h/2 − 1. Suppose there exists an index i = c such that xc = cx,
yc = cy . Denote ∆θ = cos−1(cx · cy). For any fixed κx, κy > 0, it holds that:

lim
N→∞

Lc
MCL − 2 log(N) = J (cos (∆θ) ;κy, ν) + J (cos (∆θ) ;κx, ν)

≥ J (1;κy, ν) + J (1;κx, ν),
(10)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A5) ∆θ = cos−1 (cx · cy) = 0.

The proof is provided in Sec. E.2. Since the distributions of X and Y are symmetric, non-center pairs
(xi, yi)i̸=c do not affect the configuration of (cx, cy), as confirmed by Theorem 4.

Convergence 2: Under the cone constraint, the modality gap still converges to zero.

3.4 REPRESENTATIONAL CONVERGENCE UNDER THE SUBSPACES CONSTRAINT

To investigate whether X and Y collapse into subspaces of Sh−1, we plot singular values σi of the
centered X and the centered Y in Fig. 2c. Zero σis confirm dimension collapse. Fig. 2d shows the
principal angles γi between the subspaces where X and Y collapse. Zero γis imply that the two
subspaces share overlapped dimensions. Detailed explanations are provided in Sec. C.1 and Sec. C.2.
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In this subsection, we assume that the encoders, fI and fT , embed (X,Y ) into two partially overlap-
ping subspaces of Sh−1 (Fig. 1d), i.e., (X,Y ) are subject to the subspace constraint. To simplify the
analysis, we require that the two subspaces are hyperplanes, as described below:
Definition 5. Let A and B be two distinct (h− 1)-dimensional linear subspaces (i.e., hyperplanes
through the origin) with normal vectors nA and nB , projection matrices PA and PB . Denote
C = A ∩ B, with PC as its projection matrix. Define ϕ = cos−1

(
nA·nB

∥nA∥·∥nB∥

)
as the angle between

A and B, restricted to 0 < ϕmin ≤ ϕ < π
2 . Then, SX and SY can be represented as:

SX = Sh−1 ∩ A =
{
x ∈ Rh : ∥x∥ = 1, nA · x = 0

} ∼= Sh−2 ∈ Sh−1,

SY = Sh−1 ∩ B =
{
y ∈ Rh : ∥y∥ = 1, nB · y = 0

} ∼= Sh−2 ∈ Sh−1.
(11)

C is an (h− 2) dimensional linear subspace (Strang, 2022). We now define a convergence function
J̃ . Note that function J in Definition 4 is a special case of J̃ with J (w;κ, ν) = J̃ (w,w, 1;κ, ν).

Definition 6. ∀κ, ν, τ > 0, J̃ (·, ·, ·;κ, ν) : [−1, 1]× [−1, 1]× [0, 1] → R is defined as:

J̃ (w1, w2, t;κ, ν) = −w1

τ
+ log

Iν

(
M̃κ(w2, t)

)
M̃κ(w2, t)ν

− log

(
Iν (κ)

κν

)
, (12)

where the function M̃κ(·, ·) : [−1, 1]× [0, 1] → R+
0 is defined as:

M̃κ (w, t) =

√
κ2 +

2κw

τ
+

t2

τ2
. (13)

Theorem 3 shows that when the limit of Lc
MCL attains its minimum, cx, cy are orthogonal to C, and

the modality gap converges to the smallest angle between A and B (∆θ → ϕmin) (Fig. 1e).
Theorem 3. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (SX \ C)N are
iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (SY \ C)N are iid samples from
µy = vMF(cy, κy). Let ν̃ = (h− 1)/2− 1. Suppose there exists an index i = c such that xc = cx,
yc = cy. Denote ∆θ = cos−1(cx · cy) and assume that cx, cy /∈ C with cx · cy > 0. For any fixed
κx, κy > 0, it holds that:

lim
N→∞

Lc
MCL − 2 log(N)

= J̃ (cos (∆θ) , cos (∆θ) , ∥PBcx∥;κy, ν̃) + J̃ (cos (∆θ) , cos (∆θ) , ∥PAcy∥;κx, ν̃)

≥ J̃ (cos (ϕmin) , cos (ϕmin) , cos (ϕmin) ;κy, ν̃) + J̃ (cos (ϕmin) , cos (ϕmin) , cos (ϕmin) ;κx, ν̃),
(14)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:
(A6) cx ⊥ C and cy ⊥ C (⇒ ∆θ = ϕ ).

(A7) ∆θ = cos−1 (cx · cy) = ϕmin.

The proof is provided in Sec. E.3. Condition (A6) shows the optimal configuration of (cx, cy) for any
given ϕ. Condition (A7) establishes that the loss decreases monotonically as ϕ decreases to ϕmin.
Since the distributions of X and Y are symmetric, non-center pairs (xi, yi)i̸=c do not affect Condition
(A6). Moreover, optimizing of Li̸=c

MCL also yields Condition (A7), as shown in Theorem 4.

Convergence 3: Under the subspace constraint, the modality gap converges to the smallest
angle between the two hyperplanes.

4 REPRESENTATIONAL CONVERGENCE AND MODALITY ALIGNMENT

In Sec. 3.4, we identified the true origin of the modality gap by analyzing the configuration of the
center pair. However, the relationship between the modality gap and downstream performance, which
depends on the configuration of all pairs, remains unclear. In this section, we show that, under the
subspace constraint, non-center pairs cannot be perfectly aligned when the MCL loss is minimized.
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Figure 3: Modality Alignment. Notations follow Fig. 1. (a): Condition (A6) (cx, cy ⊥ C) and
IMS (xi · cx = yi · cy) hold. (b): The projections of (xi, yi)i̸=c on C converge to pi (green point),
i.e., PCxi = PCyi = pi. (c): When Condition (A6) and (A8) (PCxi = PCyi) hold, PBxi ∦ yi,
PAyi ∦ xi. Denote yj =

PBxi

∥PBxi∥ (purple dot), then xi · yj > xi · yi and (xi, yi)i̸=c are not perfectly
aligned. (d): Rotating X with the hyperplane A towards B, X and Y can be aligned perfectly. (c):
Project xi and yi onto C and re-normalize, then x∗

i and y∗i (yellow dots) are perfectly aligned.

4.1 INTRA-MODAL ISOMETRY AND PERFECT ALIGNMENT

The Platonic Representation Hypothesis (Huh et al., 2024) suggests that contrastive learners are
optimized by representations of X and Y whose intra-modal kernels (i.e., pairwise similarities) align.
Building on this idea, we define the kernel alignment as Intra-Modal Isometry.
Definition 7 (Intra-Modal Isometry (IMS)). Let (X,Y ) be an N -pair configuration in Rh, we say
(X,Y ) achieves Intra-Modal Isometry if and only if ∀i, j ∈ [N ], i ̸= j, xi · xj = yi · yj .

The Intra-Modal Isometry assumption implies that ∀i ∈ [N ], xi · cx = yi · cy, and thus κx = κy

(Fig. 3a). However, knowledge of the intra-modal configuration alone is insufficient to determine
how the modality gap affects downstream performance. In downstream tasks such as zero-shot image
classification, given an input from one modality (e.g., xi), CLIP retrieves data from the other modality
(e.g., yj) with the largest similarity to the input. Ideally, the output should be yj = yi. We therefore
define an ideal inter-modal configuration as Perfect Alignment. And when Perfect Alignment is
achieved, downstream performance is maximized.
Definition 8 (Perfect Alignment). Let (X,Y ) be an N -pair configuration in Rh, we say (xi, yi) is
perfectly aligned if and only if ∀j ̸= i, xi, ·yi > xi · yj and xi, ·yi > xj · yx If ∀i ∈ [N ], (xi, yi) is
perfectly aligned, we say (X,Y ) achieves Perfect Alignment.

4.2 REPRESENTATIONAL CONVERGENCE OF NON-CENTER PAIRS

To investigate the alignment between two modalities, we examine the optimal configuration of each
data pair. Theorem 4 states that if Condition (A6) (in Theorem 3) is satisfied through the optimization
of Li=c

MCL, and if (X,Y ) achieves Intra-Modal Isometry (Fig. 3a), then when the limit of Li̸=c
MCL attains

its minimum, the projections of any non-center pair (xi, yi)i̸=c onto C converge to the same vector
(Fig. 3b).
Theorem 4. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (SX \ C)N

are iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (SY \ C)N are iid samples
from µy = vMF(cy, κy). Let ν̃ = (h − 1)/2 − 1. Denote ∆θ = cos−1 (cx · cy) and assume
cx, cy ⊥ C with cx · cy > 0. Suppose (X,Y ) achieves Intra-Modal Isometry. Then ∀i ∈ [N ], denote
θci = cos−1 (xi · cx) = cos−1 (yi · cy), and κ = κx = κy . Let θci ∈ (0, π

2 ) and κ > 0, it holds that:

lim
N→∞

Li̸=c
MCL − 2 log(N)

= J̃ (cos (∆θ) , cos (θ
c
i ) , ∥PBxi∥ ;κ, ν̃) + J̃ (cos (∆θ) , cos (θ

c
i ) , ∥PAyi∥ ;κ, ν̃)

≥ 2J̃
(
cos2 (θci ) cos (ϕmin) + sin2 (θci ) , cos (θ

c
i ) ,

√
cos2 (θci ) cos

2 (ϕmin) + sin2 (θci );κ, ν̃

)
,

(15)
where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A8) PCxi = PCyi.

7
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(A9) ∆θ = cos−1 (cx · cy) = ϕmin.

The proof of Theorem 4 is provided in Sec. E.4. Condition (A8) characterizes the optimal configura-
tion of (xi, yi)i̸=c for any given ϕ. Condition (A9) establishes that the loss decreases monotonically
as ϕ decreases to ϕmin, consistent with Condition (A7) of Theorem 3. Moreover, Theorem 4 implies
that MCL aims to maximize the mutual information between the two modalities in the shared
space while preserving modality-specific information in the complementary space.

4.3 REPRESENTATIONAL CONVERGENCE DOSE NOT ENSURE PERFECT ALIGNMENT

In Lemma 12, we show that (xi, yi)i̸=c are perfectly aligned if and only if the projections of
(xi, yi)i̸=c onto B and A are collinear, i.e., PBxi ∥ yi and PAyi ∥ xi. However, when training is
optimized such that conditions (A6) and (A8) hold, PBxi ∦ yi and PAyi ∦ xi. This implies that
(xi, yi)i̸=c are not perfectly aligned (Fig. 3c).

Corollary 2. ∀i ∈ [N ], i ̸= c, if cx, cy ⊥ C and PCxi = PCyi ̸= 0⃗ and ϕ > 0, then it holds:

(A10) (xi, yi)i̸=c are not perfectly aligned.

The proof of Corollary 2 is provided in Sec. E.4.3. Since the limit of LMCL attains its minimum
when both Lc

MCL and Li̸=c
MCL attain their minima, and since all paired samples are non-center pairs

almost surely (the ‘center’ forms a zero measure set in SX or SY ), then we conclude that:

Convergence 4: Under the subspace constraint, paired samples cannot be perfectly aligned.

5 SHARED SUBSPACE PROJECTION IMPROVES MODALITY ALIGNMENT

In Sec. 4, we prove that the representations of paired samples are not perfectly aligned. Despite
this undesirable configuration, in this section we derive potential methods to improve the alignment
between the two modalities.

5.1 HOW TO ACHIEVE PERFECT ALIGNMENT

In downstream tasks, when (xi, yi)i̸=c are not perfectly aligned, xi can be misaligned to some
yj ̸=i (Fig. 3c). A straightforward way to address this is to manually shift (xi, yi) in Sh−1. For
example, Liang et al. (2022) translate xi toward yi as xnew

i = xi +∆u, followed by renormalization.
This operation clearly alters the distributions of X . Since downstream performance depends on the
number of misaligned yj in the test set. A change in the distribution of X leads to a change in the
proportion of misaligned yj , but in an unpredictable direction. Therefore, the impact of translating X
on downstream performance can be arbitrary. An illustrative example is provided in Sec. B.1.

As shown in Fig. 3d, if we rotate A to overlap with B, then A = B = C. In this case, Condition
(A8) implies xi = yi, and thus xi and yj are perfectly aligned. Hence, modality alignment can be
improved by rotating the hyperplanes A and B until A = B (∆θ = ϕ = 0).
Corollary 3. ∀i ∈ [N ], i ̸= c, if cx, cy ⊥ C, PCxi = PCyi and (xi, yi)i̸=c ∈ Sh−1 \ C, then
(xi, yi)i̸=c are perfectly aligned if the following condition holds:

(A11) ∆θ = ϕ = 0.

The proof of Corollary 3 is provided in Sec. E.4.3. Despite this theoretical guarantee, rotating a
high-dimensional hyperplane can be complicated in practice. As illustrated in Fig. 3e, if we project
xi and yi onto C and then renormalize, we obtain x∗

i = y∗i . And (x∗
i , y

∗
i ) are perfectly aligned.

Corollary 4. ∀i ∈ [N ], i ̸= c, if cx, cy ⊥ C and PCxi = PCyi, then the following holds:

(A12) ( PCxi

∥PCxi∥ ,
PCyi

∥PCyi∥ )i̸=c are perfectly aligned

The proof of Corollary 4 is provided in Sec. E.4.3. Note that in Fig. 3e, C is a 1D line, so all
transformed paired samples overlap at y∗1 and y∗2 . In practice, however, the dimension of C is
typically greater than 1 (e.g., 212D for MS-COCO dataset). For instance, in the 4D example in Fig. 6
of Sec. B.2, C is a 2D plane, and the samples are distributed along a unit circle.
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Table 1: Size of θ∆ and accuracies (%) of zero-shot image classification of ViT-B/32.

Model
CIFAR-10 CIFAR-100 ImageNet-1K

∆θ R1 R5 ∆θ R1 R5 ∆θ R1 R5

CLIP 74.69◦ 89.00 99.36 74.19◦ 65.23 88.88 71.02◦ 63.34 88.82

CLIP + Translation 7.02◦ 80.97 96.09 30.50◦ 54.46 77.25 51.68◦ 60.37 86.93
CLIP + Removal 72.5◦ 14.91 56.22 73.16◦ 16.82 6.44 69.71◦ 49.50 78.55
CLIP + SSP 5.37◦ 86.43 99.27 30.39◦ 64.51 88.79 50.40◦ 62.45 88.41

5.2 EXPERIMENT

Theorem 4, Corollary 3 and Corollary 4 suggest that if projections of X and Y are aligned in the
shared space, modality alignment can be improved. This also indicates that the modality gap can be
reduced pos hoc without harming downstream performance.

Method. Following Corollary 4, we apply the shared space projection (SSP) method pos hoc to
improve the alignment of the modality. Detailed procedures are described in Sec. C.3.

0.2 0.6 1.0
Cosine Similarity

0
1
2
3
4
5
6
7

Sa
m

pl
e 

De
ns

ity T2T
I2I
P-I2T
NP-I2T

(a)

UMAP 1

UM
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 2

Images (X)
Texts (Y)

(b)

Figure 4: Results. CLIP ViT-B/32 embeddings of
MSCOCO validation set after applying SSP are
used. (a): UMAP plot. (b): Density plot of cosine
similarities.

Modality Alignment. To validate the effective-
ness of our method, we start by visualizing X
and Y after applying SSP. We first project X
and Y onto an estimated shared space of 212
dimensions. Fig. 4a (vs. Fig. 2a) shows the co-
sine similarities of the projected X and Y . It
indicates that our method improves both inter-
modal alignment (larger P-I2T) and and intra-
modal uniformity (smaller T2T and I2I). Since
the shared space is not estimated from the orig-
inal training data, the estimation can be noisy.
Hence, we select a 10 dimensional subspace of
the estimated shared space to reduce the estima-
tion error (details explained in Sec. C.3). We
project X and Y onto this subspace. Fig. 4b (vs. Fig. 2b) shows that the projected X and Y are no
longer in separate clusters.

Zero-Shot Image Classification. We also test our method in the zero-shot image classification task
on various datasets. Details of this experiment are provided in Sec. D.1. Our goal is to reduce the
size of the modality gap as much as possible without harming downstream performance. In Tab. 1,
we list results of the size of the modality gap (∆θ), the top-1 accuracy (R1), and the top-5 accuracy
(R5). We include two baseline methods: a translation-based approach (Liang et al., 2022) and a
dimension-removal approach (Schrodi et al., 2025). Our results show that our method outperforms
these baselines by achieving a greater reduction in the modality gap while maintaining comparable
downstream performance prior to the post hoc operation. Despite its advantages, our method does not
lead to improved downstream performance, as indicated in Corollary 4. We argue that this limitation
arises because the intra-model isometry assumption does not hold in CLIP. Prior work has shown that
CLIP’s vision and text spaces exhibit different neighborhood structures (Udandarao, 2022; Schrodi
et al., 2025). We provide additional experiments of Zero-Shot Cross-Modal Retrieval in Sec. D.2.

6 CONCLUSION

Our work comprehensively investigates two key questions: (1) What causes the modality gap? (2)
How does it affect downstream tasks? Our theorems identify dimension collapse as the fundamental
origin of the modality gap. Our theorems also demonstrate that paired samples cannot be perfectly
aligned under the subspace constraint. We further prove that two approaches, hyperplane rotation and
shared space projection, can achieve perfect alignment between two modalities. We apply the latter
approach post-hoc and validate its effectiveness in downstream tasks. Besides the pos hoc application,
our method has potential to be applied to pretraining. It can directly optimize modality alignment in
the shared space to achieve the intra-modal isometry. We will explore it in the next step.
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A APPENDIX A: MORE DISCUSSIONS

A.1 RELATED WORK

Due to the page limit of the initial submission (9 pages), we include the related work here. In the
final version (10 pages), this section will be moved into the main text.

A.1.1 REPRESENTATION LEARNING AND REPRESENTATIONAL CONVERGENCE

Unimodal representations can be learned in an unsupervised manner using self-supervised contrastive
learning (SSL) (Chen et al., 2020). When the InfoNCE loss (Wu et al., 2018) reaches its minimum,
the representations of differently augmented views of an image converge to a single point, and
the representation of all images converge to a uniform distribution on Sh−1 (Wang & Isola, 2020).
However, Jing et al. (2022) empirically shows that this theoretical optimum may not be realized in
practice: the learned representations tend to collapse into a lower-dimensional subspace rather than
spanning the entire embedding space.

In the supervised setting, representations can be learned through a neural classifier. When the cross-
entropy loss is minimized, representations of samples from different balanced classes converge to the
vertices of a regular simplex inscribed in Sh−1, a phenomenon known as neural collapse (Papyan
et al., 2020). Graf et al. (2021) provide a theoretical explanation of this phenomenon. Representations
can also be learned with supervised contrastive learning (SupCon) (Khosla et al., 2020). Graf et al.
(2021) prove that the COR of a balanced dataset of SupCon also forms a regular simplex. Yi et al.
(2025b) provide a refined proof and further show that, for imbalanced datasets, representations
converge to a skewed simplex or even collapse into two distinct points. Other works extend the
concept of neural collapse to semi-supervised learning (Yi et al., 2025a) and OOD detection (Liu &
Qin, 2025).

Multimodal representations are learned through multimodal contrastive learning (MCL). However,
the COR of MCL remains poorly understood. In this work, we address this gap by characterizing
the COR of MCL. Our theorems suggest that MCL seeks to maximize the mutual information
between the two modalities in the shared space while preserving modality-specific information in the
complementary space.

A.1.2 MODALITY GAP

Liang et al. (2022) first identified the modality gap, a geometric phenomenon characterized by
the complete separation of representations of different modalities in the embedding space. They
hypothesize that the gap arises from the cone effect due to random model initialization and is
preserved by the contrastive learning objective. Fahim et al. (2024) argues that the modality gap is
inherent to contrastive loss. Yaras et al. (2024); Udandarao (2022) examine the role of mismatch pairs
and the temperature parameter. Shi et al. (2023) attribute the cause of the modality gap to insufficient
training. Schrodi et al. (2025) suggests that problematic training data, which contain information bias,
create the gap. Most of these works validate their hypotheses through numerical examples on a small
number of data pairs. By contrast, we provide an analysis based on the entire distribution.

In addition, several studies have proposed post-hoc methods to mitigate the modality gap. Liang
et al. (2022) attempts to translate the representations of one modality toward those of another using a
constant shift. Schrodi et al. (2025) explores removing the few dimensions that primarily drive the
modality gap. However, experiments in both works reported that narrowing the modality gap pos hoc
may lead to degraded downstream performance. Eslami & de Melo (2025) mitigates the modality gap
by retraining CLIP from scratch. Our work focuses on training-free pos-hoc plug-and-play methods
that can directly leverage existing pre-trained models.

A.2 LIMITATIONS

While our work investigates the origin of the modality gap and attributes it to dimension collapse, we
do not address the exact factors that lead to dimension collapse. (Jing et al., 2022) theoretically show
that dimension collapse occurs whenever negative eigenvalues appear in the weight matrix of a neural
network. (Schrodi et al., 2025) suggests that when training data with information bias are sufficiently
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aligned, ‘more dimensions’ are required to focus on objects and and ‘less dimensions’ to focus on
attributes, ultimately resulting in dimension collapse. (Chun, 2025) provides a more comprehensive
study of the inherent challenges within MCL, including intra-modal variability, asymmetries in
information, and task-dependent alignment. We suspect that all these factors contribute to dimension
collapse in the learned representations. Identifying the causes of dimension collapse thus constitutes
a major open problem, parallel to understanding the origin of the modality gap, and represents an
important direction for future research.

A.3 CONNECTION BETWEEN OUR THEOREMS AND PREVIOUS HYPOTHESES

In this subsection, we examine the connection between empirical observations from prior studies and
our theoretical conclusions.

Cone Effect: The cone effect hypothesis (Liang et al., 2022) posits that the representations of X and
Y fall into different cones on the hypersphere, thereby causing the modality gap. In our theoretical
framework, as described in Sec. 3.1, the cone size of the representations is modeled by the parameter
κ. However, in contrast to this hypothesis, Theorem 2 shows that the cone size has no effect on the
convergence of the modality gap, even when the representations follow a uniform distribution (i.e.,
κ → 0).

Temperature: It is hypothesized that the choice of temperature contributes to the emergence of
the modality gap (Yaras et al., 2024; Udandarao, 2022). However, Theorem 2 suggests that the
temperature parameter, τ , has no effect on the convergence of the modality gap. We suspect that if
temperature has any impact, it operates indirectly by influencing dimension collapse.

Information Bias: (Schrodi et al., 2025) argue that information bias, i.e., images containing more
information than the corresponding text, leads to the modality gap. The unequal amount of information
across modalities prevents Intra-Modal Isometry of the representations (see Definition 7), making it
difficult for the model to align representations from the two modalities. This results in sub-optimal
inter-modal alignment, which in turn imposes a lower bound on the alignment terms and ensures
∆θ > 0. We posit that there is a strong connection between information bias and dimension collapse:
information bias induces dimension collapse in the learned representations, thereby causing the
modality gap.

A.4 DISCLOSURE OF LLM USAGE

In the preparation of this paper, we used large language models (LLMs) as general-purpose assistive
tools. Specifically, we used an LLM to help with grammar polishing, wording improvements, and
proof-reading.

Any text or content generated by the LLM have been reviewed and edited by the authors. We take
full responsibility for the content of the submission. The LLM was not used to produce novel
research claims, data analysis, results formulation, or conclusions. The research ideation, theoretical
contributions, experiments, and all core technical work are entirely the work of the authors.

B APPENDIX B: MORE SUPPORTING EXAMPLES

In this subsection, we provide more examples and illustrations.

B.1 ILLUSTRATIVE EXAMPLE OF TRANSLATION-BASED METHOD

In this subsection, we provide an illustrative example showing that the impact of translating X pos
hoc on downstream performance can be arbitrary. Fig. 5a depicts a set of X and Y where Condition
(A6) and Condition (A8) hold. Fig. 5b illustrates how Xs are going to be translated. Fig. 5c shows
the positions of X∗s after translation. Fig. 5d illustrates how X∗s are going to be normalized. Fig. 5e
shows the positions of X∗∗s after normalization. In Fig. 5f, we observe that the distribution of X∗∗s
differs substantially from that of X: they no longer reside in the same shared space (the large circle
in this example), and their projections onto the shared space diverge from those of Y s. The direction
of these changes depends on the specific configuration of X and is therefore unpredictable. Hence,
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Figure 5: Translation-based method. Notations follow Fig. 1. (a): Condition (A6) (cx, cy ⊥ C) and
(A8) (PCxi = PCyi) hold. Orange/blue triangles represents µx and µy . The red arrows denotes the
direction and scale of the constant translation (µy − µx). (b): Translating X . (c): X are translated
to X∗. (d): X∗ are being re-normalized. Purple arrows are denotes the direction and scale of the
normalization. (e): X∗ are re-normalized to X∗∗. (f): Distribution of X altered after translation with
PCx

∗∗
i ̸= PCyi.

the impact of translating X on downstream performance is unpredictable. In practice, the impact is
often a negative one.

B.2 ADDITIONAL EXAMPLE OF MODALITY ALIGNMENT

In Sec. 5, we discuss how the shared space projection approach can improve modality alignment.
As an illustrative case, Fig. 3e presents an example in a 3D embedding space where C corresponds
to a 1D line. However, this example may be misinterpreted as implying that all transformed paired
samples (x∗

i , y
∗
i ) perfectly overlap at y1∗ and y2∗. To clarify this point, in this subsection we examine

a more intricate example in a 4D embedding space.

First, recall Definition 5 and set h = 4:

Definition 5 [Restate with h = 4] Let A and B be two distinct (h− 1)-dimensional linear subspaces
(i.e., hyperplanes through the origin) with normal vectors nA and nB , projection matrices PA and
PB . Denote C = A ∩ B, with PC as its projection matrix. Define ϕ = cos−1

(
nA·nB

∥nA∥·∥nB∥

)
as the

angle between A and B, restricted to 0 < ϕmin ≤ ϕ < π
2 . Then, SX and SY can be represented as:

SX = S3 ∩ A =
{
x ∈ R4 : ∥x∥ = 1, nA · x = 0

} ∼= S2 ∈ S3,

SY = S3 ∩ B =
{
y ∈ R4 : ∥y∥ = 1, nB · y = 0

} ∼= S2 ∈ S3.
(16)

Now, S3 denotes the 4D unit hypersphere. To analyze this case, we decompose the embedding space.
Let {e1, e2, e3, e4} be an orthonormal basis of R4. Suppose that the shared space C lies within the
span of e1 and e2:
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Figure 6: Modality Alignment in 4D Space. SX (orange circle) and SY (blue circle) are two 3D unit
sphere within S3 as described in Eq. (16) and Eq. (22). The shared space C is a 2D plane as described
in Eq. (17). SX ∩ C = SY ∩ C is a 2D circle (green circle). (a) 4 samples from X (orange dots). (b)
4 samples from Y (blue dots). (c), (d): The projections of (xi, yi)i̸=c on the shared space C converge
to pi (green point), i.e., PCxi = PCyi = pi. (e), (f): Re-normalize pi to get x∗

i (purple dots) and y∗i
(yellow dots) as described in Eq. (23). (g): (x∗

i , y
∗
i ) are perfectly aligned.

C = span {e1} ⊕ span {e2} . (17)

Therefore, C⊥ is a 2-dimensional orthogonal complement of C, and C⊥ satisfies:

C⊥ = span {e3} ⊕ span {e4} ,
Rh = C ⊕ C⊥.

(18)

Define two unit vectors eX and eY such that:

eX ∈ SX , and eX ⊥ C,

eY ∈ SY , and eY ⊥ C.
(19)

Since nA, nB ∈ C⊥, nA ⊥ eX and nB ⊥ eY , we have:

⟨eX , eY ⟩ = ±⟨nA, nB⟩ , (20)

and we choose a pair of eX and eY such that:

⟨eX , eY ⟩ = ⟨nA, nB⟩ = cos (ϕ) ∈ (0, 1). (21)

Therefore, SX and SY can be represented by two orthonormal bases:

SX ∈ A = span {e1} ⊕ span {e2} ⊕ span {eX} ,
SY ∈ B = span {e1} ⊕ span {e2} ⊕ span {eY } .

(22)

In Theorem 3, we show that when Lc
MCL is minimized, cx, cy ⊥ C (Condition (A6)). Accordingly,

we can set cx = eX and cy = eY . These settings are illustrated in Fig. 6a and Fig. 6b.
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Figure 7: Density plot of θci of CLIP ViT-B/32 embeddings of MS-COCO validation set.
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Figure 8: Singular values. CLIP ViT-B/32 embeddings of MS-COCO validation set are used. (a): All
singular values σi of X and Y . (b): The 2nd to the 50th σi of X and Y . (c): The 1st to the 50th σi

of the centered X and the centered Y .

In Theorem 4, we show that when Li̸=c
MCL is minimized, PCxi = PCyi (Condition (A8)). This

condition is illustrated in Fig. 6c and Fig. 6d.

Re-normalize the projections to obtain the transformed pairs:

x∗
i =

PCxi

∥PCxi∥
,

y∗i =
PCyi
∥PCyi|

,

(23)

We illustrate x∗
i and y∗i in Fig. 6e and Fig. 6f. In Corollary 4, we show that (x∗

i , y
∗
i ) are perfectly

aligned, as illustrated in Fig. 6g.

B.3 JUSTIFICATION OF ASSUMPTION IN THEOREM 4

In Theorem 4, we assume that the angle between a modality input and its center, θci , satisfies
θci ∈

(
0, π

2

)
. In Lemma 15, we provide a theoretical justification for this assumption. Furthermore,

the density plot of θci in Fig. 7 shows that almost all θci indeed lie within
(
0, π

2

)
.

C APPENDIX C: DETAILS OF METHOD

In this subsection, we describe in details about how to detect dimension collapse, how to detect the
shared space of two subspaces, and how to conduct projection onto the shared space.

C.1 DETECT DIMENSION COLLAPSE

Suppose we have two point clouds, X and Y , each consisting of h-dimensional normalized vectors:
X = (x1, . . . , xN ) ∈ (Sh−1)N and Y = (y1, . . . , yN ) ∈ (Sh−1)N . Then we have:
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A = span (X) , dX = dim(A),

B = span (Y ) , dY = dim(B),

C = A ∩ B, doverlap = dim(C).
(24)

Apply the Singular Value Decomposition (SVD) to X and Y and we get:

X = UXΣXV ⊤
X ,

Y = UY ΣY V
⊤
Y .

(25)

If X and Y collapse into subspaces of Sh−1, then ΣX and ΣY have dX < h and dY < h significant
singular values, respectively.

In the discussion in Sec. 3.4, X and Y represent the image and text embeddings of the MS-COCO
dataset. Since X and Y are not centered at zero, the first singular values, σx

1 and σy
1 , dominate

when SVD is applied. Correspondingly, the first right singular vectors of X and Y are cx and cy,
respectively. As shown in Fig. 8a, these first right singular vectors account for approximately 50%
of the explained variance. Therefore, in Fig. 2c, we plot the singular values of the centered X and
Y , which better capture the patterns of variation. In Fig. 8b, we present the 2nd to the 50th singular
values of X and Y , while in Fig. 8c, we show the 1st to the 50th singular values of the centered X
and the centered Y .

And dimension collapse in X and Y occurs when zero values appear on the diagonals of ΣX and ΣY .

C.2 FIND THE SHARED SPACE

We then select the first dX columns from VX and the first dY columns from VY whose cumulative
explained variance exceeds a predefined threshold c (e.g., c = 99%). We obtain:

BX = VX [:, : dX ] ∈ Rh×dX : orthonormal basis for A,

BY = VY [:, : dY ] ∈ Rh×dY : orthonormal basis for B.
(26)

To investigate whether A and B have overlap dimensions, we need to check the principal angles
between A and B, which are defined as:
Definition 9. The principal angles γ1 ≤ γ2 ≤ · · · ≤ γk between A and B are recursively defined as:

cos (γi) = max
u∈A,v∈B

u⊤v, ∥u∥ = ∥v∥ = 1, u⊤uj = v⊤vj = 0 (j < i), (27)

where k = min (dX , dY ).

The principal angles quantify the alignment between these subspaces:

• The smallest principal angle θ1 measures how close the two subspaces are: if γ1 = 0, there is at
least one common direction.

• If multiple principal angles are zero, then the intersection of the subspaces has a larger dimension.

The principal angles between subspaces A and B can be computed as follows:

1. Compute the singular values of the matrix G = B⊤
XBY ∈ RdX×dY .

2. The singular values σp
i ∈ [0, 1]

3. Then the principal angles are γi = arccos (σp
i )

The number of principal angles equal to zero gives the dimension of the intersection:

doverlap = # {i : γi = 0} . (28)
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In practice, due to noise or finite precision, we use a threshold: count how many σp
i > 1− ϵ (e.g.,

ϵ = 10−3). Thus:

doverlap = # {i : σp
i > 1− ϵ} . (29)

The empirical result of MS-COCO dataset is provided in Fig. 2d.

C.3 PROCEDURES OF SSP METHOD

In this subsection, we provide the details of the Shared Space Projection (SSP) algorithm.

Step 1: Apply the SVD decomposition to X and Y to get VX and VY as Eq. (25).

Step 2: Select the first dX and dY right singular vectors of X and Y whose cumulative explained
variance are great than 99%. The resulting vectors, BX and BY , form the bases for A and B, as
indicated by Eq. (26).

Step 3: Apply the SVD decomposition G = B⊤
XBY ∈ RdX×dY .

G = UGΣGV
⊤
G (30)

Step 4: Compute doverlap according to Eq. (29) while setting ϵ = 10−3. Compute the basis of the
shared space BS by:

BS = BXUG[:, : doverlap] = BY VG[:, : doverlap]. (31)

Explain: Since the shared space is estimated from the available data rather than the original training
data (assumed inaccessible), the estimation may be noisy. To mitigate this, we can select k < doverlap
columns from BS to form Bk

S . The columns of Bk
S constitute an orthonormal basis for a k-dimensional

subspace of the estimated shared space. By removing dimensions that carry minimal information,
the estimation error can be reduced. The following optional step explains how to select these k
dimensions.

Step 5 (Optional): Project X and Y onto each column of BS :

P = BT
SX

T ,

X ′ = einsum(’hk, kn- > knh’)(BS , P ),

X ′′ = Normalize(X ′) by the last dimension.

(32)

Here, einsum denotes Einstein summation notation. Compute the variance of X ′′ along the last two
dimensions to obtain an array S of length doverlap. Each entry of S is actually the singular value of
projections onto the corresponding column of BS . S quantifies the amount of information contained
in each column of BS . By ranking S in descending order, select the top k columns from BS to form
BK

S .

Step 6: Project X and Y onto the column space of Bk
S and get X∗ and Y ∗.

X∗ =
(
Bk

SB
k
S

T
XT
)T

,

Y ∗ =
(
Bk

SB
k
S

T
Y T
)T

.

(33)

Step 7: Normalize X∗ and Y ∗ to get X∗∗ and Y ∗∗. Use X∗∗ and Y ∗∗ for downstream tasks.

Notably, Fig. 8b indicates that fewer than 10 dimensions account for more than 1% of the explained
variance, suggesting that the essential information of X and Y can be effectively captured using only
10 dimensions. Consequently, in Fig. 4b, we project X and Y onto a 10-dimensional subspace that
preserves the most information.
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Table 2: Size of θ∆ and accuracies (%) of zero-shot image classification of ViT-L/14 on various
dataset.

Model
CIFAR-10 CIFAR-100 ImageNet-1K

∆θ R1 R5 ∆θ R1 R5 ∆θ R1 R5

CLIP 77.63◦ 95.12 99.46 74.19◦ 65.23 88.88 77.29◦ 75.56 94.58

CLIP + Translation 14.73◦ 92.39 98.97 30.50◦ 54.46 77.25 62.61◦ 74.05 94.10
CLIP + Removal 79.36◦ 12.23 62.33 73.16◦ 16.82 6.44 76.84◦ 67.04 89.76
CLIP + SSP 13.27◦ 95.12 99.46 30.39◦ 64.51 88.79 62.40◦ 75.26 94.51

Table 3: Size of θ∆ and accuracies (%) of zero-shot cross-modal retrieval of ViT-L/14 on MSCOCO.

Model
MSCOCO

∆θ
I → T T → I

R@1 R@5 R@10 R@1 R@5 R@10

CLIP 78.16◦ 56.06 79.56 86.84 35.33 59.96 70.21

CLIP + Translation 68.49◦ 54.14 78.32 86.30 35.13 59.79 69.85
CLIP + Removal 76.03◦ 49.56 73.42 82.18 31.23 54.29 65.00
CLIP + SSP 68.06◦ 55.54 78.94 86.64 35.22 59.86 70.22

D APPENDIX D: DETAILS OF EXPERIMENTS

In this section, we describe in details about the set up of our experiments.

D.1 ZERO-SHOT IMAGE CLASSIFICATION.

Datasets. We first evaluate our method on the zero-shot image classification task using three widely
adopted datasets: two small-scale image dataset CIFAR-10/100 Krizhevsky et al. (2009) and one
large scale image datasetImageNet-1k Deng et al. (2009). For CIFAR-10/100, we adopt the small
set of prompts provided by OpenAI for CLIP Radford et al. (2021) (https://github.com/
openai/CLIP.com). For ImageNet-1k, we adopt the large set of prompts provided by OpenAI for
CLIP Radford et al. (2021) (https://colab.research.google.com/github/openai/
CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb).

Implementation Setup. Our implementation refers to Eslami & de Melo (2025). For model
backbone, we adopt CLIP’s ViT-B/32 ViT-L/14 models. For the implementation of baseline models,
we remove the same number of dimensions in the removal method Schrodi et al. (2025) with that
of our SSP method. For translation Liang et al. (2022), the hyperparameter λ controls the scale of
translation. We choose the smallest value of λ, rounded to two decimal places, that yields an angle
reduction larger than SSP.

Additional Results. We report the results using the CLIP ViT-L/14 model as the backbone in Tab. 2.
Similar patterns to those in Tab. 1 can be observed, indicating that our conclusions hold across
different model backbones.

As shown in both Tab. 1 and Tab. 2, reducing the modality gap becomes more challenging as the
number of classes in the test set increases. This is because a larger number of classes introduces
a more complex data distribution, thereby enlarging the discrepancy between the test and training
distributions. Consequently, our shared space estimation incurs greater estimation error, which limits
the capacity of our method to further reduce the modality gap.

D.2 ZERO-SHOT CROSS-MODAL RETRIEVAL.

Datasets. In addition to zero-shot image classification, we evaluate our method on zero-shot image-
to-text and text-to-image retrieval using the MSCOCO (Lin et al., 2014) and Flickr30K (Plummer
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Table 4: Size of θ∆ and accuracies (%) of zero-shot cross-modal retrieval of ViT-L/14 on Flickr30K.

Model
Flickr30K

∆θ
I → T T → I

R@1 R@5 R@10 R@1 R@5 R@10

CLIP 78.16◦ 56.06 79.56 86.84 35.33 59.96 70.21

CLIP + Translation - - - - - - -
CLIP + Removal - - - - - - -
CLIP + SSP - - - - - - -

et al., 2015) datasets. Unlike the common practice of appending a prompt such as ‘a photo of the
caption’, we directly use the raw captions to generate text embeddings. This approach aims to align
the text space more closely with its natural form rather than introducing distortion through artificial
prompts.

Implementation Setup. This implementation setup follows Sec. D.1. The only difference is that we
only use CLIP ViT-L/14 as the model backbone.

D.3 RESULTS

The goal of this experiment is to reduce the size of the modality gap as much as possible without
harming downstream performance. In Tab. 3 and Tab. 4, we list results of the size of the modality gap
(∆θ), the top-1 accuracy (R@1), the top-5 accuracy (R@5), and the top-10 accuracy (R@10). Similar
patterns to those in Tab. 1 can be observed, indicating that our conclusions hold across different
downstream tasks.
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E APPENDIX E: PROOFS

E.1 DETAILS OF THEOREM 1

In this section, we provide proofs of Theorem 1 that is proposed in Sec. 3.2. We also provide details
of the auxiliary theorems (Theorem S1 and Theorem S2) and technical lemmas (Lemma 1, Lemma 2,
Lemma 3, Lemma 4) that support the proof of Theorem 1. For convenience in reading, let us recall
some related notions and definitions.

• h,N ∈ N.
• Sh−1 =

{
z ∈ Rh : ∥z∥ = 1

}
.

• σh−1: the uniform probability measure of Sh−1.

Definition (Multimodal Contrastive Loss (MCL Loss)). Let (X,Y ) be an N -pair configuration,
where X = (x1, . . . , xN ) ∈ (Sh−1)N and Y = (y1, . . . , yN ) ∈ (Sh−1)N . ∀τ > 0, the multimodal
contrastive loss LMCL(·, ·) : (Sh−1)N × (Sh−1)N → R is defined as:

LMCL =
1

N

N∑
i=1

Li
MCL, where Li

MCL = LX→Y(xi;Y ) + LY→X (yi;X).

Here, LX→Y is the X -to-Y alignment and LY→X is the Y-to-X alignment, which are defined
respectively as:

LX→Y(xi;Y ) = − log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

, LY→X (yi;X) = − log
exp (xi · yi/τ)∑N
j=1 exp (xj · yi/τ)

.

E.1.1 PROOF OF THEOREM 1

In this subsection, we provide the proof of Theorem 1. For convenience in reading, we first restate
Theorem 1 here.

Theorem 1. [Restate] Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (Sh−1)N

are iid samples from µx and Y = (y1, . . . , yN ) ∈ (Sh−1)N are iid samples from µy. Let ν =
h/2− 1, it holds that:

lim
N→∞

LMCL − 2 log(N) = Exi∼µx

[
−xi · yi

τ

]
+ Exi∼µx

[
logEyi∼µy

[
exp

(xi · yi
τ

)]]
+ Eyi∼µy

[
−xi · yi

τ

]
+ Eyi∼µy

[
logExj∼µx

[
exp

(xi · yi
τ

)]]
≥ −2

τ
+ 2 log

(
Γ (ν + 1) (2τ)νIν

(
1

τ

))
where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A1) ∀i ∈ [N ], xi = yi.
(A2) µx = σh−1 and µy = σh−1.

Proof. We first decompose limN→∞ Lc
MCL − 2 log(N) into two parts:

lim
N→∞

(LMCL − 2 log(N)) = lim
N→∞

(
1

N

N∑
i=1

LX→Y(xi;Y )− log(N)

)

+ lim
N→∞

(
1

N

N∑
i=1

LY→X (yi;X)− log(N)

)
.

(34)
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According to Theorem S2, the convergent function and its lower bound of LX→Y are:

lim
N→∞

1

N

N∑
i=1

LX→Y(xi;Y )− log(N)

= Exi∼µx

[
−xi · yi

τ

]
+ Exi∼µx

[
logEyi∼µy

[
exp

(xi · yj
τ

)]]
≥ −1

τ
+ log

[
Γ

(
h

2

)
(2τ)

h
2 −1Ih

2 −1

(
1

τ

)] (35)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(i) ∀i ∈ [N ], xi = yi.

(ii) µx = σh−1 and µy = σh−1.

This Theorem also holds for LY→X :

lim
N→∞

1

N

N∑
i=1

LY→X (yi;X)− log(N)

= Eyi∼µx

[
−xi · yi

τ

]
+ Eyi∼µy

[
logExi∼µx

[
exp

(xi · yj
τ

)]]
≥ −1

τ
+ log

[
Γ

(
h

2

)
(2τ)

h
2 −1Ih

2 −1

(
1

τ

)] (36)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(iii) ∀i ∈ [N ], xi = yi.

(iv) µx = σh−1 and µy = σh−1.

Combining Eq. (34), Eq. (35) and Eq. (36), we conclude that:

lim
N→∞

LMCL − 2 log(N) = Exi∼µx

[
−xi · yi

τ

]
+ Exi∼µx

[
logEyi∼µy

[
exp

(xi · yi
τ

)]]
+ Eyi∼µy

[
−xi · yi

τ

]
+ Eyi∼µy

[
logExj∼µx

[
exp

(xi · yi
τ

)]]
≥ −2

τ
+ 2 log

[
Γ

(
h

2

)
(2τ)

h
2 −1Ih

2 −1

(
1

τ

)] (37)

where equality is attained if and only if the following conditions hold:

(A1) ∀i ∈ [N ], xi = yi.

(A2) µx = σh−1 and µy = σh−1.

E.1.2 AUXILIARY THEOREMS PART 1

In this subsection, we provide details and proofs of the auxiliary theorems (Theorem S1 and Theo-
rem S2) that support the proof of Theorem 1.
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Theorem S1. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (Sh−1)N are iid
samples from µx and Y = (y1, . . . , yN ) ∈ (Sh−1)N are iid samples from µy . It holds that:

lim
N→∞

1

N

N∑
i=1

LX→Y(xi;Y )− log(N) = lim
N→∞

1

N

N∑
i=1

− log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

− log(N)

= Exi·yi

[
−xi · yi

τ

]
+ Exi∼µx

[
logEyi∼µy

[
exp

(xi · yj
τ

)]]
(38)

Proof. ∀xi ∈ X , the X -to-Y alignment of xi can be rewritten as:

LX→Y(xi;Y ) = − log
exp (xi · yi/τ)∑
j exp (xi · yj/τ)

= −xi · yi
τ

+ log

N
1

N

N∑
j=1

exp
(xi · yj

τ

)
= −xi · yi

τ
+ log

 1

N

N∑
j=1

exp
(xi · yj

τ

)+ log (N) .

(39)

Denote hN (x) and h(x) as:

hN (x) = log

 1

N

N∑
j=1

exp
(x · yj

τ

) ,

and h(x) = log
(

Ey∼µy

[
exp

(x · y
τ

)])
.

(40)

Lemma 2 reveals that hN (x) uniformly converges to h(x) almost surely. Thus, we have:

sup
x∈Sh−1

|hN (x)− h(x)| a.s.−−−−→
N→∞

0. (41)

According to the Strong Law of Large Numbers (SLLN), we have:

1

N

N∑
i=1

h (xi)
a.s.−−−−→

N→∞
Ex∼µx

[h(x)]. (42)

Combining Eq. (41) and Eq. (42), we get:

1

N

N∑
i=1

hN (xi) =
1

N

N∑
i=1

h (xi) +
1

N

N∑
i=1

(hN (xi)− h (xi))

a.s.−−−−→
N→∞

Ex∼µx [h(x)].

(43)

Similarly, by the Strong Law of Large Numbers (SLLN), we have:

1

N

N∑
i=1

−xi · yi
τ

a.s.−−−−→
N→∞

Exi∼µx [−
xi · yi
τ

]. (44)

Putting Eq. (39), Eq. (43) and Eq. (44) together, the convergent function of 1
N

∑N
i=1 LX→Y(xi;Y )

can be derived as:
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lim
N→∞

1

N

N∑
i=1

LX→Y(xi;Y )− log(N) = lim
N→∞

1

N

N∑
i=1

(
−xi · yi

τ
+ hN (xi)

)
= Exi·yi

[
−xi · yi

τ

]
+ Exi∼µx

[h(xi)]

= Exi·yi

[
−xi · yi

τ

]
+ Exi∼µx

[
logEyj∼µy

[
exp

(xi · yj
τ

)]]
.

(45)

Theorem S2. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (Sh−1)N are iid
samples from µx and Y = (y1, . . . , yN ) ∈ (Sh−1)N are iid samples from µy. Let ν = h/2− 1, it
holds that:

lim
N→∞

1

N

N∑
i=1

LX→Y(xi;Y )− log(N)

= Exi∼µx

[
−xi · yi

τ

]
+ Exi∼µx

[
logEyi∼µy

[
exp

(xi · yj
τ

)]]
≥ log

(
Γ (ν + 1) (2τ)νIν

(
1

τ

)) (46)

where equality is attained if and only if the following conditions hold:

(B1) ∀i ∈ [N ], xi = yi.

(B2) µx = σh−1 and µy = σh−1.

Proof. Step 1: We start the proof by find the convergent function of 1
N

∑N
i=1 LX→Y(xi;Y ) as

N → ∞. ∀xi ∈ X , as prove in Theorem S1:

lim
N→∞

1

N

N∑
i=1

LX→Y(xi;Y )− log(N) = lim
N→∞

1

N

N∑
i=1

− log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

− log(N)

= Exi·yi

[
−xi · yi

τ

]
+ Exi∼µx

[
logEyi∼µy

[
exp

(xi · yj
τ

)]]
.

(47)

Step 2: Next, we find the minimal value and the optimal condition of convergent function.

According to the Cauchy-Schwarz inequality, the first term in Eq. (47) can be bounded below:

Exi·yi

[
−xi · yi

τ

]
≥ Exi·yi

[
−∥xi∥ ∥yi∥

τ

]
= −1

τ
. (48)

where equality is attained if and only if there exists a configuration of (X,Y ) such that :

(B1) ∀i ∈ [N ], xi = yi.

Note that condition (B1) implies µx = µy. Applying this condition to the second term in Eq. (47),
we can transform it as:

Ex∼µx

[
log
(

Ey∼µy

[
exp

(x · y
τ

)])]
= Ex∼µ

[
log
(

Ey∼µ

[
exp

(x · y
τ

)])]
. (49)

Let M(Sh−1) be the set of Borel probability measures in Sh−1. The RHS of Eq. (49) is then a
functional F [·] : M(Sh−1) → R:
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F [µ] = Ex∼µ

[
log
(

Ey∼µ

[
exp

(x · y
τ

)])]
. (50)

According to Lemma 3, F [µ] is minimized when µ = σh−1 where σh−1 is the uniform measure of
Sh−1:

σh−1 = argmin
µ∈M(Sh−1)

F [µ]. (51)

Therefore, we have:

F [µ] ≥ F [σh−1]. (52)

where equality is attained if and only if there exists a configuration of (X,Y ) such that :

(B2) µx = µy = σh−1

Let Γ (·) be the Gamma function, Lemma 4 derives that:

F [σh−1] = Ex∼σh−1

[
Ey∼σh−1

[
exp

(x · y
τ

)]]
= log

[
Γ

(
h

2

)
(2τ)

h
2 −1Ih

2 −1

(
1

τ

)] (53)

Combining Eq. (47), Eq. (48), Eq. (49), Eq. (53), we conclude that:

lim
N→∞

1

N

N∑
i=1

LX→Y(xi;Y )− log(N)

= Exi∼µx

[
−xi · yi

τ

]
+ Exi∼µx

[
logEyi∼µy

[
exp

(xi · yj
τ

)]]
≥ −1

τ
+ log

[
Γ

(
h

2

)
(2τ)

h
2 −1Ih

2 −1

(
1

τ

)] (54)

where equality is attained if and only if the following conditions hold:

(B1) ∀i ∈ [N ], xi = yi.

(B2) µx = σd−1 and µy = σd−1.
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E.1.3 TECHNICAL LEMMAS PART 1

In this section, we provide details and proofs of the technical lemmas (technical lemmas (Lemma 1,
Lemma 2, Lemma 3, Lemma 4) that support the proof of Theorem 1, Theorem S1 and Theorem S2.

Lemma 1. Let x ∈ Sh−1 and Y be an N -point configuration, where Y = (y1, . . . , yN ) ∈ (Sh−1)N

are iid samples from µy . ∀τ > 0, define a sequence of functions {gN} : Sh−1 → R as:

gN (x) =
1

N

N∑
j=1

exp
(x · yj

τ

)
. (55)

Define a function g : Sh−1 → R as:

g(x) = Ey∼µy

[
exp

(x · y
τ

)]
. (56)

It holds that {gN} converges uniformly to g:

gN (x)
unif.−−−−→
N→∞

g(x). (57)

Proof. Step 1 Boundedness and Lipschitz Property:

Consider a function class F =
{
fx(y) = exp

(
x·y
τ

)
: x, y ∈ Sh−1

}
. Since ∥x∥ = ∥y∥ = 1, x · y ∈

[−1, 1], hence ∀fx ∈ F , we have:

|fx(y)| ≤ e1/τ . (58)

Therefore, fx(y) is uniformly bounded in y, so is its derivative:

∥∇xfx(y)∥ =
∥∥∥y
τ
fx(y)

∥∥∥ ≤ 1

τ
e1/τ . (59)

Then ∀xk ∈ Sh−1,

|fx(y)− fxk
(y)| ≤ 1

τ
e1/τ =: L. (60)

Thus, fx(y) is Lipschitz in x with constant L = e1/τ

τ , uniformly in y.

Step 2 η-Net:

According to Lemma 5.2 in (Vershynin, 2010), ∀ε > 0 and η = ε
4L , there exists a finite η-net,

Nη = {x1, x2, . . . , xK} ⊂ Sh−1, with cardinality:

K = |Nη| ≤
(
1 +

2

η

)h

<

(
3

η

)h

. (61)

∀x ∈ Sh−1, ∃xk ∈ Nη such that ∥x− xk∥ < η. Because fx(y) is L-Lipschitz in x, we have:

|fx(y)− fxk
(y)| ≤ L ∥x− xk∥ = Lη. (62)

And we also have:

|gN (x)− gN (xk)| ≤ Lη,

|g(x)− g (xk)| ≤ Lη.
(63)
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Step 3 Probability Bound:

∀xk ∈ Nη, the random variables Zj := fxk
(yj) are iid and lie in

[
e−1/τ , e1/τ

]
. According to the

Hoeffding’s inequality:

P
(
|gN (xk)− g(xk)| >

ε

2

)
≤ 2 exp

(
−2N(ε/2)2

(2e1/τ )2

)
= 2e−cNε2 , (64)

where c = 1
8e2/τ

> 0. Taking a union bound over the η-net:

P

(
max
xk∈Nη

|gN (xk)− g(xk)| >
ε

2

)
≤ 2Ke−cNε2 . (65)

Step 4 Uniform Convergence:

Since ∀x ∈ Sh−1, |gN (x)− g(x)| can be decomposed as:

|gN (x)− g(x)| ≤ |gN (x)− gN (xk)|+ |gN (xk)− g (xk)|+ |g (xk)− g(x)|
≤ 2Lη + max

xk∈Nη

|gN (xk)− g (xk)|

=
ε

2
+ max

xk∈Nη

|gN (xk)− g (xk)| .
(66)

Plugging Eq. (65) into Eq. (66), we have:

P

(
sup

x∈Sh−1

|gN (x)− g(x)| > ε

)
≤ P

(
max
xk∈Nη

|gN (xk)− g(xk)| >
ε

2

)
≤ 2Ke−cNε2 ,

(67)

and therefore:

sup
x∈Sh−1

|gN (x)− g(x)| P−−−−→
N→∞

0. (68)

Eq. (67) justifies that:

∞∑
N=1

P

(
sup

x∈Sh−1

|gN (x)− g(x)| > ε

)
≤ 2K

∞∑
N=1

e−cNε2 < ∞. (69)

According to the Borel–Cantelli lemma:

P

(
lim sup
N→∞

sup
x∈Sh−1

|gN (x)− g(x)| > ε

)
= 0. (70)

Therefore:

sup
x∈Sh−1

|gN (x)− g(x)| a.s.−−−−→
N→∞

0. (71)

We conclude now the empirical averages gN (·) converge uniformly in Sh−1 to g (·):

gN (x)
unif.−−−−→
N→∞

g(x). (72)
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Lemma 2. Let x ∈ Sh−1 and Y be an N -point configuration, where Y = (y1, . . . , yN ) ∈ (Sh−1)N

are iid samples from µy . ∀τ > 0, define a sequence of functions {hN} : Sh−1 → R as:

hN (x) = log

 1

N

N∑
j=1

exp
(x · yj

τ

) . (73)

Define a function h : Sh−1 → R as:

h(x) = log
(

Ey∼µy

[
exp

(x · y
τ

)])
. (74)

It holds that {hN} converges uniformly to h:

lim
N→∞

hN (x)
unif.−−−−→
N→∞

h(x). (75)

Proof. According to Lemma 1:

N∑
j=1

exp
(x · yj

τ

)
= gN (x)

unif.−−−−→
N→∞

g(x) = Ey∼µy

[
exp

(x · y
τ

)]
, (76)

and

sup
x∈Sh−1

|gN (x)− g(x)| a.s.−−−−→
N→∞

0. (77)

Because ⟨x, y⟩ ∈ [−1, 1] for unit vectors, exp (x · y/τ) satisfies:

e−1/τ ≤ exp
(x · y

τ

)
≤ e1/τ . (78)

Hence ∀x, gN (x), g(x) ∈ [a, b] with a = e−1/τ > 0, b = e1/τ > 0. In the compact interval [a, b],
by the mean value theorem, ∀u < v ∈ [a, b], ∃u < ξ < v such that:

| log u− log v| = |u− v|
ξ

≤ 1

a
|u− v| = e1/τ |u− v|. (79)

Thus, the function log (·) is Lipschitz . Therefore:

sup
x∈Sh−1

|hN (x)− h(x)| = sup
x∈Sh−1

|log gN (x)− log g(x)| ≤ 1

a
sup

x∈Sh−1

|gN (x)− g(x)| a.s.−−−−→
N→∞

0

(80)

We conclude now hN (·) converge uniformly in Sh−1 to h (·):

lim
N→∞

hN (x)
unif.−−−→ h(x) (81)
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Lemma 3. Let M
(
Sh−1

)
be the set of Borel probability measures in Sh−1. Let σh−1 ∈ M

(
Sh−1

)
be the uniform probability measure in Sh−1. ∀x, y ∈ Sh−1 and τ > 0, a function f : Sh−1×Sh−1 →
R+ is defined as:

f(x, y) = exp
(x · y

τ

)
. (82)

∀µ ∈ M
(
Sh−1

)
, a functional G : M

(
Sh−1

)
→ R+ is defined as:

Ff [µ] =

∫
Sh−1

log

(∫
Sh−1

f(x, y)dµ(y)

)
dµ(x). (83)

It holds that σh−1 is the unique minimizer of F:

min
µ∈M(Sh−1)

Ff [µ] = min
µ∈M(Sh−1)

∫
Sh−1

log

(∫
Sh−1

f(x, y)dµ(y)

)
dµ(x). (84)

Proof. Step 1: A change of probability measure.

Let σ := σh−1 be the uniform probability in Sh−1. By rotational invariance there is a constant c such
that:

c := ch,τ (x) =

∫
y∈Sh−1

f(x, y)dσ(y), (85)

which is independent of x. ∀x ∈ Sh−1. Define a kernel K as:

K(x, dy) : =
f(x, y)

c
dσ(y), (86)

so that: ∫
y∈Sh−1

K(x, dy) = 1. (87)

Since f(x, y) = f(y, x), exchanging x and y, the following holds:

σ(dx)K(x, dy) = σ(dy)K(y, dx). (88)

For any measurable A ⊂ Sh−1, we have:

K(x,A) : =

∫
y∈A

f(x, y)

c
dσ(y). (89)

Consider a probability distribution µ in Sh−1, define:

(µK)(A) :=

∫
x∈Sh−1

K(x,A)dµ(x)

=

∫
x∈Sh−1

∫
y∈A

f(x, y)

c
dσ(y)dµ(x)

=

∫
y∈A

∫
x∈Sh−1

f(x, y)

c
dµ(x)dσ(y).

(90)

Therefore, µK ≪ σ, i.e., µK is absolutely continuous with respect to σ. By Radon–Nikodym
theorem, we have:
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d(µK)

dσ
(y) =

1

c

∫
x∈Sh−1

f(x, y)dµ(x). (91)

Note that:

(σK)(A) =

∫
x∈Sh−1

K(x,A)dσ(x)

=

∫
x∈Sh−1

∫
y∈A

f(x, y)

c
dσ(y)dσ(x)

=

∫
y∈A

∫
x∈Sh−1

f(x, y)

c
dσ(x)dσ(y)

=

∫
y∈A

dσ(y)

= σ(A)

(92)

According to Eq. (88), exchanging x and y in Eq. (91), we get:

d(µK)

dσ
(x) =

1

c

∫
y∈Sh−1

f(y, x)dµ(y). (93)

And since f(y, x) = f(x, y), then:

d(µK)

dσ
(x) =

1

c

∫
y∈Sh−1

f(x, y)dµ(y). (94)

Step 2: An exact identity for Ff

Define a (normalized) zonal integral operator T on L2(σ) as:

(Tρ)(x) =
1

c

∫
Sh−1

f(x, y)ρ(y)dσ(y), (95)

where:

ρ(x) =
dµ

dσ
(x)

T = ρ
dµK

dσ
,

(96)

with ρ ≥ 0 and
∫
ρdσ = 1. Here, L2(σ) is the Hilbert space of (equivalence classes of) square-

integrable functions on the sphere with respect to the measure σ. Then Ff [µ] can be rewritten
as:

Ff [µ] = log c+

∫
ρ log(Tρ)dσ. (97)

Denote:

F [ρ] :=

∫
Sh−1

ρ(x) log(Tρ(x))dσ(x), (98)

then we have:

Ff [µ] = log c+ F [ρ]. (99)
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Step 3: Minimize F [ρ].

We will minimize F [ρ] over the probability simplex
{
ρ ≥ 0,

∫
ρ = 1

}
. Basic facts about T : the

kernel f(x, y) = e(x·y)/τ is smooth, symmetric, strictly positive and depends only on x · y. Hence:

• T is a positive, self-adjoint, compact operator on L2(σ);

• T1 = 1 (since c normalizes it);

• By the Funk-Hecke theorem/Jentzsch-Perron-Frobenius, the eigensystem of T is constituted
of the spherical harmonics {Yℓm} with eigenvalues λ0 = 1 > λ1 ≥ λ2 ≥ · · · > 0. The
eigenspace corresponding to λ0 has dimension 1 and contains only constant functions.

• In particular, on the mean-zero subspace L2
0(σ) =

{
f :
∫
fdσ = 0

}
all the eigenvalues

λℓ, ℓ ≥ 1 are strictly positive and bounded from above by λ1 < 1.

• As a consequence, for any η ∈ L2
0(σ) we have ∥Tη∥L2 ≤ λ1∥η∥L2 .

(3.1) First order variation and Euler-Lagrange equation

Consider a mass-preserving perturbation ρε = ρ+ εη with
∫
ηdσ = 0. Because T is linear,

d

dε
F [ρε]

∣∣∣∣
ε=0

=

∫
η log(Tρ)dσ +

∫
ρ
Tη

Tρ
dσ =

∫
η

[
log(Tρ) + T

(
ρ

Tρ

)]
dσ, (100)

where we used self-adjointness:
∫
ρTη
Tρ =

∫
ηT (ρ/Tρ). Introduce a Lagrange multiplier λ for the

constraint
∫
ρ = 1.

The stationarity δ
(
F − λ

∫
ρ
)
= 0 for all mean-zero η yields the Euler-Lagrange (EL) equation:

log(Tρ)(x) + T

(
ρ

Tρ

)
(x) = λ for σ-a.e. x. (101)

We easily check that ρ ≡ 1 is a critical point.

If ρ ≡ 1, then Tρ ≡ 1, hence log(Tρ) ≡ 0 and T (ρ/Tρ) = T1 = 1. Thus Eq. (101) holds with
λ = 1.

(3.2) Second order variation at the uniform density

Let ρ ≡ 1 and perturb ρε = 1 + εη with
∫
η = 0.

Differentiate the first-variation formula once more in the same direction η :

• The directional derivative of log(Tρ) is (Tη)/(Tρ), so at ρ = 1 it is Tη.

• The map ρ 7→ T (ρ/Tρ) has derivative at ρ = 1 :

D[T (ρ/Tρ)]|ρ=1 [η] = T (η − Tη) = Tη − T (Tη). (102)

Hence the (constrained) second variation is

δ2F [1; η] =

∫
η(Tη + Tη − T (Tη))dσ = 2⟨η, Tη⟩ − ⟨Tη, Tη⟩. (103)

Use the spectral decomposition η =
∑

ℓ≥1,m aℓmYℓm (no ℓ = 0 term because
∫
η = 0 ). Since

TYℓm = λℓYℓm,

δ2F [1; η] =
∑

ℓ≥1,m

(
2λℓ − λ2

ℓ

)
a2ℓm =

∑
ℓ≥1,m

λℓ (2− λℓ) a
2
ℓm. (104)
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Because 0 < λℓ < 1 for ℓ ≥ 1, each factor λℓ (2− λℓ) is strictly positive. Therefore:

δ2F [1; η] > 0 for every η ∈ L2
0(σ), η ̸= 0. (105)

So ρ ≡ 1 is a strict local minimizer of F under the mass constraint
∫
ρdσ = 1.

(3.3) Uniqueness of the critical point

Suppose ρ satisfies Eq. (101). Expand ρ in spherical harmonics: ρ = 1 +
∑

ℓ≥1,m aℓmYℓm. Since
Tρ = 1 +

∑
ℓ≥1,m λℓaℓmYℓm with 0 < λℓ < 1, the left side of Eq. (101) has a constant term 1 and

non-constant part

(
log
(
1 +

∑
λℓaℓmYℓm

))
non-const︸ ︷︷ ︸

all harmonics ℓ≥1

+
∑

λℓaℓmYℓm︸ ︷︷ ︸
T (ρ/Tρ) to first order

.
(106)

Project Eq. (101) onto each harmonic Yℓm with ℓ ≥ 1. A standard contraction/implicit-function
argument (or just comparing coefficients to first order and using that higher-order terms can’t cancel
all modes simultaneously because |λℓ| < 1 ) forces all aℓm = 0. Thus any solution of (EL) is
constant; with mass 1 , the only solution is ρ ≡ 1.

So ρ ≡ 1 is the unique critical point of F on the simplex of probability measures on Sh−1.

(3.4) Global minimality

Since F is lower semi-continuous for the weak topology on the set M
(
Sh−1

)
of probability measures

on the sphere, a global minimizer exists by compactness. Since any minimizer must satisfy (EL) and
the only critical point is ρ ≡ 1, the global minimizer is ρ ≡ 1, i.e. µ = σ.

Lemma 4. Let M
(
Sh−1

)
be the set of Borel probability measures in Sh−1. Let σh−1 ∈ M

(
Sh−1

)
be the uniform probability measure in Sh−1. ∀x, y ∈ Sh−1 and τ > 0, a function f : Sh−1×Sh−1 →
R+ is defined as:

f(x, y) = exp
(x · y

τ

)
. (107)

∀µ ∈ M
(
Sh−1

)
, a functional F : M

(
Sh−1

)
→ R+ is defined as:

Ff [µ] =

∫
Sh−1

log

(∫
Sh−1

f(x, y)dµ(y)

)
dµ(x). (108)

Let Γ (·) be the Gamma function and ν = h/2− 1, it holds that:

Ff [σh−1] = log

(
Γ (ν + 1) (2τ)νIν

(
1

τ

))
(109)

Proof. Step 1: Rotational Invariance

Since the measure σh−1 is invariant under orthogonal transformations. For any fixed x ∈ Sh−1, the
inner integral:

∫
Sh−1

exp
(x · y

τ

)
dσh−1(y), (110)

depends only on the distribution of (x · y), and by rotational symmetry, this integral is independent of
x. Thus, define:
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Zτ :=

∫
Sh−1

exp
(x · y

τ

)
dσh−1(y), (111)

and Zτ is constant for all x. Since logZτ is constant and σh−1 is a probability measure, we have:

Ff [σh−1] =

∫
Sh−1

logZτdσh−1(x) = logZτ , (112)

Step 2: Compute Zτ

Without the loss of generality, we assume the coordinate of x as:

x = eh = (0, . . . , 0, 1). (113)

Then x · y = yh, the last coordinate of y. So:

Zτ =

∫
Sh−1

exp
(yh
τ

)
dσh−1(y). (114)

Let t = yh = x · y ∈ [−1, 1]. The pushforward of σh−1 under the map y 7→ x · y has probability
density:

ph (t) =
Γ
(
h
2

)
Γ
(
h−1
2

)√
π

(
1− t2

)h−3
2 , t ∈ [−1, 1]. (115)

Then:

Zτ =

∫ 1

−1

exp

(
t

τ

)
ph (t) dt =

Γ
(
h
2

)
Γ
(
h−1
2

)√
π

∫ 1

−1

et/τ
(
1− t2

)h−3
2 dt. (116)

A classical integral (equivalently, an integral representation of the modified Bessel Iν ) is:

∫ 1

−1

eκt
(
1− t2

)ν− 1
2 dt =

√
πΓ

(
ν +

1

2

)(
2

κ

)ν

Iν(κ), κ > 0, ν > −1

2
. (117)

Set: κ = 1
τ and ν = h−2

2 , so that ν − 1
2 = h−3

2 . Then:

∫ 1

−1

et/τ
(
1− t2

)h−3
2 dt =

√
πΓ

(
h− 1

2

)
(2τ)

h
2 −1Ih

2 −1

(
1

τ

)
. (118)

Substitute into Zτ :

Zτ =
Γ
(
h
2

)
Γ
(
h−1
2

)√
π
·
√
πΓ

(
h− 1

2

)
(2τ)

h
2 −1Ih

2 −1

(
1

τ

)
. (119)

Simplify:

Zτ = Γ

(
h

2

)
(2τ)

h
2 −1Ih

2 −1

(
1

τ

)
. (120)

Step 3: Compute Ff [σh−1]
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Ff [σh−1] = logZτ

= log

[
Γ

(
h

2

)
(2τ)

h
2 −1Ih

2 −1

(
1

τ

)]
= log

(
Γ (ν + 1) (2τ)νIν

(
1

τ

)) (121)
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E.2 DETAILS OF THEOREM 2

In this section, we provide proofs of Theorem 2 that is proposed in Sec. 3.3. We also provide
details and proofs of the auxiliary theorems (Theorem S3 and Theorem S4) and the technical lemmas
(Lemma 5, Lemma 6, Lemma 7, Lemma 8 and Lemma 9) that support the proof Theorem 2. For
convenience in reading, let us recall some related notions and definitions.

• h,N ∈ N.
• Sh−1 =

{
z ∈ Rh : ∥z∥ = 1

}
.

• X = (x1, . . . , xN ) ∈ (Sh−1)
N .

• Y = (y1, . . . , yN ) ∈ (Sh−1)
N .

• µx = 1
N

∑N
i=1 xi.

• µy = 1
N

∑N
i=1 yi.

• cx = µx

∥µx∥ .

• cy =
µy

∥µy∥ .

Definition (Multimodal Contrastive Loss (MCL Loss)). Let (X,Y ) be an N -pair configuration,
where X = (x1, . . . , xN ) ∈ (Sh−1)N and Y = (y1, . . . , yN ) ∈ (Sh−1)N . ∀τ > 0, the multimodal
contrastive loss LMCL(·, ·) : (Sh−1)N × (Sh−1)N → R is defined as:

LMCL =
1

N

N∑
i=1

Li
MCL, where Li

MCL = LX→Y(xi;Y ) + LY→X (yi;X).

Here, LX→Y is the X -to-Y alignment and LY→X is the Y-to-X alignment, which are defined
respectively as:

LX→Y(xi;Y ) = − log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

, LY→X (yi;X) = − log
exp (xi · yi/τ)∑N
j=1 exp (xj · yi/τ)

.

Definition(Modality Gap) Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈
(Sh−1)N and Y = (y1, . . . , yN ) ∈ (Sh−1)N . The modality gap between X and Y can be expressed
as the angle between the center representations:

∆θ = cos−1(cx · cy).

Definition (vMF Distribution). ∀c ∈ Sh−1 and κ ≥ 0, the probability density of a random h-
dimensional unit vector z ∼ vMF(c, κ) is given by:

fh(z; c, κ) = Dh(κ)e
κc⊤z, where Dh(κ) =

κν

(2π)ν+1Iν(κ)
.

Here, ν = h/2− 1, and Iν (·) : R → R is the modified Bessel function of the first kind of order ν,
which is defined as:

Iν(x) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(x
2

)2k+ν

.

Definition (Function M̃ ). ∀κ, τ > 0, a function M̃κ(·, ·) : [−1, 1]× [0, 1] → R+
0 is defined as:

M̃κ (w, t) =

√
κ2 +

2κw

τ
+

t2

τ2
.
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Definition (Function J̃ ). ∀κ, ν, τ > 0, J̃ (·, ·, ·;κ, ν) : [−1, 1]× [−1, 1]× [0, 1] → R is defined as:

J̃ (w1, w2, t;κ, ν) = −w1

τ
+ log

Iν

(
M̃κ(w2, t)

)
M̃κ(w2, t)ν

− log

(
Iν (κ)

κν

)
.

Definition (Function M ). ∀κ, τ > 0, a function Mκ (·) : [−1, 1] → R+
0 is defined as:

Mκ (w) =

√
κ2 +

2κw

τ
+

1

τ2

= M̃κ(w, 1).

Definition (Function J ). ∀κ, ν, τ > 0, a function J (·;κ, ν) : [−1, 1] → R is defined as:

J (w;κ, ν) = −w

τ
+ log

(
Iν (Mκ (w))

Mκ (w)
ν

)
− log

(
Iν (κ)

κν

)
= J̃ (w,w, 1;κ, ν) .

Definition (Function Ĵ ). ∀κ, ν, τ > 0, a function Ĵ (·, ·;κ, ν) : [−1, 1]× [0, 1] → R is defined as:

Ĵ (w, t;κ, ν) = −w

τ
+ log

Iν

(
M̃κ(w, t)

)
M̃κ(w, t)ν

− log

(
Iν (κ)

κν

)
= J̃ (w,w, t;κ, ν) .

E.2.1 PROOF OF THEOREM 2

In this subsection, we provide the proof of Theorem 2. For convenience in reading, we first restate
Theorem 2 here.

Theorem 2. [Restate] Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (Sh−1)N

are iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (Sh−1)N are iid samples from
µy = vMF(cy, κy). Let ν = h/2 − 1. Suppose there exists an index i = c such that xc = cx,
yc = cy . Denote ∆θ = cos−1(cx · cy). For any fixed κx, κy > 0, it holds that:

lim
N→∞

Lc
MCL − 2 log(N) = J (cos (∆θ) ;κy, ν) + J (cos (∆θ) ;κx, ν)

= J̃ (cos (∆θ) , cos (∆θ) , 1;κy, ν) + J̃ (cos (∆θ) , cos (∆θ) , 1;κx, ν)

≥ J (1;κy, ν) + J (1;κx, ν)

= J̃ (1, 1, 1;κy, ν) + J̃ (1, 1, 1;κx, ν),

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A5) ∆θ = cos−1 (cx · cy) = 0.

Proof. We first decompose limN→∞ Lc
MCL − 2 log(N) into two parts:

lim
N→∞

Lc
MCL − 2 log(N) = lim

N→∞
LX→Y(cx;Y )− log(N)

+ lim
N→∞

LY→X (cy;X)− log(N).
(122)

According to Theorem S4, the convergent function and its lower bound of LX→Y are:
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lim
N→∞

LX→Y(cx;Y )− log(N) = J (cos (∆θ) ;κy, ν) ≥ J (1;κy, ν), (123)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(i) ∆θ = cos−1 (cx · cy) = 0.

This Theorem also holds for LY→X :

lim
N→∞

LY→X (cy;X)− log(N) = J (cos (∆θ) ;κx, ν) ≥ J (1;κx, ν), (124)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(ii) ∆θ = cos−1 (cx · cy) = 0.

Combining Eq. (123), Eq. (124), and consider J (w;κ, ν) = J̃ (w,w, 1;κ, ν), we reach the conclu-
sion that:

lim
N→∞

Lc
MCL − 2 log(N) = J (cos (∆θ) ;κy, ν) + J (cos (∆θ) ;κx, ν)

= J̃ (cos (∆θ) , cos (∆θ) , 1;κy, ν) + J̃ (cos (∆θ) , cos (∆θ) , 1;κx, ν)

≥ J (1;κy, ν) + J (1;κx, ν)

= J̃ (1, 1, 1;κy, ν) + J̃ (1, 1, 1;κx, ν),
(125)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A5) ∆θ = cos−1 (cx · cy) = 0.

E.2.2 AUXILIARY THEOREMS PART 2

In this subsection, we provide details and proofs of the auxiliary theorems (Theorem S3 and Theo-
rem S4) that support the proof of Theorem 2.

Theorem S3. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (Sh−1)N are
iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (Sh−1)N are iid samples from
µy = vMF(cy, κy). Let ν = h/2− 1 and κy > 0.

∀xi ∈ X , denote wi = xi · yi and wxi,cy = xi · cy . It holds that:

lim
N→∞

LX→Y(xi;Y )− log(N) = lim
N→∞

− log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

− log(N)

= −wi

τ
+ log

(
Iν
(
Mκy

(
wxi,cy

))
Mκy

(
wxi,cy

)ν
)

− log

(
Iν (κy)

κν
y

)
= J̃ (wi, wxi,cy , 1;κy, ν),

(126)

where ∀κ ≥ 0, τ > 0, Mκ (·) : [−1, 1] → R+
0 is defined as:

Mκ (w) =

√
κ2 +

2κw

τ
+

1

τ2
. (127)
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and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (128)

Suppose there exists an index i = c such that xc = cx, yc = cy . Denote wc = cx · cy . It holds that:

lim
N→∞

LX→Y(cx;Y )− log(N) = −wc

τ
+ log

(
Iν
(
Mκy (wc)

)
Mκy (wc)

ν

)
− log

(
Iν (κy)

κν
y

)
= J (wc;κy, ν) = J̃ (wc, wc, 1;κy, ν).

(129)

Proof. Step 1: We start the proof by find the convergent function of LX→Y(xi;Y ) as N → ∞.
Same with Eq. (39) of Theorem S1, ∀xi ∈ X , the X -to-Y alignment of xi can be rewritten as:

LX→Y(xi;Y ) = − log
exp (xi · yi/τ)∑
j exp (xi · yj/τ)

= −xi · yi
τ

+ log

N
1

N

N∑
j=1

exp
(xi · yj

τ

)
= −xi · yi

τ
+ log

 1

N

N∑
j=1

exp
(xi · yj

τ

)+ log (N) .

(130)

Lemma 2 shows that:

lim
N→∞

log

 1

N

N∑
j=1

exp
(xi · yj

τ

) = log
(

Ey∼µy

[
exp

(xi · y
τ

)])
. (131)

According to the moment-generating function of the vMF distribution:

Ey∼µy [exp
(xi · y

τ

)
] = Ey∼µy

[
exp

(xi

τ
· y
)]

=
Iν
(
κ′
y

)
Iν (κy)

(
κy

κ′
y

)ν

,

where κ′
y = ∥κycy +

xi

τ
∥2.

(132)

Then we have:

lim
N→∞

LX→Y(xi;Y )− log(N) = −xi · yi
τ

+ log

(
Iν
(
κ′
y

)
κ′ν
y

)
− log

(
Iν (κy)

κν
y

)
. (133)

Step 2: we will transform LX→Y from a function of vectors to a function of angles between vectors.

Without loss of generality, we assume the coordinate of cy as

cy = (1, 0, · · · , 0). (134)

Denote cos
(
θxi,cy

)
= xi · cy . Then xi can be represented as:

xi =
(
cos
(
θxi,cy

)
, u sin

(
θxi,cy

))
=
(
cos
(
θxi,cy

)
, u2 sin

(
θxi,cy

)
, u3 sin

(
θxi,cy

)
, . . . , uh sin

(
θxi,cy

))
,

(135)
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where u = (0, u2, u3, . . . , uh) ∼= Sh−2 ∈ Sh−1 is a unit vector orthogonal to the first axis with:

∥u∥ = 0 + u2
2 + u2

3 + · · ·+ u2
h = 1. (136)

According to Eq. (134), Eq. (135) and Eq. (136), κ′
y (in Eq. (132)) can re-rewritten as:

κ′
y =

∥∥∥κycy +
xi

τ

∥∥∥
2

=

√√√√(κy +
cos
(
θxi,cy

)
τ

)2

+

h∑
i=2

(
sin
(
θxi,cy

)
ui

τ

)2

=

√√√√(κy +
cos
(
θxi,cy

)
τ

)2

+
sin2

(
θxi,cy

)
τ2

=

√
κ2
y +

2κy cos
(
θxi,cy

)
τ

+
1

τ2

= Mκy

(
cos
(
θxi,cy

))
.

(137)

Consider that wi = xi · yi, wxi,cy = cos
(
θxi,cy

)
= xi · cy , putting Eq. (133) and Eq. (137) together,

we have:

lim
N→∞

LX→Y(xi;Y )− log(N) = −xi · yi
τ

+ log

(
Iν
(
κ′
y

)
κ′ν
y

)
− log

(
Iν (κy)

κν
y

)

= −wi

τ
+ log

(
Iν
(
Mκy

(
wxi,cy

))
Mκy

(
wxi,cy

)ν
)

− log

(
Iν (κy)

κν
y

)
= J̃ (wi, wxi,cy , 1;κy, ν).

(138)

When there exists a data pair i = c such that xc = cx, yc = cy , wi = wxi,cy = wc, then we have:

lim
N→∞

LX→Y(cx;Y )− log(N) = −wc

τ
+ log

(
Iν
(
Mκy (wc)

)
Mκy (wc)

ν

)
− log

(
Iν (κy)

κν
y

)
= J (wc;κy, ν) = J̃ (wc, wc, 1;κy, ν).

(139)

Theorem S4. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (Sh−1)N are
iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (Sh−1)N are iid samples from
µy = vMF(cy, κy). Let ν = h/2 − 1. Suppose there exists an index i = c such that xc = cx,
yc = cy . Denote ∆θ = cos−1(cx · cy). For any fixed κy > 0, it holds that:

lim
N→∞

LX→Y(cx;Y )− log(N) = J (cos (∆θ) ;κy, ν) ≥ J (1;κy, ν), (140)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(B3) ∆θ = cos−1 (cx · cy) = 0.

Proof. Step 1: We start the proof by find the convergent function of LX→Y(cx;Y ) as N → ∞.
Denote wc = cx · cy . ∀κy > 0, as prove in Theorem S3:
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lim
N→∞

LX→Y(cx;Y )− log(N) = lim
N→∞

− log
exp (cx · cy/τ)∑N
j=1 exp (cx · yj/τ)

− log(N)

= −wc

τ
+ log

(
Iν
(
Mκy

(wc)
)

Mκy
(wc)

ν

)
− log

(
Iν (κy)

κν
y

)
= J (wc;κy, ν).

(141)

where ∀κ ≥ 0, τ > 0, J (·;κ, ν) is a function on [−1, 1] and Mκ (·) : [−1, 1] → R+
0 is defined as:

Mκ (w) =

√
κ2 +

2κw

τ
+

1

τ2
, (142)

and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (143)

Step 2: Next, we find the minimal value and the optimal condition of convergent function.

As shown in Lemma 5 (set s = 1), J (w;κ, ν) = J̃(w,w, 1;κ, ν) is a concave function of w. When
a function is concave, its minimal value occurs at the endpoints of its domain. Therefore :

J (wc;κy, ν) ≥ min{J (−1;κy, ν),J (1;κy, ν)}. (144)

According to Lemma 6:

J (−1;κy, ν) ≥ J (1;κy, ν). (145)

Therefore, we conclude:

lim
N→∞

LX→Y(cx;Y )− log(N) = J (cos (∆θ) ;κy, ν) ≥ J (1;κy, ν), (146)

where equality is attained if and only if the following conditions hold:

(B3) ∆θ = cos−1 (cx · cy) = 0.

E.2.3 TECHNICAL LEMMAS PART 2

In this subsection, we provide details and proofs of technical lemmas (Lemma 5, Lemma 6, Lemma 7,
Lemma 8 and Lemma 9) that support the proof of Theorem 2, Theorem S3 and Theorem S4.

Lemma 5. ∀κ, ν, τ > 0 and s ∈ [0, 1], a function Ĵt=s (·;κ, ν) : (−1, 1] → R is defined as:

Ĵt=s (w;κ, ν) = −w

τ
+ log

Iν

(
M̃t=s (w)

)
M̃t=s (w)

ν

− log

(
Iν (κ)

κν

)
= Ĵ (w, t = s;κ, ν) = J̃ (w,w, t = s;κ, ν) ,

(147)

where M̃t=s (·) : (−1, 1] → R+ is defined as:

M̃t=s (w) =

√
κ2 +

2κw

τ
+

s2

τ2
= M̃κ (w, t = s) , (148)
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and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (149)

It holds that, for any fixed s, Ĵt=s (·) is a strictly decreasing function when w ∈ [0, s] and a concave
function w ∈ (−1, 1].

Proof. Let us first decompose the function Ĵt=s. Denote two functions G1 (w) and G2 (w) as:

G1 (w) = −w

τ
,

G3 (m) = log (Iν (m))− ν log (m) ,

G2 (w) = G3

(
M̃t=s (w)

)
= log

(
Iν

(
M̃t=s (w)

))
− ν log

(
M̃t=s (w)

)
.

(150)

Denote the function G (w) and the constant C as:

G (w) = G1 (w) +G2 (w) ,

C = − log

(
Iν (κ)

κν

)
.

(151)

Then the function Ĵt=s can be written as:

Ĵt=s (w;κ, ν) = −w

τ
+ log

Iν

(
M̃t=s (w)

)
M̃t=s (w)

ν

− log

(
Iν (κ)

κν

)
= G (w) + C.

(152)

Now, we investigate derivatives of Ĵt=s.

The first derivative of G1 is:

G′
1 (w) = −1

τ
< 0. (153)

The second derivative of G1 is:

G′′
1 (w) = 0. (154)

According to Lemma 7, the first derivative of G3 (m) is:

G′
3 (m) =

Iν+1 (m)

Iν (m)
∈ (0, 1). (155)

The derivative of M̃t=s is:
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M̃ ′
t=s (w) =

d

dw

(
κ2
y +

s2

τ2
+ 2

κ

τ
w

)1/2

=
1

2

(
κ2
y +

s2

τ2
+ 2

κ

τ
w

)−1/2

· 2κ
τ

=
κ

τ

1

M̃t=s (w)

> 0.

(156)

Then, the first derivative of G2 is:

G′
2 (w) = G′

3

(
M̃t=s (w)

)
M̃ ′

t=s (w)

=
Iν+1

(
M̃t=s (w)

)
Iν

(
M̃t=s (w)

) M̃ ′
t=s (w)

=
κ

τ

1

M̃t=s (w)

Iν+1

(
M̃t=s (w)

)
Iν

(
M̃t=s (w)

) .

(157)

Combining Eq. (153) and Eq. (157), we have:

Ĵ ′
t=s (w;κ, ν) = G′ (w)

= −1

τ
+

κ

τ

1

M̃t=s (w)

Iν+1

(
M̃t=s (w)

)
Iν

(
M̃t=s (w)

) .
(158)

Since:

M̃t=s (w) ≥ κ ⇔ 2κw

τ
+

s2

τ2
≥ 0

⇔ w ≥ − s2

2κτ
⇐ w ≥ 0.

(159)

thus, when w ∈ [0, 1], M̃t=s (w) ≥ κ holds. Combining this and Eq. (155), we have:

G′ (w) ≤ −1

τ
+

κ

τ

1

κ

Iν+1

(
M̃t=s (w)

)
Iν

(
M̃t=s (w)

)
< −1

τ
+

1

τ
= 0.

(160)

So we can conclude that, for any fixed s, Ĵt=s (·) is a strictly decreasing function on [0, s].

Denote:

H (m) =
1

m

Iν+1 (m)

Iν (m)
, (161)

according to Lemma 8,
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H ′ (m) < 0. (162)

Since G′
2 (w) can be written as:

G′
2 (w) =

κ

τ
H
(
M̃t=s (w)

)
, (163)

combining Eq. (156) and Eq. (163), we have

G′′
2 (w) =

κ

τ
H ′
(
M̃t=s (w)

)
M̃ ′

t=s (w)

< 0.
(164)

Given Eq. (157) and Eq. (164), we can conclude that G2 is an increasing and concave function.
Combining Eq. (154) and Eq. (164), we have:

Ĵ ′′
t=s (w;κ, ν) = G′′ (w)

= 0 +G′′
2 (w)

< 0.

(165)

So we can conclude that, for any fixed s, Ĵt=s (·) is a concave function on (−1, 1].

Lemma 6. ∀κ, ν, τ > 0, a function J (·) : [−1, 1] → R is defined as:

J (w) = −w

τ
+ log

(
Iν (M (w))

M (w)
ν

)
− log

(
Iν (κ)

κν

)
+ log(N), (166)

where Mκ (·) : [−1, 1] → R is defined as:

Mκ (w) =

√
κ2 +

2κw

τ
+

1

τ2
, (167)

and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (168)

∀0 < w ≤ 1, it holds that:

J (w) < J (−w). (169)

Proof. Let us first re-write Eq. (169) as:

J (w) < J (−w) ⇔ J (−w)− J (w) > 0, (170)

and we will prove the inequality on RHS. Denote:

a = M(−w) =

√
κ2 +

1

τ2
− 2κw

τ
,

b = M (w) =

√
κ2 +

1

τ2
+

2κw

τ
.

(171)
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In (Eq. (155) of) Lemma 5, it is shown that M (·) is a strictly increasing function. Then, we have:

0 < a < b, (172)

and then we have:

J (−w)− J (w) =
w

τ
−
(
−w

τ

)
+ log

(
Iν(a)

Iν(b)

)
− ν log

(a
b

)
=

2w

τ
+ log

Iν(a)

Iν(b)
− ν log

(a
b

)
.

(173)

According to Lemma 9:

log

(
Iν(a)

Iν(b)

)
− ν log

(a
b

)
> (a− b). (174)

Plugging Eq. (174) into Eq. (173), we get:

J (−w)− J (w) >
2w

τ
+ (a− b) = f (w) . (175)

Combining Eq. (170) and Eq. (175), we have:

J (w) ≤ J (−w) ⇔ f (w) ≥ 0. (176)

Denote:

A = κ2 +
1

τ2
,

B =
2κ

τ
,

(177)

then we have:

a = M(−w) =
√
A−Bw,

b = M (w) =
√
A+Bw.

(178)

Observe that:

b− a = M (w)−M(−w) =
(A+Bw)− (A−Bw)√
A+Bw +

√
A−Bw

=
2Bw√

A+Bw +
√
A−Bw

,

(179)

and then:

f (w) =
2w

τ

[
1− 2κ√

A+Bw +
√
A−Bw

]
. (180)

Therefore, we have:
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f (w) ≥ 0 ⇔
√
A+Bw +

√
A−Bw ≥ 2κ

⇔
(√

A+Bw +
√
A−Bw

)2
≥ 4κ2

⇔ 2A+ 2
√

A2 −B2w2 ≥ 4κ2

⇔
√
A2 −B2w2 ≥ 2κ2 −A

⇔
√
A2 −B2w2 ≥ κ2 − 1

τ2

(181)

Case 1: 0 < κ < 1
τ .

κ2 − 1
τ2 < 0 and the last equation in Eq. (181) holds.

Case 2: 0 < 1
τ ≤ κ.

The Eq. (181) becomes:

f (w) ≥ 0 ⇔ A2 −B2w2 ≥
(
κ2 − 1

τ2

)2

⇔ 4κ2

τ2
(1− w2) ≥ 0

⇔ |w| ≤ 1.

(182)

Since 0 < w ≤ 1, f (w) ≥ 0 holds. According to Eq. (176), we conclude that:

0 < w ≤ 1 ⇒ J (w) ≤ J (−w). (183)

Lemma 7. ∀ν > 0, a function G3 : R+
0 → R is defined as:

G3 (m) = log (Iν (m))− ν log (m) . (184)

where Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (185)

It holds that G3 (·) is a strictly increasing function with G′
3 (·) ∈ (0, 1)

Proof. The first derivative of G3 is:

G′
3 (m) =

I ′ν (m)

Iν (m)
− ν

m
. (186)

According to (Olver, 2010):

I ′ν (m) = Iν+1 (m) +
ν

m
Iν (m) , (187)

then we have:

I ′ν (m)

Iν (m)
− ν

m
=

Iν+1 (m)

Iν (m)
. (188)

Plugging Eq. (188) into Eq. (186), we get:
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G′
3 (m) =

Iν+1 (m)

Iν (m)
. (189)

Since:

0 < Iν+1 (m) < Iν (m) , (190)

therefore:

G′
3 (m) =

Iν+1 (m)

Iν (m)
∈ (0, 1). (191)

This shows that G3 (·) is a strictly increasing function with G′
3 (·) ∈ (0, 1).

Lemma 8. ∀ν > 0, a function H (·) : R+ → R is defined as:

H (m) =
1

m

Iν+1 (m)

Iν (m)
, (192)

where Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (193)

It holds that H (m) is a strictly decreasing function.

Proof. ∀ν,m ∈ R+, denote Rν (m) as:

Rν (m) =
Iν+1 (m)

Iν (m)
. (194)

According to (Olver, 2010), we have:

I ′ν (m) = Iν+1 (m) +
ν

m
Iν (m) , (195)

then:

R′
ν (m) =

I ′ν+1 (m) Iν (m)− Iν+1 (m) I ′ν (m)

Iν (m)
2

=

(
Iν+2 (m) + ν+1

m Iν+1 (m)
)
Iν (m)− Iν+1 (m)

(
Iν+1 (m) + ν

mIν (m)
)

Iν (m)
2

=
Iν+2 (m) Iν (m)− I2ν+1 (m) + 1

mIν+1 (m) Iν (m)

Iν (m)
2

=
Iν+2 (m) Iν (m)− I2ν+1 (m)

Iν (m)
2 +

1

m
Rν (m) .

(196)

Since H (m) can be rewritten as:

H (m) =
Rν (m)

m
, (197)
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then:

H ′ (m) =
R′

ν (m)m−Rν (m)

m2

=
1

m

(
R′

ν (m)− 1

m
Rν (m)

)
=

1

m

(
Iν+2 (m) Iν (m)− I2ν+1 (m)

Iν (m)
2

)
.

(198)

According to the Turán type inequalities for modified Bessel functions (Baricz, 2010), when m > 0:

Iν+2 (m) Iν (m)− I2ν+1 (m)

Iν (m)
2 < 0, (199)

so

H ′ (m) < 0. (200)

Then we can conclude that H (m) is a strictly decreasing function.

Lemma 9. ∀ν > 0 and 0 < a < b, it holds that:

log

(
Iν(a)

Iν(b)

)
> ν log

(a
b

)
+ (a− b), (201)

where Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (202)

Proof. According to (Olver, 2010), ∀x > 0 and 0 < ν1 < ν2 < ∞, we have:

Iν1(x) > Iν2(x). (203)

Denote a function L as:

L(x) = log Iν(x)− ν log(x)− x. (204)

According to (Olver, 2010):

I ′ν (m) = Iν+1 (m) +
ν

m
Iν (m) , (205)

then we have:

I ′ν (m)

Iν (m)
− ν

m
=

Iν+1 (m)

Iν (m)
. (206)

Taking Eq. (203) and Eq. (206) into account, the derivative of L is:

L′(x) =
I ′ν(x)

Iν(x)
− ν

x
− 1

=
Iν+1(x)

Iν(x)
− 1

< 0.

(207)
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Therefore, ∀ν > 0, 0 < b < a, it holds that:

log(Iν(a))− ν log(a)− a = L(a)

> L(a)

= log(Iν(b))− ν log(b)− b,

(208)

then we have:

log

(
Iν(a)

Iν(b)

)
> ν log

(a
b

)
+ (a− b). (209)
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E.3 DETAILS OF THEOREM 3

In this section, we provide proofs of Theorem 3 that is proposed in Sec. 3.4. We also provide
details and proofs of the auxiliary theorems (Theorem S5 and Theorem S6) and the technical
lemmas (Lemma 10, Lemma 11, Lemma 12 and Lemma 13) that support the proof Theorem 3. For
convenience in reading, let us recall some related notions and definitions.

• h,N ∈ N.
• Sh−1 =

{
z ∈ Rh : ∥z∥ = 1

}
.

• A =
{
x ∈ Rh : nA · x = 0

}
where nA is the normal vector of A.

• B =
{
y ∈ Rh : nB · y = 0

}
where nA is the normal vector of B.

• ϕ = cos−1
(

nx·ny

∥nx∥·∥ny∥

)
and 0 < ϕmin ≤ ϕ < π

2 .

• SX = Sh−1 ∩ A =
{
x ∈ Rh : ∥x∥ = 1, nA · x = 0

} ∼= Sh−2 ∈ Sh−1.

• SY = Sh−1 ∩ B =
{
y ∈ Rh : ∥y∥ = 1, nB · y = 0

} ∼= Sh−2 ∈ Sh−1.
• C = A ∩ B.
• hX = hY = h− 1.
• hC = h− 2.
• PA: the projection matrix of A.
• PB : the projection matrix of B.
• PC : the projection matrix of C.
• eA = {z ∈ SX : z ⊥ C}.
• eB = {z ∈ SY : z ⊥ C}.
• C⊥ = span {eA} ⊕ span {eB}
• Rh = C ⊕ C⊥.
• X = (x1, . . . , xN ) ∈ (SX)N .
• Y = (y1, . . . , yN ) ∈ (SY )

N .

• µx = 1
N

∑N
i=1 xi.

• µy = 1
N

∑N
i=1 yi.

• cx = µx

∥µx∥ .

• cy =
µy

∥µy∥ .

Definition (Multimodal Contrastive Loss (MCL Loss)). Let (X,Y ) be an N -pair configuration,
where X = (x1, . . . , xN ) ∈ (Sh−1)N and Y = (y1, . . . , yN ) ∈ (Sh−1)N . ∀τ > 0, the multimodal
contrastive loss LMCL(·, ·) : (Sh−1)N × (Sh−1)N → R is defined as:

LMCL =
1

N

N∑
i=1

Li
MCL, where Li

MCL = LX→Y(xi;Y ) + LY→X (yi;X).

Here, LX→Y is the X -to-Y alignment and LY→X is the Y-to-X alignment, which are defined
respectively as:

LX→Y(xi;Y ) = − log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

, LY→X (yi;X) = − log
exp (xi · yi/τ)∑N
j=1 exp (xj · yi/τ)

.

Definition(Modality Gap) Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈
(Sh−1)N and Y = (y1, . . . , yN ) ∈ (Sh−1)N . The modality gap between X and Y can be expressed
as the angle between the center representations:

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

∆θ = cos−1(cx · cy).

Definition (vMF Distribution). ∀c ∈ Sh−1 and κ ≥ 0, the probability density of a random h-
dimensional unit vector z ∼ vMF(c, κ) is given by:

fh(z; c, κ) = Dh(κ)e
κc⊤z, where Dh(κ) =

κν

(2π)ν+1Iν(κ)
.

Here, ν = h/2− 1, and Iν (·) : R → R is the modified Bessel function of the first kind of order ν,
which is defined as:

Iν(x) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(x
2

)2k+ν

.

Definition (Function M̃ ). ∀κ, τ > 0, a function M̃κ(·, ·) : [−1, 1]× [0, 1] → R+
0 is defined as:

M̃κ (w, t) =

√
κ2 +

2κw

τ
+

t2

τ2
.

Definition (Function J̃ ). ∀κ, ν, τ > 0, J̃ (·, ·, ·;κ, ν) : [−1, 1]× [−1, 1]× [0, 1] → R is defined as:

J̃ (w1, w2, t;κ, ν) = −w1

τ
+ log

Iν

(
M̃κ(w2, t)

)
M̃κ(w2, t)ν

− log

(
Iν (κ)

κν

)
.

Definition (Function M ). ∀κ, τ > 0, a function Mκ (·) : [−1, 1] → R+
0 is defined as:

Mκ (w) =

√
κ2 +

2κw

τ
+

1

τ2

= M̃κ(w, 1).

Definition (Function J ). ∀κ, ν, τ > 0, a function J (·;κ, ν) : [−1, 1] → R is defined as:

J (w;κ, ν) = −w

τ
+ log

(
Iν (Mκ (w))

Mκ (w)
ν

)
− log

(
Iν (κ)

κν

)
= J̃ (w,w, 1;κ, ν) .

Definition (Function M̃ ). ∀κ, τ > 0, a function M̃κ(·, ·) : [−1, 1]× [0, 1] → R+
0 is defined as:

M̃κ (w, t) = M̃κ (w, t) .

Definition (Function Ĵ ). ∀κ, ν, τ > 0, a function Ĵ (·, ·;κ, ν) : [−1, 1]× [0, 1] → R is defined as:

Ĵ (w, t;κ, ν) = −w

τ
+ log

Iν

(
M̃κ(w, t)

)
M̃κ(w, t)ν

− log

(
Iν (κ)

κν

)
= J̃ (w,w, t;κ, ν) .
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E.3.1 PROOF OF THEOREM 3

In this subsection, we provide the proof of Theorem 3. For convenience in reading, we first restate
Theorem 3 here.

Theorem 3. [Restate] Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (SX\C)N

are iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (SY \ C)N are iid samples from
µy = vMF(cy, κy). Let ν̃ = (h− 1)/2− 1. Suppose there exists an index i = c such that xc = cx,
yc = cy. Denote ∆θ = cos−1(cx · cy) and assume that cx, cy /∈ C with cx · cy > 0. For any fixed
κx, κy > 0, it holds that:

lim
N→∞

Lc
MCL − 2 log(N)

= J̃ (cos (∆θ) , cos (∆θ) , ∥PBcx∥;κy, ν̃) + J̃ (cos (∆θ) , cos (∆θ) , ∥PAcy∥;κx, ν̃)

≥ J̃ (cos (ϕmin) , cos (ϕmin) , cos (ϕmin) ;κy, ν̃) + J̃ (cos (ϕmin) , cos (ϕmin) , cos (ϕmin) ;κx, ν̃),

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A6) cx ⊥ C and cy ⊥ C.

(A7) ∆θ = cos−1 (cx · cy) = ϕmin.

Proof. We first decompose limN→∞ Lc
MCL − 2 log(N) into two parts:

lim
N→∞

Lc
MCL − 2 log(N) = lim

N→∞
LX→Y(cx;Y )− log(N)

+ lim
N→∞

LY→X (cy;X)− log(N).
(210)

Set:

Ĵ (w, t;κ, ν) = J̃ (w,w, t;κ, ν),

ν̃ = ν̃,
(211)

According to Theorem S6, the convergent function and its lower bound of LX→Y are:

lim
N→∞

LX→Y(cx;Y )− log(N) = Ĵ (cos (∆θ) , ∥PBcx∥;κy, ν̃)

≥ Ĵ (∥PAcy∥, ∥PAcy∥, cos (ϕ) ;κy, ν̃).
(212)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(i) cx ⊥ C.

(ii) cx =
PAcy

∥PAcy∥ .

This Theorem also holds for LY→X :

lim
N→∞

LY→X (cy;X)− log(N) = Ĵ (cos (∆θ) , ∥PAcy∥;κx, ν̃)

≥ Ĵ (∥PBcx∥, ∥PBcx∥, cos (ϕ) ;κx, ν̃).
(213)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(iii) cy ⊥ C.

(iv) cy = PBcx
∥PBcx∥ .
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According to Lemma 13, for some λx, λy > 0 such that the projections of x and y are collinear with
the other vector:

(1) The orthogonal projection of x on B is a scalar multiple of y:

PBx = λxy, λx ̸= 0,

(2) The orthogonal projection of y on A is a scalar multiple of x:

PAy = λyx, λy ̸= 0,

if and only if the following condition holds:

(v) Either x ⊥ C and y ⊥ C, or x = ±y ∈ C.

Since cx, cy /∈ C, there is only one configuration in (v) that satisfies (ii) + (iv), that is cx ⊥ C and
cy ⊥ C. In this case, Lemma 13 shows that:

cos (∆θ) = cos (ϕ) ≥ cos (ϕmin) ,

∥PAcy∥ = ∥PBcx∥ = cos (ϕ) ,

PBcx = cos (ϕ) cy,

PAcy = cos (ϕ) cx.

(214)

Combining Eq. (212), Eq. (213) and Eq. (214), we have:

lim
N→∞

Lc
MCL − 2 log(N) = Ĵ (cos (∆θ) , ∥PBcx∥;κy, ν̃) + Ĵ (cos (∆θ) , ∥PAcy∥;κx, ν̃)

≥ Ĵ (cos (ϕ) , cos (ϕ) ;κy, ν̃) + Ĵ (cos (ϕ) , cos (ϕ) ;κx, ν̃).
(215)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A6) cx ⊥ C and cy ⊥ C.

Since Lemma 11 shows that Ĵ (cos (ϕ) , cos (ϕ) ;κ, ν̃) is a strictly decreasing function of cos (ϕ), we
have:

lim
N→∞

Lc
MCL − 2 log(N) = Ĵ (cos (∆θ) , ∥PBcx∥;κy, ν̃) + Ĵ (cos (∆θ) , ∥PAcy∥;κx, ν̃)

≥ Ĵ (cos (ϕ) , cos (ϕ) ;κy, ν̃) + Ĵ (cos (ϕ) , cos (ϕ) ;κx, ν̃)

≥ Ĵ (cos (ϕmin) , cos (ϕmin) ;κy, ν̃) + Ĵ (cos (ϕmin) , cos (ϕmin) ;κx, ν̃),

(216)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A7) ∆θ = cos−1 (cx · cy) = ϕmin.

Replacing Ĵ (w, t;κ, ν) with J̃ (w,w, t;κ, ν), we conclude that:

lim
N→∞

Lc
MCL − 2 log(N)

= J̃ (cos (∆θ) , cos (∆θ) , ∥PBcx∥;κy, ν̃) + J̃ (cos (∆θ) , cos (∆θ) , ∥PAcy∥;κx, ν̃)

≥ J̃ (cos (∆θ) , cos (∆θ) , cos (∆θ) ;κy, ν̃) + J̃ (cos (∆θ) , cos (∆θ) , cos (∆θ) ;κx, ν̃)

≥ J̃ (cos (ϕmin) , cos (ϕmin) , cos (ϕmin) ;κy, ν̃) + J̃ (cos (ϕmin) , cos (ϕmin) , cos (ϕmin) ;κx, ν̃),
(217)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:
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(A6) cx ⊥ C and cy ⊥ C.

(A7) ∆θ = cos−1 (cx · cy) = ϕmin.

E.3.2 AUXILIARY THEOREMS PART 3

In this subsection, we provide details and proofs of the auxiliary theorems (Theorem S5 and Theo-
rem S6) that support the proof of Theorem 3.
Theorem S5. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (SX \ C)N are
iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (SY \ C)N are iid samples from
µy = vMF(cy, κy). Let ν̃ = (h− 1)/2− 1 and κy > 0.

∀xi ∈ X , denote wi = xi · yi and wxi,cy = xi · cy . It holds that:

lim
N→∞

LX→Y(xi;Y )− log(N) = lim
N→∞

− log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

− log(N)

= −wi

τ
+ log

Iν̃

(
M̃κy

(
wxi,cy , ∥PBxi∥

))
M̃κy

(
wxi,cy , ∥PBxi∥

)ν̃
− log

(
Iν̃ (κy)

κν̃
y

)
= J̃

(
wi, wxi,cy , ∥PBxi∥;κ, ν̃

)
,

(218)

where ∀κ, τ > 0, M̃κ(·, ·) : [−1, 1]× [0, 1] → R+
0 is defined as:

M̃κ (w, t) =

√
κ2 +

2κw

τ
+

t2

τ2
, (219)

and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (220)

Suppose there exists an index i = c such that xc = cx, yc = cy . Denote wc = cx · cy . It holds that:

lim
N→∞

LX→Y(cx;Y )− log(N) = −wc

τ
+ log

Iν̃

(
M̃κy

(wc, ∥PBcx∥)
)

M̃κy (wc, ∥PBcx∥)ν̃

− log

(
Iν̃ (κy)

κν̃
y

)
= Ĵ (wc, ∥PBcx∥;κy, ν̃) = J̃ (wc, wc, ∥PBxi∥;κ, ν̃) .

(221)

Proof. Step 1: We start the proof by find the convergent function of LX→Y(xi;Y ) as N → ∞.
Same with Eq. (39) of Theorem S1, ∀xi ∈ X , the X -to-Y alignment of xi can be rewritten as:

LX→Y(xi;Y ) = − log
exp (xi · yi/τ)∑
j exp (xi · yj/τ)

= −xi · yi
τ

+ log

N
1

N

N∑
j=1

exp
(xi · yj

τ

)
= −xi · yi

τ
+ log

 1

N

N∑
j=1

exp
(xi · yj

τ

)+ log (N) .

(222)
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Lemma 2 shows that:

lim
N→∞

log

 1

N

N∑
j=1

exp
(xi · yj

τ

) = log
(

Ey∼µy

[
exp

(xi · y
τ

)])
. (223)

According to the moment-generating function of the vMF distribution:

Ey∼µy
[exp

(xi · y
τ

)
] = Ey∼µy

[
exp

(xi

τ
· y
)]

=
Iν̃
(
κ̃′
y

)
Iν̃ (κy)

(
κy

κ̃′
y

)ν̃

,

where κ̃′
y = ∥κycy +

PBxi

τ
∥2.

(224)

Then we have:

lim
N→∞

LX→Y(xi;Y )− log(N) = −xi · yi
τ

+ log

(
Iν̃
(
κ̃′
y

)
κ̃′ν̃
y

)
− log

(
Iν̃ (κy)

κν̃
y

)
. (225)

Step 2: we will transform LX→Y from a function of vectors to a function of angles between vectors.

Without loss of generality, we assume the coordinate of cy as

cy = (1, 0, · · · , 0), (226)

the hyperplane B as:

B =
{
x ∈ Rh : nA · x = 0

}
, where nB = (0, 0, · · · , 1). (227)

Let x̂i = PBxi, then we have:

cos
(
θxi,cy

)
= xi · cy = PBxi · cy = x̂i · cy. (228)

Define:

cos
(
θ̂xi,cy

)
=

x̂i

∥x̂i∥
· cy =

PBxi

∥PBxi∥
· cy, (229)

then we have:

∥PBxi∥ cos
(
θ̂xi,cy

)
= PBxi · cy = cos

(
θxi,cy

)
. (230)

And x̂i can be represented as:

x̂i = ∥PBxi∥
(
cos
(
θ̂xi,cy

)
, u sin

(
θ̂xi,cy

))
= ∥PBxi∥

(
cos
(
θ̂xi,cy

)
, u2 sin

(
θ̂xi,cy

)
, u3 sin

(
θ̂xi,cy

)
, . . . , uh−1 sin

(
θ̂xi,cy

)
, 0
)
,

(231)

where u = (0, u2, u3, . . . , uh−1, 0) ∼= Sh−3 ∈ Sh−1 is a unit vector orthogonal to the first and the
last axes with:

∥u∥ = 0 + u2
2 + u2

3 + · · ·+ u2
h−1 + 0 = 1. (232)

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

According to Eq. (226), Eq. (231) and Eq. (232), κ̃′
y (in Eq. (224)) can re-rewritten as:

κ̃′
y =

∥∥∥κycy +
xi

τ

∥∥∥
2

=

√√√√√κy +
∥PBxi∥ cos

(
θ̂xi,cy

)
τ

2

+

h−1∑
i=2

∥PBxi∥ sin
(
θ̂xi,cy

)
ui

τ

2

=

√√√√√κy +
∥PBxi∥ cos

(
θ̂xi,cy

)
τ

2

+
∥PBxi∥2 sin2

(
θ̂xi,cy

)
τ2

=

√√√√
κ2
y +

2κy∥PBxi∥ cos
(
θ̂xi,cy

)
τ

+
∥PBxi∥2

τ2

=

√
κ2
y +

2κy cos
(
θxi,cy

)
τ

+
∥PBxi∥2

τ2

= M̃κy

(
cos
(
θxi,cy

)
, ∥PBxi∥

)
.

(233)

Consider that wi = xi · yi, wxi,cy = cos
(
θxi,cy

)
= xi · cy , putting Eq. (225) and Eq. (233) together,

we have:

lim
N→∞

LX→Y(xi;Y )− log(N) = −xi · yi
τ

+ log

(
Iν̃
(
κ̃′
y

)
κ̃′ν̃
y

)
− log

(
Iν̃ (κy)

κν̃
y

)

= −wi

τ
+ log

Iν̃

(
M̃κy

(
wxi,cy , ∥PBxi∥

))
M̃κy

(
wxi,cy , ∥PBxi∥

)ν̃
− log

(
Iν̃ (κy)

κν̃
y

)
= J̃

(
wi, wxi,cy , ∥PBxi∥;κ, ν̃

)
.

(234)

When there exists a data pair i = c such that xc = cx, yc = cy , wi = wxi,cy = wc, then we have:

lim
N→∞

LX→Y(cx;Y )− log(N) = −wc

τ
+ log

Iν̃

(
M̃κy

(wc, ∥PBcx∥)
)

M̃κy
(wc, ∥PBcx∥)ν̃

− log

(
Iν̃ (κy)

κν̃
y

)
= Ĵ (wc, ∥PBcx∥;κy, ν̃) = J̃ (wc, wc, ∥PBxi∥;κ, ν̃) .

(235)

Theorem S6. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (SX \ C)N are
iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (SY \ C)N are iid samples from
µy = vMF(cy, κy). Let ν̃ = (h− 1)/2− 1. Suppose there exists an index i = c such that xc = cx,
yc = cy. Denote ∆θ = cos−1(cx · cy) and assume that cx, cy /∈ C with cx · cy > 0. For any fixed
κx, κy > 0 and ∀ϕ ∈ [0, π

2 ], it holds that:

lim
N→∞

LX→Y(cx;Y )− log(N) = Ĵ (wc, ∥PBcx∥;κy, ν̃) ≥ Ĵ (∥PAcy∥, cos (ϕ) ;κy, ν̃), (236)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(B4) cx ⊥ C.
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(B5) cx =
PAcy

∥PAcy∥ .

Proof. Step 1: Similarly to the proof of Theorem S4 in Sec. E.2.2, we start the proof by finding
the convergent function of LX→Y(cx;Y ) as N → ∞. Denote wc = cx · cy. ∀κy > 0, as proven
in Theorem S5:

lim
N→∞

LX→Y(cx;Y )− log(N) = lim
N→∞

− log
exp (cx · cy/τ)∑N
j=1 exp (cx · yj/τ)

− log(N)

= −wc

τ
+ log

Iν̃

(
M̃κy (wc, ∥PBcx∥)

)
M̃κy (wc, ∥PBcx∥)ν̃

− log

(
Iν̃ (κy)

κν̃
y

)
= Ĵ (wc, ∥PBcx∥;κy, ν̃),

(237)

where ∀κ, τ > 0, Ĵ (·, ·;κ, ν̃) is a function on [−1, 1]× [0, 1] and M̃κ(·, ·) : [−1, 1]× [0, 1] → R+
0

is defined as:

M̃κ (w, t) =

√
κ2 +

2κw

τ
+

t2

τ2
. (238)

and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (239)

Step 2: Next, we find the minimal value and the optimal condition of convergent function.

∀cx ∈ SX , ϕ ∈ [0, π
2 ] it holds that:

0 ≤ cos (ϕ) ≤ ∥PBcx∥ ≤ 1. (240)

As shown in Lemma 10, ∀wc ∈ [0, 1], Ĵ (w = wc, t;κy, ν̃) is a strictly increasing function of t on
(0, 1]. Therefore, it holds that:

Ĵ (wc, cos (ϕ) ;κy, ν̃) ≤ Ĵ (wc, ∥PBcx∥;κy, ν̃) ≤ Ĵ (wc, 1;κy, ν̃). (241)

where equality in the above chain holds if and only if the following conditions are satisfied:

(i) The first inequality becomes equality: cx ⊥ C.

(ii) The second inequality becomes equality: cx ∈ C.

According to Lemma 5 (set s = cos (ϕ)), Ĵ (wc, cos (ϕ) ;κy, ν̃) is a strictly decreasing function on
wc when wc ≥ 0. Also, Lemma 12 shows that:

−∥PAcy∥ ≤ wc ≤ ∥PAcy∥, (242)

where

0 ≤ cos (ϕ) < ∥PAcy∥ < 1. (243)

Therefore, when 0 ≤ wc ≤ ∥PAcy∥, it holds that:
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Ĵ (wc, cos (ϕ) ;κy, ν̃) ≥ Ĵ (∥PAcy∥, cos (ϕ) ;κy, ν̃), (244)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(iii) cx =
PAcy

∥PAcy∥ .

Combining Eq. (237), Eq. (241) and Eq. (244), we conclude:

lim
N→∞

LX→Y(cx;Y )− log(N) = Ĵ (wc, ∥PBcx∥;κy, ν̃) ≥ Ĵ (∥PAcy∥, cos (ϕ) ;κy, ν̃), (245)

and equality is attained if and only if there exists a configuration of (X,Y ) such that:

(B4) cx ⊥ C.

(B5) cx =
PAcy

∥PAcy∥ .

E.3.3 TECHNICAL LEMMAS PART 3

In this subsection, we provide details and proofs of technical lemmas (Lemma 10, Lemma 11,
Lemma 12 and Lemma 13) that support the proof of Theorem 3, Theorem S5 and Theorem S6.

Lemma 10. ∀κ, ν, τ > 0 and wc ∈ [0, 1], a function Ĵt=s (·;κ, ν) : (0, 1] → R is defined as:

Ĵw=ws (t;κ, ν) = −ws

τ
+ log

Iν

(
M̃w=ws

(t)
)

M̃κ (t)
ν

− log

(
Iν (κ)

κν

)
= Ĵ (w = ws, t;κ, ν) = J̃ (w = ws, w = ws, t;κ, ν) ,

(246)

where M̃κ (·) : (0, 1] → R+ is defined as:

M̃w=ws
(t) =

√
κ2 +

2κws

τ
+

t2

τ2
= M̃κ (w = ws, t) , (247)

and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (248)

It holds that, for any fixed ws, Ĵw=ws (·) is a strictly increasing function on (0, 1].

Proof. Let us first decompose the function J . Denote a constant and a function C1 and G2 (t) as:

C1 = −ws

τ
,

G3 (m) = log (Iν (m))− ν log (m) ,

G2 (t) = G3

(
M̃w=ws

(t)
)

= log
(
Iν

(
M̃w=ws

(t)
))

− ν log
(
M̃w=ws

(t)
)
.

(249)
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Denote the function G (t) and the constant C as:

G (t) = C1 +G2 (t) ,

C = − log

(
Iν (κ)

κν

)
.

(250)

Then the function Ĵw=ws
can be written as:

Ĵw=ws
(t;κ, ν) = −ws

τ
+ log

Iν

(
M̃w=ws (t)

)
M̃w=ws

(t)
ν

− log

(
Iν (κ)

κν

)
= G (t) + C.

(251)

Now, we investigate derivatives of Ĵw=ws .

According to Lemma 7, the first derivative of G3 (m) is:

G′
3 (m) =

Iν+1 (m)

Iν (m)
∈ (0, 1). (252)

The derivative of M̃w=ws
is:

M̃ ′
w=ws

(t) =
d

dt

(
κ2 +

2κws

τ
+

t2

τ2

)1/2

=
1

2

(
κ2 +

2κws

τ
+

t2

τ2

)−1/2

· 2 t

τ2

=
t

τ2
1

M̃w=ws
(t)

> 0.

(253)

Then, the first derivative of G2 is:

G′
2 (t) = G′

3

(
M̃w=ws

(t)
)
M̃ ′

w=ws
(t)

=
Iν+1

(
M̃w=ws

(t)
)

Iν

(
M̃w=ws

(t)
) M̃ ′

w=ws
(t)

=
t

τ2
1

M̃w=ws (t)

Iν+1

(
M̃w=ws

(t)
)

Iν

(
M̃w=ws (t)

)
> 0.

(254)

Therefore, we have:

Ĵ ′
w=ws

(t;κ, ν) = G′ (t) = G′
2 (t)

=
t

τ2
1

M̃w=ws (t)

Iν+1

(
M̃w=ws

(t)
)

Iν

(
M̃w=ws (t)

)
> 0.

(255)

So we can conclude that, for any fixed ws, Ĵw=ws (·) is a strictly increasing function on (0, 1].
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Lemma 11. ∀κ, ν, τ > 0, a function Ĵ (·;κ, ν) : [−1, 1] → R is defined as:

Ĵt=w (w;κ, ν) = −w

τ
+ log

Iν

(
M̃t=w (w)

)
M̃t=w (w)

ν

− log

(
Iν (κ)

κν

)
= Ĵ (w, t = w;κ, ν) = J̃ (w,w, t = w;κ, ν) ,

(256)

where M̃t=w (·) : [−1, 1] → R+ is defined as:

M̃t=w (w) =

√
κ2 +

2κw

τ
+

w2

τ2
= |κ+

w

τ
| = M̃κ (w, t = w) , (257)

and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (258)

It holds that Ĵt=w (·) is a strictly decreasing function when w ∈ [0, 1].

Proof. Let us first decompose the function Ĵt=w. Denote the functions G1 (w) and G2 (w) as:

G1 (w) = −w

τ
,

G3 (m) = log (Iν (m))− ν log (m) ,

G2 (w) = G3

(
M̃t=w (w)

)
= log

(
Iν

(
M̃t=w (w)

))
− ν log

(
M̃t=w (w)

)
.

(259)

Denote the function G (w) and the constant C as:

G (w) = G1 (w) +G2 (w) ,

C = − log

(
Iν (κ)

κν

)
.

(260)

Then the function Ĵt=w can be written as:

Ĵt=w (w;κ, ν) = −w

τ
+ log

Iν

(
M̃t=w (w)

)
M̃t=w (w)

ν

− log

(
Iν (κ)

κν

)
= G (w) + C.

(261)

Now, we investigate derivatives of Ĵt=w.

The first derivative of G1 is:

G′
1 (w) = −1

τ
< 0. (262)

According to Lemma 7, the first derivative of G3 (m) is:
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G′
3 (m) =

Iν+1 (m)

Iν (m)
∈ (0, 1). (263)

When w ∈ [0, 1], the derivative of M̃t=w is:

M̃ ′
t=w (w) =

1

τ
. (264)

Then, the first derivative of G2 is:

G′
2 (w) = G′

3

(
M̃t=w (w)

)
M̃ ′

t=w (w)

=
Iν+1

(
M̃t=w (w)

)
Iν

(
M̃t=w (w)

) M̃ ′
t=w (w)

=
1

τ

Iν+1

(
M̃t=w (w)

)
Iν

(
M̃t=w (w)

) .

(265)

Combining Eq. (262), Eq. (263) and Eq. (265), we have:

Ĵ ′
t=w (w;κ, ν) = G′ (w)

= −1

τ
+

1

τ

Iν+1

(
M̃t=w (w)

)
Iν

(
M̃t=w (w)

) =
1

τ

−1 +
Iν+1

(
M̃t=w (w)

)
Iν

(
M̃t=w (w)

)


< 0.

(266)

So we can conclude that Ĵt=w (·) is a strictly decreasing function on [0, 1].

Lemma 12. Let h ≥ 3 and A,B ∈ Rh be two distinct (h− 1)-dimensional linear subspaces, with
nA, nB being normal vectors and PA, PB being the orthogonal projectors on A and B, respectively.
Denote ϕ = cos−1

(
nA·nB

∥nA∥·∥nB∥

)
∈
(
0, π

2

)
as the angle between A and B. Let C = A ∩ B be an

(h− 2)-dimensional linear subspaces. For each fixed x ∈ SX = A ∩ Sh−1, ∀y ∈ SY = B ∩ Sh−1,
set w = x · y, it holds that:

−∥PB · x∥ ≤ w ≤ ∥PB · x∥, (267)

and equalities (extreme values) are attained if and only if the following conditions hold:

(C1) w = ∥PB · x∥ ⇔ y = PB ·x
∥PB ·x∥ .

(C2) w = −∥PB · x∥ ⇔ y = − PB ·x
∥PB ·x∥ .

Proof. Step 1: First, let us decompose the embedding space. Define two vectors eA and eB such
that:

eA ∈ SX , and eA ⊥ C,

eB ∈ SY , and eB ⊥ C.
(268)

Let C⊥ be the 2-dimensional orthogonal complement of C, and C⊥ satisfies:
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C⊥ = span {eA} ⊕ span {eB} ,
Rh = C ⊕ C⊥.

(269)

Since nA, nB ∈ C⊥, nA ⊥ eA and nB ⊥ eB , we have:

⟨eA, eB⟩ = ±⟨nA, nB⟩ , (270)

and we choose a pair of eA and eB such that:

⟨eA, eB⟩ = ⟨nA, nB⟩ = cos (ϕ) ∈ (0, 1). (271)

Therefore, ∀x ∈ SX = A ∩ Sh−1 and ∀y ∈ SY = B ∩ Sh−1, ∃uA, uB ∈ C ∩ Sh−1, such that
cos (θA) = x · eA and cos (θB) = y · eB . And then x and y can be represented as:

x = cos(θA)eA + sin(θA)uA,

y = cos(θB)eB + sin(θB)uB .
(272)

Using orthogonality, we have:

PB · eA = ⟨eA, eB⟩ eB = cos (ϕ) eB ,

PB · uA = uA,
(273)

and

PA · eB = ⟨eA, eB⟩ eA = cos (ϕ) eA,

PA · uB = uB .
(274)

Then the projections of (xi, yi) are:

PB · x = cos(θA) cos (ϕ) eB + sin(θA)uA,

PA · y = cos(θB) cos (ϕ) eA + sin(θB)uB .
(275)

Step 2: Next, we can investigate the range of w.

w = x · y
= cos(θA) cos(θB)eAeB + sin(θA) sin(θB)uAuB

= cos(θA) cos(θB) cos (ϕ) + sin(θA) sin(θB)uAuB .

(276)

Since uA, uB ∈ C and ∥uA∥ = ∥uB∥ = 1, then ∥uA · uB∥ ≤ 1. Denote f (·)± as:

f±(θB) = cos(θA) cos(θB) cos (ϕ)± sin(θA) sin(θB), (277)

then :

f−(θB) ≤ w ≤ f+(θB). (278)

Now, let us check the extreme values of f± (w). First, we find the derivative of f± (w):

f ′
±(θB) = − cos(θA) sin(θB) cos (ϕ)± sin(θA) cos(θB), (279)

then:
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f ′
±(θB) = 0 ⇒ tan(θB) = ± sin(θA)

cos(θA) cos (ϕ)
, (280)

and

w ≥ f−

(
arctan

(
− sin(θA)

cos(θA) cos (ϕ)

))
= −

√
sin2(θA) + cos2(θA) cos2(ϕ),

w ≤ f+

(
arctan

(
sin(θA)

cos(θA) cos (ϕ)

))
=

√
sin2(θA) + cos2(θA) cos2(ϕ).

(281)

Denote:

r(x) =

√
sin2(θA) + cos2(θA) cos2(ϕ) ∈ (0, 1). (282)

and therefore:

|w| ≤ r(x) < 1. (283)

Step 3: Last, we find the optimal condition of w. When θB = arctan
(

sin(θA)
cos(θA) cos(ϕ)

)
and uA = uB ,

w reaches its maximum. At this time:

cos(θB) =
cos(θA) cos(ϕ)

r
,

sin(θB) =
sin(θA)

r
.

(284)

Plugging Eq. (284) into Eq. (275), we get:

PB · x = cos(θA) cos (ϕ) eB + sin(θA)uA

= r cos(θB) cos (ϕ) eB + r sin(θB)uB

= ry,

(285)

and

∥PB · x∥ = ∥ry∥ = r. (286)

Therefore, w reaches its maximum if and only if the following condition holds:

(C1) y = PB ·x
∥PB ·x∥ .

When θB = arctan
(
− sin(θA)

cos(θA) cos(ϕ)

)
and uA = −uB , w reaches its minimum. At this time:

cos(θB) = −cos(θA) cos(ϕ)

r
,

sin(θB) =
sin(θA)

r
.

(287)

Plugging Eq. (287) into Eq. (275), we get:

PB · x = cos(θA) cos (ϕ) eB + sin(θA)uA

= −r cos(θB) cos (ϕ) eB − r sin(θB)uB

= −ry.

(288)
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and

∥PB · x∥ = ∥ − ry∥ = r. (289)

Therefore, w reaches its minimum if and only if the following condition holds:

(C2) y = − PB ·x
∥PB ·x∥ .

Lemma 13. Let h ≥ 3 and A,B ∈ Rh be two distinct (h− 1)-dimensional linear subspaces, with
nA, nB being normal vectors and PA, PB being the orthogonal projectors on A and B, respectively.
Denote ϕ = cos−1

(
nA·nB

∥nA∥·∥nB∥

)
∈
(
0, π

2

)
as the angle between A and B. Let C = A ∩ B be an

(h−2)-dimensional linear subspaces. For x ∈ SX = A∩Sh−1, y ∈ SY = B∩Sh−1, the projections
of x and y are collinear with the other vector:

(i) The orthogonal projection of x on B is a scalar multiple of y:

PBx = λxy, λx ̸= 0,

(ii) The orthogonal projection of y on A is a scalar multiple of x:

PAy = λyx, λy ̸= 0,

if and only if the following conditions holds:

(C3) Either x ⊥ C and y ⊥ C, or x = ±y ∈ C.

Moreover, in the first case (x ⊥ C, y ⊥ C), it holds that:

⟨x, y⟩ = cos (ϕ) , PBx = (cos (ϕ)) y, PAy = (cos (ϕ))x,

while in the second case (x = ±y ∈ C), it holds that:

PBx = x = (±1) y, PAy = y = (±1)x.

Proof. Step 1: First, we need to decompose the embedding space. This step is the same with Step 1
of Sec. E.3.3. For convenience in reading, we repeat this step here.

Define two vectors eA and eB such that:

eA ∈ SX , and eA ⊥ C,

eB ∈ SY , and eB ⊥ C.
(290)

Let C⊥ be the 2-dimensional orthogonal complement of C, and C⊥ satisfies:

C⊥ = span {eA} ⊕ span {eB} ,
Rh = C ⊕ C⊥.

(291)

Since nA, nB ∈ C⊥, nA ⊥ eA and nB ⊥ eB , we have:

⟨eA, eB⟩ = ±⟨nA, nB⟩ , (292)

and we choose a pair of eA and eB such that:

⟨eA, eB⟩ = ⟨nA, nB⟩ = cos (ϕ) ∈ (0, 1). (293)
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Therefore, ∀x ∈ SX = A ∩ Sh−1 and ∀y ∈ SY = B ∩ Sh−1, ∃uA, uB ∈ C ∩ Sh−1, such that
cos (θA) = x · eA and cos (θB) = y · eB . And then x and y can be represented as:

x = cos(θA)eA + sin(θA)uA,

y = cos(θB)eB + sin(θB)uB .
(294)

Using orthogonality, we have:

PB · eA = ⟨eA, eB⟩ eB = cos (ϕ) eB ,

PB · uA = uA,
(295)

and

PA · eB = ⟨eA, eB⟩ eA = cos (ϕ) eA,

PA · uB = uB .
(296)

Then the projections of (xi, yi) are:

PB · x = cos(θA) cos (ϕ) eB + sin(θA)uA,

PA · y = cos(θB) cos (ϕ) eA + sin(θB)uB .
(297)

Step 2: ⇒ Next, we prove the sufficiency. If conditions (i) and (ii) hold, then:

cos(θA) cos (ϕ) eB + sin(θA)uA = λx cos(θB)eB + λx sin(θB)uB ,

cos(θB) cos (ϕ) eA + sin(θB)uB = λy cos(θA)eA + λy sin(θA)uA.
(298)

Decompose both equations into C and C⊥. In C, we get:

sin(θA)uA = λx sin(θB)uB ,

sin(θB)uB = λy sin(θA)uA.
(299)

and in C⊥ we get:

cos(θA) cos (ϕ) eB = λx cos(θB)eB ,

cos(θB) cos (ϕ) eA = λy cos(θA)eA.
(300)

Then it can be concluded from Eq. (299) that:

sin(θA)uA = λxλy sin(θA)uA,

sin(θB)uB = λxλy sin(θB)uB .
(301)

Eq. (301) leads to two scenarios:

(S1) λxλy = 1.

(S2) sin(θA) = sin(θB) = 0.

When (S1) holds, multiply two equations in Eq. (300) and we get:

cos(θA) cos(θB) cos
2(ϕ) = cos(θA) cos(θB). (302)

And since:

0 < cos2(ϕ) < 1, (303)
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we can conclude that:

cos(θA) = cos(θB) = 0,

sin(θA) = sin(θB) = ±1.
(304)

Plugging Eq. (304) into Eq. (299), we get:

uA = λxuB ,

uB = λyuA.
(305)

Since ∥uA∥ = ∥uB∥ = 1, Eq. (305) ⇒ λx = λy = ±1⇒ uA = ±uB . And according to Eq. (294)
and we have:

x = ±y ∈ C. (306)

We conclude that (S1) ⇒ x = ±y ∈ C.

When (S2) holds, we have:

sin(θA) = sin(θB) = 0,

cos(θA) = cos(θB) = ±1.
(307)

Plugging Eq. (307) into Eq. (294), we have:

x = ±eA ⊥ C,

y = ±eB ⊥ C.
(308)

We conclude that (S2) ⇒ x ⊥ C and y ⊥ C.

So the sufficiency is confirmed.

Step 3: ⇐ Last, we prove the necessity. If x = ±y ∈ C, then

cos(θA) = cos(θB) = 0,

sin(θA) = sin(θB) = ±1.
(309)

and

x = uA,

y = uB ,
(310)

According to Eq. (297) and Eq. (310), we have:

PB · x = uA = x = ±y,

PA · y = uB = y = ±x.
(311)

Let λx = λy = ±1, conditions (i) and (ii) hold.

If x ⊥ C and y ⊥ C, then:

sin(θA) = sin(θB) = 0,

cos(θA) = cos(θB) = ±1.
(312)

and
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x = ±eA,

y = ±eB .
(313)

According to Eq. (297) and Eq. (313), we have:

PB · x = ± cos (ϕ) eB = ± cos (ϕ) y,

PA · y = ± cos (ϕ) eA = ± cos (ϕ)x.
(314)

Let λx = λy = ± cos (ϕ), conditions (i) and (ii) hold.

Therefore, the necessity is confirmed.
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E.4 DETAILS OF THEOREM 4

In this section, we provide proofs of Theorem 4 that is proposed in Sec. 4.2. We also provide
details and proofs of the auxiliary theorems (Theorem S7 and Theorem S8) and the technical lemmas
(Lemma 14 and Lemma 15) that support the proof Theorem 4. For convenience in reading, let us
recall some related notions and definitions.

• h,N ∈ N.
• Sh−1 =

{
z ∈ Rh : ∥z∥ = 1

}
.

• A =
{
x ∈ Rh : nA · x = 0

}
where nA is the normal vector of A.

• B =
{
y ∈ Rh : nB · y = 0

}
where nA is the normal vector of B.

• ϕ = cos−1
(

nx·ny

∥nx∥·∥ny∥

)
and 0 < ϕmin ≤ ϕ < π

2 .

• SX = Sh−1 ∩ A =
{
x ∈ Rh : ∥x∥ = 1, nA · x = 0

} ∼= Sh−2 ∈ Sh−1.

• SY = Sh−1 ∩ B =
{
y ∈ Rh : ∥y∥ = 1, nB · y = 0

} ∼= Sh−2 ∈ Sh−1.
• C = A ∩ B.
• hX = hY = h− 1.
• hC = h− 2.
• PA: the projection matrix of A.
• PB : the projection matrix of B.
• PC : the projection matrix of C.
• eA = {z ∈ SX : z ⊥ C}.
• eB = {z ∈ SY : z ⊥ C}.
• C⊥ = span {eA} ⊕ span {eB}
• Rh = C ⊕ C⊥.
• X = (x1, . . . , xN ) ∈ (SX)N .
• Y = (y1, . . . , yN ) ∈ (SY )

N .

• µx = 1
N

∑N
i=1 xi.

• µy = 1
N

∑N
i=1 yi.

• cx = µx

∥µx∥ .

• cy =
µy

∥µy∥ .

Definition (Multimodal Contrastive Loss (MCL Loss)). Let (X,Y ) be an N -pair configuration,
where X = (x1, . . . , xN ) ∈ (Sh−1)N and Y = (y1, . . . , yN ) ∈ (Sh−1)N . ∀τ > 0, the multimodal
contrastive loss LMCL(·, ·) : (Sh−1)N × (Sh−1)N → R is defined as:

LMCL =
1

N

N∑
i=1

Li
MCL, where Li

MCL = LX→Y(xi;Y ) + LY→X (yi;X).

Here, LX→Y is the X -to-Y alignment and LY→X is the Y-to-X alignment, which are defined
respectively as:

LX→Y(xi;Y ) = − log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

, LY→X (yi;X) = − log
exp (xi · yi/τ)∑N
j=1 exp (xj · yi/τ)

.

Definition(Modality Gap) Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈
(Sh−1)N and Y = (y1, . . . , yN ) ∈ (Sh−1)N . The modality gap between X and Y can be expressed
as the angle between the center representations:
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∆θ = cos−1(cx · cy).

Definition (vMF Distribution). ∀c ∈ Sh−1 and κ ≥ 0, the probability density of a random h-
dimensional unit vector z ∼ vMF(c, κ) is given by:

fh(z; c, κ) = Dh(κ)e
κc⊤z, where Dh(κ) =

κν

(2π)ν+1Iν(κ)
.

Here, ν = h/2− 1, and Iν (·) : R → R is the modified Bessel function of the first kind of order ν,
which is defined as:

Iν(x) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(x
2

)2k+ν

.

Definition (Function M̃ ). ∀κ, τ > 0, a function M̃κ(·, ·) : [−1, 1]× [0, 1] → R+
0 is defined as:

M̃κ (w, t) =

√
κ2 +

2κw

τ
+

t2

τ2
.

Definition (Function J̃ ). ∀κ, ν, τ > 0, J̃ (·, ·, ·;κ, ν) : [−1, 1]× [−1, 1]× [0, 1] → R is defined as:

J̃ (w1, w2, t;κ, ν) = −w1

τ
+ log

Iν

(
M̃κ(w2, t)

)
M̃κ(w2, t)ν

− log

(
Iν (κ)

κν

)
.

Definition (Function M ). ∀κ, τ > 0, a function Mκ (·) : [−1, 1] → R+
0 is defined as:

Mκ (w) =

√
κ2 +

2κw

τ
+

1

τ2

= M̃κ(w, 1).

Definition (Function J ). ∀κ, ν, τ > 0, a function J (·;κ, ν) : [−1, 1] → R is defined as:

J (w;κ, ν) = −w

τ
+ log

(
Iν (Mκ (w))

Mκ (w)
ν

)
− log

(
Iν (κ)

κν

)
= J̃ (w,w, 1;κ, ν) .

Definition (Function M̃ ). ∀κ, τ > 0, a function M̃κ(·, ·) : [−1, 1]× [0, 1] → R+
0 is defined as:

M̃κ (w, t) = M̃κ (w, t) .

Definition (Function Ĵ ). ∀κ, ν, τ > 0, a function Ĵ (·, ·;κ, ν) : [−1, 1]× [0, 1] → R is defined as:

Ĵ (w, t;κ, ν) = −w

τ
+ log

Iν

(
M̃κ(w, t)

)
M̃κ(w, t)ν

− log

(
Iν (κ)

κν

)
= J̃ (w,w, t;κ, ν) .
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E.4.1 PROOF OF THEOREM 4

In this subsection, we provide the proof of Theorem 4. For convenience in reading, we first restate
Theorem 4 here.

Theorem 4. [Restate] Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (SX\C)N

are iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (SY \ C)N are iid samples
from µy = vMF(cy, κy). Let ν̃ = (h − 1)/2 − 1. Denote ∆θ = cos−1 (cx · cy) and assume
cx, cy ⊥ C with cx · cy > 0. Suppose (X,Y ) achieves Intra-Modal Isometry. Then ∀i ∈ [N ], denote
θci = cos−1 (xi · cx) = cos−1 (yi · cy), and κ = κx = κy . Let θci ∈ (0, π

2 ) and κ > 0, it holds that:

lim
N→∞

Li̸=c
MCL − 2 log(N)

= J̃ (cos (∆θ) , cos (θ
c
i ) , ∥PBxi∥ ;κ, ν̃) + J̃ (cos (∆θ) , cos (θ

c
i ) , ∥PAyi∥ ;κ, ν̃)

≥ 2J̃
(
cos2 (θci ) cos (ϕmin) + sin2 (θci ) , cos (θ

c
i ) ,

√
cos2 (θci ) cos

2 (ϕmin) + sin2 (θci );κ, ν̃

)
,

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A8) PCxi = PCyi ̸= 0⃗.

(A9) ∆θ = cos−1 (cx · cy) = ϕmin.

Proof. According to Theorem S7, the convergent function of limN→∞ Li̸=c
MCL − 2 log(N) is:

lim
N→∞

Li̸=c
MCL − 2 log(N) = lim

N→∞
(LX→Y(xi̸=c;Y )− log(N) + LY→X (yi̸=c;X)− log(N))

= J̃ (wi, w
c
i , ∥PBxi∥ ;κy, ν̃) + J̃ (wi, w

c
i , ∥PAyi∥ ;κx, ν̃)

= 2J̃ (wi, w
c
i , t;κ, ν̃) ,

(315)

where

wi = cos2 (θci ) cos (∆θ) + (θci ) (PC · xi) · (PC · yi) ,
wc

i = cos (θci ) ,

t =

√
cos2 (θci ) cos

2 (∆θ) + sin2 (θci ).

(316)

And Theorem S8 shows the lower bound of the convergent function is:

2J̃ (wi, w
c
i , t;κ, ν̃) ≥ 2J̃ (wi,min, w

c
i , tmin;κ, ν̃) , (317)

where

wi,min = cos2 (θci ) cos (ϕmin) + sin2 (θci ) ,

tmin =

√
cos2 (θci ) cos

2 (ϕmin) + sin2 (θci ),
(318)

and equality is attained if and only if there exists a configuration of (X,Y ) such that:

(i) PC · xi = PC · yi.

(ii) ∆θ = ϕmin.

69



3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

Combining Eq. (315) and Eq. (318), we conclude that:

lim
N→∞

Li̸=c
MCL − 2 log(N)

= J̃ (cos (∆θ) , cos (θ
c
i ) , ∥PBxi∥ ;κ, ν̃) + J̃ (cos (∆θ) , cos (θ

c
i ) , ∥PAyi∥ ;κ, ν̃)

≥ 2J̃
(
cos2 (θci ) cos (ϕmin) + sin2 (θci ) , cos (θ

c
i ) ,

√
cos2 (θci ) cos

2 (ϕmin) + sin2 (θci );κ, ν̃

)
,

(319)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(A8) PCxi = PCyi ̸= 0⃗.

(A9) ∆θ = cos−1 (cx · cy) = ϕmin.

E.4.2 AUXILIARY THEOREMS PART 4

In this subsection, we provide details and proofs of the auxiliary theorems (Theorem S5 and Theo-
rem S7) that support the proof of Theorem 4.

Theorem S7. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (SX \ C)N

are iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (SY \ C)N are iid samples
from µy = vMF(cy, κy). Let ν̃ = (h − 1)/2 − 1. Denote ∆θ = cos−1 (cx · cy) and assume
cx, cy ⊥ C with cx · cy > 0. Suppose (X,Y ) achieves Intra-Modal Isometry. Then ∀i ∈ [N ], denote
θci = cos−1 (xi · cx) = cos−1 (yi · cy), and κ = κx = κy . Let κ > 0, it holds that:

lim
N→∞

Li̸=c
MCL − 2 log(N) = lim

N→∞
(LX→Y(xi̸=c;Y )− log(N) + LY→X (yi̸=c;X)− log(N))

= J̃ (wi, w
c
i , ∥PBxi∥ ;κy, ν̃) + J̃ (wi, w

c
i , ∥PAyi∥ ;κx, ν̃)

= 2J̃ (wi, w
c
i , t;κ, ν̃) ,

(320)

where

wi = cos2 (θci ) cos (∆θ) + (θci ) (PC · xi) · (PC · yi) ,
wc

i = cos (θci ) ,

t =

√
cos2 (θci ) cos

2 (∆θ) + sin2 (θci ).

(321)

Proof. Step 1: We first decompose limN→∞ Li̸=c
MCL − 2 log(N) into two parts:

lim
N→∞

Li̸=c
MCL − 2 log(N) = lim

N→∞
LX→Y(xi̸=c;Y )− log(N)

+ lim
N→∞

LY→X (yi̸=c;X)− log(N).
(322)

The convergent function of LX→Y(xi̸=c;Y ) as N → ∞. ∀i ∈ [N ], i ̸= c, xi ∈ X , denote
wi = xi · yi, wxi,cy = xi · cy and wyi,cx = yi · cx. ∀κy > 0, as prove in Theorem S5:
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lim
N→∞

LX→Y(xi;Y )− log(N) = lim
N→∞

− log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

− log(N)

= −wi

τ
+ log

Iν̃

(
M̃κy

(
wxi,cy , ∥PBxi∥

))
M̃κy

(
wxi,cy , ∥PBxi∥

)ν̃
− log

(
Iν̃ (κy)

κν̃
y

)
= J̃

(
wi, wxi,cy , ∥PBcx∥ ;κy, ν̃

)
,

(323)

where ∀κ, τ > 0, J̃ (·, ·, ·;κ, ν̃) is a function on [−1, 1] × [−1, 1] × [0, 1] and M̃κ(·, ·) : [−1, 1] ×
[0, 1] → R+

0 is defined as:

M̃κ (w, t) =

√
κ2 +

2κw

τ
+

t2

τ2
, (324)

and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

. (325)

When (X,Y ) achieves Intra-Modal Isometry, we have wxi,cy = xi · cx = yi · cx = wyi,cx Denote
wc

i = wxi,cy = wyi,cx = cos (θci ). This implies κx = κy = κ.

Then, Eq. (323) can be re-written as:

lim
N→∞

LX→Y(xi;Y )− log(N) = −wi

τ
+ log

Iν̃

(
M̃κ (w

c
i , ∥PBxi∥)

)
M̃κ (wc

i , ∥PBxi∥)ν̃

− log

(
Iν̃ (κ)

κν̃

)
= J̃ (wi, w

c
i , ∥PBcx∥ ;κ, ν̃) .

(326)

Similarly, the convergent function of LY→X (yi̸=c;X) as N → ∞ can be written as:

lim
N→∞

LY→X (yi;X)− log(N) = lim
N→∞

− log
exp (xi · yi/τ)∑N
j=1 exp (xi · yj/τ)

− log(N)

= −wi

τ
+ log

Iν̃

(
M̃κx

(wyi,cx , ∥PAyi∥)
)

M̃κx
(wyi,cx , ∥PAyi∥)ν̃

− log

(
Iν̃ (κx)

κν̃
x

)

= −wi

τ
+ log

Iν̃

(
M̃κ (w

c
i , ∥PAyi∥)

)
M̃κ (wc

i , ∥PAyi∥)ν̃

− log

(
Iν̃ (κ)

κν̃

)
= J̃ (wi, w

c
i , ∥PAyi∥ ;κ, ν̃) .

(327)

Step 2 Now, let us decompose the embedding space. Define two vectors eA and eB such that:

eA ∈ SX , and eA ⊥ C,

eB ∈ SY , and eB ⊥ C.
(328)

Let C⊥ be the 2-dimensional orthogonal complement of C, and C⊥ satisfies:
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C⊥ = span {eA} ⊕ span {eB} ,
Rh = C ⊕ C⊥.

(329)

Since nA, nB ∈ C⊥, nA ⊥ eA and nB ⊥ eB , we have:

⟨eA, eB⟩ = ±⟨nA, nB⟩ , (330)

and we choose a pair of eA and eB such that:

⟨eA, eB⟩ = ⟨nA, nB⟩ = cos (ϕ) ∈ (0, 1). (331)

Denote θi = cos−1 (wi). When cx, cy ⊥ C, ∆θ = ϕ. And without loss of generality, we can set the
coordinate as:

nA = (sin

(
∆θ

2

)
,− cos

(
∆θ

2

)
, 0, 0, · · · , 0),

nB = (− sin

(
∆θ

2

)
,− cos

(
∆θ

2

)
, 0, 0, · · · , 0),

cx = eA = (cos

(
∆θ

2

)
, sin

(
∆θ

2

)
, 0, 0, · · · , 0),

cy = eB = (cos

(
∆θ

2

)
,− sin

(
∆θ

2

)
, 0, 0, · · · , 0),

C = span{e3} ⊕ span{e3} ⊕ · · · ,⊕span{eh}.

(332)

Therefore, ∀xi ∈ SX = A ∩ Sh−1 and ∀yi ∈ SY = B ∩ Sh−1, ∃ux
i , u

y
i ∈ C ∩ Sh−1, such that:

xi = cos (θci ) eA + sin (θci )u
x
i = cos (θci ) cx + sin (θci )u

x
i ,

yi = cos (θci ) eB + sin (θci )u
y
i = cos (θci ) cy + sin (θci )u

y
i .

(333)

Using orthogonality, we have:

PB · eA = ⟨eA, eB⟩ eB = cos (∆θ) eB ,

PB · ux
i = ux

i ,
(334)

and

PA · eB = ⟨eA, eB⟩ eA = cos (∆θ) eA,

PA · uy
i = uy

i ,
(335)

and

PC · eA = PC · eB = 0,

PC · ux
i = ux

i ,

PC · uy
i = uy

i .

(336)

Then the projections of (xi, yi) are:

PB · xi = cos (θci ) cos (∆θ) eB + sin (θci )u
x
i = cos (θci ) cos (∆θ) cy + sin (θci )u

x
i ,

PA · yi = cos (θci ) cos (∆θ) eA + sin (θci )u
y
i = cos (θci ) cos (∆θ) cx + sin (θci )u

y
i ,

(337)

and
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PC · xi = sin (θci )u
x
i ,

PC · yi = sin (θci )u
y
i .

(338)

Therefore, we get:

wi = xi · yi = cos2 (θci ) cx · cy + sin2 (θci )u
x
i · uy

i

= cos2 (θci ) cos (∆θ) + sin2 (θci )u
x
i · uy

i

= cos2 (θci ) cos (∆θ) + (PC · xi) · (PC · yi) ,
(339)

∥PBxi∥ =
√

cos2 (θci ) cos
2 (∆θ) cy · cy + 2 cos (θci ) cos (∆θ) sin (θci ) cy · ux

i + sin2 (θci )u
x
i · ux

i

=
√
cos2 (θci ) cos

2 (∆θ) + 2 cos (θci ) cos (∆θ) sin (θci ) cy · ux
i + sin2 (θci )

=

√
cos2 (θci ) cos

2 (∆θ) + sin2 (θci ),

(340)

and

∥PAyi∥ =

√
cos2 (θci ) cos

2 (∆θ) cx · cx + 2 cos (θci ) cos (∆θ) sin (θci ) cx · uy
i + sin2 (θci )u

y
i · u

y
i

=
√
cos2 (θci ) cos

2 (∆θ) + 2 cos (θci ) cos (∆θ) sin (θci ) cy · u
y
i + sin2 (θci )

=

√
cos2 (θci ) cos

2 (∆θ) + sin2 (θci ),

= ∥PBxi∥ .
(341)

Let t = ∥PBxi∥ = ∥PAyi∥. Plugging Eq. (339), Eq. (340) and Eq. (341) into Eq. (322), Eq. (326)
and Eq. (327), we conclude that:

lim
N→∞

Li̸=c
MCL − 2 log(N) = lim

N→∞
LX→Y(xi̸=c;Y )− log(N)

+ lim
N→∞

LY→X (yi̸=c;X)− log(N)

= J̃ (wi, w
c
i , ∥PBxi∥ ;κ, ν̃) + J̃ (wi, w

c
i , ∥PAyi∥ ;κ, ν̃)

= 2J̃ (wi, w
c
i , t;κ, ν̃) ,

(342)

where

wi = xi · yi = cos2 (θci ) cos (∆θ) + (PC · xi) · (PC · yi) ,
wc

i = xi · cy = yi · cx = cos (θci ) ,

t =

√
cos2 (θci ) cos

2 (∆θ) + sin2 (θci ).

(343)

Theorem S8. Let (X,Y ) be an N -pair configuration, where X = (x1, . . . , xN ) ∈ (SX \ C)N are
iid samples from µx = vMF(cx, κx), and Y = (y1, . . . , yN ) ∈ (SY \ C)N are iid samples from
µy = vMF(cy, κy). Let ν̃ = (h− 1)/2− 1. Denote ∆θ = cos−1 (cx · cy) and assume cx, cy ⊥ C
with cx · cy > 0. ∀i ∈ [N ], suppose θci = cos−1 (xi · cx) = cos−1 (yi · cy) ∈ (0, π

2 ) and κ > 0, it
holds that:

J̃ (wi, w
c
i , t;κ, ν̃) ≥ J̃ (wi,min, w

c
i , tmin;κ, ν̃) , (344)
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where

wi = cos2 (θci ) cos (∆θ) + (PC · xi) · (PC · yi) ,
wc

i = cos (θci ) ,

t =

√
cos2 (θci ) cos

2 (∆θ) + sin2 (θci ),

wi,min = cos2 (θci ) cos (ϕmin) + sin2 (θci ) ,

tmin =

√
cos2 (θci ) cos

2 (ϕmin) + sin2 (θci ),

(345)

and equality is attained if and only if there exists a configuration of (X,Y ) such that:

(B6) PC · xi = PC · yi.

(B7) ∆θ = ϕmin.

Proof. Step 1: Similarly to the proof of Theorem S6 in Sec. E.3.2, we start the proof by finding the
convergent function of limN→∞ Li̸=c

MCL − 2 log(N) as N → ∞. Let wi =

As proven in Theorem S7:

lim
N→∞

Li̸=c
MCL − 2 log(N) = lim

N→∞
(LX→Y(xi̸=c;Y )− log(N) + LY→X (yi̸=c;X)− log(N))

= J̃ (wi, w
c
i , ∥PBxi∥ ;κ, ν̃) + J̃ (wi, w

c
i , ∥PAyi∥ ;κ, ν̃)

= 2J̃ (wi, w
c
i , t;κ, ν̃) .

(346)

∀κ, ν, τ > 0, J̃ (·, ·, ·;κ, ν) : [−1, 1]× [−1, 1]× [0, 1] → R is defined as:

J̃ (w1, w2, t;κ, ν) = −w1

τ
+ log

Iν

(
M̃κ(w2, t)

)
M̃κ(w2, t)ν

− log

(
Iν (κ)

κν

)
, (347)

and M̃κ(·, ·) : [−1, 1]× [0, 1] → R+
0 is defined as:

M̃κ (w, t) =

√
κ2 +

2κw

τ
+

t2

τ2
. (348)

and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

, (349)

and

wi = cos2 (θci ) cos (∆θ) + sin2 (θci ) (PC · xi) · (PC · yi) ,
wc

i = cos (θci ) ,

t =

√
cos2 (θci ) cos

2 (∆θ) + sin2 (θci ).

(350)

Step 2:

According to the Cauchy-Schwarz inequality and Eq. (338):

(PC · xi) · (PC · yi) ≤ sin2 (θci ) , (351)
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where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(B6) PC · xi = PC · yi.

And therefore:

wi = cos2 (θci ) cos (∆θ) + (PC · xi) · (PC · yi)
≤ cos2 (θci ) cos (∆θ)+ ≤ sin2 (θci ) ,

(352)

and then J̃ (wi, w
c
i , t;κ, ν̃) in Eq. (346) can be bounded below by:

J̃ (wi, w
c
i , t;κ, ν̃) ≥ J̃ ( cos2 (θci ) cos (∆θ) + sin2 (θci ) ,

cos (θci ) ,√
cos2 (θci ) cos

2 (∆θ) + sin2 (θci );κ, ν̃).

(353)

Here, for any given non-center pair (xi, yi)i̸=c, θci is fixed, then the RHS of Eq. (353) becomes a
function of cos (∆θ).

Denote:

f1 (cos (∆θ)) := cos2 (θci ) cos (∆θ) + sin2 (θci ) ,

f2 (cos (∆θ)) :=

√
cos2 (θci ) cos

2 (∆θ) + sin2 (θci ),
(354)

then the Eq. (346) can be re-written as:

J̃ (wi, w
c
i , t;κ, ν̃) ≥ J̃ (f1 (cos (∆θ)) , cos (θ

c
i ) , f2 (cos (∆θ)) ;κ, ν̃) . (355)

According to Lemma 14, J̃ (f1 (cos (∆θ)) , cos (θ
c
i ) , f2 (cos (∆θ)) ;κ, ν̃) is a decreasing function

of cos (∆θ) when θci ∈ [0, π
2 ], we have:

J̃ (f1 (cos (∆θ)) , cos (θ
c
i ) , f2 (cos (∆θ))) ≥ J̃ (f1 (cos (ϕmin)) , cos (θ

c
i ) , f2 (cos (ϕmin))) .

(356)

where equality is attained if and only if there exists a configuration of (X,Y ) such that:

(B7) ∆θ = ϕmin.

Combining Eq. (351) and Eq. (356), we conclude that:

J̃ (wi, w
c
i , t;κ, ν̃) ≥ J̃ (wi,min, w

c
i , tmin;κ, ν̃) , (357)

where

wi = cos2 (θci ) cos (∆θ) + (PC · xi) · (PC · yi) ,
wc

i = cos (θci ) ,

t =

√
cos2 (θci ) cos

2 (∆θ) + sin2 (θci ),

wi,min = cos2 (θci ) cos (ϕmin) + sin2 (θci ) ,

tmin =

√
cos2 (θci ) cos

2 (ϕmin) + sin2 (θci ).

(358)

and equality is attained if and only if there exists a configuration of (X,Y ) such that:
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(B6) PC · xi = PC · yi.

(B7) ∆θ = ϕmin.

E.4.3 PROOFS COROLLARY 2,3,4

In this subsection, we provide the proofs of Corollary 2, Corollary 3 and Corollary 4. Note that these
corollaries all follow the conditions described in Theorem 3 and Theorem 4. For convenience in
reading, we restate Corollary 2,3 4 before the proofs.

Corollary 2. ∀i ∈ [N ], i ̸= c, if cx, cy ⊥ C and PCxi = PCyi ̸= 0⃗ and ϕ > 0, then the following
holds:

(A10) (xi, yi)i̸=c are not perfectly aligned.

Proof. ∀(xi, yi)i̸=c, denote wi = xi · yi. (xi, yi) are perfectly aligned when wi reach its maximum.

According to Lemma 12, when xi is fixed wi is maximized if and only if:

(i) yi =
PB ·xi

∥PB ·xi∥ .

And when yi is fixed wi is maximized if and only if:

(ii) xi =
PA·yi

∥PA·yi∥ .

According to Lemma 13, when ϕ > 0, xi, yi ̸⊥ C and xi, yi /∈ C, we have:

yi ̸=
PB · xi

∥PB · xi∥
,

xi ̸=
PA · yi
∥PA · yi∥

.

(359)

Therefore, (xi, yi)i̸=c are not perfectly aligned.

Corollary 3. ∀i ∈ [N ], i ̸= c, if cx, cy ⊥ C, PCxi = PCyi and (xi, yi)i̸=c ∈ Sh−1 \ C, then
(xi, yi)i̸=c are perfectly aligned if the following condition holds:

(A11) ∆θ = ϕ = 0.

Proof. According to Eq. (337) and Eq. (338) in the proof of Theorem S7, the projections of (xi, yi)
are:

PB · xi = cos (θci ) cos (∆θ) eB + sin (θci )u
x
i = cos (θci ) cos (∆θ) cy + sin (θci )u

x
i ,

PA · yi = cos (θci ) cos (∆θ) eA + sin (θci )u
y
i = cos (θci ) cos (∆θ) cx + sin (θci )u

y
i ,

(360)

and

PC · xi = sin (θci )u
x
i ,

PC · yi = sin (θci )u
y
i .

(361)

Then, when ϕ = ∆θ = 0
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PB · xi = PC · xi = PC · yi = PA · yi, (362)

and

xi = PB · xi = PA · yi = yi. (363)

In this case, (xi, yi)i̸=c are not perfectly aligned.

Corollary 4. ∀i ∈ [N ], i ̸= c, if cx, cy ⊥ C and PCxi = PCyi, then the following holds:

(A12) ( PCxi

∥PCxi∥ ,
PCyi

∥PCyi∥ )i̸=c are perfectly aligned

Proof. Denote:

x∗
i =

PCxi

∥PCxi∥
,

y∗i =
PCyi

∥PCyi∥
.

(364)

Since PCxi = PCyi, then:

x∗
i = y∗i . (365)

In this case, (x∗
i , y

∗
i )i̸=c are not perfectly aligned.

E.4.4 TECHNICAL LEMMAS PART 4

In this subsection, we provide details and proofs of technical lemmas (Lemma 14 and Lemma 15)
that support the proof of Theorem 4, Theorem S7 and Theorem S8.

Lemma 14. ∀κ, ν, τ > 0, a function J̄ (·;κ, ν) : (0, 1] → R is defined as:

J̄ (wc;κ, ν) = J̃ (f1 (wc) , cos (θ
c
i ) , f2 (wc) ;κ, ν̃) , (366)

where f1 (·) : (0, 1] → R+
0 and f2 (·) : [0, 1] → R+

0 are defined as:

f1 (wc) := cos2 (θci )wc + sin2 (θci ) ,

f2 (wc) :=

√
cos2 (θci )w

2
c + sin2 (θci ).

(367)

and J̃ (·, ·, ·;κ, ν) : [−1, 1]× [−1, 1]× [0, 1] → R is defined as:

J̃ (w1, w2, t;κ, ν) = −w1

τ
+ log

Iν

(
M̃κ(w2, t)

)
M̃κ(w2, t)ν

− log

(
Iν (κ)

κν

)
, (368)

and M̃κ(·, ·) : [−1, 1]× [0, 1] → R+
0 is defined as:

M̃κ (w, t) =

√
κ2 +

2κw

τ
+

t2

τ2
, (369)
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and Iν is the modified Bessel function of the first kind of order ν, which is defined as:

Iν (m) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(m
2

)2k+ν

, (370)

It holds that, for any fixed θci ∈ [0, π
2 ], J̄ (·) is a strictly decreasing function on (0, 1].

Proof. Let us first decompose the function J . Denote a constant and a function C1 and G2 (t) as:

G1 (wc) = −cos2 (θci )wc

τ
,

G3 (m) = log (Iν (m))− ν log (m) ,

G2 (wc) = G3

(
M̃κ (cos (θ

c
i ) , f2 (wc))

)
= log

(
Iν

(
M̃κ (cos (θ

c
i ) , f2 (wc))

))
− ν log

(
M̃κ (cos (θ

c
i ) , f2 (wc))

)
.

(371)

Denote the function G (wc) and the constant C as:

G (wc) = G2 (wc) +G2 (wc) ,

C = − log

(
Iν (κ)

κν

)
.

(372)

Then the function J̄ can be written as:

J̄ (wc;κ, ν) = −cos2 (θci )wc

τ
+ log

Iν

(
M̃κ (cos (θ

c
i ) , f2 (wc))

)
M̃κ (cos (θci ) , f2 (wc))

ν

− log

(
Iν (κ)

κν

)
= G (wc) + C.

(373)

Now, we investigate derivatives of G (wc).

The first derivative of G1 is:

G′
1 (wc) = −cos2 (θci )

τ
< 0. (374)

According to Lemma 7, the first derivative of G3 (m) is:

G′
3 (m) =

Iν+1 (m)

Iν (m)
∈ (0, 1). (375)

The derivative of M̃κ with respect to is f2
2 (wc):

M̃ ′
κ (cos (θ

c
i ) , f2 (wc)) =

∂

∂f2
2 (wc)

M̃κ (cos (θ
c
i ) , f2 (wc))

=
∂

∂f2
2 (wc)

(
κ2 +

2κ cos (θci )

τ
+

f2
2 (wc)

τ2

)1/2

=
1

2

(
κ2 +

2κ cos (θci )

τ
+

f2
2 (wc)

τ2

)−1/2

· 1

τ2

=
1

2τ2
1

M̃κ (cos (θci ) , f2 (wc))

> 0.

(376)
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The derivative of f2
2 is:

f2′
2 (wc) =

d

dwc

(
cos2 (θci )w

2
c + sin2 (θci )

)
= 2 cos2 (θci )wc

≥ 0.

(377)

Let m = M̃κ (cos (θ
c
i ) , f2 (wc)). Then, the first derivative of G2 is:

G′
2 (wc) = G′

3 (m) M̃ ′
κ (cos (θ

c
i ) , f2 (wc)) f

2′
2 (wc)

=
Iν+1 (m)

Iν (m)

1

2τ2m
2 cos2 (θci )wc

=
cos2 (θci )wc

τ2
1

m

Iν+1 (m)

Iν (m)

> 0.

(378)

Combining Eq. (374) and Eq. (378), we have:

J̄ ′ (wc;κ, ν) = G′ (wc) = G′
1 (t) +G′

2 (t)

=
cos2 (θci )

τ

(
−1 +

wc

τ

1

m

Iν+1 (m)

Iν (m)

)
.

(379)

Since 0 < wc < 1, then:

0 ≤ w2
c ≤ 1 ⇔ sin2 (θci ) ≥ sin2 (θci )w

2
c

⇔ sin2 (θci ) ≥ w2
c − cos2 (θci )w

2
c

⇔ cos2 (θci )w
2
c + sin2 (θci ) ≥ w2

c

⇔ f2
2 (wc) ≥ w2

c .

(380)

Therefore, consider θci ∈ [0, π
2 ], we have:

m2 = M̃2
κ (cos (θci ) , f2 (wc))

= κ2 +
2κ cos (θci )

τ
+

f2
2 (wc)

τ2

≥ κ2 +
2κ cos (θci )

τ
+

w2
c

τ2

≥ w2
c

τ2

≥ 0,

(381)

which implies:

m ≥ wc

τ
⇔ wc

τ

1

m
≤ 1. (382)

Plugging Eq. (375) and Eq. (382) into Eq. (379), we have:

J̄ (wc;κ, ν) =
cos2 (θci )

τ

(
−1 +

wc

τ

1

m

Iν+1 (m)

Iν (m)

)
< 0.

(383)

So we can conclude that, for any fixed θci ∈ [0, π
2 ], J̄ (·) is a strictly decreasing function on (0, 1].
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Lemma 15. Let X be an N -point configuration, where X = (x1, . . . , xN ) ∈ (Sh−1)N are iid
samples from µ = vMF(c, κ). When κ is sufficiently large, ∀i, j ∈ [K], i ̸= j, it holds that:

P (xi · xj ≥ 0) ≈ 1. (384)

Proof. Let X ∼ vMF(c, κ) on Sh−1 and set U = c⊤X = cosΘ ∈ [−1, 1]. Then:

P (X · c ≥ 0) =

∫ 1

0
eκu

(
1− u2

) p−3
2 du∫ 1

−1
eκu (1− u2)

p−3
2 du

. (385)

Using standard integral representations of the modified Bessel and modified Struve functions,

Iν(z) =
(z/2)ν

√
πΓ
(
ν + 1

2

) ∫ 1

−1

ezt
(
1− t2

)ν− 1
2 dt,

ν(z) =
(z/2)ν

√
πΓ
(
ν + 1

2

) ∫ 1

0

2 sinh(zt)
(
1− t2

)ν− 1
2 dt,

(386)

with ν = h/2− 1, the ratio simplifies to the neat closed form

P (X · c ≥ 0) =
1

2

(
1 +

Lν(κ)

Iν

)
(387)

where Lν the modified Struve function. And we list numerical values of this probability:

• h = 128:

κ 1 5 10 20 30 50 100 200
P 0.5353 0.6710 0.8117 0.9609 0.9956 1.0000 1.0000 1.0000

• h = 512:

κ 1 5 10 20 30 50 100 200
P 0.5176 0.5875 0.6708 0.8116 0.9075 0.9863 1.0000 1.0000

• h = 1024:

κ 1 5 10 20 30 50 100 200
P 0.5125 0.5621 0.6227 0.7340 0.8258 0.9409 0.9991 1.0000
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