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ABSTRACT

Multimodal contrastive learning (MCL) aims to embed data from different modali-
ties in a shared embedding space. However, empirical evidence shows that represen-
tations from different modalities occupy completely separate regions of embedding
space, a phenomenon referred to as the modality gap. Moreover, experimental
findings on how the size of the modality gap influences downstream performance
are inconsistent. These observations raise two key questions: (1) What causes
the modality gap? (2) How does it affect downstream tasks? To address these
questions, this paper introduces the first theoretical framework for analyzing the
convergent optimal representations of MCL and the modality alignment when train-
ing is optimized. Specifically, we prove that without any constraint or under the
cone constraint, the modality gap converges to zero. Under the subspace constraint
(i.e., representations of two modalities fall into two distinct hyperplanes due to
dimension collapse), the modality gap converges to the smallest angle between
the two hyperplanes. This result identifies dimension collapse as the fundamental
origin of the modality gap. Furthermore, our theorems demonstrate that paired
samples cannot be perfectly aligned under the subspace constraint. The modality
gap influences downstream performance by affecting the alignment between sample
pairs. We prove that, in this case, perfect alignment between two modalities can
still be achieved via two ways: hyperplane rotation and shared space projection.

1 INTRODUCTION

Pre-trained vision—language models (VLMs) (Radford et al., 20215 Mu et al.,[2022; |Li et al.| 2022)
have achieved remarkable success across a wide range of tasks, including zero-shot image classifi-
cation, zero-shot cross-modal retrieval, and visual question answering. These models are typically
trained with multimodal contrastive learning on large-scale image—text pairs. Despite their strong
empirical performance, our theoretical understanding of how VLMs learn representations and how
these representations relate to downstream performance remains limited. In this work, we provide a
theoretical study of these issues.

Our understanding of unimodal contrastive representation learning (Chen et al., 2020; Khosla et al.,
2020) has advanced considerably. From a theoretical standpoint, when training is optimized (i.e., the
training loss reaches its minimum), the learned representations converge to an optimal configuration.
We refer to this process as representational convergence and to its limiting configuration as the con-
vergent optimal representation (COR). Prior work has demonstrated that the COR of self-supervised
learning (SSL) corresponds to a uniform distribution on the surface of an h-dimensional unit hy-
persphere (S"~!) (Wang & Isola, 2020). For supervised contrastive learning (SupCon), the COR
forms a regular simplex inscribed in Sh=1 (Graf et al.,2021), and a skewed simplex when the data
is imbalanced (Y1 et al.| [2025b)). (See additional related work in Sec. @) These prior research on
unimodal data demonstrate that examining the geometric and distributional properties of CORs yields
critical insights into how pretraining with contrastive learning affects downstream performance.

This motivates us to investigate the COR of multimodal contrastive learning (MCL). Intuitively, MCL
intends to align representations from different modalities in a shared embedding space. However,
this is not supported by empirical evidence. Instead, representations of different modalities cluster
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Figure 1: The COR of MCL. Orange and blue dots represent X and Y. Starts are centers of X
and Y (i.e., ¢z, ¢y). Ag denotes the size of modality gap. (a): When a model is initialized, (X,Y")
are within two distinct cones. (b): Without any constraint, (X,Y") converge to a paired uniform
distribution and Ag — 0. (c): Under the cone constraint, Ag — 0. (d): (X,Y") collapse into two
distinct subspaces Sx € A (orange circle) and Sy € B (blue circle), respectively. ¢ is the angle
between A and B. Green line represent the shared space C. See Definition [5] for details. (e): Under
the subspace constraint, when training is optimized, c;,c, L C and Ay — ¢min.

into disjoint cones in S"~!, forming a geometric phenomenon called the modality gap (Liang et al.,
2022). To explain the origin of this gap, several hypotheses have been proposed, including the
cone effect (Liang et al., [2022)), the contrastive learning object (Fahim et al., [2024), insufficient
training (Shi et al.|2023)) and information bias (Schrodi et al.,[2025)).The impact of the modality gap
on downstream performance also remains unclear. Some studies (Liang et al., 2022} |Schrodi et al.,
2025)) show that narrowing the modality gap pos hoc may lead to degraded downstream performance,
indicating that such reduction is not always beneficial. (See Sec. [A.T]for more details). Prior work
have mostly focused on numerical analysis. None of them has offered a satisfactory theoretical
explanation of what causes the modality gap and how it affects downstream performance.

In this paper, we in turn focus on the theoretical explanation of the modality gap. We establish
the first theoretical framework to systematically analyze the COR of MCL. In particular, we prove
(Theorem|T)) that, without any distributional constraints, representations of two modalities converge
to a paired uniform distribution on S"~! (Fig. . As aresult, the modality gap converges to zero.
Meanwhile, the dispersion degree (i.e., how wild a distribution is spread) of the learned representation
becomes infinite (Corollary [T)). This shows that the contrastive learning objective tends to close
the modality gap. However, we observe that dispersion degrees of the learned representation always
remain finite in practice. Therefore, representations of each modality fall into a cone in S*~* (Fig. [1al),
a phenomenon known as cone effect. We prove (Theorem 2)) that even under this cone constraint, the
modality gap still converges to zero, regardless of the initial locations or sizes of the cones (Fig. [Ic).
This elucidates that the cone effect is not the cause of the modality gap.

The preceding analysis prompts us to ask whether there are any other geometric or distributional
constraints on representations that ultimately give rise to the modality gap. Jing et al.[(2022) show
that the SSL learned representations collapse into a lower-dimensional subspace rather than spanning
the entire embedding space, a phenomenon referred to as dimension collapse. Inspired by this insight,
we observe that dimension collapse also arises in the MCL learned representations. We then prove
(Theorem [3)) that if representations of two modalities collapse into distinct hyperplanes (Fig. [Id),
the modality gap converges to the smallest angle between these hyperplanes (Fig.[Ie). This finding
demonstrates that the true origin of the modality gap is dimension collapse.

That how modality gap influences downstream tasks still confuses researchers. We argue that
downstream performance is determined by the alignment between all paired samples, i.e., modality
alignment. First, we prove (Theorem 4| and Corollary [2)) that when representations converge, the
mutual information between two modalities in the shared space is maximized and in this case
paired samples cannot be perfectly aligned. Next, we demonstrate that changes in the size of the
modality gap alter the representation distribution, which in turn affects modality alignment. Then,
we show that existing translation approaches, e.g., shifting image embeddings toward language
embeddings by the average distance between image—language pairs, modify the representation
distribution in arbitrary ways. This explains the worsen downstream performance observed when
such methods are applied. Lastly, we prove derive two methods, hyperplane rotation (Corollary [3)) and
shared subspace projection (Corollary @), that achieve perfect alignment and modality gap reduction
without harming downstream performance. The major contributions of our work are listed below:
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* We theoretically show that the contrastive learning objective tends to close the modality gap
regardless of the existence of the cone effect.

* We reveal that the origin of the modality gap is dimension collapse. And under the subspace
constraint, the modality gap converges to the smallest angle between two hyperplanes.

* We prove that paired samples cannot be perfectly aligned under the subspace constraint.

* We derive that perfect alignment can be achieved via hyperplane rotation or shared subspace
projection.

2 PRELIMINARY

Suppose we have a dataset D = {(I,,, T,L)}nN:1 of N image-text pairs, where I = (i1,...,iy) €
()N and T = (t1,...,tn) € (T)N. The unit hypersphere in R" is defined as S"~! =
{z € R" : ||z|| = 1}. An image encoder f; (-) : T — R" and a text encoder fr (-) : T — R" map
image and text data, respectively, into a shared embedding space. The resulting representations are de-
noted as X = (f; &“) v f1GN) = (21, on) € (SN and Y = (fr (t1), ... fr (Tn)) =
(yh v 7yN) € (S 71)N'

Multimodal Contrastive Learning (MCL). MCL aims to embed data from different modalities into
a shared embedding space. This is achieved by minimizing the MCL loss, defined as:

Definition 1 (Multimodal Contrastive Loss (MCL Loss)). Let (X,Y") be an N-pair configuration,
where X = (z1,...,on5) € (S"" DN and Y = (y1,...,yn) € (SP"Y)N. V1 > 0, the multimodal
contrastive loss Lyicr (-, +) + (SP~HN x (SP=HN — R is defined as:

N
1 X .
Lyicn = N Z Liyicr, where Lypor, = Lxoy(xsY) + Lya(yi; X). H
i=1
Here, Lx_,y is the X-to-) alignment and Ly _, x is the Y-to-X alignment, defined respectively as:
exp (z; - y; /T exp (z; - yi /T
N ( : yl/ ) ’ ‘Cy%X(ylaX):_lOg N ( : yl/ ) .
> i1 €xp (i - y;/7) > =1 exp (T - i /T)
@)

In practice, contrastive learning is performed in a batch-wise manner due to memory limitations. For
analytical simplicity, we assume unlimited memory to train on all samples in a single batch.

Lyy(xi;Y) = —log

Modality Gap. Define p, = % Zf\il Ti, Cp = Hﬁ—’u as the mean and the center representation of X,
Ly = % Zf\;l Yis Cy = Hﬁﬁ as the mean and the center representation of Y.

Definition 2 (Modality Gap). Let (X,Y) be an N-pair configuration, where X = (x1,...,xN) €
(S" YN andY = (y1,...,yn) € (S""HN. The modality gap between X and'Y can be defined as
the difference between their mean representations:

AM = HM:E - :uyHQ’ 3
or as the angle between their center representations:
Ag = cos (e, - Cy)- )

In this study, we use Eq. (4) to define the modality gap.

3  REPRESENTATIONAL CONVERGENCE AND MODALITY GAP

In this section, we study the relationship between MCL and the modality gap. To understand this,
we establish a theoretical framework for analyzing the convergent optimal representations (COR) of
(X,Y). We prove that, with or without the cone constraint, as the MCL loss approaches its minimum,
the modality gap converges to zero.

Both cases implicitly assume that X and Y are embedded in the same space S"~!. Empirical evidence,
however, shows that X and Y tend to collapse into different subspaces. We further demonstrate that
if X and Y lie in two distinct hyperplanes, then when the MCL loss is minimized, the modality gap
converges to the smallest angle between the two hyperplanes.
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3.1 VON MISES-FISHER (VMF) DISTRIBUTIONS

As shown in (Liang et al.,|2022), when a model is initialized, the representations of each modality
reside within a hypercone (Fig. [Ta)). During training, the representation distribution evolves as the
size and shape of the hypercone change. The von Mises-Fisher (vMF) distribution (Mardia & Jupp,
2009)),a generalization of the normal distribution on the surface of a hypersphere, also concentrates
its samples within a hypercone. Hence, this distribution provides as an effective proxy for studying
the geometric and distributional properties of representations learned by MCL.

Definition 3 (vMF Distribution). V¢ € S"™! and k > 0, the probability density of a random
h-dimensional unit vector z ~ vMF (¢, k) is given by:

HV

(2m) 1, (k) )

Here, v = h/2 — 1, and I, () : R — R is the modified Bessel function of the first kind of order v,
which is defined as:

fu(zie k) = D;L(/@)e“CTZ, where Dy (k) =

°© 1 T 2k+v
L) = kz:% KD(v + &+ 1) 5) ©)

c denotes the center vector and % denotes the dispersion degree. When % = 00, the samplesare
maximally dispersed and uniformly distributed on S"~!. As % decreases, the samples become

increasingly concentrated and cluster within a smaller hypercone. When % = 0, the samples are fully
concentrated and collapse to a single point. Throughout this work, we assume that (X,Y") are iid
samples from two vMF distributions, that is, z; ~ VMF (¢, k;) and y; ~ vMF(cy, ky).

3.2 REPRESENTATIONAL CONVERGENCE WITHOUT DISTRIBUTIONAL CONSTRAINT

First, we assume that the encoders, f; and fr, are sufficiently powerful, capable of realizing any
representation distribution without any constraints. Theorem [I|reveals that when the limit of Ly,
attains its minimum, the representations of each paired sample (xz;, y;) converge to the same point,
while the representations of all pairs converge to the uniform distribution in S"~! (Fig. .
Theorem 1. Let (X,Y) be an N-pair configuration, where X = (x1,...,xy) € (SP"1)N are iid
samples from ji; and Y = (y1,...,yn) € (SN are iid samples from .. Letv = h/2 — 1, it
holds that:

. Li*Yi Li - Yi
J\;E)noo ['MCL - 210g(N) = EwiN}J«x |:_ u :| + EmNum |:10g EyiN}J«y {exp ( = >:|:|

T Yi Ti-Yi 7
e [ e o (P2 O
> —2/7+2log (I (v + 1) (2r)"L, (1/7)),
where equality is attained if and only if there exists a configuration of (X,Y") such that:

(Al) Vi € [N], X = Yi.
(AZ) Mx = Oph—1 anduy = Ohp—1-

Here, 0},_; denotes the uniform probability measure on S"~!. The proof is provided in Sec.
Under the assumption that X and Y™ are drawn from two vMF distributions, Corollary [I|implies that
when the limit of Ly;cy, attains its minimum, the modality gap converges to zero (Ay — 0), and both
kg and k, converge to zero. This result follows directly from Theoremm

Corollary 1. Let (X,Y) be an N-pair configuration, where X = (z1,...,zy) € (SP1)N are iid
samples from vMF (cy, k), and Y = (y1,...,yn) € (S"=1)N are iid samples from vVMF (cy, k).
limy 00 Lrmcr — 21og(N) attains its minimum if and only if the following conditions hold:

(A3) Vi € [N], z; = y; (= DAg = cos™* (¢, - cy) =0).
(Ad) Kz = Ky = 0.

Convergence 1: Without any distributional constraints, X and Y converge to a paired uniform
distribution on S"~!, and the modality gap converges to zero.
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Figure 2: Distributional Constraints. CLIP ViT-B/32 embeddings of MSCOCO validation set. (a):
Density plot of cosine similarities between image and image (I121), text and text (T2T), paired image
and text (P I2T) and unpaired image and text (NP-I2T). (b): UMAP plot. (c): Explained variance
ratio of singular values of X — pux and Y — py. (d): Valuse of principal angles.

3.3 REPRESENTATIONAL CONVERGENCE UNDER THE CONE CONSTRAINT

However, in practice, sufficiently powerful encoders are not available. Fig. [2b|reveals that intra-modal
similarities between two modalities are larger than inter-model similarities. Fig. 2a] further shows that
(X, Y) separate into two clusters. Both indicate that X and Y lie in two hypercones on S~

In this subsection, we assume that the encoders, f; and fr, are powerful to the extent that (X,Y) are
embedded in two hypercones spanning all dimensions of S"~1,i.e., (X, Y) are subject to the cone
constraint. In this case, x; > 0 and x, > 0. Since the modality gap depends solely on the angle
between the two center vectors, we focus on the configuration of (¢, ¢,) and their corresponding
loss terms: £5,0; = Lx—y(cs;Y) + Ly x(cy; X). We first define a convergence function 7.

Definition 4. Vr,v, 7 > 0, a function J (+; k,v) : [—1,1] — R is defined as:

1, (M, I,
J(w; k,v) = —% + log (W) — log (,ﬁ) : 8)
where the function M, (+) : [—1,1] — R is defined as:
M, ()= y[r2+ 20 L ©)

T =

Then, Theorem [2|shows that when the limit of £f;, attains its minimum, the modality gap converges
to zero (Ag — 0) (Fig.[Id).

Theorem 2. Let (X,Y) be an N-pair configuration, where X = (z1,...,xn) € (SN are
iid samples from p, = VMF(cy, ky), and Y = (y1,...,yn) € (S"="HN are iid samples from
ty = VvMF(cy, ky). Let v = h/2 — 1. Suppose there exists an index i = c such that x. = c,,
Ye = ¢y. Denote Ng = cos™ (¢, - ¢,). For any fixed ki, K, > 0, it holds that:

A}im Lircr, — 2log(N) = T (cos (Ag) 5 ky, V) + T (cos (Ag) ; Kz, V)
—o0
> j(1§ ’fyaV) + j(h“xa V)a

where equality is attained if and only if there exists a configuration of (X,Y") such that:

(10)

(A5) Ag = cos™! (cz - ¢y) = 0.

The proof is provided in Sec. Since the distributions of X and Y are symmetric, non-center pairs
(x4, ¥i)istc do not affect the configuration of (¢, ¢, ), as confirmed by Theorem E}

[ Convergence 2: Under the cone constraint, the modality gap still converges to zero. ]

3.4 REPRESENTATIONAL CONVERGENCE UNDER THE SUBSPACES CONSTRAINT

To investigate whether X and Y collapse into subspaces of S"~1, we plot singular values o; of the
centered X and the centered Y in Fig. Zero o;s confirm dimension collapse. Fig. 2d|shows the
principal angles ~y; between the subspaces where X and Y collapse. Zero ~;s imply that the two
subspaces share overlapped dimensions. Detailed explanations are provided in Sec. and Sec.|C.2
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In this subsection, we assume that the encoders, f; and fr, embed (X, Y) into two partially overlap-
ping subspaces of S"~! (Fig. , i.e., (X,Y) are subject to the subspace constraint. To simplify the
analysis, we require that the two subspaces are hyperplanes, as described below:

Definition 5. Let A and B be two distinct (h — 1)-dimensional linear subspaces (i.e., hyperplanes
through the origin) with normal vectors na and np, projection matrices P4 and Pg. Denote
C = AN B, with P as its projection matrix. Define ¢ = cos™! (%) as the angle between

A and B, restricted to 0 < ¢pin < ¢ < % Then, Sx and Sy can be represented as:
Sx=S""'TnA={zeR":[lz|=1,n4 -2 =0} 2S" 2 esh

oY)
Sy =8""'nB={yeR":[ly|=1,np-y=0} 2sh2es 1

Cis an (h — 2) dimensional linear subspace (Strang} 2022). We now define a convergence function
J . Note that function 7 in Deﬁnition@is a special case of J with J (w; k,v) = J (w,w, 1; K, V).

Definition 6. Vi, v, 7 > 0, T (-, -, K, 1) : [=1,1] x [=1,1] x [0,1] — R is defined as:

UL 0)) L (m0),

MH(U}Q,t)V KY

J (w1, w2, t; K, v) = P 4 og
-

where the function My(-,-) : [-1,1] x [0,1] — R{ is defined as:

~ 2 2
M, (w,t) =1/ K>+ ik —- (13)
T T

TheoremE] shows that when the limit of £§;¢;, attains its minimum, c,, ¢, are orthogonal to C, and
the modality gap converges to the smallest angle between A and B (Ay — ¢rin) (Fig.[Te).

Theorem 3. Let (X,Y) be an N-pair configuration, where X = (z1,...,zy) € (Sx \ C)V are
iid samples from i, = VMF(cy, kg), and Y = (y1,...,yn) € (Sy \ C)V are iid samples from
ty = vMF(cy, ky). Let 7 = (h — 1)/2 — 1. Suppose there exists an index i = c such that . = ¢,
Ye = Cy. Denote Ag = cos_l(cm - ¢y) and assume that c,, ¢, ¢ C with ¢, - cy > 0. For any fixed
K, Ky > 0, it holds that:

lim Ly, — 21log(N)
N—o00

= J(cos (Ag),cos (Ag), || Prcal; ky, ) + T (cos (Ag) , cos (Ag) , | Pacyl; Kz, 7)

> j(COS (d)min) , COS (¢min) , COS (¢min) s Ry, D) + j(COS (¢min) , COS (Qbmin) , COS (Qbmin) yRa, I;)y
(14)

where equality is attained if and only if there exists a configuration of (X,Y') such that:

(A6) ¢, L Candcy L C(= Ap=09).
(A7) Ag = cos™t (¢g - ¢y) = Dmin-

The proof is provided in Sec. Condition (A6) shows the optimal configuration of (c,, ¢,) for any
given ¢. Condition (A7) establishes that the loss decreases monotonically as ¢ decreases to @in-
Since the distributions of X and Y are symmetric, non-center pairs (x;, y; )i=. do not affect Condition

(A6). Moreover, optimizing of Ef\f& also yields Condition (A7), as shown in Theorem@

Convergence 3: Under the subspace constraint, the modality gap converges to the smallest
angle between the two hyperplanes.

4 REPRESENTATIONAL CONVERGENCE AND MODALITY ALIGNMENT

In Sec. we identified the true origin of the modality gap by analyzing the configuration of the
center pair. However, the relationship between the modality gap and downstream performance, which
depends on the configuration of all pairs, remains unclear. In this section, we show that, under the
subspace constraint, non-center pairs cannot be perfectly aligned when the MCL loss is minimized.
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Figure 3: Modality Alignment. Notations follow Fig. |1} (a): Condition (A6) (cz,c, L C) and
IMS (z; - ¢ = y; - ¢y) hold. (b): The projections of (x;, y;)i-. on C converge to p; (green point),
i.e., Pox; = Poy; = pi. (¢): When Condition (A6) and (A8) (Pcx; = Pcy;) hold, Pgx; } v,
Py {f x;. Denote y; = ‘I;ﬁiiz” (purple dot), then x; - y; > x; - y; and (x;, y;)ic are not perfectly
aligned. (d): Rotating X with the hyperplane A towards B, X and Y can be aligned perfectly. (c¢):

Project x; and y; onto C and re-normalize, then 2 and y (yellow dots) are perfectly aligned.

4.1 INTRA-MODAL ISOMETRY AND PERFECT ALIGNMENT

The Platonic Representation Hypothesis (Huh et al., 2024) suggests that contrastive learners are
optimized by representations of X and Y whose intra-modal kernels (i.e., pairwise similarities) align.
Building on this idea, we define the kernel alignment as Intra-Modal Isometry.

Definition 7 (Intra-Modal Isometry (IMS)). Let (X,Y') be an N-pair configuration in R", we say
(X,Y) achieves Intra-Modal Isometry if and only if Vi, j € [N],i # j, &; - ; = Y - Y;.

The Intra-Modal Isometry assumption implies that Vi € [N], x; - ¢, = y; - ¢y, and thus Kk, = Ky
(Fig.[3a). However, knowledge of the intra-modal configuration alone is insufficient to determine
how the modality gap affects downstream performance. In downstream tasks such as zero-shot image
classification, given an input from one modality (e.g., ;), CLIP retrieves data from the other modality
(e.g., y;) with the largest similarity to the input. Ideally, the output should be y; = y;. We therefore
define an ideal inter-modal configuration as Perfect Alignment. And when Perfect Alignment is
achieved, downstream performance is maximized.

Definition 8 (Perfect Alignment). Let (X,Y') be an N-pair configuration in R, we say (z;,y;) is
perfectly aligned if and only ifVj # i, x;,-y; > x; - y; and x;, -y; > T - Yz If Vi € [N], (x4, y:) is
perfectly aligned, we say (X,Y') achieves Perfect Alignment.

4.2 REPRESENTATIONAL CONVERGENCE OF NON-CENTER PAIRS

To investigate the alignment between two modalities, we examine the optimal configuration of each
data pair. Theorem 4] states that if Condition (A6) (in Theorem [3) is satisfied through the optimization
of Li7&;., and if (X, Y') achieves Intra-Modal Isometry (Fig. then when the limit of E{\Z%’L attains
its minimum, the projections of any non-center pair (z;, y; )i, onto C converge to the same vector
(Fig.[3D).
Theorem 4. Let (X,Y) be an N-pair configuration, where X = (x1,...,zy5) € (Sx \ CO)V
are iid samples from i, = VMF(cy,ky), andY = (y1,...,yn) € (Sy \ C)V are iid samples
from p, = vMF(cy, ky). Let v = (h —1)/2 — 1. Denote Ag = cos™* (¢, - ¢,) and assume
e, ¢y L Cwithcy - ¢y > 0. Suppose (X,Y) achieves Intra-Modal Isometry. Then Yi € [N], denote
05 = cos™! (@ - ¢z) = cos™! (y; - ¢y), and k = kg = Ky. Let 05 € (0, %) and k > 0, it holds that:
Jim_ L7E —2log(N)

= J (cos (Ag) ,cos (65) , | Ppaill s, 7) + T (cos (Ag) ,cos (65) , || Payi | s &, 7)

> 27 (cos2 (65) cos (¢min) + sin? (85) , cos (6S), \/cos2 (05) cos? (Gmin) + sin? (05); K, 7 | ,

(15)
where equality is attained if and only if there exists a configuration of (X,Y") such that:

(A8) Pcx; = Pcy;.
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(A9) Ag = cos™! (¢g - ¢y) = Dmin-

The proof of Theorem {]is provided in Sec. Condition (A8) characterizes the optimal configura-
tion of (x;, y;)ic for any given ¢. Condition (A9) establishes that the loss decreases monotonically
as ¢ decreases to @min, consistent with Condition (A7) of Theorem Moreover, TheoremE]implies
that MCL aims to maximize the mutual information between the two modalities in the shared
space while preserving modality-specific information in the complementary space.

4.3 REPRESENTATIONAL CONVERGENCE DOSE NOT ENSURE PERFECT ALIGNMENT

In Lemma 12| we show that (:cL,yZ),#C are perfectly aligned if and only if the projections of
(@i, yi)ic onto B and A are collinear, i.e., Pgz; || y; and Pay; || ;. However, when training is
optimized such that conditions (A6) and (A8) hold, Pgx; }f y; and Pay; }f x;. This implies that
(i, Yi)i-c are not perfectly aligned (Fig.[3c).

Corollary 2. Vi € [N],i # ¢, if ¢z, ¢y L Cand Pocx; = Poy; # 0and ¢ > 0, then it holds:
(A10) (x;,y;)istc are not perfectly aligned.

The proof of Corollary [2]is provided in Sec.[E.4.3] Since the limit of Lyicr attains its minimum

when both £§;;, and LﬁéL attain their minima, and since all paired samples are non-center pairs
almost surely (the ‘center’ forms a zero measure set in Sx or Sy'), then we conclude that:

[ Convergence 4: Under the subspace constraint, paired samples cannot be perfectly aligned. ]

5 SHARED SUBSPACE PROJECTION IMPROVES MODALITY ALIGNMENT

In Sec. ] we prove that the representations of paired samples are not perfectly aligned. Despite
this undesirable configuration, in this section we derive potential methods to improve the alignment
between the two modalities.

5.1 HOW TO ACHIEVE PERFECT ALIGNMENT

In downstream tasks, when (z;, yi)#c are not perfectly aligned, x; can be misaligned to some
y;=i (Fig. . A straightforward way to address this is to manually shift (x;, ;) in S"~!. For
example, [Liang et al.|(2022) translate x; toward y; as z}'°V = z; + A,,, followed by renormalization.
This operation clearly alters the distributions of X. Since downstream performance depends on the
number of misaligned y; in the test set. A change in the distribution of X leads to a change in the
proportion of misaligned y;, but in an unpredictable direction. Therefore, the impact of translating X
on downstream performance can be arbitrary. An illustrative example is provided in Sec.

As shown in Fig. if we rotate A to overlap with B, then A = B = C. In this case, Condition
(A8) implies x; = y;, and thus x; and y; are perfectly aligned. Hence, modality alignment can be
improved by rotating the hyperplanes A and B until A = B (Ay = ¢ = 0).

Corollary 3. Vi € [N],i # ¢, if cx,cy L C, Poxy = Poy; and (v4,Yi)ize € S"71\ C, then
(@i, Yi)ie are perfectly aligned if the following condition holds:

(Al1) Ag = ¢ = 0.

The proof of Corollary [3]is provided in Sec.[E.4.3] Despite this theoretical guarantee, rotating a
high-dimensional hyperplane can be complicated in practice. As illustrated in Fig.[3e] if we project
x; and y; onto C and then renormalize, we obtain 2} = y}. And (2], y;) are perfectly aligned.

Corollary 4. Vi € [N],i # ¢, if ¢z, ¢y L Cand Pcx; = Pcy;, then the following holds:

(Al2) (e TPer” chybu )i are perfectly aligned

The proof of Corollary [ is provided in Sec. Note that in Fig. C is a 1D line, so all
transformed paired samples overlap at y; and y5. In practice, however, the dimension of C is
typically greater than 1 (e.g., 212D for MS-COCO dataset). For instance, in the 4D example in Fig. [f]
of Sec. C is a 2D plane, and the samples are distributed along a unit circle.
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Table 1: Size of 6 and accuracies (%) of zero-shot image classification of ViT-B/32.

Model | CIFAR-10 | CIFAR-100 | ImageNet-1K
Y RI RS | Ay RI RS | Ay RI RS
CLIP | 7469° 89.00 9936 | 74.19° 6523 88.88 | 71.02° 6334 88.82

CLIP + Translation | 7.02° 80.97 96.09 | 30.50° 5446 77.25 | 51.68° 60.37 86.93
CLIP + Removal 72.5° 1491 5622 | 73.16° 16.82  6.44 | 69.71° 49.50 78.55
CLIP + SSP 5.37° 86.43 99.27 | 30.39° 64.51 88.79 | 50.40° 62.45 88.41

5.2 EXPERIMENT

Theorem [d] Corollary [3|and Corollary [] suggest that if projections of X and Y are aligned in the
shared space, modality alignment can be improved. This also indicates that the modality gap can be
reduced pos hoc without harming downstream performance.

Method. Following Corollary ] we apply the shared space projection (SSP) method pos hoc to
improve the alignment of the modality. Detailed procedures are described in Sec.|C.3

Modality Alignment. To validate the effective- _7 p—

ness of our method, we start by visualizing X %7 . SN

and Y after applying SSP. We first project X §4 [ ; o o G

and Y onto an estimated shared space of 212 &3 z G “

dimensions. Fig.[4a] (vs. Fig.2d) shows the co- &1 Images (0

sine similarities of the projected X and Y. It ® 02 06 10 Texe
Cosine Similarity UMAP 1

indicates that our method improves both inter-

modal alignment (larger P-I2T) and and intra- (@) (b)
modal uniformity (smaller T2T and I2I). Since
the shared space is not estimated from the orig-
inal training data, the estimation can be noisy.
Hence, we select a 10 dimensional subspace of
the estimated shared space to reduce the estima-
tion error (details explained in Sec. [C.3). We
project X and Y onto this subspace. Fig. Ab] (vs. Fig.[2b) shows that the projected X and Y are no
longer in separate clusters.

Figure 4: Results. CLIP ViT-B/32 embeddings of
MSCOCO validation set after applying SSP are
used. (a): UMAP plot. (b): Density plot of cosine
similarities.

Zero-Shot Image Classification. We also test our method in the zero-shot image classification task
on various datasets. Details of this experiment are provided in Sec. Our goal is to reduce the
size of the modality gap as much as possible without harming downstream performance. In Tab. [T}
we list results of the size of the modality gap (Ay), the top-1 accuracy (R1), and the top-5 accuracy
(RS5). We include two baseline methods: a translation-based approach (Liang et al} [2022)) and a
dimension-removal approach (Schrodi et al., |2025). Our results show that our method outperforms
these baselines by achieving a greater reduction in the modality gap while maintaining comparable
downstream performance prior to the post hoc operation. Despite its advantages, our method does not
lead to improved downstream performance, as indicated in Corollary f] We argue that this limitation
arises because the intra-model isometry assumption does not hold in CLIP. Prior work has shown that
CLIP’s vision and text spaces exhibit different neighborhood structures (Udandarao, |2022; Schrodi
et al.| 2025). We provide additional experiments of Zero-Shot Cross-Modal Retrieval in Sec.

6 CONCLUSION

Our work comprehensively investigates two key questions: (1) What causes the modality gap? (2)
How does it affect downstream tasks? Our theorems identify dimension collapse as the fundamental
origin of the modality gap. Our theorems also demonstrate that paired samples cannot be perfectly
aligned under the subspace constraint. We further prove that two approaches, hyperplane rotation and
shared space projection, can achieve perfect alignment between two modalities. We apply the latter
approach post-hoc and validate its effectiveness in downstream tasks. Besides the pos hoc application,
our method has potential to be applied to pretraining. It can directly optimize modality alignment in
the shared space to achieve the intra-modal isometry. We will explore it in the next step.
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A APPENDIX A: MORE DISCUSSIONS

A.1 RELATED WORK

Due to the page limit of the initial submission (9 pages), we include the related work here. In the
final version (10 pages), this section will be moved into the main text.

A.1.1 REPRESENTATION LEARNING AND REPRESENTATIONAL CONVERGENCE

Unimodal representations can be learned in an unsupervised manner using self-supervised contrastive
learning (SSL) (Chen et al.,[2020). When the InfoNCE loss (Wu et al.,|2018) reaches its minimum,
the representations of differently augmented views of an image converge to a single point, and
the representation of all images converge to a uniform distribution on S"~! (Wang & Isola, [2020).
However, Jing et al.| (2022) empirically shows that this theoretical optimum may not be realized in
practice: the learned representations tend to collapse into a lower-dimensional subspace rather than
spanning the entire embedding space.

In the supervised setting, representations can be learned through a neural classifier. When the cross-
entropy loss is minimized, representations of samples from different balanced classes converge to the
vertices of a regular simplex inscribed in S*~!, a phenomenon known as neural collapse (Papyan
et al.,2020). Graf et al.|(2021]) provide a theoretical explanation of this phenomenon. Representations
can also be learned with supervised contrastive learning (SupCon) (Khosla et al., [2020). Graf et al.
(2021)) prove that the COR of a balanced dataset of SupCon also forms a regular simplex. Y1 et al.
(2025b) provide a refined proof and further show that, for imbalanced datasets, representations
converge to a skewed simplex or even collapse into two distinct points. Other works extend the
concept of neural collapse to semi-supervised learning (Y1 et al.,2025a)) and OOD detection (Liu &
Qinl [2025).

Multimodal representations are learned through multimodal contrastive learning (MCL). However,
the COR of MCL remains poorly understood. In this work, we address this gap by characterizing
the COR of MCL. Our theorems suggest that MCL seeks to maximize the mutual information
between the two modalities in the shared space while preserving modality-specific information in the
complementary space.

A.1.2 MODALITY GAP

Liang et al.|(2022) first identified the modality gap, a geometric phenomenon characterized by
the complete separation of representations of different modalities in the embedding space. They
hypothesize that the gap arises from the cone effect due to random model initialization and is
preserved by the contrastive learning objective. Fahim et al.|(2024) argues that the modality gap is
inherent to contrastive loss. |Yaras et al.|(2024); |{Udandarao| (2022) examine the role of mismatch pairs
and the temperature parameter. Shi et al.[(2023) attribute the cause of the modality gap to insufficient
training. [Schrodi et al.| (2025) suggests that problematic training data, which contain information bias,
create the gap. Most of these works validate their hypotheses through numerical examples on a small
number of data pairs. By contrast, we provide an analysis based on the entire distribution.

In addition, several studies have proposed post-hoc methods to mitigate the modality gap. Liang
et al.| (2022)) attempts to translate the representations of one modality toward those of another using a
constant shift.|Schrodi et al.| (2025) explores removing the few dimensions that primarily drive the
modality gap. However, experiments in both works reported that narrowing the modality gap pos hoc
may lead to degraded downstream performance. [Eslami & de Melo| (2025) mitigates the modality gap
by retraining CLIP from scratch. Our work focuses on training-free pos-hoc plug-and-play methods
that can directly leverage existing pre-trained models.

A.2 LIMITATIONS

While our work investigates the origin of the modality gap and attributes it to dimension collapse, we
do not address the exact factors that lead to dimension collapse. (Jing et al.,[2022)) theoretically show
that dimension collapse occurs whenever negative eigenvalues appear in the weight matrix of a neural
network. (Schrodi et al., [2025) suggests that when training data with information bias are sufficiently

12
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aligned, ‘more dimensions’ are required to focus on objects and and ‘less dimensions’ to focus on
attributes, ultimately resulting in dimension collapse. (Chunl 2025) provides a more comprehensive
study of the inherent challenges within MCL, including intra-modal variability, asymmetries in
information, and task-dependent alignment. We suspect that all these factors contribute to dimension
collapse in the learned representations. Identifying the causes of dimension collapse thus constitutes
a major open problem, parallel to understanding the origin of the modality gap, and represents an
important direction for future research.

A.3 CONNECTION BETWEEN OUR THEOREMS AND PREVIOUS HYPOTHESES

In this subsection, we examine the connection between empirical observations from prior studies and
our theoretical conclusions.

Cone Effect: The cone effect hypothesis (Liang et al.,[2022)) posits that the representations of X and
Y fall into different cones on the hypersphere, thereby causing the modality gap. In our theoretical
framework, as described in Sec. [3.1} the cone size of the representations is modeled by the parameter
. However, in contrast to this hypothesis, Theorem 2 shows that the cone size has no effect on the
convergence of the modality gap, even when the representations follow a uniform distribution (i.e.,
x — 0).

Temperature: It is hypothesized that the choice of temperature contributes to the emergence of
the modality gap (Yaras et al., 2024; [Udandaraol [2022)). However, Theorem @] suggests that the
temperature parameter, 7, has no effect on the convergence of the modality gap. We suspect that if
temperature has any impact, it operates indirectly by influencing dimension collapse.

Information Bias: (Schrodi et al., 2025) argue that information bias, i.e., images containing more
information than the corresponding text, leads to the modality gap. The unequal amount of information
across modalities prevents Intra-Modal Isometry of the representations (see Definition [7)), making it
difficult for the model to align representations from the two modalities. This results in sub-optimal
inter-modal alignment, which in turn imposes a lower bound on the alignment terms and ensures
Ay > 0. We posit that there is a strong connection between information bias and dimension collapse:
information bias induces dimension collapse in the learned representations, thereby causing the
modality gap.

A.4 DISCLOSURE OF LLM USAGE

In the preparation of this paper, we used large language models (LLMs) as general-purpose assistive
tools. Specifically, we used an LLM to help with grammar polishing, wording improvements, and
proof-reading.

Any text or content generated by the LLM have been reviewed and edited by the authors. We take
full responsibility for the content of the submission. The LLM was not used to produce novel
research claims, data analysis, results formulation, or conclusions. The research ideation, theoretical
contributions, experiments, and all core technical work are entirely the work of the authors.

B APPENDIX B: MORE SUPPORTING EXAMPLES

In this subsection, we provide more examples and illustrations.

B.1 ILLUSTRATIVE EXAMPLE OF TRANSLATION-BASED METHOD

In this subsection, we provide an illustrative example showing that the impact of translating X pos
hoc on downstream performance can be arbitrary. Fig. [5a]depicts a set of X and Y where Condition
(A6) and Condition (A8) hold. Fig. [5b|illustrates how Xs are going to be translated. Fig. [5c|shows
the positions of X *s after translation. Fig.|5d|illustrates how X *s are going to be normalized. Fig.
shows the positions of X **s after normalization. In Fig.[5f] we observe that the distribution of X**s
differs substantially from that of X: they no longer reside in the same shared space (the large circle
in this example), and their projections onto the shared space diverge from those of Y's. The direction
of these changes depends on the specific configuration of X and is therefore unpredictable. Hence,

13
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@ (b) (©

(d) (e) (®

Figure 5: Translation-based method. Notations follow Fig. |1} (a): Condition (A6) (¢, ¢, L C) and
(A8) (Pcx; = Pcy;) hold. Orange/blue triangles represents i, and (. The red arrows denotes the
direction and scale of the constant translation (y, — ). (b): Translating X. (c¢): X are translated
to X*. (d): X* are being re-normalized. Purple arrows are denotes the direction and scale of the
normalization. (e): X* are re-normalized to X **. (f): Distribution of X altered after translation with
Poxi* # Pey;.

the impact of translating X on downstream performance is unpredictable. In practice, the impact is
often a negative one.

B.2 ADDITIONAL EXAMPLE OF MODALITY ALIGNMENT

In Sec. [5] we discuss how the shared space projection approach can improve modality alignment.
As an illustrative case, Fig. [3¢| presents an example in a 3D embedding space where C corresponds
to a 1D line. However, this example may be misinterpreted as implying that all transformed paired
samples (7, y;) perfectly overlap at y; * and yo+. To clarify this point, in this subsection we examine
a more intricate example in a 4D embedding space.

First, recall Definition [5]and set h = 4:

Definition 5 [Restate with h = 4] Let A and B be two distinct (h — 1)-dimensional linear subspaces
(i.e., hyperplanes through the origin) with normal vectors n4 and np, projection matrices P4 and
Pg. Denote C = AN B, with Pg as its projection matrix. Define ¢ = cos™* (%) as the
angle between A and B, restricted to 0 < ¢min < ¢ < 5. Then, Sy and Sy can be represented as:

Sx=S"NA={zeR:|z|=1Lns-2=0} =S? €S

(16)
Sy =8NB={yeR*:|y|=1np y=0} =2S* €S>

Now, S? denotes the 4D unit hypersphere. To analyze this case, we decompose the embedding space.
Let {ey, e2, €3, e4} be an orthonormal basis of R*. Suppose that the shared space C lies within the
span of e; and es:

14
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(e (® (€9)

Figure 6: Modality Alignment in 4D Space. Sx (orange circle) and Sy (blue circle) are two 3D unit
sphere within S3 as described in Eq. and Eq. . The shared space C is a 2D plane as described
in Eq. (]'11]) Sx NC = Sy NCisa 2D circle (green circle). (a) 4 samples from X (orange dots). (b)
4 samples from Y (blue dots). (¢), (d): The projections of (x;, ;). on the shared space C converge
to p; (green point), i.e., Pox; = Pcy; = p;. (e), (f): Re-normalize p; to get x; (purple dots) and y;
(yellow dots) as described in Eq. @ (g): (z},y;) are perfectly aligned.

C =span{e; } ®span{es}. (17)

Therefore, C is a 2-dimensional orthogonal complement of C, and C* satisfies:

Ct =span{es} @ span{es},

(18)
R =CqcCt.
Define two unit vectors ex and ey such that:
ex € Sx, and ex 1 C,
X X X (19)
ey € Sy, and ey L C.
Since na,np € Ct,ny L ex andng L ey, we have:
(ex,ey) ==£(na,ngp), (20)
and we choose a pair of ex and ey such that:
(ex,ey) = (na,np) = cos (¢) € (0,1). 21
Therefore, Sx and Sy can be represented by two orthonormal bases:
Sx € A=span{ei} ®span{es} ®span{ex}, )

Sy € B =span{e;} ®span{es} & span{ey}.

In Theorem 3] we show that when L, is minimized, ¢, ¢, L C (Condition (A6)). Accordingly,
we can set ¢; = ex and ¢, = ey. These settings are illustrated in Fig. @and Fig. @
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Figure 7: Density plot of 65 of CLIP ViT-B/32 embeddings of MS-COCO validation set.
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Figure 8: Singular values. CLIP ViT-B/32 embeddings of MS-COCO validation set are used. (a): All
singular values o; of X and Y. (b): The 2" to the 50'" o; of X and Y. (c): The 1! to the 50" o;
of the centered X and the centered Y.

In Theorem |4, we show that when ,Cf\jféL is minimized, Poz; = Pcoy; (Condition (A8)). This
condition is illustrated in Fig. [6c|and Fig. [od]

Re-normalize the projections to obtain the transformed pairs:

% Pcx;
l‘i = T
| Poi |
23
= Pcy; 23)
" |[Poyil”

We illustrate 27 and y; in Fig.[6e]and Fig.[6f] In Corollary {i] we show that (z},y;) are perfectly
aligned, as illustrated in Fig. [6g]

B.3 JUSTIFICATION OF ASSUMPTION IN THEOREM 4

In Theorem [4 we assume that the angle between a modality input and its center, 6, satisfies
05 € (0, g) In Lemma we provide a theoretical justification for this assumption. Furthermore,
the density plot of 65 in Fig.|7|shows that almost all 8 indeed lie within (0 z )

)

C APPENDIX C: DETAILS OF METHOD

In this subsection, we describe in details about how to detect dimension collapse, how to detect the
shared space of two subspaces, and how to conduct projection onto the shared space.

C.1 DETECT DIMENSION COLLAPSE

Suppose we have two point clouds, X and Y, each consisting of h-dimensional normalized vectors:
X = (z1,...,2nx) € (S" HNand Y = (y1,...,yn) € (S"1)N. Then we have:
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A=span(X), dx =dim(A),
B =span (Y), dy =dim(B), (24)
C=ANB, doverlap = dim(C).

Apply the Singular Value Decomposition (SVD) to X and Y and we get:

X =Ux2xVy,

(25)
Y =UySyVy .

If X and Y collapse into subspaces of Sh—1 then Xy and Xy have dx < handdy < h significant
singular values, respectively.

In the discussion in Sec. X and Y represent the image and text embeddings of the MS-COCO
dataset. Since X and Y are not centered at zero, the first singular values, of and a%’, dominate
when SVD is applied. Correspondingly, the first right singular vectors of X and Y are ¢, and c,,
respectively. As shown in Fig. these first right singular vectors account for approximately 50%
of the explained variance. Therefore, in Fig. we plot the singular values of the centered X and
Y, which better capture the patterns of variation. In Fig. we present the 2° to the 50" singular
values of X and Y, while in Fig. we show the 1%¢ to the 50" singular values of the centered X
and the centered Y.

And dimension collapse in X and Y occurs when zero values appear on the diagonals of X x and Xy
C.2 FIND THE SHARED SPACE

We then select the first d x columns from Vx and the first dy columns from V3 whose cumulative
explained variance exceeds a predefined threshold ¢ (e.g., ¢ = 99%). We obtain:

Bx =Vx]:,:dx] € R"*dx . orthonormal basis for A,

hxd . (26)
By = Vy[;,: dy] € R*™% : orthonormal basis for B.

To investigate whether A and B have overlap dimensions, we need to check the principal angles
between A and B, which are defined as:

Definition 9. The principal angles 71 < v < - -+ < v between A and B are recursively defined as:

cos(y) = max u'v, [ull=[jvll =1, wlu;=vTv;=0(j<i), 27)

where k = min (dx, dy ).
The principal angles quantify the alignment between these subspaces:

¢ The smallest principal angle §; measures how close the two subspaces are: if v; = 0, there is at
least one common direction.

* If multiple principal angles are zero, then the intersection of the subspaces has a larger dimension.
The principal angles between subspaces A and B can be computed as follows:

1. Compute the singular values of the matrix G = By By € Réx*dy,
2. The singular values ¥ € [0, 1]

3. Then the principal angles are ; = arccos (o7)

The number of principal angles equal to zero gives the dimension of the intersection:
doverlap = # {Z LY = O} . (28)
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In practice, due to noise or finite precision, we use a threshold: count how many o > 1 — € (e.g.,
€ = 1073). Thus:

doverlap = # {Z : O'f >1-— 6} . (29)

The empirical result of MS-COCO dataset is provided in Fig.[2d|

C.3 PROCEDURES OF SSP METHOD

In this subsection, we provide the details of the Shared Space Projection (SSP) algorithm.
Step 1: Apply the SVD decomposition to X and Y to get Vx and Vy- as Eq. (25).

Step 2: Select the first dx and dy right singular vectors of X and Y whose cumulative explained
variance are great than 99%. The resulting vectors, Bx and By, form the bases for A and B, as
indicated by Eq. (26).

Step 3: Apply the SVD decomposition G = By By € Rix*dv,

G=UaxcVg (30)

Step 4: Compute dgyerlap according to Eq. while setting € = 1073. Compute the basis of the
shared space Bg by:

BS = BxUG[Z, : doverlap] = BYVG[:7 : doverlap]- (31)

Explain: Since the shared space is estimated from the available data rather than the original training
data (assumed inaccessible), the estimation may be noisy. To mitigate this, we can select & < doyerlap

columns from Bg to form B g The columns of B g constitute an orthonormal basis for a k-dimensional
subspace of the estimated shared space. By removing dimensions that carry minimal information,
the estimation error can be reduced. The following optional step explains how to select these k
dimensions.

Step 5 (Optional): Project X and Y onto each column of Bg:

P=BLxT
X" = einsum(’hk, kn- > knh’)(Bg, P), (32)
X" = Normalize(X") by the last dimension.

Here, einsum denotes Einstein summation notation. Compute the variance of X’ along the last two
dimensions to obtain an array S of length dqyeriap. Each entry of S is actually the singular value of
projections onto the corresponding column of Bg. S quantifies the amount of information contained
in ;ach column of Bg. By ranking S in descending order, select the top k& columns from Bg to form
Bg.

Step 6: Project X and Y onto the column space of Bg and get X* and Y.

T

X+ = (B5BE XT)
L (33)

Y* = (Bf;Bg YT> .

Step 7: Normalize X* and Y* to get X** and Y **. Use X** and Y ** for downstream tasks.

Notably, Fig. indicates that fewer than 10 dimensions account for more than 1% of the explained
variance, suggesting that the essential information of X and Y can be effectively captured using only
10 dimensions. Consequently, in Fig. [db] we project X and Y onto a 10-dimensional subspace that
preserves the most information.

18
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Table 2: Size of 6 and accuracies (%) of zero-shot image classification of ViT-L/14 on various
dataset.

| CIFAR-10 | CIFAR-100 | ImageNet-1K
Model

| A, RI RS | Ay RI R5 | Ay RI RS
CLIP | 77.63° 95.12 99.46 | 74.19° 6523 88.88 | 77.29° 75.56 94.58

CLIP + Translation | 14.73° 92.39 98.97 | 30.50° 54.46 77.25 | 62.61° 74.05 94.10
CLIP + Removal 79.36° 1223 62.33 | 73.16° 16.82 6.44 | 76.84° 67.04 89.76
CLIP + SSP 13.27° 9512 99.46 | 30.39° 64.51 88.79 | 62.40° 75.26 94.51

Table 3: Size of 6 and accuracies (%) of zero-shot cross-modal retrieval of ViT-L/14 on MSCOCO.

| MSCOCO
Model | A, | 1T T 1

| | R@l R@5 R@I0|R@1 R@5 Re@I0
CLIP | 78.16° | 56.06 79.56 86.84 | 3533 59.96 70.21

CLIP + Translation | 68.49° | 54.14 78.32 86.30 | 35.13 59.79 69.85
CLIP + Removal 76.03° | 49.56 7342 82.18 | 31.23 5429 65.00
CLIP + SSP 68.06° | 55.54 78.94 86.64 | 35.22 59.86 70.22

D APPENDIX D: DETAILS OF EXPERIMENTS
In this section, we describe in details about the set up of our experiments.

D.1 ZERO-SHOT IMAGE CLASSIFICATION.

Datasets. We first evaluate our method on the zero-shot image classification task using three widely
adopted datasets: two small-scale image dataset CIFAR-10/100 Krizhevsky et al.|(2009) and one
large scale image datasetlmageNet-1k Deng et al. (2009). For CIFAR-10/100, we adopt the small
set of prompts provided by OpenAl for CLIP Radford et al.[|(2021) (https://github.com/
openai/CLIP.com). For ImageNet-1k, we adopt the large set of prompts provided by OpenAl for
CLIP Radford et al.|(2021) (https://colab.research.google.com/github/openai/
CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb).

Implementation Setup. Our implementation refers to Eslami & de Melo| (2025). For model
backbone, we adopt CLIP’s ViT-B/32 ViT-L/14 models. For the implementation of baseline models,
we remove the same number of dimensions in the removal method Schrodi et al.| (2025) with that
of our SSP method. For translation |Liang et al.|(2022)), the hyperparameter A controls the scale of
translation. We choose the smallest value of A, rounded to two decimal places, that yields an angle
reduction larger than SSP.

Additional Results. We report the results using the CLIP ViT-L/14 model as the backbone in Tab.
Similar patterns to those in Tab. |I| can be observed, indicating that our conclusions hold across
different model backbones.

As shown in both Tab.[T|and Tab. [2] reducing the modality gap becomes more challenging as the
number of classes in the test set increases. This is because a larger number of classes introduces
a more complex data distribution, thereby enlarging the discrepancy between the test and training
distributions. Consequently, our shared space estimation incurs greater estimation error, which limits
the capacity of our method to further reduce the modality gap.

D.2 ZERO-SHOT CROSS-MODAL RETRIEVAL.

Datasets. In addition to zero-shot image classification, we evaluate our method on zero-shot image-
to-text and text-to-image retrieval using the MSCOCO (Lin et al., 2014} and Flickr30K (Plummer
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Table 4: Size of 6 and accuracies (%) of zero-shot cross-modal retrieval of ViT-L/14 on Flickr30K.

\ Flickr30K

Model A | 15T T1
0

| | R@1 R@5 R@I10| R@1 R@5 R@I0
CLIP | 78.16° | 56.06 79.56 86.84 | 3533 59.96 70.21
CLIP + Translation - - - - - - -
CLIP + Removal - - - - - - -
CLIP + SSP - - - . - . -

et al.,[2015)) datasets. Unlike the common practice of appending a prompt such as ‘a photo of the
caption’, we directly use the raw captions to generate text embeddings. This approach aims to align
the text space more closely with its natural form rather than introducing distortion through artificial
prompts.

Implementation Setup. This implementation setup follows Sec. The only difference is that we
only use CLIP ViT-L/14 as the model backbone.

D.3 RESULTS

The goal of this experiment is to reduce the size of the modality gap as much as possible without
harming downstream performance. In Tab.[3|and Tab. [4] we list results of the size of the modality gap
(Ayp), the top-1 accuracy (R@1), the top-5 accuracy (R@5), and the top-10 accuracy (R@10). Similar
patterns to those in Tab. [I| can be observed, indicating that our conclusions hold across different
downstream tasks.
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E APPENDIX E: PROOFS

E.1 DETAILS OF THEOREM 1

In this section, we provide proofs of Theorem|I| that is proposed in Sec.[3.2] We also provide details
of the auxiliary theorems (Theorem [ST|and Theorem [S2)) and technical lemmas (Lemma[I] Lemma |2}
Lemma 3] Lemmafd)) that support the proof of Theorem[I} For convenience in reading, let us recall
some related notions and definitions.

* h, N € N.
e Sl ={zeRM: 2] = 1}.
* oj,_1: the uniform probability measure of S"~ 1.
Definition (Multimodal Contrastive Loss (MCL Loss)). Let (X,Y’) be an N-pair configuration,

where X = (z1,...,zy5) € (S" D)V and Y = (y1,...,yn) € (S""HN. V7 > 0, the multimodal
contrastive loss Lyrcr (-, +) : (SP1)N x (SP~1)N — Ris defined as:

N
1 . .
LucL = 5 > Liger, where Liyer, = Lxoy(@iY) + Ly (yi; X).
=1

Here, Lx_,y is the X-to-) alignment and Ly _, y is the Y-to-X alignment, which are defined
respectively as:

exp (x; - yi/T) Lya(y X) = —log exp (z; - y; /T) '

SoIm exp (wi - y;/7) Sy exp () yi/7)

Lxyy(zi;Y) = —log

E.1.1 PROOF OF THEOREM 1

In this subsection, we provide the proof of Theorem|[I] For convenience in reading, we first restate
Theorem 1 here.

Theorem 1. [Restate] Let (X, Y) be an N-pair configuration, where X = (z1,...,zy) € (S"~HV
are 4id samples from p, and Y = (y1,...,yn) € (S"~1)V are iid samples from p,. Let v =
h/2 — 1, it holds that:

A}gn Lycr — 21og(N) = Bz, [_ e yi} + Ezimps [log Eyirn, {QXP (xl : y7>”

T T
B[22 4B ot [ (222)]
E —% + 2log (F (v+1)(27)"1, (i))

where equality is attained if and only if there exists a configuration of (X, Y") such that:

(A2) py = op—1 and py = op—1.

Proof. We first decompose lim o L5101, — 21log (V) into two parts:

N—oc0

1 N
lim (Lycr — 2log(NV)) = lim_ (N > LxoylesY) - log(N)>
i=1
(34)

N—o00

N
. 1
+ lim (N ;Eyﬁx(yi;X) — log(N)> .
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According to Theorem [S2] the convergent function and its lower bound of £x_,y are:

N
1
lim — Zﬁxﬁy(xi; Y) —log(N)
=1

N—oco N .

(et (D]

where equality is attained if and only if there exists a configuration of (X, Y") such that:

(i) Vi € [N], z; = y;.

(i1) pg = op—1 and py = op—1.

This Theorem also holds for L£y_, x:

N

. 1

lim — Y Ly x(yi; X) —log(N)
=1

N—oco N .
Li " Yi Ti Yy
Vi~ pha [_ } + Eyirnpy {1og Eeimne {exp (7J>H (36)

=E
T T

o Ler (B oy (1)]

where equality is attained if and only if there exists a configuration of (X, Y") such that:

(iii) Vi € [N], z; = .

(iv) pg = op—1 and py = op—1.

Combining Eq. (34), Eq. (33) and Eq. (36), we conclude that:

. Ti-Yi T Yi
]\}E}noo Lyicr — 2log(N) = Erimpn [_ pu } + EBaimpy [lOg Eyi~uy [exp ( )H

B [ B, [l o0 (ST )

> —% +2log {F (g) (2r)3 s, (i)}

where equality is attained if and only if the following conditions hold:

(A1) Vi e [N], T = Yi-

(AZ) He = Oph—1 and Hy = Oh—1.

E.1.2 AUXILIARY THEOREMS PART 1

In this subsection, we provide details and proofs of the auxiliary theorems (Theorem[ST]and Theo-
rem[S2)) that support the proof of Theorem T}
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Theorem S1. Let (X,Y) be an N-pair configuration, where X = (1, ...,xx) € (S"~1)N are iid
samples from i, and Y = (y1,...,yn) € (SN are iid samples from ju,,. It holds that:

eXp xZ y’L /T)

lim —» Lx,y(z;Y)—log(N)= lim — » —log —log(N)
N—oo IN Z N—oo N Z ] 1 exp (331 y]/T)
*Yi [ y]
e[ o 08By [oxp (2222))]]
i v [ - } + Eximops {logEyl Ly {exp -
(38)
Proof. Vx; € X, the X-to-) alignment of z; can be rewritten as:
exp (z; - yi/T)
Ly z;Y) = —log
) = e (/)
T Yi 1 < T Yj
—_ g — v I
ST e | Ny ew » (=) (39)
_ i Yj
= +1og N exp( ) +log(N).
j=1
Denote hy (z) and h(x) as
hn(z) = log Zexp(x yj) ,
(40)
and h(z) = log (EyN#y [exp (M)D .
T
Lemmareveals that by () uniformly converges to h(x) almost surely. Thus, we have:
h 25 0.
sup hn (2) = h(z)| ——— (41)
According to the Strong Law of Large Numbers (SLLN), we have:
1N
— ) —= ~ . 42
N ;h(xz) o B [P(2))] (42)
Combining Eq. (#I)) and Eq. (#2), we get:
1 1 1
~ D b (@) =) h(zi)+ =) (hn (@) —h(x:))
N ; N Z ; (43)
——— Eap [0(2)]-
Similarly, by the Strong Law of Large Numbers (SLLN), we have:
TiY; T Y
o = . 44
N Z N—o00 Ewl Nw[ T } e

Putting Eq Eq 3) and Eq. (44) together, the convergent function of - ZZ 1 Lxoy(xiY)
can be derlve d as:
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1\}21100 — Z'CX%J] x Y log( = ngnoo N i ( (331))
— By, [f Tyi] + Egyon, (A1) )

—E,., {_szyz} +Euiop, {log Eyj~uy [exp (%7_7‘%)” .
O

Theorem S2. Let (X,Y') be an N-pair configuration, where X = (z1,...,xx) € (S"~1)N are iid
samples from ji; andY = (y1,...,yn) € (S""N)N are iid samples from . Letv = h/2 — 1, it
holds that:

A}gnoo - ZL‘XHJ} ri;Y) —log(N)
= Eg;op, [* - .yi} + Egimpy [log Eywuy {QXP (M)H (46)
- :

e (10 v, (1) T

where equality is attained if and only if the following conditions hold:

(B1) Vi € [N], z; = u.

(B2) pg = op—1 and py = op_1.

Proof. Step 1: We start the proof by find the convergent function of - ZZ 1 Lxsy(xY) as
N — o0. Vz; € X, as prove in Theorem [ST}

. 1 exp (z; - yi /T)
lim — ZEX—W 2;;Y) —log(N) = lim — Z —log — —log(N)
N*}OO N—oco N i—1 ijl exp (le . y_]/T)
[ | e o oo (2222)]
Ui - + Eoinop. [108Ey ~p, exp -
(47)
Step 2: Next, we find the minimal value and the optimal condition of convergent function.
According to the Cauchy-Schwarz inequality, the first term in Eq. (47) can be bounded below:
i Yi ill 11y 1
o [-2Y) 2 B, [_llfclllqu _ 1 48)
k T T T

where equality is attained if and only if there exists a configuration of (X, Y") such that :
(B1) Vi € [N], Ti = Yi.

Note that condition (B1) implies yi, = j,,. Applying this condition to the second term in Eq. #7)),
we can transform it as:

o e ()] bl D)

Let M(S"1) be the set of Borel probability measures in S"~!. The RHS of Eq. (49) is then a
functional F[] : M(S"~1) — R:
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=1 o e o (22)])]

(50)

According to Lemma Fu] is minimized when 1 = oj,—1 where o, is the uniform measure of

Sh—l:
op—1 = argmin Flu].
LEM(Sh—1)
Therefore, we have:
Flu] = Flop-1]-

where equality is attained if and only if there exists a configuration of (X, Y") such that :
(B2) py = py = 0p—1
Let I' (-) be the Gamma function, Lemma 4] derives that:

]:[Uh_l] =Ezon {Eyfvah—l {exp (%)H

h h_ 1
@) )
Combining Eq. (47), Eq. @8), Eq. (49), Eq. (53), we conclude that:

N

1

lim — Zﬁ;{%y(mi; Y) —log(N)
i=1

N—oco N ‘
= Enmpe [~ B o8y, [exn (72 )]

(e (D]

where equality is attained if and only if the following conditions hold:

B1) Vi € [N],.’L'Z' = Y;.

(B2) py =0g4-1and py, = 0g_1.
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E.1.3 TECHNICAL LEMMAS PART 1
In this section, we provide details and proofs of the technical lemmas (technical lemmas (Lemmal|T}
Lemma[2] Lemma[3] Lemma ) that support the proof of Theorem I Theorem [ST|and Theorem [S2}

Lemma 1. Let x € S"~! and Y be an N-point configuration, where Y = (y1,...,yn) € (SPH)V
are iid samples from ji,. V7 > 0, define a sequence of functions {gn} : S"=* — R as:

N
_ 1 Ty
gn (@) = N;exp( . ). (55)
Define a function g : S"~1 — R as:
_ )
9(z) = Eyp, [exp( = )} . (56)
It holds that {gn } converges uniformly to g:
unif.
gn () P g(x). (57)
—00

Proof. Step 1 Boundedness and Lipschitz Property:

Consider a function class F = { f,(y) = exp (%) : z,y € S"7'}. Since [[z| = |jy[| =L,z -y €
[—1, 1], hence Vf, € F, we have:

|fuly)| < eM/7. (58)

Therefore, f,(y) is uniformly bounded in y, so is its derivative:

] 14,
1Vt = || £1ow)]| < —e¥/7. (59)
Then V), € S,
1
|fo®) = for ()| < —€V/T = L. (60)
e/

Thus, f,(y) is Lipschitz in x with constant . =
Step 2 7-Net:

—, uniformly in y.

According to Lemma 5.2 in (Vershynin, 2010), Ve > 0 and n = ﬁ, there exists a finite 7-net,
N,y = {1, 22,..., 25} C S, with cardinality:

h h
K= N, < (1+2) < (3) | (61)
n n

Vz € S"71, 3z), € N, such that |2 — xx|| < 7. Because f,(y) is L-Lipschitz in z, we have:

And we also have:

lgn (x) — gn ()| < L,

63
lg(x) — g (zx)] < L. (63)
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Step 3 Probability Bound:

V), € Ny, the random variables Z; := f,, (y;) are iid and lie in [e=1/7, !/7]. According to the

Hoeffding’s inequality:

P (lav(o) - sl > 5) < 2ewp (2552

where ¢ = > (. Taking a union bound over the n-net:

_1
8e2/T

P (L o) = lan)| > 5 ) < 2606

Step 4 Uniform Convergence:

Since Yz € S"71, |gn(x) — g(z)| can be decomposed as:

lgn () — g9(2)| < lgn () — gn ()| + |gn (k) — g (@8)] + g (z1) — 9(2)]

< 9L -
< n+wrkn€a§nlgzv(xk) g (zp)]

g
:474-1n%§|gN(xk)-9($kﬂ-

2 Tz ENy

Plugging Eq. (63) into Eq. (66), we have:

P (s lax(o) - o) > ¢) < P (s low (o) - gten)] >

zeSh—1
< 2Ke N’
and therefore:
P
sup |gn(z) — g(z)| ——— 0.
reSh-1 N—oo

Eq. (67) justifies that:

Z P < sup |gn(x) —g(z)| > 5) <2K Z e~ N < 0.
N=1 N=1

zeSh—1

According to the Borel-Cantelli lemma:

P (limsup sup |gn(z) —g(z)] > 5) =0.

N—oo geSh—1

Therefore:

sup [gn(z) — g(z)| == 0.
reSh—1 N—oo

We conclude now the empirical averages gx () converge uniformly in S"~! to g (-):

gn () _unif. g(z).

N—o00
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Lemma 2. Let x € S"~! and Y be an N-point configuration, where Y = (y1,...,yn) € (SP=1H)V
are iid samples from i,,. V7 > 0, define a sequence of functions {hy} : S"=! — R as:

N
_ 1 T Y
hn(z) = log N;exp( - ) . (73)
Define a function h : S"~1 — R as:

h(z) =log (Ey~uy [exp (Q)D . (74)

It holds that {hx} converges uniformly to h:

Jim Ay (2) 25 hia). (75)
Proof. According to Lemmal T}
al Ty, unif. Ty
;GXP (T) =gn(x) m g(x) = Ey~uy [exp (Tﬂ ) (76)
and
s lgn (2) = g(2)] —=— 0. 77

Because (z,y) € [—1, 1] for unit vectors, exp (z - y/7) satisfies:
e 7T <exp (H) <el/7. (78)
T

Hence Vz, gn(z), g(x) € [a,b] witha = e~ /7 > 0,b = €!/7 > 0. In the compact interval [a, b],
by the mean value theorem, Yu < v € [a,b], Ju < £ < v such that:

lu— vl
§

Thus, the function log (-) is Lipschitz . Therefore:

1
|logu —logv| = < Zlu—v] = e u— ). (79)
a

1 a.s.
sup |hn(z) —h(z)| = sup [loggn(x) —logg(r)] <~ sup [gn(z)—g(z)] ———0

zesh—1 zesh-1 @ pesh-1 s
(80)
We conclude now hy () converge uniformly in S"~! to A (-):
lm fy(z) 225 h(z) (81)
N—o0
O
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Lemma 3. Ler M (Sh_l) be the set of Borel probability measures in S"~1. Let oj,_1 € M (Sh_l)
be the uniform probability measure in S"~. Y,y € S"~Yand T > 0, a function f : SP=1 xSh—1 —
RT is defined as:

fa,y) = exp (). (52)

Ve M (Sh_l), a functional G : M (Sh_l) — RY is defined as:

Filul = /SH log (/S“ Iz, y)du(y)) du(z). (83)

It holds that oy, is the unique minimizer of F:

min  Fylp] = min /Sh110g</5h1f(x,y)du(y))du(w)- (84)

pEM(Sh—1) pEM(Sh—1)

Proof. Step 1: A change of probability measure.

Let o := 0y, be the uniform probability in S"~!. By rotational invariance there is a constant ¢ such
that:

cmanco)= [ fladoty), 55)
yesSh—1
which is independent of 2. Vo € S"~1. Define a kernel K as:

K(z,dy) : = @da(y)7 (86)

so that:
/ K(z,dy) = 1. 87)
yesh—l

Since f(x,y) = f(y, ), exchanging x and y, the following holds:
o(dz)K(z,dy) = o(dy) K (y, dz). (88)

For any measurable A C Sh=1 we have:

K(z,A): = /EA @da(y). (89)

Consider a probability distribution 1 in S"~1, define:

YA i= [ Ko A)du(a)

zeSh—1
)

- / 1@ Y) 4o ) () (90)
zeSh—1 JyecA

c

_ / y / o 1D gy e)ao ()

Therefore, uK < o, i.e., pK is absolutely continuous with respect to o. By Radon—Nikodym
theorem, we have:

29



Under review as a conference paper at ICLR 2026

=g [ fewue) o1

Note that:

/ K(
reSh—1
/zesh /yEA

= o(y)do(x)
-] o do(a)do y) .
yeA JxeSh—1 c
— [ o)
yeA
=o(A)
According to Eq. (88), exchanging = and y in Eq. (91)), we get:
d(uK 1
W) (2 = 2 [ fauty). ©3)
g C yesh—1
And since f(y,z) = f(z,y), then:
d(uK) 1 /
== du(y).
o @)=z o fx,y)du(y) (94)
Step 2: An exact identity for 7
Define a (normalized) zonal integral operator 7" on L? () as:
1
T =7 [ Hewpmiat). ©3)

where:

_dp
o) = L)
d,uK

da

(96)
T —

with p > 0 and [ pdo = 1. Here, L?(0) is the Hilbert space of (equivalence classes of) square-
integrable functions on the sphere with respect to the measure 0. Then Fy[u] can be rewritten
as:

Frlp] =loge+ /plog(Tp)da. 97)
Denote:
Flols= [ ola) loa(Tp(w)do o) 98)
then we have:
Frlu] =loge+ Flp). (99)
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Step 3: Minimize F'[p].
We will minimize F'[p] over the probability simplex {p > 0, [ p = 1}. Basic facts about 7" : the
kernel f(z,y) = el#¥)/7 is smooth, symmetric, strictly positive and depends only on x - y. Hence:
« T'is a positive, self-adjoint, compact operator on L?(o);
¢ T'1 =1 (since ¢ normalizes it);

* By the Funk-Hecke theorem/Jentzsch-Perron-Frobenius, the eigensystem of 7" is constituted
of the spherical harmonics {Y7,,} with eigenvalues A\g =1 > Ay > Ay > -+ > 0. The
eigenspace corresponding to Ao has dimension 1 and contains only constant functions.

* In particular, on the mean-zero subspace L3(o) = { [ [ fdo= 0} all the eigenvalues
Ag, £ > 1 are strictly positive and bounded from above by A\ < 1.

* As a consequence, for any 1) € L3(c) we have || 11|12 < A\1]|n]|zz.

(3.1) First order variation and Euler-Lagrange equation

Consider a mass-preserving perturbation p. = p + e with [ ndo = 0. Because T is linear,

_ ™ 4y — v
- /nlog(Tp)da + /pT—pda = /77 [1og(Tp) +T <Tp>} do, (100)

where we used self-adjointness: [ p% = [nT(p/Tp). Introduce a Lagrange multiplier A for the

d

dTSF [pe}

constraint [ p = 1.

The stationarity ¢ (F - p) = 0 for all mean-zero 7 yields the Euler-Lagrange (EL) equation:

log(Tp)(x) + T <7f’p> (z) =\ foro-ae. z. (101)

We easily check that p = 1 is a critical point.

If p = 1, then Tp = 1, hence log(Tp) = 0 and T'(p/Tp) = T1 = 1. Thus Eq. (101) holds with
A=1.

(3.2) Second order variation at the uniform density
Let p = 1 and perturb p. = 1+ en with [ = 0.

Differentiate the first-variation formula once more in the same direction 7 :

* The directional derivative of log(T'p) is (Tn)/(Tp), so at p = 1itis Tn.

* The map p — T'(p/Tp) has derivative at p = 1 :

D[T(p/Tp)l| =1 In] = T(n —Tn) =Tn —T(Tn). (102)
Hence the (constrained) second variation is
§°F[1;n) = /n(Tn +Tn—T(Tn))do = 2(n, Tn) — (Tn,Tn). (103)

Use the spectral decomposition 7 = Y <1, @em Yem (10 £ = 0 term because [7 = 0). Since
T}/Em = Aénm’ N

52F[1777] = Z (QAK - /\5) a%m = Z Ag (2 - /\f) a%m' (104)

>1,m >1,m
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Because 0 < Ay < 1 for £ > 1, each factor Ay (2 — Ap) is strictly positive. Therefore:

82F[1;nm] >0 foreveryn € La(o),n # 0. (105)

So p = 1 s a strict local minimizer of F' under the mass constraint [ pdo = 1.
(3.3) Uniqueness of the critical point

Suppose p satisfies Eq. (101). Expand p in spherical harmonics: p = 1+ )" ,<, . a¢mYem. Since

Tp=1+ Ze>1,m AeQom Yom With 0 < Ay < 1, the left side of Eq. (101) has a constant term 1 and
non-constant part

(1og (1 + Z )\ganggm)) + Z NeGon Yom -

all harmonics £>1 T(p/Tp) to first order

non-const

(106)

Project Eq. onto each harmonic Yy, with £ > 1. A standard contraction/implicit-function
argument (or just comparing coefficients to first order and using that higher-order terms can’t cancel
all modes simultaneously because |\;| < 1) forces all ag,, = 0. Thus any solution of (EL) is
constant; with mass 1, the only solution is p = 1.

So p = 1 is the unique critical point of F' on the simplex of probability measures on S"~1.
(3.4) Global minimality

Since F' is lower semi-continuous for the weak topology on the set M (Shil) of probability measures
on the sphere, a global minimizer exists by compactness. Since any minimizer must satisfy (EL) and
the only critical point is p = 1, the global minimizeris p = 1,1i.e. u = 0.

O

Lemma 4. Let M (Sh_l) be the set of Borel probability measures in S"~1. Let oj,_1 € M (Sh_l)

be the uniform probability measure in S" 1. V&, y € S"~Yand T > 0, a function f : SP~1 xSh—1 —
R is defined as:

flz,y) =exp (%) . (107)

YueM (Sh_l), a functional F : M (Sh_l) — RT is defined as:

Fil= [ e ( [ st ) aute) (108)
Let T () be the Gamma function and v = h/2 — 1, it holds that:
Filon_i] = log (F (v+1)(27)1, (i)) (109)

Proof. Step 1: Rotational Invariance

Since the measure oy, _; is invariant under orthogonal transformations. For any fixed z € S"~!, the
inner integral:

/S e () don-ay), (110)

depends only on the distribution of (z - y), and by rotational symmetry, this integral is independent of
x. Thus, define:
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— ry
Z. = /Shil exp( . )dah_l(y), (111)

and Z; is constant for all z. Since log Z is constant and 07,1 is a probability measure, we have:

Frlon-1] = / log Z,dop—1(z) =log Z,, (112)
Sh—l

Step 2: Compute 7,

Without the loss of generality, we assume the coordinate of x as:

z=¢e,=(0,...,0,1). (113)

Then x - y = yp, the last coordinate of y. So:

7, — / exp (y—h) don_1(y). (114)
Sh—1 T

Lett =y, = x -y € [—1,1]. The pushforward of o;,_; under the map y — x - y has probability
density:

(1—t2)¥, te[-1,1]. (115)

Then:
[ ! _ G " 2)"5"
ZT*/;IEXP (T>Ph (t)dt— W/le (].*t) dt. (116)

A classical integral (equivalently, an integral representation of the modified Bessel I, ) is:

1 1 v
/ et (l—tz)u_idt:ﬁf <1/+;> (2> I,(k), kK>0,v> —%. (117)
K

-1

Set: k = L and v = 252, so thatv — § = 252, Then:
! hs h—1 1
/ /T (1—1?) 7 dt=/al (2) (27)%—11%_1 () (118)
—1 T
Substitute into Z; :
F(%) h—1 g 1
Simplify:
h h_ 1
Z,=T <2) (27)2 11%_1 <T> . (120)

Step 3: Compute F; [07,_1]
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E.2 DETAILS OF THEOREM 2

In this section, we provide proofs of Theorem [2| that is proposed in Sec. [3.3] We also provide
details and proofs of the auxiliary theorems (Theorem [S3]and Theorem [S4)) and the technical lemmas
(Lemma 5} Lemma[6] Lemma |7} Lemma [§|and Lemma ) that support the proof Theorem [2} For
convenience in reading, let us recall some related notions and definitions.

* h, N eN.

e Sl ={zeR": |z =1}.

e X = (:L’l, e ,IN) S (Sh_l)N.

Y = (yl, ey yN) S (Sh_l)N.

N
RS DIARE

N
* KBy = %Zi:l Yi-

— Mz
® Cp = .
T [lpall
— My
® Cy = .
Y gl

Definition (Multimodal Contrastive Loss (MCL Loss)). Let (X,Y’) be an N-pair configuration,
where X = (z1,...,2x) € (S""HV and Y = (y1,...,yn) € (S""HN. V7 > 0, the multimodal
contrastive loss Lyicr (-, +) : (SP~HN x (SP=1)V — Ris defined as:

N
1 ) )
LMCL = N Z 'C’f\/[CLv where [’{\/ICL = ,CX_)y(Z‘i; Y) + Ly—n'k'(yi; X)
i=1

Here, Lx_,y is the X-to-) alignment and Ly _, y is the Y-to-X alignment, which are defined
respectively as:

O (s X) = —log et I

S exp (xi - y;/7) S exp (x; - i/ 7)

Lxy(x;Y) = —log

Definition(Modality Gap) Let (X,Y’) be an N-pair configuration, where X = (z1,...,2n) €
(S"HNand Y = (y1,...,yn) € (S"71)N. The modality gap between X and Y can be expressed
as the angle between the center representations:

Ay = cos_l(cm “Cy).

Definition (vMF Distribution). Ve € S"~! and x > 0, the probability density of a random h-
dimensional unit vector z ~ vMF (¢, ) is given by:

K:V

fu(zi¢, k) = Dy(k)e™ *, where Dj(x) = 2m) 1L, (k)

Here,v = h/2 — 1, and I, (-) : R — R is the modified Bessel function of the first kind of order v,
which is defined as:

oo
1 T 2k+v
PR S N
(z) ;;) KID(v+k+1) \2
Definition (Function M). Yk, T > 0, a function M,(-,-) : [~1,1] x [0,1] — Ry is defined as:

~ 2 12
M, (w,t) = n2+ﬂ+—2.
T T
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Definition (Function 7). V&, v, 7 > 0, j(, sk, v) s [—=1,1] x [-1,1] x [0,1] = R is defined as:

; ) I (M2, 1)) L, (x)
J(wl,wz,t,m7u)——7+log W —log< LoV )

Definition (Function M). V&, T > 0, a function M, (+) : [~1,1] — Ry is defined as:

2Kkw 1
MK (U}) 2 + T ﬁ

= Mﬁ(w7 1)
Definition (Function 7). Vk, v, 7 > 0, a function J (+; k, v) : [—1,1] — R is defined as:
w I, (M (w)) I, (k)
; =——+1 ) =1
j(wv K:, l/) T + Og ( MH (w)V Og K,V
=J (w,w,1;k,v).

Definition (Function 7). Y, v,7 > 0, a function J (-, -; &, ) : [—1,1] x [0,1] — R is defined as:

j(w,t;/ﬁ,u) = —% + log W — log (L/,{(VH)>

=J (w,w,t;k,v).

E.2.1 PROOF OF THEOREM 2

In this subsection, we provide the proof of Theorem[2] For convenience in reading, we first restate
Theorem 2 here.

Theorem 2. [Restate] Let (X, Y) be an N-pair configuration, where X = (z1,...,zy) € (S"~HV
are iid samples from j1, = vMF(c,, k), and Y = (yy,...,yn) € (SP71)V are iid samples from
ty = vMF(cy, ky). Let v = h/2 — 1. Suppose there exists an index ¢ = ¢ such that z, = ¢,
Ye = ¢,. Denote Ag = cos™ (¢, - ¢,). For any fixed k,, ky > 0, it holds that:

lim L{cr, — 210g(N) = J(cos (Ag) ; ky,v) + T (cos (Ag) ; Ky, V)

N—

(

(cos (Ag),cos (Ag) , 1; ky, v) + T (cos (Ag) ,cos (Ag) , 1; kg, 1)
(1 1y, v) + T (L5 Ky v)

(1,1,1; Ky, v )—i—j(l,l,l;,‘%,u),

%

J
J
J

where equality is attained if and only if there exists a configuration of (X, Y") such that:
(AS) Ag=cos™t (g - ¢y) = 0.
Proof. We first decompose lim n o L£5;cp, — 2log (V) into two parts:
Am Lyer, — 2log(N) = i Lasy(easY) — log(N)

+ lim Ly x(cy; X) —log(N).
N —o00

(122)

According to Theorem [S4] the convergent function and its lower bound of Ly _,y are:
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i Lay(ensY) —log(N) = J(cos (Rg) s ky, v) 2 T (1 ky, v), (123)
where equality is attained if and only if there exists a configuration of (X, Y") such that:
(1) Ag=cos™! (e cy)=0.
This Theorem also holds for Ly_, x:

lim Ly ,x(cy; X) —log(N) = TJ(cos (Ag);kz,v) > T (15 ke, ), (124)

N—o00
where equality is attained if and only if there exists a configuration of (X, Y") such that:

(i) Ag = cos™! (c; - cy) = 0.

Combining Eq. (123), Eq. (124)), and consider 7 (w; k,v) = J (w,w, 1; k, v/), we reach the conclu-
sion that:

Nlim Licr, — 2log(N) = J(cos (Ag) ; ky, V) + T (cos (Ag) ; Kz, V)
— 00
= J(cos (Ag),cos (Ag) , 1; ky,v) + T (cos (Ag) ,cos (Ag) , 1; ki, 1)
> T ky,v) + T (1 kg, 1)
= J(L 1 Liky,v) + T (L1 Lk, v),
(125)
where equality is attained if and only if there exists a configuration of (X, Y") such that:
(A5) Ap =cos™! (¢cz - ¢y) =0.
O

E.2.2 AUXILIARY THEOREMS PART 2
In this subsection, we provide details and proofs of the auxiliary theorems (Theorem [S3]and Theo-
rem [S4)) that support the proof of Theorem 2]

Theorem S3. Let (X,Y) be an N-pair configuration, where X = (x1,...,2x5) € (SP71)N are
iid samples from ji, = VMF(cy, kz), and Y = (y1,...,yn) € (S""N)N are iid samples from
ty = vMF(cy, ky). Letv = h/2 — 1 and K, > 0.

Vr; € X, denote w; = x; - y; and Wy, ¢, = T; - . It holds that:

exp (x; - y; /T)
Sl exp (- y;/7)

_ _% tlog (IV (M, (wm,@))> log (I,, (m) (126)

M“y (wxiacy)u Ky

Y

lim Lyy(z;Y) —log(N) = lim —log —log(N)
N— 00 N—o0

- j(wi7wwi7cya 17 K}y,V),

where Vi > 0,7 > 0, M, (+) : [-1,1] — R{ is defined as:

2 1
M, (w) = \[r2 + 2 4 = (127)
T T
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and I, is the modified Bessel function of the first kind of order v, which is defined as:

i 1 mn 2k+v

Suppose there exists an index i = c such that x. = cg, Y. = cy. Denote w. = c; - ¢y. It holds that:

. | e (f O ) Lo ()
]VlgrlooEXay(Cz,Y)flog(N)**7*10g <W>log( KY > (129)

= J(we; ky,v) = j(wc,wc, 15 Ky, V).

Proof. Step 1: We start the proof by find the convergent function of Ly _,y(z;;Y) as N — .
Same with Eq. of Theorem Vz; € X, the X'-to-) alignment of x; can be rewritten as:

exp (z; - yi/T)
2 exp (i - y;/7)

N
T Y 1 i Yj
= Tl NN;QXP(T> (130)

Lxsy(ri;Y) = —log

=|

T

N
Ti - Yi 1 Ti - Yj
__ 1 3 ( ) log (N) .
. + log j:1eXp +log (N)

Lemma 2] shows that:

N
. 1 T Yj _ ;Y
o (e (%22) ) <t B o (52)]) .
=
According to the moment-generating function of the vMF distribution:
iy T 1, (“Iy) ky\”
s (220) = e [ (210)] = S0 ()
Y T Y T Iy (Hy) Klg/ (132)
’ L
where k), = [|kyc, + ?||2
Then we have:
. T I, (k) I, (k
i Lxsy(xi;Y) —log(N) = —% + log </£(’y”y)> —log (/y) . (133)

Step 2: we will transform £y _,y from a function of vectors to a function of angles between vectors.

Without loss of generality, we assume the coordinate of ¢, as

¢y = (1,0,---,0). (134)

Denote cos (Gmhcy) = x; - ¢y. Then x; can be represented as:

i = (COS (Gmhcy) , usin (9“,%))

135
= (COS (ea;i,cy) , U sin (chy) , U3 sin (9%%) yee-y Up sin (QIUCZ)) s ( )
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where u = (0, ug, us, . .., up) = S"~2 € S"~1 is a unit vector orthogonal to the first axis with:

Ju| =0+ud +ui+- +uj =1. (136)

According to Eq. (134), Eq. and Eq. (136), #;, (in Eq. (132)) can re-rewritten as:

2
_ (ny N cos (Gxi,cy)> N sin? (02..c,) (137)

_ \/H3 N 2ky cos (0z, c,) n 1

T T2

= M”y (COS (ezi,cy)) '

Consider that w; = x; - y;, Wy, ¢, = €08 (0z,.c,) = T - ¢y, putting Eq. (133) and Eq. (137) together,
we have:

. zi -y I, (k) I, (k)
Jim Ly_y(xiY) —log(N) = === +log <,€/Vy — log 7/{”3’
I

I
|
+
VR
<
—~
=
<
—~
B |'e
D
<
S—
S—
~
|
5}
o
7N

= j(wi,wxi,cya 1; Ky, V)'

When there exists a data pair i = c such that z. = ¢y, Yy = ¢y, W; = Wy, ¢, = W, then we have:

. ) . We I, (Mf-iy (wC)) I, (ky)
A}gnoo Lxy(cz;Y) —log(N) = T + log (W) —log ( p > (139)

= j(wz:;'%yvy) = j(wcywm 1; ﬁyvl/)-

O

Theorem S4. Let (X,Y) be an N-pair configuration, where X = (x1,...,zy) € (S""H)N are
iid samples from p, = VMF(cy, ky), and Y = (y1,...,yn) € (S""HN are iid samples from
ty = VMF (cy, ky). Let v = h/2 — 1. Suppose there exists an index i = c such that x. = c,,
Ye = ¢y. Denote Ng = cos™ (¢, - ¢,). For any fixed r,, > 0, it holds that:

Jm Lay(easY) —log(N) = T (cos (Ag) ; iy, v) 2 T (15 5y, 1), (140)

where equality is attained if and only if there exists a configuration of (X,Y) such that:

(B3) Ag = cos™t (cg - ¢y) = 0.

Proof. Step 1: We start the proof by find the convergent function of Lx_,y(c,;Y) as N — .
Denote w, = ¢, - ¢,. Yk, > 0, as prove in Theorem [S3}
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exp (¢z - ¢y/T)

lim £ ;YY) —log(N)= lim —lo — log(N

Jim Laoy(ea;Y) —log(N) = lim —log SV exp (@ 1)7) )
W I, (M, (we)) I, (Ky) (141)
= J(We; Ky, V).

where Vi > 0,7 > 0, J(+; s, v) is a function on [~1,1] and M,, () : [~1,1] — Ry is defined as:

2 1
M, (w) = /w2 + 22 4 =, (142)
T T

and [, is the modified Bessel function of the first kind of order v, which is defined as:

s 1 mn 2k+v
I, (m) = kZ:O BT+ E+1) (5) : (143)

Step 2: Next, we find the minimal value and the optimal condition of convergent function.

As shown in Lemma(set s =1), J(w;k,v) = J(w,w,1; k,v) is a concave function of w. When
a function is concave, its minimal value occurs at the endpoints of its domain. Therefore :

j(wc;“ya V) > min{j(—l; ’fyvy)aj(h /{y,y)}. (144)

According to Lemma [6}

T(~Likyv) = T (15 ky, ). (145)

Therefore, we conclude:

lim Lx_y(c;Y) —log(N) = TJ(cos(Ag);ky,v) > T(1; ky,v), (146)

N—o0

where equality is attained if and only if the following conditions hold:

(B3) Ap =cos ! (c; - ¢y) =0.

E.2.3 TECHNICAL LEMMAS PART 2

In this subsection, we provide details and proofs of technical lemmas (Lemma 5] Lemmal6] Lemma([7]
Lemma§]and Lemma[J)) that support the proof of Theorem 2] Theorem [S3]and Theorem [S4]

Lemma 5. Vk,v,7 > 0and s € [0, 1], a function Ties (:;8,v) 1 (=1,1] — R is defined as:

M — log (L/(H))

A w
Ji=s (W Kk, V) = —— + 1o = —
t=s ( ) - g Mo—s () v

(147)
= J (w,t = s;k,v) = J (w,w,t = s;k,V),

where M,— (-) : (—1,1] — Rt is defined as:

- 9 2 .
Mo ) = ot + 2524 52 7 (e = ). (148)
T T
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and I, is the modified Bessel function of the first kind of order v, which is defined as:

i 1 mn 2k+v
L) =3 e (2)

(149)

It holds that, for any fixed s, Tres (+) is a strictly decreasing function when w € [0, s| and a concave

function w € (—1,1].

Proof. Let us first decompose the function J;—. Denote two functions G (w) and G (w) as:

Gy (w) = -,
G (m) = log (I, (m)) — vlog (m),
Gy (w) = Gs (Mt:s (w))

= log (Iu (Mt:s (w))) —vlog (Mt:s (w)) .

Denote the function G (w) and the constant C' as:

G(w) =Gy (w) + G2 (w),
C=—log (I”K(f)) .

Then the function jt:S can be written as:

~ 1, Mt:s (U))
Ji=s (w3 K, V) = —% + log Q

Mt:s (w)V
=G (w)+C.
Now, we investigate derivatives of jtzs.
The first derivative of Gy is:
1

! =-=-<0.

1 (w) -
The second derivative of (1 is:

G (w) = 0.

According to Lemma [} the first derivative of G5 (m) is:

Iu+ (m)

Gy (m) = =05

€ (0,1).

The derivative of Mtzs is:

41
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~ d 2 1/2
Mt/:s (U}) = % </‘i§ + ) + 27_71])
1 ) 82 —1/2
K 1
T My=s (w)
> 0.

Then, the first derivative of G is:

Gl (w) = Gy (Mizy (w) ) M, (w)
_ Iy (Mt:s (w)> L ()
1, (Miey (w))
w1 e (B (w)
T Mies () 1, (Miey (w)

Combining Eq. (I533) and Eq. (T57), we have:

Ji_s (wik,v) = G (w)

Since:

thus, when w € [0, 1], M,_, (w) > k holds. Combining this and Eq. lb we have:

1, sl I <Mt:s (w))

G'(w) < —=+ .
T OTK I, (Mtzs (w))
1 1
<—=4-=
T T
=0.

So we can conclude that, for any fixed s, J;—s (-) is a strictly decreasing function on [0, s].

Denote:

Ly (m)

) = )

1
m

according to Lemma ]

(156)

(157)

(158)

(159)

(160)

(161)
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H' (m) < 0. (162)
Since G, (w) can be written as:
K ~
G (w) = ~H (Mt:s (w)) : (163)
combining Eq. (T56) and Eq. (T63)), we have

Gy (w) = 21’ (Miey (w) ) 81, (w)

< 0.

(164)

Given Eq. (I57) and Eq. , we can conclude that G5 is an increasing and concave function.
Combining Eq. (I54) and Eq. , we have:

JiL (wik,v) = G" (w)
=0+ GY (w) (165)
<0.

So we can conclude that, for any fixed s, J,—, (-) is a concave function on (—1,1].

O
Lemma 6. Vs, v, 7 > 0, a function J (-) : [—1,1] — R is defined as:
w 1, (M (w)) 1, (k)
=——+1 —— ] =1 —_— log(N 1
T (w) — +log ( A () og | == | +log(N), (166)
where M,; () : [=1,1] — R is defined as:
M, (w) = Hz+2’i~”+i2, (167)
T T
and I, is the modified Bessel function of the first kind of order v, which is defined as:
i 1 mn 2k+v
1, = —_— = .
(m) ];)kll“(u—l—k—i— ) (3) (168)
V0 < w < 1, it holds that:
J (w) < J(—w). (169)
Proof. Let us first re-write Eq. (I69) as:
J (w) < J(-w) & J(-w) =T (w) >0, (170)
and we will prove the inequality on RHS. Denote:
1 2
a=M(—w)= /@2—1——2—&,
T T
171)
1 2KRw
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In (Eq. (155)) of) Lemmal[3] it is shown that M (-) is a strictly increasing function. Then, we have:

0<a<b, (172)

and then we have:

T = )= £ () wros (F) s §)

173
- STy U8\
According to Lemma [0}
I,(a) a
1 —rvl - —b). 174
g(ub)) viog (7) > (a=b) (174)
Plugging Eq. (I74) into Eq. (I73), we get:
2w
J(—w)—J(w)>7+(a—b):f(w). (175)
Combining Eq. and Eq. (I75), we have:
J (w) < J(~w) & f(w) > 0. (176)
Denote:
1
A= K}2 + oy
pu
- (177)
-
then we have:
a=M(-w)=+vA—- Buw,
(178)
=M (w) = VA+ Bw.
Observe that:
A+ Bw)—(A—B
b—a= M (w)— M(—w) = AFBw = (4= Bu)
VA + Bw++vA - Buw
179)
B 2Bw
VAt Bw+VA-Buw’
and then:
2w 2K
=—[1- . 180
f(w) T VA + Bw+ A — Bw (180)

Therefore, we have:
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f(w)>0s VA+ Bw+VA— Bw > 2k

& (\/A+Bw+\/A—Bw)2 > 4k?

& 24+ 2\/A2 — B2w? > 4k? (181)
& \/m22/£2—A

o VA Bra? > - L

72
Casel: 0 < r < 1.
K2 — T% < 0 and the last equation in Eq. holds.
Case2: 0 < L <k,
The Eq. (I8T) becomes:

12 (182)
%(1 —w?) >0

< w| <1

Since 0 < w < 1, f (w) > 0 holds. According to Eq. (176), we conclude that:
O<w<l=J(w) <J(—w). (183)

Lemma 7. Vv > 0, a function G5 : Rg’ — R is defined as:
G3 (m) =log (I, (m)) —vlog(m). (184)

where 1, is the modified Bessel function of the first kind of order v, which is defined as:
o0
1 m 2k+v
om =Y ()
(m) ;}klr(wm 2 (183)

It holds that G5 (-) is a strictly increasing function with G5 () € (0,1)

Proof. The first derivative of G is:

I(m) v
! — v 7 1
G (m) L) m (186)
According to (Olver, [2010):
I, (m) = I,41 (m) + %Iy (m), (187)
then we have:
I(m) v _ Li(m) 15

Plugging Eq. (I88) into Eq. (186), we get:
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s = 505

Since:

0 < Lysa (m) < I, (m).

therefore:

Gl (m) = Ifl(ﬁg‘) € (0,1).

This shows that G5 (-) is a strictly increasing function with G% (+) € (0,1).

Lemma 8. Vv > 0, a function H () : Rt — R is defined as:

H(m) _ iIV‘Fl (m)7

m I, (m)

where I, is the modified Bessel function of the first kind of order v, which is defined as:

i 1 mn 2k+v
L (m) = ];) KT(v + k + 1) (5) '

It holds that H (m) is a strictly decreasing function.

Proof. Yv,m € R, denote R, (m) as:

R, (m) = IIH(T(:;)

According to (Olver, 2010), we have:

14

I; (m) =1yt (m) + v (m) s

then:

L1 (m) 1, (m) — 1yqq (m) I, (m)

Ry, (m) = 1 (m)

(IV+2 (m) + V?HLH-I (m)) I, (m) — I, 41 (m) (Iy+1 (m)+ =21, (m))

1, (m)*
lyi2 (m) I, (m) — 13+1 (m) + %IV+1 (m) I, (m)
I, (m)2

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)

(197)
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then:

_ % <R; (m) — %Ry (m)) (198)

According to the Turédn type inequalities for modified Bessel functions (Baricz, [2010), when m > 0:

Il/+2 (m) L/ (m) - Il%—‘,—l (m)

<0, 199
T, (m)? (199)
o)
H' (m) <0. (200)
Then we can conclude that H (m) is a strictly decreasing function.
O
Lemma9. Vv > 0and 0 < a < b, it holds that:
I,(a) a
1 1 (7) —b), 201
og(ly(b))>uog 2 + (a—10) (201)
where I, is the modified Bessel function of the first kind of order v, which is defined as:
0 ]_ m 2k+v
L =3 ()
(m) kz:% KT+ k+1) \ 2 (202)
Proof. According to (Olver,[2010), Vx > 0 and 0 < 11 < v5 < 00, we have:
L, (z) > L,(x). (203)
Denote a function L as:
L(z) =logI,(x) — viog(z) — . (204)
According to (Olver, [2010):
v
I, (m) = Iy (m) + 1, (m), (205)
then we have:
I I,
Lom) v Laa(m) 06
I,(m) m I, (m)
Taking Eq. (203) and Eq. into account, the derivative of L is:
I'(z) v
L/ — 14 _
() I(z) =z
_ L@ (207)
I,(x)
< 0.
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Therefore, Vv > 0,0 < b < a, it holds that:

log(I, (a)) — vlog(a) — a = L(
> I(a) (208)

then we have:

log (I”(a)) > vlog (%) ¥ (a—b). (209)
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E.3 DETAILS OF THEOREM 3

In this section, we provide proofs of Theorem [3 that is proposed in Sec. We also provide
details and proofs of the auxiliary theorems (Theorem [S5| and Theorem [S6) and the technical
lemmas (Lemma|[I0] Lemma|[T1] Lemma[I2]and Lemma[I3)) that support the proof Theorem 3} For
convenience in reading, let us recall some related notions and definitions.

e h,NeN.
St = [ e R :|lo| =11
« A={z €R":ny -z =0} where ny is the normal vector of A.

*B= {y ERM:np-y= 0} where n 4 is the normal vector of B.

e ¢ =cos ! (m) and 0 < ¢uin < ¢ < 5.
*Sx=S"'"NA={zeR":|lz]|=1,n4 -2 =0} 25" 2 eS" 1
e Sy =SInB= {y eER": |yl =1,np-y= O} o~ Gh—=2 ¢ gh—1

+ C=AnNB.
® hX:hY:h—l.
o thh—2.

* Pj4: the projection matrix of A.
* Pp: the projection matrix of B.
* Pc: the projection matrix of C.
ces={2€Sx:zLC}
*eg={2€Sy:zL1C}

+ Ct =span{ea} @ span{ep}
« Rt =CaCH

¢ X = (x1,...,7n) € (Sx)V.
* Y =(y,--,yn) € (Sy)V.

C e =N sz\il L

CHy = Zf\[:l Yi-

o ¢ — Ha

T kel

— My
® Cy = .
Y Nyl

Definition (Multimodal Contrastive Loss (MCL Loss)). Let (X,Y’) be an N-pair configuration,
where X = (z1,...,2x) € (S HN and Y = (y1,...,yn) € (SN, ¥r > 0, the multimodal
contrastive loss Lyicr (-, +) : (SPHN x (SP=1)Y — Ris defined as:

N
1 : )
Lyicn = N E Li\/ICLv where L%\/ICL = ﬁ)(_g;(zi; Y) + Ey_ny(yi;X).
i=1

Here, Lx_,y is the X-to-) alignment and Ly_, » is the V-to-X alignment, which are defined
respectively as:

exp (x; - yi/T)  Lya(ys X) = —log exp (z; - y; /T) .

SO0 exp (i - y;/7) Sy exp () yi/7)

Lyoy(z;Y) = —log

Definition(Modality Gap) Let (X,Y’) be an N-pair configuration, where X = (z1,...,2n) €
(S""HNand Y = (y1,...,yn) € (S"71)N. The modality gap between X and Y can be expressed
as the angle between the center representations:
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Ag = cos ez - ¢y).

Definition (vMF Distribution). Yc € S"~! and k > 0, the probability density of a random h-
dimensional unit vector z ~ vMF(c, ) is given by:

v

K

fh(Z;C7 H) — D}AH)@KCTZ? where Dh(ﬁ) = m

Here,v = h/2 — 1, and I, (-) : R — R is the modified Bessel function of the first kind of order v,
which is defined as:

s 1 7 2k+v
W0 =Y e ()

Definition (Function M). V&, 7 > 0, a function MK(-, )1 [=1,1] x [0,1] — R{ is defined as:

~ 2 t2
M, (w,t) = n2+ﬂ—|——2.
T T

Definition (Function 7). V&, v,7 > 0, J (-, -, -; &, 1) : [=1,1] x [=1,1] x [0, 1] — R is defined as:

IV(NK(U)Q t)) I
- w1 ’ u(“))
wy, W, t;k, V) =——+log| ———= | —lo .
T (w1, we ) R S TATT g( e

Definition (Function M). V&, T > 0, a function M, (+) : [~1,1] — Ry is defined as:

2Kw 1
M, = 24— 4+ =
(w) R T + T2

= M, (w,1).

Definition (Function 7). Vk, v, 7 > 0, a function J (+; k, v) : [—1,1] — R is defined as:

=J (w,w, 1;5,v).

Definition (Function M). Yk, 7 > 0, a function M,(-,-) : [-1,1] x [0,1] — R is defined as:

M, (w,t) = M, (w,t).

Definition (Function 7). V&, v, 7 > 0, a function j(, s kyv) [=1,1] x [0,1] — R is defined as:

A g (L)) ()

J (w,t;k,v)=——+1o 2
( )=——_+log M (w1 e

=J (w,w,t; 5, v).
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E.3.1 PROOF OF THEOREM 3

In this subsection, we provide the proof of Theorem 3] For convenience in reading, we first restate
Theorem 3 here.

Theorem 3. [Restate] Let (X, Y') be an N-pair configuration, where X = (z1,...,2x) € (Sx\C)V
are iid samples from p, = VMF (cy, k), and Y = (y1,...,yn) € (Sy \ C)¥ are iid samples from
py = vMF(c,, Ky). Let o = (h — 1)/2 — 1. Suppose there exists an index ¢ = ¢ such that z, = c,,
Ye = ¢y. Denote Ay = cos™*(c; - ¢,) and assume that ¢, ¢, ¢ C with ¢, - ¢, > 0. For any fixed
Kz, Ky > 0, it holds that:

lim Ly, — 21log(N)
N—o00
= J(cos (Ag) ,cos (Ag), | Peczll; Ky, ) + T (cos (Ag) , cos (Ag) , || Pacyll; Kz, D)

Z j(COS (¢min) , COS (¢Inin) , COS (¢Inirl) ) ’iy7 D) + j(COS (¢min) , COS (d)min) , COS (d)min) s Ra, I;)y
where equality is attained if and only if there exists a configuration of (X, Y") such that:

(A6) ¢, LCandc, L C.
(A7) Ag = cos™ (¢ + ¢y) = Gmin.

Proof. We first decompose limy o0 L1, — 2 log(NV ) into two parts:

lim Lyep, — 2log(N) = lim Ly_y(cy;Y) —log(N)
N—oco N—o0

210
+ lim Ly x(cy; X) —log(N). (210)
N—o0
Set:
(w t K, V) :7(w7wvt;"<‘7y)a (211)
= ]j7
According to Theorem [S6 the convergent function and its lower bound of £x_,y are:
lim Lyoy(ca:Y) = log(N) = J(cos (A0) || Pca: 5y, 7)
N— 00 (212)

> j(”PACy”v ||PACyHa cos (¢) ; Ky, ).

where equality is attained if and only if there exists a configuration of (X, Y") such that:

(i) ¢, L C.
.. _ PACy
(i) ez = o7

This Theorem also holds for Ly_, x:

lim Ly, (cy; X) —log(N) = J(cos (Ag) , | Pacy; ka 7)
N—reo ) (213)
> J (| Pecalls [ Ppesll, cos (¢) ; kg, 7).

where equality is attained if and only if there exists a configuration of (X, Y") such that:

(iii) ¢, L C.

3 Cg
(iv) ¢y = ppaeey.
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According to Lemma for some A, Ay > 0 such that the projections of z and y are collinear with
the other vector:

(1) The orthogonal projection of = on B is a scalar multiple of y:
PB:E:)\:L’ya A:E #07

(2) The orthogonal projection of y on A is a scalar multiple of x:
PAy:Ayxa >\y 7&07

if and only if the following condition holds:
(v) Eitherz L. Candy 1 C,orx = +y € C.

Since ¢, ¢y ¢ C, there is only one configuration in (v) that satisfies (ii) + (iv), that is ¢, L C and
¢y L C. In this case, Lemma@ shows that:

cos (Ag) = cos (¢) > cos (dmin) ,
[Pacyl = [|Ppeall = cos (4),

214
Pgey, = cos (¢) ¢y, @14)
Pacy = cos (@) cy.
Combining Eq. (Z12), Eq. (213) and Eq. (Z14), we have:
lim Lfior, — 21og(N) = T (cos (A9), | Prcols 5y, 7) + T (cos (Do), [Pacylls ki, )

> J(cos (¢),co8 (¢) ; kg, 7) 4+ T (cos (@) , cos (@) ; K, 7).
where equality is attained if and only if there exists a configuration of (X, Y") such that:

(A6) ¢, L Candc, L C.

Since Lemmal|l 1{shows that 7 (cos (¢) , cos (¢) ; k, ) is a strictly decreasing function of cos (¢), we
have:

i L5y — 21oa(N) = F(cos (Ag) . |Paes 5y 7) + J (c0s (Ag) . [ Pac | 2. )
> j(cos () ,cos (@) ; ky, V) + j(cos (¢), cos (@) ; ke, ) (216)
> j(COS ((bmin) , COS ((bmin) y Ry, ﬂ) + j(COS (¢min) , COS (¢min) yRay 17)7

where equality is attained if and only if there exists a configuration of (X, Y") such that:
(A7) Ag =cos™t (¢g - Cy) = Dmin-

Replacing j(w, t; k,v) with 7 (w, w, t; K, v), we conclude that:

lim Lyer, — 21log(N)
N —o00

= J(cos (Ag),cos (Ag), || Pea; Ky, D) + J (cos (Ag) ,cos (Ag) , |Pacyll; zs )
J (cos (Ag) , cos (Ag) ,cos (Ag) ; iy, 7) + T (cos (Ag) , cos (Ag) , cos (Ag) ; Ky, D)
J

(COS ((bmin) , COS ((bmin) , COS ((bmin) ; ﬁy7 D) + j<COS (d)min) , COS (d)min) , COS (d)min) yRay f/)a
217)

>
>
where equality is attained if and only if there exists a configuration of (X, Y") such that:
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(A6) ¢, L Candc, L C.
(A7) Ag=cos™! (¢g - Cy) = Dmin-

E.3.2 AUXILIARY THEOREMS PART 3

In this subsection, we provide details and proofs of the auxiliary theorems (Theorem [S5]and Theo-
rem[S6)) that support the proof of Theorem 3]

Theorem S5. Let (X,Y) be an N-pair configuration, where X = (z1,...,xx) € (Sx \ C)V are
iid samples from i, = VMF(cz, k), and Y = (y1,...,yn) € (Sy \ C)¥ are iid samples from
wy = vMF(cy, ky). Let v = (h —1)/2 — 1 and K, > 0.

Vx; € X, denote w; = x; - y; and Wy e, = Ti* Cy. It holds that:

exp (x; - y; /T) oe(N
S e i)

ID (Mny ('LUzi,cya HPBLL‘Z“)) _ ]Og (L; (K/y)> (218)

lim Ly_y(z;;Y) —log(N)= lim —log
N—00 N—o00

= — — Og 5
T M, (wxi,cyv ||PBxi||)

v
Hy

= j (wiawzi7cy, HPBJ:’L”’ K/?[)) )

where Y, T > 0, My (-,-) : [-1,1] x [0,1] = R{ is defined as:

. 2 12
M, (w,t) = \/ &2 + ﬂJﬁ, (219)
T T

and I, is the modified Bessel function of the first kind of order v, which is defined as:

0 1 m\ 2k+v

Suppose there exists an index i = c such that x. = cg, Y. = cy. Denote w. = c; - ¢y. It holds that:

I; (M,Qy (U)a ||PBCm||)> 1 (L; (Iiy))
~ ] - O s
M., (we, | Poc|) iy

lim Lx,y(cs;Y) —log(N) = ey log
N — o0 T

= J(we, | Ppczll; iy, ) = T (we, we, | Peai|; 5, 7).
(221)

Proof. Step 1: We start the proof by find the convergent function of Ly_,y(x;;Y) as N — oo.
Same with Eq. of Theorem ST} Vz; € X, the X'-to-) alignment of z; can be rewritten as:

o exp (z; - yi/T)

Lyosy(rs;Y) =~
- > exp (z; - y;/T)
T - Y 1 & Ty
_ 1 3 . u
= . + log NN;exp( - ) (222)

N
i Y 1 (33@1/;)
— + log I E exp (—— +1log(N).

Jj=1
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Lemma [2] shows that:

i e (£ 3o (22 <t (6 [on (B20)) .9

According to the moment-generating function of the vMF distribution:

T - x; Iy (Ry) ([ ky
e (252 =6 oo (2-0)] - 108 (5)

v (224)
- Ppx;
where &) = [rycy + B2,
Then we have:
i Yi I; (R, I;
lim Lxoy(:Y) —log(N) = — 2% | 1og M —log (("‘“)> . (25
N—oo T Iiyl’ /{Z

Step 2: we will transform £ _,y from a function of vectors to a function of angles between vectors.

Without loss of generality, we assume the coordinate of ¢, as

¢y = (1,0,---,0), (226)
the hyperplane B as:
B={zeR":ns-2=0}, where ng=(0,0,---,1). (227)
Let z; = Ppx;, then we have:
08 (0g,.c,) = @i - ¢y = Ppai-cy = & - ¢y, (228)
Define:
A T; PBLEZ'
~0H): i, = ¢y, 229
o0n (Beuen) = 5] = g @2
then we have:
il cos (0, o ) = Pgai - ¢y = cos (04 ) .
P Or.c,) = Ppi - ¢, Oric, (230)

And ; can be represented as:

i‘i = ||PB$lH (COS (éwi,cy> ,uSin (éfti7cy>>

) A ) A 231)
= || Pp;| (cos (H%Cy) , Ug sin (9%%) , U3 sin (9%%) s, Up—_1SiDn (9%%) ,O) ,
where u = (0, uz, us3, . .., un_1,0) = SP=3 € S"~1 s a unit vector orthogonal to the first and the
last axes with:
lul| =0+ +ud +---+ui_; +0=1. (232)
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According to Eq. (226), Eq. and Eq. (232), &, (in Eq. (224)) can re-rewritten as:

Y Y=y 7l

N 2
1Pyl cos (0r.c, )
+

T

Ry +

~ 2
nt (1Pgai] sin (Br,.c, ) ui

D

=2

T

|Pgx;|| cos (ézcy)

2 A~
|| Ppa; |2 sin? (9)
+

T T 72 (233)
2ny |1 Poail 08 (Bricy ) 1Poa?
—\ T T T

2Hy cos (0377?»67/) + HPB‘I’LH2
2

—\/Iig—i—

— Mﬁy (cos (Qxi,cy) , ||PBxi||) .

Consider that w; = x; - ¥4, Wy, ¢, = €08 (0z,.c,) = T - ¢y, putting Eq. (225)) and Eq. (233) together,
we have:

T T

. Li - Yi Iy
lim Lyy(z;Y) —log(N)=—-—=+log | —=*
N—o0 T

wi Iy (M,{y (Wa,.c, HPB:UZ-II)) I (1)) (234
=—— +log ~ = — log ;y
T M"‘y (wﬂtiwcy’ ||PB:EZ||) Ky

=J (wz’awxi,cyv | Ppill; &, ZN/) .
When there exists a data pair ¢ = ¢ such that x. = ¢, Y = ¢y, Wi = We, ¢, = We, then we have:

()

Iy (W, (we, |1 Psc. )
My, (we, | Poc )"

Y

: o o we
dim Lyoy(es;Y) —log(N) = —— +log p

= j(wc, |1 Pacsll; £y, ) = J (Wey We, || Ppil|; K, 7).
(235)

O
Theorem S6. Let (X,Y) be an N-pair configuration, where X = (x1,...,xy) € (Sx \ C) are
iid samples from i, = VMF(cy, ky), andY = (y1,...,yn) € (Sy \ C)V are iid samples from
ty = vMF(cy, Kky). Let 7 = (h — 1) /2 — 1. Suppose there exists an index i = c such that z. = ¢,

Yo = ¢y. Denote Ag = cos_l(cz - ¢y) and assume that c,, ¢, ¢ C with ¢, - cy > 0. For any fixed
Key Ky > 0and V¢ € [0, 5], it holds that:

lim Lay(es;Y) —1og(N) = J (we, | Pocal; 5y, 7) = T (| Pacy |, cos (6) vy, D),

N—o0

(236)

where equality is attained if and only if there exists a configuration of (X,Y") such that:

(B4) ¢, L C.
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(BS) ¢y = s

[Pacyll®

Proof. Step 1: Similarly to the proof of Theorem [S4]in Sec.[E.2.2] we start the proof by finding
the convergent function of Ly _,y(c,;Y) as N — co. Denote w, = ¢, - ¢y. Vky > 0, as proven
in Theorem [S3}

exp (€x - ¢y/T)

lim Ly y(cy;Y) —log(N)= lim —log —log(N)
N=eo N=oo SY L exp(eq - y;/7)
—[17 Mny (w07 ||PBCw||) -
Z—%—Hog ( 17) —lo (L(;@))
T My, (we, | Ppcal|) Ky
= j(wcv ”PBCHCH;Hyaﬁ)a 237)

where Vk, 7 > 0, J (-, -; K, ) is a function on [—1,1] x [0,1] and M,(-,-) : [-1,1] x [0,1] = R
is defined as:

- 2 2
Ny (w,t) = [r2 + 22 4 & (238)
T T

and [, is the modified Bessel function of the first kind of order v, which is defined as:

© 1 mn 2k+v

Step 2: Next, we find the minimal value and the optimal condition of convergent function.

Ve, € Sx, ¢ € [0, 5] it holds that:

0 <cos(¢) < ||Ppes| < 1. (240)

As shown in Lemma Vw,. € [0,1], j(w = W, t; Ky, U) is a strictly increasing function of ¢ on
(0, 1]. Therefore, it holds that:

T (we, €08 () 1 Ky, ) < T (We, |Ppeall; £y, 7) < T (we, 1 Ky, D). (241)
where equality in the above chain holds if and only if the following conditions are satisfied:

(1) The first inequality becomes equality: ¢, L C.

(i1) The second inequality becomes equality: ¢, € C.

According to Lemma (set s = cos (¢)), J (we, cos (¢) ; ky, ) is a strictly decreasing function on
w. when w, > 0. Also, Lemma [T2] shows that:

_”PAcyH <we < HPACy”, (242)

where

0 <cos(¢) < ||Pacyll < 1. (243)

Therefore, when 0 < w, < ||Pac,||, it holds that:
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J (we, 08 (9) 5 ky, 7) = T (| Pacy |, cos (¢) s iy, ), (244)
where equality is attained if and only if there exists a configuration of (X, Y") such that:

e o PACy
(i) ¢z = 1E o -

Combining Eq. (237), Eq. (241) and Eq. (244), we conclude:

Jim Lyoy(eaiY) = log(N) = J (we, | Ppealls 5y, 7) = T (|Pacy|, cos (9) 15y ), (245)

and equality is attained if and only if there exists a configuration of (X, Y") such that:

(B4) ¢, L C.

_ _Pacy
(BS) o = 1Foar

E.3.3 TECHNICAL LEMMAS PART 3

In this subsection, we provide details and proofs of technical lemmas (Lemma [T0] Lemma [T}
Lemma [I2]and Lemma [T3) that support the proof of Theorem [3] Theorem [S3|and Theorem [S6|

Lemma 10. Yx,v,7 > 0 and w. € [0,1], a function Ji—, (-; k,v) : (0,1] — R is defined as:

M — log <Iy (K)>

A Wg
jw:ws (t; K, V) = 77 + IOg ~

M, (t)" KY (246)

= j(w = ws7t;’</7y) = j(w = ws7w = w57t;ﬁj7l/)7

where M, (-) : (0,1] — Rt is defined as:
~ 2kws 3 ~
Mymu, (£) = /K2 + 22 4 2 = N, (w = wy, 1), (247)
T T
and I, is the modified Bessel function of the first kind of order v, which is defined as:
s 1 m 2k+v
Lom =Y ()

(m) ];) KT +k+1) \ 2 (248)

It holds that, for any fixed w,, jw:ws (+) is a strictly increasing function on (0, 1].

Proof. Let us first decompose the function 7. Denote a constant and a function C; and Gs (t) as:

(249)
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Denote the function G (t) and the constant C as:

G(t)=C1+Go(t),
C— o <L, (Iﬁ:)) | (250)

K-/V

Then the function ju,zws can be written as:

L’(Ml”—:%(t)) — log (IV (H))

~ w
jw:ws (t; R, V) = _78 + IOg

M=, ()" v (251)
=G(t)+C.
Now, we investigate derivatives of jw:ws.
According to Lemma 7] the first derivative of G (m) is:
Iy4q (m)
1 v+1
= 1). 252
3 (m) L/ (m) € (Oa ) ( )
The derivative of Mw:ws is:
~ d 2Kw 2 1/2
M/ _ _ 2 S s
b = 5 (2 + 2221 5)
1, 2w, 2 1/ 2t
BRI = A= (253)
o
2 Mw:w& (t)
>0
Then, the first derivative of G is:
Gl (1) = G (Mum, (8)) My, (2)
Iqul (Mw:ws (t)> ~
= ~ Mqluzws (t)
I, (M o (t ) |
w=w, (8 (254)
t 1 IVJrl (Mw:ws (t))
™ Mz, () 1, (e, (1))
> 0.
Therefore, we have:
T, (b 5,v) = G (1) = G (1)
Iu+1 (]\zw:u)S (t))
_t 1 (255)
2

T My=uw, (1) 1, (Mw=ws (t))

> 0.

So we can conclude that, for any fixed wj, jwzws (+) is a strictly increasing function on (0, 1].
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O
Lemma 11. Vk,v, 7 > 0, a function J (-; k,v) : [=1,1] = R is defined as:
I (Vi () 1 (+)
. w v (K
—w Wik, V) =——+log| — ] —1lo
Tz Wik} = =2 108 | 3 Ty g( R ) (256)
= F (wt = wi ) = J (w,0,t = wi k),
where My—, () : [<1,1] — R is defined as:
- 2kw w2 w - 257
Wy () = (02 + 252 e ) = B (w0t = ), @57
T T T
and I, is the modified Bessel function of the first kind of order v, which is defined as:
s 1 mn 2k+v
Lm=SN —— (- .
(m) kzzo KT(v+k+1) ( 2 ) (258)
It holds that Ji—,, (-) is a strictly decreasing function when w € [0, 1].
Proof. Let us first decompose the function Ji—w. Denote the functions G4 (w) and G2 (w) as:
w
Gl (w) = -,
-
Gs(m) = log (I, (m)) — vlog (m),
. (259)
G (w) = Gy (Mt:w (w))
= IOg (Iu <Mt*w (w)>) - VlOg (Mt*w (w)>
Denote the function G (w) and the constant C' as:
G (w) =G1(w) + Gz (w),
I, 260
Clog( (VH)> (260)
Then the function jt:w can be written as:
vt =2 i [ ) (1)
—w Wik, V) =——+log | —=——= | —1lo
t 7 T8 '+ (W) 8\ T 261)
=G (w)+C.
Now, we investigate derivatives of jt:w.
The first derivative of G is:
, 1
G (w) = —= < 0. (262)
T

According to Lemma([7] the first derivative of G35 (m) is:
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I,11 (m)
/ v+1
= v\ 1).
G5 (m) T, (m) € (0,1) (263)
When w € [0, 1], the derivative of M;—,, is:
. 1
M_, (w) = - (264)

Then, the first derivative of G5 is:

G (w) = G (M (w) ) M/, (w)
I (Mt w w)) N
1, (N ( (265)
1 L1 (Mt:w (w))
T 1, (M (w))
Combining Eq. (262)), Eq. and Eq. (263), we have:

Tl (wik,v) = G (w)
__1, 11 (~Mtw (w)) 1, Tyi (~Mtw (w))
T (M (w) T Iy (M ()

< 0.

(266)

So we can conclude that J,—,, (-) is a strictly decreasing function on [0, 1].
O

Lemma 12. Let h > 3 and A, B € R" be two distinct (h — 1)-dimensional linear subspaces, with
na,np being normal vectors and Pa, P being the orthogonal projectors on A and B, respectively.

Denote ¢ = cos™! <M> € (0, g) as the angle between A and B. Let C = AN B be an

Inall-llnsll
(h — 2)-dimensional linear subspaces. For each fixedx € Sy = ANSh~1, ¥y € Sy =BNSh1,
set w = x -y, it holds that:

—[IPp -z <w < |[Pp - x|, (267)
and equalities (extreme values) are attained if and only if the following conditions hold:
(C) w=|Pp-zl| &y =55

(C2) w=—|Pp-z| &y=—pis.

Proof. Step 1: First, let us decompose the embedding space. Define two vectors e4 and ep such
that:

ep € Sx, and ey L C,

2
e € Sy, and e L C. (268)

Let C* be the 2-dimensional orthogonal complement of C, and C satisfies:
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Ct =span{es} ®span{ep},

(269)
R =CaCt.
Since na,np € Ct,ny L eg and ng L ep, we have:
(ea,eB) =+ (na,np), (270)
and we choose a pair of e4 and ep such that:
(ea,ep) = (na,np) = cos(¢) € (0,1). (271)

Therefore, Vo € Sx = ANS* 1 andVy € Sy = BN S !, Jua,up € CN S 1, such that
cos(f0a) =x-en and cos () =y - ep. And then x and y can be represented as:

x = cos(0a)ea +sin(fa)ua,

272
y =cos(fp)ep +sin(fp)up. (272)
Using orthogonality, we have:
Pp-ea = (ea ep)ep = cos(d)es, 273)
Pg-ug=wua,
and
Py-ep = (ea ep)ea =cos(¢)ea, (274)
Py -up =up.
Then the projections of (z;,y;) are:
Pp -z = cos(04) cos (¢p) ep + sin(0a)ua, 275)
Py -y = cos(0p) cos (¢) ea + sin(0p)up.
Step 2: Next, we can investigate the range of w.
w=1x-y
= cos(fa) cos(0p)esen +sin(04) sin(fp)uaup (276)
= cos(f4) cos(fp) cos (¢) + sin(f4) sin(0p)uaup.
Since ua,up € Cand ||ugl| = ||ug|| = 1, then |lug - up|| < 1. Denote f (-), as:
f£(0p) = cos(04) cos(0p) cos (¢) £+ sin(f4) sin(fp), (277)
then :
[-(0B) <w < fi (0B). (278)
Now, let us check the extreme values of f (w). First, we find the derivative of f (w):
fi(0p) = —cos(04) sin(0p) cos (¢) + sin(6.4) cos(0p), (279)

then:
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Sin(@A)

"(0p) =0 = tan(fp) =+—F 2
f2(65) an(0s) cos(64) cos (¢p)” (280)
and
in(6
w > fo <arctan <_cos(sﬁlj§cAo)s@5)>) = —\/sin2(9,4) + cos?(0.4) cos?(9), o8
w < fy | arctan _ sin(6a) = \/sin2(9 ) + cos?(04) cos?(¢)
=t cos(64) cos (¢) A A ’
Denote:
r(@) = \/sin®(0.4) + cos2(0.1) cos(9) € (0,1). (282)
and therefore:
lw| < r(x) < 1. (283)
Step 3: Last, we find the optimal condition of w. When 6 = arctan (%) and uq = up,
w reaches its maximum. At this time:
0
cos(0) = cos(f4) Cos(q’))7
in(0 )T (284)
sin(fg) = SA)
Plugging Eq. (284) into Eq. 273), we get:
Pg - x = cos(04)cos (¢) eg + sin(04)ua
= rcos(fp)cos (¢)ep + rsin(fp)up (285)
=Ty,
and
1Pp - xl| = [[ryl| = r. (286)
Therefore, w reaches its maximum if and only if the following condition holds:
€D y = rEE3y-
When 6 = arctan (—M%%) and uy = —up, w reaches its minimum. At this time:
cos(0) = _cos(GA)cos(qb)7
in(6,) : (287)
1n
sin(fg) = oAl
Plugging Eq. into Eq. 273), we get:
Pg -z = cos(04) cos (¢) eg + sin(f04)ua
= —rcos(fp)cos(p)eg — rsin(fp)ug (288)

= —ry.
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and

1Pp - xl| = || = ryll = . (289)

Therefore, w reaches its minimum if and only if the following condition holds:

o Pp-x
(€D y=—1pyar-

O

Lemma 13. Let h > 3 and A,B € R" be two distinct (h — 1)-dimensional linear subspaces, with
na,np being normal vectors and Pa, Pp being the orthogonal projectors on A and B, respectively.

Denote ¢ = cos™! (M) € (0, g) as the angle between A and B. Let C = AN B be an

nall-lnsll
(h — 2)-dimensional linear subspaces. For x € Sx = ANS"~! y € Sy = BNS"™1, the projections
of x and y are collinear with the other vector:

(i) The orthogonal projection of x on B is a scalar multiple of y:

PBI:)\MJ’ >‘”1' #05

(ii) The orthogonal projection of y on A is a scalar multiple of x:

PAy:)‘yma )\y # 0,
if and only if the following conditions holds:
(C3) Eitherx 1. Candy 1. C, orz = +y € C.

Moreover, in the first case (x L C, y L C), it holds that:
(z,y) = cos(¢), Ppz = (cos (¢)) y, Pay = (cos (¢)) =,

while in the second case (v = ty € C), it holds that:
Ppr =z =(£1)y, Pay =y = (£1)x.

Proof. Step 1: First, we need to decompose the embedding space. This step is the same with Step 1
of Sec.[E.3.3] For convenience in reading, we repeat this step here.

Define two vectors e 4 and ep such that:

eqs €Sx, and ey L C,

290
e € Sy, and eg L C. ( )
Let C* be the 2-dimensional orthogonal complement of C, and C* satisfies:
Ct =span{es} ®span{ep},
- = span {ea} @span e} oo
R"*=CoqC-—.
Since na,np € Ct,ny L eg and ng L ep, we have:
<6A7 €B> == <’I'LA7 TLB> 9 (292)
and we choose a pair of e4 and ep such that:
(ea,eg) = {na,np) = cos(¢) € (0,1). (293)
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Therefore, Vo € Sx = ANS"landVy € Sy = BNS" !, Jua,up € C NS, such that

cos(04) =x-ey and cos () = y - ep. And then x and y can be represented as:

x =cos(fa)ea +sin(fa)ua,
y = cos(fp)ep +sin(0p)up.

Using orthogonality, we have:

Pp-eq = (ea,ep)ep = cos(¢)ep,
Pp-us =ugy,

and

Pa-ep = (ea,ep)ea =cos(p)ea,
PA-UB =upg.

Then the projections of (z;,y;) are:

Pg - x =cos(04) cos(¢) eg + sin(f4)ua,
Py -y = cos(0p) cos (¢) ea + sin(0p)up.

Step 2: = Next, we prove the sufficiency. If conditions (i) and (ii) hold, then:

cos(f4)cos (@) e +sin(f4)us = Az cos(0p)ep + Mg sin(6p)up,
cos(0p) cos (@) ea + sin(0p)up = Ay cos(fa)ea + Aysin(f4)ua.

Decompose both equations into C and C*. In C, we get:

sin(@A)uA = )\x sin(GB)uB,
sin(0p)up = Aysin(fa)ua.

and in C+ we get:

cos(f4) cos (¢) ep = A, cos(0p)es,
cos(fp) cos (p)es = Ay cos(B4)ea.

Then it can be concluded from Eq. (299) that:

sin(@a)ua = AgAysin(@a)ua,
sin(6p)up = A Ay sin(f0p)up.

Eq. (301) leads to two scenarios:

(S1) A, = 1.
(S2) sin(f4) = sin(fp) = 0.

When (S1) holds, multiply two equations in Eq. (300) and we get:

cos(04) cos(fp) cos?(p) = cos(H4) cos(6p).

And since:
0 < cos?(¢) < 1,
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we can conclude that:

cos(f4) = cos(6p) =0,

sin(HA) = sin(@B) = +1.

Plugging Eq. (304) into Eq. (299), we get:

UA = >\qu1
up = )\yuA.

(304)

(305)

Since ||ua|| = |lug| =1, Eq. (305) = \; = Ay = £1 = u4 = tup. And according to Eq. (294)

and we have:

x ==y eC.

We conclude that (S1) = z = +y € C.
When (S2) holds, we have:

Sin(@A) = sin(GB) = 0,

cos(f4) = cos(fp) = 1.

Plugging Eq. (307) into Eq. (294)), we have:

r==2ey L C,
y==xep L C.

We conclude that (S2) = x 1. Candy L C.
So the sufficiency is confirmed.

Step 3: < Last, we prove the necessity. If t = +y € C, then

cos(f4) = cos(6p) =0,

sin(f4) = sin(fp) = 1.

and

T =1ua,

Yy =1up,

According to Eq. and Eq. (310), we have:

Pp-x=us =2 =y,
Py -y=up =y ==+x.

Let A\; = Ay = %1, conditions (i) and (ii) hold.
Ifx L Candy L C, then:

sin(f4) = sin(fp) =0,

cos(04) = cos(fp) = 1.

and
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T = *ey,
y = tep.

According to Eq. (297) and Eq. (313)), we have:

Pp -z = +cos(¢)eg = +cos(9)y,
Py -y=tcos(¢)es = tcos (o).

Let A, = Ay = £ cos (¢), conditions (i) and (ii) hold.

Therefore, the necessity is confirmed.
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E.4 DETAILS OF THEOREM 4

In this section, we provide proofs of Theorem [] that is proposed in Sec. We also provide
details and proofs of the auxiliary theorems (Theorem [S7]and Theorem [S8)) and the technical lemmas
(Lemma [I4]and Lemma [I5])) that support the proof Theorem[d] For convenience in reading, let us
recall some related notions and definitions.

e h,NeN.
St = [ e R :|lo| =11
« A={z €R":ny -z =0} where ny is the normal vector of A.

*B= {y ERM:np-y= 0} where n 4 is the normal vector of B.

e ¢ =cos ! (m) and 0 < ¢uin < ¢ < 5.
*Sx=S"'"NA={zeR":|lz]|=1,n4 -2 =0} 25" 2 eS" 1
e Sy =SInB= {y eER": |yl =1,np-y= O} o~ Gh—=2 ¢ gh—1

+ C=AnNB.
® hX:hY:h—l.
o thh—2.

* Pj4: the projection matrix of A.
* Pp: the projection matrix of B.
* Pc: the projection matrix of C.
ces={2€Sx:zLC}
*eg={2€Sy:zL1C}

+ Ct =span{ea} @ span{ep}
« Rt =CaCH

¢ X = (x1,...,7n) € (Sx)V.
* Y =(y,--,yn) € (Sy)V.

C e =N sz\il L

CHy = Zf\[:l Yi-

o ¢ — Ha

T kel

— My
® Cy = .
Y Nyl

Definition (Multimodal Contrastive Loss (MCL Loss)). Let (X,Y’) be an N-pair configuration,
where X = (z1,...,2x) € (S HN and Y = (y1,...,yn) € (SN, ¥r > 0, the multimodal
contrastive loss Lyicr (-, +) : (SPHN x (SP=1)Y — Ris defined as:

N
1 : )
Lyicn = N E Li\/ICLv where L%\/ICL = ﬁ)(_g;(zi; Y) + Ey_ny(yi;X).
i=1

Here, Lx_,y is the X-to-) alignment and Ly_, » is the V-to-X alignment, which are defined
respectively as:

exp (x; - yi/T)  Lya(ys X) = —log exp (z; - y; /T) .

SO0 exp (i - y;/7) Sy exp () yi/7)

Lyoy(z;Y) = —log

Definition(Modality Gap) Let (X,Y’) be an N-pair configuration, where X = (z1,...,2n) €
(S""HNand Y = (y1,...,yn) € (S"71)N. The modality gap between X and Y can be expressed
as the angle between the center representations:
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Ag = cos ez - ¢y).

Definition (vMF Distribution). Yc € S"~! and k > 0, the probability density of a random h-
dimensional unit vector z ~ vMF(c, ) is given by:

v

K

fh(Z;C7 H) — D}AH)@KCTZ? where Dh(ﬁ) = m

Here,v = h/2 — 1, and I, (-) : R — R is the modified Bessel function of the first kind of order v,
which is defined as:

s 1 7 2k+v
W0 =Y e ()

Definition (Function M). V&, 7 > 0, a function MK(-, )1 [=1,1] x [0,1] — R{ is defined as:

~ 2 t2
M, (w,t) = n2+ﬂ—|——2.
T T

Definition (Function 7). V&, v,7 > 0, J (-, -, -; &, 1) : [=1,1] x [=1,1] x [0, 1] — R is defined as:

IV(NK(U)Q t)) I
- w1 ’ u(“))
wy, W, t;k, V) =——+log| ———= | —lo .
T (w1, we ) R S TATT g( e

Definition (Function M). V&, T > 0, a function M, (+) : [~1,1] — Ry is defined as:

2Kw 1
M, = 24— 4+ =
(w) R T + T2

= M, (w,1).

Definition (Function 7). Vk, v, 7 > 0, a function J (+; k, v) : [—1,1] — R is defined as:

=J (w,w, 1;5,v).

Definition (Function M). Yk, 7 > 0, a function M,(-,-) : [-1,1] x [0,1] — R is defined as:

M, (w,t) = M, (w,t).

Definition (Function 7). V&, v, 7 > 0, a function j(, s kyv) [=1,1] x [0,1] — R is defined as:

A g (L)) ()

J (w,t;k,v)=——+1o 2
( )=——_+log M (w1 e

=J (w,w,t; 5, v).
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E.4.1 PROOF OF THEOREM 4

In this subsection, we provide the proof of Theorem ] For convenience in reading, we first restate

Theorem 4 here.

Theorem 4. [Restate] Let (X, Y') be an N-pair configuration, where X = (z1,...,2x) € (Sx\C)V
are iid samples from p, = VvMF(cy,kz), and Y = (y1,...,yn) € (Sy \ C)¥ are iid samples
from p, = vMF(cy,fy). Let 7 = (h —1)/2 — 1. Denote Ay = cos™ ! (¢, - ¢,) and assume
€z, ¢y L Cwith ¢y - ¢, > 0. Suppose (X, Y") achieves Intra-Modal Isometry. Then Vi € [N], denote
05 = cos™! (x; - ¢z) = cos™! (y; - ¢y), and Kk = Ky = Ky Let 05 € (0, %) and £ > 0, it holds that:

lim L&, — 2log(N)

N—o0

= J (cos (Ag) ,cos (65) . [|Ppas || s 5, 7) + T (cos (D) , cos (65) , || Payill s 5, 7)

> 927 (cos2 (69) cos (Gmin) + sin? (6S) , cos (65) , \/c052 (65) cos? (¢min) + sin? (65); &, D) ;

where equality is attained if and only if there exists a configuration of (X, Y") such that:

(A8) Pow; = Poy; #0.
(A9) Ap =cos™! (¢ - ¢y) = Gumin-

Proof. According to Theorem the convergent function of limy_, o L;féL — 2log(N) is:

N N —oc0

= J (wi, wf, | Ppai|| s ky, 7) + T (wi, wf, | Payil s 6, )

= 2j(wi7w$7t;l€7i})7
where

w; = cos’ (09) cos (Ag) + (65) (Po - ;) - (Pe - yi)
= cos (65)

t= \/c032 (65) cos? (Ag) + sin® (6).

And Theorem|[S§|shows the lower bound of the convergent function is:

2j (wi7 wica t7 R, i)) 2 2\7 (wi,minv wica trnin; R, 17) )

where

Wi min = cos? (65) cos (Gmin) + sin® 65,

tinin = \/(3052 (05) cos? (Pmin) + sin? (05),

and equality is attained if and only if there exists a configuration of (X, Y") such that:

(i) Pc-x; = FPc -y
(11) A@ = ¢Inin~
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Combining Eq. (3T3) and Eq. (318), we conclude that:

. i#c
ngnooﬁMCL 2log(N)

=7 (cos (Ag),cos (65), || Pxi| s 5,7) + J (cos (Ag) ,cos (65), || Payil ; &, D)

> 27 <cos2 (65) cos (¢min) + sin? (85) , cos (6S), \/cos2 (05) cos? (Gmin) + sin? (05); 5, 7 | ,

(319)
where equality is attained if and only if there exists a configuration of (X, Y") such that:
(A8) Pow; = Poy; # 0.
(A9) Ap =cos™ (¢ - ¢y) = Gumin-
O

E.4.2 AUXILIARY THEOREMS PART 4
In this subsection, we provide details and proofs of the auxiliary theorems (Theorem [S5]and Theo-
rem[S7)) that support the proof of Theorem ]

Theorem S7. Let (X,Y) be an N-pair configuration, where X = (z1,...,zy) € (Sx \ C)V
are iid samples from p1, = VMF (cy,kz), and Y = (y1,...,yn) € (Sy \ C)V are iid samples
from p, = vMF(cy,ky). Let v = (h —1)/2 — 1. Denote Ay = cos™' (c; - ¢,) and assume
€z, Cy L Cwithcy - ¢y > 0. Suppose (X,Y) achieves Intra-Modal Isometry. Then ¥i € [N], denote
05 = cos™! (z; - ¢z) = cos™! (y; - ¢), and k = Ky = ky. Let > 0, it holds that:

Jim £y6p, — 21og(N) = lim (Laop(@ize; Y) —10g(N) + Ly x (yize; X) — log(N)

= J (wi, wf, | Poai| s ky, 7) + T (wi, w, | Payill; iz, 7)

= Qj(wi7wicat;’€7ﬁ)7
(320)

where

w; = cos® (65) cos (Ag) + (05) (Pc - x;) - (P - yi)
wi = cos (65), (321)
t= \/C082 (05) cos? (Ag) + sin? (09).

Proof. Step 1: We first decompose limy o0 £575; — 21og(N) into two parts:

. iFe _ 1 L, . _
A}gnoo L376n — 2log(N) = A}gnoo Lxoy(@ize;Y) —log(N) (322)
+ ]\;gnoc Ly s x (Yize; X) — log(N).

The convergent function of Lx_,y(2izc;Y) as N — oo. Vi € [N],i # ¢,z; € X, denote
Wi = i Yi» Waye, = Ti* ¢y and wy, o = yi - Cx. Yy > 0, as prove in Theoremlg_g}
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exp (x; - y; /T)

lim £ zi;Y) —log(N) = lim —log — log(N
im Lxy(ziY) (N) = Jim_ S exp (@1 1y/7) (V)
o 1y (M, (w2, | Poil])) (s (G23)
= —— 4+ 10g ~ = — log 5
T Mmy (wwhcyz ||Psz||) Hy

=J (w“wfri’cyv [ Ppez| s ky, D) )

where Vi, 7 > 0, J (-, -, -; k, ) is a function on [—1,1] x [—1,1] x [0,1] and M,(-,-) : [-1,1] x
[0,1] — R is defined as:

~ 2 t2
M (w, 1) = /K2 + — + = (324)
T T

and [, is the modified Bessel function of the first kind of order v, which is defined as:

> 1 mn 2k+v
Ly (m) = kZ::Ok!F(u+k+ 1) (5) : (323)

When (X,Y’) achieves Intra-Modal Isometry, we have wy, c, = T; - ¢z = ¥i - Cz = Wy, , Denote
W = Wy, ,e, = Wy, e, = cos (6F). This implies r, = Ky = K.

Then, Eq. (323)) can be re-written as:

Wi
lim £ zi;Y) —log(N) =——+1o = .
Jim Lay(zisY) —log(N) — +log ¥ (| Pon])?

K:V

I (N (w5, || Paai]) g (Iﬁ (@)

= J (wi, w;, | Pcs|s 5, 7).

(326)
Similarly, the convergent function of Ly _, x (yi£c; X) as N — oo can be written as:
lim Ly, x(y;; X)—log(N)= lim —log ixp (@i yi/7) log(N)
N—oo N—o00 Zj:l exp (xz . yj/T)
Iy (M, (g, | Pagil)) L
= —— 4 log S = — 1 g (u(f.’z))
T M., (wy e, | Payil) Rz (327)
. T (N (w5, | Pagill)) I, ()
=——+log = =z — log 5
T M, (wi, || Payill) K

= j(wi’wz‘ca HPAyzH Iz D) .
Step 2 Now, let us decompose the embedding space. Define two vectors e4 and ep such that:

eqs €Sx, and ey L C,

2
e €Sy, and e L C. (328)

Let C* be the 2-dimensional orthogonal complement of C, and C satisfies:
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Ct =span{es} ®span{ep},

(329)
R =CcacCt.
Since na,np € Ct,ny L ey and npg L ep, we have:
(ea,ep) = £ (na,ng), (330)
and we choose a pair of e 4 and ep such that:
(ea,ep) = (na,np) = cos(¢) € (0,1). (331)

Denote 6; = cos™! (w;). When ¢, ¢, L C, Ay = ¢. And without loss of generality, we can set the
coordinate as:

A
Cg;:eA:(COS(Qe),SiD(9);0,07"'7())7 (332)

2
Ay ALY
¢y = ep = (cos <2>,—sm <2> 0,0,---,0),
C = span{es} @ span{es} & - - - , ®Bspaniey }.

Therefore, Vz; € Sy = ANS"Land Vy; € Sy = BN S" L, Ju¥, u? € CNS"~L, such that:

x; = cos (05) ea + sin (6F) uf = cos (65) ¢, + sin (65) uf,

333
y; = cos (05) ep + sin (65) u? = cos (6) ¢, + sin (65) u?. (333)
Using orthogonality, we have:
Pp-eq = {es,eg)ep =cos(Ag)eg,
Pyt = i‘”” ) (&o) (334)
and
PA cep = <€A,63> €eq4 = COS (Ag) €A,
7 1)
and

Pc-ea=Pg-ep=0,

Po-ui =uf, (336)

¥ — Y
FPc-u =u.

Then the projections of (z;,y;) are:

Pp - x; = cos (05) cos (Ag) ep +sin (65) ui = cos (65) cos (Ag) ¢y + sin (65) uf,

337
Py - y; = cos (65) cos (Ag) ea + sin (65) uf = cos (65) cos (Ag) ¢ + sin (65) u?, (337)

and
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(338)
Therefore, we get:

w; = ;- y; = cos® (05) ¢y - ¢y +sin® (05) uf - u
= cos” (05) cos (Ag) + sin? (05) uf - u! (339)
= cos® (05) cos (Ag) + (Pc - ;) - (Pe - i)

<.

Pgx;l| = v/ cos2 (%) cos? (Ag) ¢, - ¢, + 2 cos (6%) cos (Ag) sin (0S) ¢, - u® + sin? (09) u? - u®
[ Y Yy i [ ) 7 [ [

K3

= \/(3052 (65) cos? (Ag) + 2 cos (65) cos (Ag) sin (65) ¢, - u¥ + sin® (6%)

— \fcos? (65) cos? (Ag) + sin® (65),
(340)

and

| Pay;| = \/0052 (05) cos? (Ag) ¢z - ¢z + 2 cos (05) cos (Ag) sin (65) ¢ - u¥ + sin? (05) u? - u?

K2

= y/cos? (0%) cos? (Ag) + 2 cos (65) cos (Ag) sin (65) ¢, - uf + sin” (6%)

=/ cos? (05) cos? (Ag) + sin? (09),

= [P -
(341)

Lett = || Pgx;|| = || Pay;||- Plugging Eq. (339), Eq. (340) and Eq. (341) into Eq. (322), Eq. (326}

and Eq. (327), we conclude that:

Jim L6~ 2log(N) = lim Loy (@ize V) — log(N)

lim £ iz X) — log(N
+N~§HOO o x (Yizte; X) Og(~ ) (342)
= J (wi, wy, | Ppi||; 5, 0) + T (wi, w§, [|[Payil| ; &, 7)

=27 (wi, w§, t; K, 1)
where
W, =T Y = cos> (Hf) cos (Ag) + (PC : xz) : (PC : yi)’
w§ =1; - ¢y = y; - ¢y = cos (05), (343)
f = %052 (65) cos? (Ag) + sin (65).

O

Theorem S8. Let (X,Y) be an N-pair configuration, where X = (z1,...,zn) € (Sx \ C) are
iid samples from pi, = VMF(cz, k), and Y = (y1,...,yn) € (Sy \ C)¥ are iid samples from
py = VMF(cy, ky). Let v = (h — 1)/2 — 1. Denote Ag = cos™* (¢ - ¢,) and assume ¢y, ¢, 1 C
with ¢, - ¢y, > 0. Vi € [N], suppose 05 = cos™ (z; - ¢;) = cos™ (y; - ¢) € (0,%) and k > 0, it
holds that:

T (wi, w0, t; 5, ) > T (Wi min, WS, tmins Ky D) 5 (344)
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where
w; = cos? (09) cos (Ag) + (Pe - ;) - (Po - i)
wi = cos (65),
t= \/cos2 (65) cos? (Ag) + sin? (65), (345)
W; min = €08> (05) 08 (bmin) + sin® (65) ,

tmin = \/cos2 (05) cos? (Ppmin) + sin® (0%),

and equality is attained if and only if there exists a configuration of (X,Y") such that:
(B6) Pc-x; = FPc -y
(B7) AS = (ybmin-
Proof. Step 1: Similarly to the proof of Theorem[S@]in Sec.[E.3.2] we start the proof by finding the
convergent function of limy _, LijféL —2log(N)as N — oo. Letw; =
As proven in Theorem [S7}
A}i_ﬂnoo ‘C%\j[ééL —2log(N) = ngnoo (‘CXﬁy(l‘i?éc; Y) —1log(N) + Ly x(Yize; X) — log(NV))
= J (wi,wf, | Ppill; 5, 7) + T (i, wf, | Payill s 5, 7)
=27 (wi, ws, t; K, D).

(346)
Ve, v,7 >0, T (- 1k, v) s [<1,1] x [=1,1] x [0, 1] — Ris defined as:
I, (Mﬁ(wg t)) s
~ w1 ’ v (H)
J (wy,ws, t;k,v) = ——+log| ———= | —lo < >, (347)
(w1, ws ) - T et g\~
and M, (-,-) : [=1,1] x [0,1] — Ry is defined as:
. 9 2
N (w, ) = k2 + 279 4 L2 (348)
T T
and I, is the modified Bessel function of the first kind of order v, which is defined as:
© 1 mn 2k+v
I, = ey e Ol )
(m) ];) KL(v+ k +1) (%) (349)
and
w; = cos? (05) cos (Ag) +sin? (05) (Pc - ;) - (Pc - vi)
wi = cos (07) (350)
t= \/cos2 (05) cos? (Ag) + sin? (65).
Step 2:

According to the Cauchy-Schwarz inequality and Eq. (338):
(Pg - 2;) - (Po i) < sin? (65), (351)
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where equality is attained if and only if there exists a configuration of (X, Y") such that:
(B6) Po-xi = Pc - yi.
And therefore:

w; = cos? (05) cos (Ag) + (Po - x;) - (Pe - i)

352
< cos? (05) cos (Ag) + < sin” (65), oy

and then J (w;, w¢, t; K, ) in Eq. (346) can be bounded below by:

T (wi, wé, t; k, ) > T (cos? (65) cos (Ag) 4 sin? (65),
\/(3052 (65) cos? (Ag) + sin? (65); k, ).

Here, for any given non-center pair (x;, y; )i, 05 is fixed, then the RHS of Eq. (353) becomes a
function of cos (Ay).

Denote:

f1 (cos (Ag)) := cos? (A5) cos (Ag) + sin? (65),

(354)
f2 (cos (Ay)) := \/COS2 (05) cos? (Ag) + sin? (69),
then the Eq. (346) can be re-written as:
T (wi, wé t; 6, 0) > T (f1 (cos (Ag)), cos (6S), fo (cos (Ag)) 5 K, D) . (355)

According to Lemma|14}, 7 (f1 (cos (Ag)), cos (65), f2 (cos (Ag)) ; k, 7) is a decreasing function
of cos (Ag) when 05 € [0, 7], we have:

T (f1 (cos (D)) cos (65) , f2 (cos (Ag))) = T (f1 (cos ($min)) ,cos (65) , f2 (c0S ($min)))
(356)

where equality is attained if and only if there exists a configuration of (X, Y") such that:
B7) Ag = ¢min~

Combining Eq. (35T) and Eq. (356), we conclude that:

j(wi7wf,t; K, D) > j(wiymin,wf,tmin;/{, V), (357)
where
w; = cos? (65) cos (Ag) + (Po - ;) - (P - yi)
w = cos (65)
t= \/cos2 (65) cos? (Ag) + sin® (65), (358)
Wi min = €08” (05) ¢os (¢min) + sin® (65) ,

tmin = \/0082 (05) cos? (Ppmin) + sin? (65).

and equality is attained if and only if there exists a configuration of (X,Y") such that:
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B6) Pc -z = Po - y.
(B7) AO = (bmirr

E.4.3 PROOFS COROLLARY 2,3,4

In this subsection, we provide the proofs of Corollary 2} Corollary|3|and Corollary |4 Note that these
corollaries all follow the conditions described in Theorem [3] and Theorem [l For convenience in
reading, we restate Corollary 2,3 4 before the proofs.

Corollary 2. Vi € [N],i # ¢, if ¢;,¢, | Cand Pox; = Poy; # 0and ¢ > 0, then the following
holds:

(A10) (zi,y;)isc are not perfectly aligned.

Proof. ¥(z,Y;)ize, denote w; = x; - y;. (x4, y;) are perfectly aligned when w; reach its maximum.

According to Lemma[I2] when z; is fixed w; is maximized if and only if:

: P, T
@ ¥ = Tpya -
And when y; is fixed w; is maximized if and only if:

i . Payi
(i) =i = -

According to Lemma when ¢ > 0, z;,y; £ Cand z;,y; ¢ C, we have:

PB X
Yi 7é )
Po-a] 530
s 7& PA *Yi
' P4 - yill
Therefore, (z;,y;)ix. are not perfectly aligned.
O

Corollary 3. Vi € [N],i # ¢, if ¢z,¢y L C, Pox; = Poy; and (x4, ;)i € Sh=1\ C, then
(@i, yi)ic are perfectly aligned if the following condition holds:

(All) Ap =6 =0.

Proof. According to Eq. (337) and Eq. (338) in the proof of Theorem|[S7] the projections of (z;, y;)
are:

Pp - x; = cos (0) cos (Ag) eg + sin (65) ui = cos (65) cos (Ag) ¢, + sin (65) uf,
Py - y; = cos (65) cos (Ag) ea + sin (65) uf = cos (65) cos (Ag) ¢ + sin (65) u?,

3

and

Po - x; =sin (65) u 361)

Then, when ¢ = Ay =0
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Pp-x;=Pc-x;=PFPc-y; = Pa-yi,

and

2 = Pp-x; = Pa -y = ys.

In this case, (;, y;)i-c are not perfectly aligned.

Corollary 4. Vi € [N],i # ¢, if ¢, ¢, L Cand Pcx; = Pcy;, then the following holds:

(A12) (”5272“, %)#C are perfectly aligned

Proof. Denote:

. Pox;
T = ,
C | Peill
= Poy;
b [Pyl
Since Pcx; = Poy;, then:
Ty =y;.

In this case, (¢}, y; )iz are not perfectly aligned.

E.4.4 TECHNICAL LEMMAS PART 4

(362)

(363)

(364)

(365)

In this subsection, we provide details and proofs of technical lemmas (Lemma[T4]and Lemma T3]

that support the proof of Theorem @] Theorem [S7and Theorem S|
Lemma 14. V&, v, 7 > 0, a function J (+; k,v) : (0,1] — R is defined as:

j(wc;/{’u) = j(.fl (wc),cos(ﬁf) 7f2 (wc)“‘f;ﬂ)a
where f1 (+) : (0,1] — R{ and f () : [0,1] — R{ are defined as:

f1 (we) == cos® (65) w,. + sin? (65),

fo (we) := \/(3052 (05) w2 + sin? (65).

and J (-, -, k,v) : [—1,1] x [=1,1] x [0,1] — R is defined as:

I (M (U}Q t)) I

wy v K 5 y(,@)

J (wi,wa, t;k,v) = —— +log | —=—2% | — 1o ( >7
(w1, ws ) e S TATT g

and M.(-,-) : [=1,1] x [0,1] — Ry is defined as:

(366)

(367)

(368)

(369)
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and I, is the modified Bessel function of the first kind of order v, which is defined as:

7 1 2k+v
v < kIT(v+k+1) ( ) ’ (370)

It holds that, for any fixed 05 € [0, %] j (+) is a strictly decreasing function on (0, 1].

Proof. Let us first decompose the function 7. Denote a constant and a function C; and G5 (t) as:

G (we) = _7i7
Gs (m) =log (I, (m)) — vlog(m),

(371)
Ga (we) = Gy (M, (cos (65). f2 (w.))
—1tog (1 (Wl (cos (65) . f2 (we)) ) ) = vlog (WL (cos (65)., f2 (we)))
Denote the function G (w,) and the constant C' as:
G (w.) = Go (w.) + Ga2 (we) ,
1, 372
C = —log ( v () (572)
Then the function 7 can be written as:
- cos? (69) w, ( (cos (67) , f (w°))) (Iu ("‘f))
\7 ci Ry = - L + 1 ~ > — 1
(we; ,v) T o8 M, (cos (06) f2 (we)) B\ Tk (373)
=G (w.) + C.
Now, we investigate derivatives of G (w.).
The first derivative of Gy is:
2 (pc
¢ o) =~ o (374)
According to Lemma 7] the first derivative of G () is:
/ _ L1 (m)
Gl (m) = 25 55 € (0.1) (375)
The derivative of M, with respect to is f3 (w.):
L (con (65) o (we)) = 57— N (cos (6), 2 (we))
K i)2J2 c _8f22(wc) K i)rJ2 c
0 ) 2cos(05) 3 (wo)\"?
—0f2 (we) T 72
1 ( o  2rcos(0S)  f2 (wc)>1/2 1 (376)
=—| K"+ — + 3 C—
2 T T T
_ L 1
20 M (cos (65) , fa (we))
>0
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The derivative of f3 is:

2/ _ 2 c 2 : 2 c
5 (we) = du. (cos (05) w2 + sin (91))
(377)

= 2cos? (05) w,
> 0.

Let m = M, (cos (6¢), f2 (we)). Then, the first derivative of G is:

Gy (we) = G (m) My, (cos (65) , f2 (we)) f3 (we)

I, 1
+1(m) 2 cos? (65) w,.

I, (m) 272m (378)
_cos” (65) we 1 Iy1 (m)
N 72 m I, (m)

> 0.
Combining Eq. (374) and Eq. (378), we have:

I (wes k,v) = G (we) = G (1) + Gy (¢)
cos? (6%) (1 N we 1 Iy (m)

) (379)

T T m I,(m)

Since 0 < w,. < 1, then:

2
: (380)

Therefore, consider 65 € [0, g] we have:

m? = M} (cos (65) , f2 (we))
2 s (09 S0
T T
c 2
2, 2k cos (05) n u% 381)
T T

which implies:

wel (382)

Plugging Eq. (373) and Eq. (382) into Eq. (379), we have:

T (we; k,v) = (383)

T

< 0.

So we can conclude that, for any fixed 65 € [0, 2], 7 (-) is a strictly decreasing function on (0,1]. O
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Lemma 15. Let X be an N-point configuration, where X = (z1,...,zy) € (SP"HN are iid
samples from . = vMF (¢, k). When k is sufficiently large, Vi, j € [K]|,i # j, it holds that:

Proof. Let X ~ vMF(c,k)onS" !andsetU = c' X = cos® € [~1,1]. Then:

1 223

fO efu (1 _ u2> 2 du
fil efu (1 — uQ)p%3 du

P(X-c>0)= (385)

Using standard integral representations of the modified Bessel and modified Struve functions,

I 7)Y AP
I”(z)_ﬁr(wr;)/_l (1-t%)" 2 at,

(2/2) L (386)
z/2)¥ v 1
v(z) = ————~ 2sinh(zt) (1 —¢2)" 2 dt,
)= Ty [, 2 (-2)
with v = h/2 — 1, the ratio simplifies to the neat closed form
1 L,
P(X-c>0)= L (1420 (387)
2 1,
where L, the modified Struve function. And we list numerical values of this probability:
e h=128:
K 1 5 10 20 30 50 100 200
P | 05353 0.6710 0.8117 0.9609 0.9956 1.0000 1.0000 1.0000
* h =512
K 1 5 10 20 30 50 100 200
P | 0.5176 0.5875 0.6708 0.8116 0.9075 0.9863 1.0000 1.0000
* h=1024:
K 1 5 10 20 30 50 100 200
P | 05125 0.5621 0.6227 0.7340 0.8258 0.9409 0.9991 1.0000
O
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