
Under review as submission to TMLR

BN-Pool: a Bayesian Nonparametric Pooling for Graphs

Anonymous authors
Paper under double-blind review

Abstract

We introduce BN-Pool, the first clustering-based pooling method for Graph Neural Networks
that adaptively determines the number of supernodes in a coarsened graph. BN-Pool leverages
a generative model based on a Bayesian non-parametric framework for partitioning graph
nodes into an unbounded number of clusters. During training, the node-to-cluster assignments
are learned by combining the supervised loss of the downstream task with an unsupervised
auxiliary term, which encourages the reconstruction of the original graph topology while
penalizing unnecessary proliferation of clusters. By automatically discovering the optimal
coarsening level for each graph, BN-Pool preserves the performance of soft-clustering pooling
methods while avoiding their typical redundancy by learning compact pooled graphs. The
code is available at https://anonymous.4open.science/r/BN-Pool.

1 Introduction

Graphs sit at the heart of drug-discovery pipelines, traffic-flow simulators, social-network recommenders, and
a growing list of web-scale systems. Thanks to Graph Neural Networks (GNNs), a powerful class of deep
learning models designed to process graph-structured data, the state-of-the-art on those tasks has significantly
improved over the past few years (Zhou et al., 2020). Despite the numerous advances in their architectural
design, GNNs still struggles to learn hierarchical representations that are compact and consistently optimal
for a wide range of downstream tasks.

Pooling, a fundamental component in computer vision architectures, becomes far trickier on irregular,
non-Euclidean graphs, which are hard to down-sample without sacrificing structure or features. Popular
and best-performing graph pooling operators (Wang et al., 2024) build coarse graphs by clustering nodes,
but they hard-code the number of super-nodes K for every input graph (Ying et al., 2018; Bianchi et al.,
2020a); thus, all the coarsened graphs have the same size. Moreover, tuning the value of K can be difficult:
rather than employing an expensive hyperparameter sweep, the common approach is to set it to a value large
enough to avoid information loss (e.g., a fraction of the average size of all the graphs in the dataset). This
rigidity prevents the model from adapting dynamically to the graph structure and produces redundant and
dense representations (see Figure 1), which are less interpretable and yield unnecessary computations.

Fixed K BN-Pool

BN-Pool

Figure 1: (Left) A typical pooled graph computed by a clustering-based pooling approach (left) and by BN-
Pool (right). (Right) BN-Pool learns end-to-end the number of clusters K to pool each graph independently.

1

https://anonymous.4open.science/r/BN-Pool

Under review as submission to TMLR

To overcome these limitations, we introduce Bayesian Non-parametric Pooling (BN-Pool), a novel graph
pooling operator based on a Bayesian Non-Parametric (BNP) technique. We define a generative process for
the adjacency matrix of the input graph where the probability of having a link between two nodes depends on
their cluster membership, thus ensuring that clusters reflect the graph topology. The BNP approach allows
the number of clusters K to adapt to each input graph, rather than being fixed in advance. Within our
Bayesian framework, the clustering function is the posterior of the cluster membership given the input graph.
We approximate the posterior by employing a GNN; on the one hand, this permits capturing complex relations
that appear between the hidden and the observable variables; on the other hand, we can jointly condition
the posterior on the graph topology, the node features, and the downstream task. The GNN parameters are
trained by optimizing two complementary objectives: one defined by the loss of the downstream task (e.g.,
cross-entropy in graph classification), the other defined by an unsupervised auxiliary loss that derives from
the probabilistic generative process.

Our main contributions are:

• We introduce the first soft-clustering pooling operator capable of adaptively determining the number
of supernodes for each input graph.

• We adapt the Stochastic Variational Inference (SVI) framework to a training procedure that enables
seamless integration of BNP with GNN architectures and supports end-to-end optimization.

• We validate the effectiveness of our approach on both node clustering and graph classification tasks.
In the former, our method successfully identifies communities and their interaction patterns. In the
latter, it achieves performance on par with or superior to existing pooling methods, demonstrating
the ability to generate compact graph representations without compromising informative content.

The paper is organized as follows: in Section 2, we introduce the preliminary concepts relevant to our work,
namely the Dirichlet Process (DP), GNNs, and graph pooling operators. In Section 3, we present the proposed
methodology by defining the generative process, the training procedure, and the interpretation of the model’s
hyperparameters. Section 4 discusses existing approaches that are related to our work, while Section 5
presents the results obtained on both node clustering and graph classification tasks. Finally, in Section 6, we
conclude and outline possible directions for future work.

2 Preliminaries

2.1 Bayesian Nonparametric and Dirichlet Process

The BNP framework (Orbanz & Teh, 2010) aims to build non-parametric models by applying Bayesian
techniques. The term nonparametric indicates the ability of a model to adapt its size (i.e., the number of
parameters) directly to data. In contrast, in the parametric approach, the model size is fixed in advance by
setting some hyperparameters.

The BNP literature relevant to our work relates to the families of Dirichlet Process (DP) (Gershman & Blei,
2012). In its most essential definition, a DP is a stochastic process whose samples are categorical distributions
of infinite size. Thus, in the same way as the Dirichlet distribution is the conjugate prior for the categorical
distribution, the DP is the conjugate prior for infinite discrete distributions. A classical usage of DP is in the
definition of mixture models that allow an infinite number of components, where the DP is used as the prior
distribution over the mixture weights. The key of DP is its clusterization property: even if there is an infinite
number of components available, the DP tends to use the components that have already been used.

Let G0 be a continuous distribution G0, and let αDP be a positive real number, we write:

G ∼ DP(αDP, G0), (1)

where G is a discrete distribution with the same support as G0, meaning that the probability of two samples
of G being equal is non-zero, but has a countably infinite number of point masses. Figure 2 shows an example

2

Under review as submission to TMLR

of three different draws of G when the base distribution G0 is a skewed Normal, and the value αDP is 10,100,
and 1000. As we can see from the figure, G represents a discrete approximation of G0 where the concentraiton
parameter αDP indicates how much the mass in G is concentrated around a given point; the base distribution
is the expected value of the process, i.e., the DP draws distributions around the base distribution G0, the
way a normal distribution draws real numbers around its mean.

The DP clustering property does not emerge from the previous formulation, which also does not tell us how
to compute G. In the following, we describe the Blackwell–MacQueen urn scheme (Blackwell & MacQueen,
1973) and the stick breaking process (Sethuraman, 1994). While the former provides a good intuition of the
clustering property of a DP, the latter offers a constructive formulation that we leverage in this work.

0 1 2 3 4
0.0

0.1

0.2

p(
)

G0
G

0.0

0.2

0.4

0.6

DP = 10

0 1 2 3 4
0.00

0.02

p(
)

G0
G

0.0

0.2

0.4

0.6

DP = 100

0 1 2 3 4
0.000

0.002

0.004

p(
)

G0
G

0.0

0.2

0.4

0.6

DP = 1000

Figure 2: Three single draws from the DP using as G0 a Normal skewed distribution and three different αDP
values. Note that each plot has a different scale on the y-axis.

Blackwell–MacQueen urn scheme. Let us consider a sequence of i.i.d. random variables θ1, θ2, . . . that
are distributed according to G ∼ DP (αDP, G0). We can interpret the conditional distributions of θi given the
previous θ1, . . . , θi−1, where G has been integrated out, as a simple urn model containing balls with distinct
colors (Blackwell & MacQueen, 1973). The balls are drawn equiprobably; when a ball is drawn, it is placed
back in the urn together with another ball. The color of the new ball is identical to the color of the drawn
ball with probability 1 − αDP; otherwise, with a probability proportional to αDP, we choose a new color
drawn from G0. This model exhibits a positive reinforcement effect: the more a color is drawn, the more
likely it is to be drawn again.

Let ϕ1, . . . , ϕK be the distinct atoms drawn from G0 (i.e., the colors) that can be taken by θ1, . . . , θi−1 (i.e.,
the balls), and let mk be the number of times the atom ϕk appears in {θ1, . . . , θi−1}. Formally, we can
express the sampling procedure as:

θi | θ1, . . . , θi−1 =
{

ϕk with probability mk

i−1+αDP

a new draw from G0 with probability αDP
i−1+αDP

(2)

Equivalently, we can write:

θi | θ1, . . . , θi−1 ∼
K∑

k=1

mk

i − 1 + αDP
δϕk

+ 1
i − 1 + αDP

G0, (3)

where, δϕk
is a probability measure concentrated at ϕk, i.e., δϕk

is a degenerate function assuming value +∞
at ϕk and 0 everywhere else.

3

Under review as submission to TMLR

𝑘 = 1
𝜋11 − 𝜋1

𝑘 = 2
𝜋11 − 𝜋1 − 𝜋2 𝜋2

𝑘 = 3
𝜋11 − 𝜋1 − 𝜋2 − 𝜋3 𝜋2𝜋3

⋮ ⋮ ⋮ ⋮

Figure 3: Graphical representation of the stick-breaking process.

Referring to Figure 2, the values mk are proportional to the heights of the grey bars. When αDP is small,
most of the probability mass is concentrated in a few points. While the Blackwell–MacQueen urn scheme
helps to understand the clustering property of DP, the sampling procedure does not provide an analytic
expression of G that can be exploited.

Stick-breaking Process. The idea of the Stick-Breaking Process (SBP)(Sethuraman, 1994) is to repeatedly
break off a “stick” of initial length 1. Each time we need to break the stick, we choose a value between 0 and
1 that determines the fraction we take from the remainder of the stick. In Figure 3, we show the iterative
breaking process, where the values of π1, π2, π3, . . . represent the parts of the stick pieces broken in the first
three iterations.

Formally, the stick-breaking construction is based on independent sequences of i.i.d. random variables (π′
k)∞

k=1:

π′
k | αDP ∼ Beta(1, αDP) πk = π′

k

k−1∏
l=1

(1 − π′
l), (4)

where the value of π′
k indicates the proportion of the remaining stick that we break at iteration k. To

understand the stick analogy, we should first convince ourselves that the quantity
∏k−1

l=1 (1 − π′
l) is equal to the

length of the remainder of the stick 1 −
∑k−1

l=1 πl after breaking it k − 1 times. Thus, the length of the stick’s
piece πk is obtained by multiplying the stick fraction π′

k by the length of the remaining stick
∏k−1

l=1 (1 − π′
l) at

the k-th step.

It is important to note that the sequence π = (πk)∞
k=1 constructed by Equation 4 satisfies

∑∞
k=1 πk = 1

with probability one (Sethuraman, 1994). Thus, we may interpret π as a random probability measure on
the positive integers. This distribution is often denoted as GEM, which stands for Griffiths, Engen, and
McCloskey – see (Pitman, 2002).

Now we have all the ingredients to define a random measure G ∼ DP(αDP, H):

ϕk | G0 ∼ G0 G =
∞∑

k=1
πkδϕk

, (5)

where (ϕk)∞
k=1 are the atoms drawn from G0 and δϕk

is a probability measure concentrated at ϕk. Sethuraman
(1994) showed that G as defined in Equation 5 is a random probability measure distributed according to
DP(αDP, G0). The stick-breaking process is related to the urn scheme since the length of each piece πk

corresponds to the expected probability of drawing a ball of color ϕk from the urn.

2.2 Graph Neural Networks

Let G = (V, E) be a graph with node features X0 ∈ RN×F , where |V| = N , and |E| = E. Each row x0
i ∈ RF

of the matrix X0 represents the initial node feature of the node i, ∀i ∈ {1, . . . , N}. Through the Message
Passing (MP) layers, a GNN implements a local computational mechanism to process graphs (Gilmer et al.,

4

Under review as submission to TMLR

(a) Flat GNN.

(b) Hierarchical GNN.

Figure 4: a): a sketch of a “flat” GNN architecture, where each MP layer progressively combines the feature
of one node with neighbors that are further and further away on the graph. b): example of “hierarchical”
GNN architecture that alternates MP with pooling layers.

2017). Specifically, each feature vector xv is updated by combining the features of the neighboring nodes.
After l iterations, xl

v embeds both the structural information and the content of the nodes in the l–hop
neighborhood of v. With enough iterations, the feature vectors can be used to classify the nodes or the entire
graph. More rigorously, the output of the l-th layer of a MP-GNN is:

xl
v = COMB(l)

(
xl−1

v , AGGR(l)({xl−1
u , u ∈ N [v]})

)
(6)

where AGGR(l) is a function that aggregates the node features from the neighborhood N [v] at the (l − 1)–th
iteration, and COMB(l) combines its own features with those of the neighbors.

Traditional GNN architectures are “flat” and consist of a stack of MP layers followed by a final readout
(Baek et al., 2021). For graph-level tasks, e.g., graph classification and regression, the readout includes a
global pooling operation that combines all the node features at once by taking their sum or average. Such an
aggressive pooling operation often fails to extract the global graph properties necessary for the downstream
task. On the other hand, GNN architectures that alternate MP with graph pooling layers can gradually
distill information into “hierarchical” graph representations. An illustration of a flat and hierarchical GNN
architecture is reported in Figure 4. Hierarchical architectures offer several advantages, including the reduction
of complexity in the MP operations occurring after pooling (Jin et al., 2021). In addition, by coarsening
the graph, graph pooling quickly extends the receptive field of the MP operation, enabling exchanges with
distant nodes using fewer MP layers.

2.3 Graph pooling

Graph pooling allows to build hierarchical GNNs for tasks such as graph classification (Khasahmadi et al.,
2020), graph properties prediction (Xu et al., 2024; Leenhouts et al., 2025), node classification (Gao
& Ji, 2019; Ma et al., 2020), node clustering (Hansen et al., 2025), graph matching (Liu et al., 2021),
physics simulations (Lino et al., 2022), generation with graph diffusion (Valencia et al., 2025), and spatio-
temporal forcasting (Cini et al., 2024; Marisca et al., 2024). Existing graph pooling methods can be broadly
described through Select-Reduce-Connect (SRC), which provides a general framework to describe different
graph pooling operators (Grattarola et al., 2022). According to SRC, a pooling operator, denoted as
POOL : (A,X) → (Apool,Xpool), is decomposed into three sub-operations:

• Select (SEL): maps the original nodes of the graph to a reduced set of nodes, called supernodes. The
mapping can be represented by a selection matrix S ∈ RN×K , where N and K are the number of
nodes and supernodes, respectively.

• Reduce (RED): generates the features Xpool ∈ RK×F of the supernodes based on the selection matrix
and the original node features. Usually, RED is implemented as Xpool = S⊤X.

5

Under review as submission to TMLR

• Connect (CON): constructs the new adjacency matrix Apool ∈ RK×K
≥0 based on the selection matrix

and the original topology. A streamlined implementation of CON is Apool = S⊤AS.

Figure 5: Schematic depiction of a graph pooling layer. The SEL operation defines the formation of the
supernodes by computing the assignment matrix S from the node embeddings X ′. The RED and CON output
the pooled node features Xpool and the coarsened adjacency matrix Apool, respectively. Some pooling
operators leverage one or more auxiliary losses, Laux, to influence the formation of the selection matrix S
(and, potentially, other components of the GNN).

Figure 5 reports a schematic depiction of a pooling layer showing the interaction of the different components.
Different pooling methods are obtained by a specific implementation of these operators and can be broadly
categorized into three main families: score-based, one-every-K, and soft-clustering methods.

Score-Based methods compute a score for each node using a trainable function in their SEL operator.
Nodes with the highest scores become the supernodes of the pooled graph. Representatives such as Top-k
Pooling (Top-k) (Gao & Ji, 2019; Knyazev et al., 2019), ASAPool (Ranjan et al., 2020), SAGPool (Lee et al.,
2019), PanPool (Ma et al., 2020), TAPool (Gao et al., 2021), CGIPool (Pang et al., 2021), and IPool (Gao
et al., 2022) primarily differ in how they compute the scores or in the auxiliary tasks they optimize to improve
the quality of the pooled graph. These methods are computationally efficient and can dynamically adapt the
size of the pooled graph, e.g., Ki = κNi, where κ is the pooling ratio and Ni and Ki are the sizes of the i-th
graph before and after pooling, respectively. Score-based methods tend to retain neighbouring nodes that
have similar features. As a result, entire parts of the graph are under-represented after pooling, reducing the
performance in tasks where all the graph structure should be preserved.

One-Every-K methods pool the graph by uniformly subsampling nodes, extending the concept of one-every-
K to irregular graph structures. They are typically efficient and perform pooling inspired by graph-theoretical
objectives, such as spectral clustering (Dhillon et al., 2007), maxcut (Bianchi et al., 2020b), and maximal
independent sets (Bacciu et al., 2023). Some of these methods lack flexibility because their SEL operator
neither accounts for node or edge features nor can be influenced by the downstream task’s loss. Even if they
can adapt the size of the pooled graph Ki to the original graph size Ni, the pooling ratio κ is determined by
the graph-theoretical objective and cannot be specified explicitly.

Soft-Clustering methods use SEL operators that compute a soft-clustering matrix S, which assigns each
node to multiple supernodes with different memberships. Representatives such as Diffpool (Ying et al., 2018),
MinCut Pool (MinCut) (Bianchi et al., 2020a), and Structpool (Yuan & Ji, 2020), leverage flexible trainable
functions guided by auxiliary losses to compute the soft assignments from the node features. As illustrated
in Figure 5), the auxiliary loss influences the formation of the selection matrix S (and, potentially, other
parameters of the GNN architecture) ensuring that the partition is consistent with the graph topology and
that the clusters are well-formed, e.g., the assignments are sharp and the clusters balanced. Computing these
auxiliary losses typically requires O(N2) operations because they require a dense representation of the input
adjacency matrix. The quadratic computational cost is generally acceptable in most graph-level tasks, such
as graph classification and graph properties prediction, where the size of the graphs ranges from hundreds to
a few thousand nodes.

6

Under review as submission to TMLR

While soft-clustering methods generally achieve high performance due to their flexibility and ability to retain
information from the entire graph, they face a primary limitation: they require to predefine the size K of
every pooled graph, which is fixed for each graph i regardless of its size Ni. A typical choice is to set K = κN̄ ,
where N̄ is the average size of all the graphs in the dataset. Clearly, this might not work well in datasets
where the graphs’ size varies too much, especially if there are graphs where Ni < κN̄ . In those cases, the
pooling operator expands the graph rather than coarsening it, which goes against the principle of pooling.

3 Bayesian Non-Parametric Pooling for Graphs

We propose BN-Pool, a novel soft-clustering pooling operator grounded in the Bayesian non-parametric
theory. The SEL function of BN-Pool addresses the main drawbacks of existing soft-clustering methods by
learning, for each graph i, a pooled graph with a variable number of supernodes Ki.

BN-Pool assumes that the observed graph structure can be explained by a latent partition of its nodes. In
other words, it assumes that the input adjacency matrix A is generated by an underlying process where
each node belongs to a (hidden) cluster, and the probability of finding an edge depends on these cluster
memberships. To avoid fixing the number of clusters in advance, BN-Pool places a DP prior over the cluster
assignments, allowing the model to adaptively determine how many clusters are needed for each graph. Once
the generative model is defined, the SEL operator is implemented by performing Bayesian inference: we
estimate the posterior distribution of node-to-cluster assignments given the observed graph and node features.
This posterior provides soft membership scores that drive the pooling operation.

To ease the notation, we present the method by considering only a single graph. The pseudo-code in Python
for the implementation of all the main operations in BN-Pool is reported in Appendix A.

3.1 Definition of the Generative Process

Figure 6: Graphical representation of BN-Pool in plate notation. The orange dotted arrow indicates the
stick-breaking construction.

BN-Pool defines a generative process for the adjacency matrix A of the input graph that is similar to the
Stochastic Block Model (SBM) (Holland et al., 1983): each node u is associated with a vector πu whose
entries indicate the probability that u belongs to a given cluster. The edges are generated according to a
block matrix K whose entry Kij represents the unnormalised log-probability of occurrence of a directed edge
from a node in cluster i to a node in cluster j. Unlike in the SBM, we relax the requirement of specifying
the number of clusters in advance and leverage the DP to define a prior over an infinite number of clusters.
Note that, even if there is an infinite number of clusters, only a few of them are used due to the clustering
property of the DP, discussed in Section 2.1.

7

Under review as submission to TMLR

By exploiting the stick-breaking construction of DPs, we define the generative process of BN-Pool as:

Kij ∼ p(Kij) =
{

N (µK , σK) if i = j

N (−µK , σK) if i ̸= j
, π′

ui ∼ p(π′
ui) = Beta(1, αDP),

πui = π′
ui

i−1∏
j=1

(1 − π′
uj), puv = σ(π⊤

u Kπv), Auv ∼ p(Auv) = Bernoulli(puv),
(7)

where u, v ∈ V are nodes in the input graph, i, j ∈ N are cluster indexes, and σ(·) is the sigmoid function;
the hyper-parameters αDP ∈ R+, µK ∈ R+, σK ∈ R+ define the shape of the prior distributions. The prior
distribution on the matrix K defined by p(Kij) encodes our assumption that most of the edges link nodes of
the same group. The generative process is schematized in Figure 6.

3.2 Posterior Estimation

The BNP setting makes the computation of cluster assignments’ posterior intractable, and it requires some
approximations. We rely on a truncated variational approximation of the posterior (Blei & Jordan, 2004):
even if there is an infinite number of clusters, we truncate the posterior by considering a finite value C
representing the maximum number of clusters. It is worth highlighting that this does not imply that the
model has a fixed number of clusters but, rather, that the model will choose a suitable number of non-empty
(i.e., active) clusters Ki < C for the i-th graph.

Following the classical mean-field approximation1, we define two variational distributions: one to model
the posterior of the stick fractions π′, and one to model the posterior of the model parameter K. Note
that we are interested in the cluster assignment vectors π, which are fully determined by the stick-breaking
construction given the stick fractions π′. The posterior approximation is expressed as:

q(π′
ui) = Beta(α̃ui, β̃ui), (8)

q(Kij) = N (µ̃ij , ϵ), (9)

where α̃ui, β̃ui ∈ R+, µ̃ij ∈ R for all u ∈ V, i, j ∈ {1, . . . , C} are the variational parameters. The value of ϵ is
fixed a priori, and it is not optimised during the training. While µ̃ij are free parameters that we optimize
directly, we employ a Multilayer Perceptron (MLP) with parameters ΘMLP to estimate α̃ and β̃:

X ′ = MPΘMP(X,A).
α̃, β̃ = MLPΘMLP(X ′).

(10)

The MLP is applied on the node embeddings X ′, which are computed by the MP layers with parameters
ΘMP that are placed in the GNN before the pooling operator. This allows for representing complex relations
between hidden and observable variables that usually appear in the posterior distribution, by conditioning
the posterior on the graph topology, on the node (and potentially edge) features, and on the downstream
task at hand that drives the GNN optimization.

The estimation of variational parameters through a neural network closely resembles the architecture of a
Variational Auto-Encoder (VAE). Specifically, the GNN responsible for approximating the posterior acts
as the encoder in the classical VAE framework, while the SBM serves as the decoder, reconstructing the
adjacency matrix of the input graph. As discussed in the following, this reconstruction step is central to
the training objective, ensuring that the latent node-to-cluster assignments are consistent with the observed
structure.

3.3 Graph Pooling Operations

We conclude by casting BN-Pool in the SRC framework. Figure 7 expands Figure 5 by showing details of the
SEL operation and the auxiliary loss, described in Section 3.4, implemented by BN-Pool. In particular, for

1The variational distribution is factorised over the latent variables: p(π′,K|X) ≈ q(π′,K) ≈ q(π′)q(K).

8

Under review as submission to TMLR

SBM
Decoder

Stick portion sampling Stick length construction

++

Variational parameters

Reconstructed adjacency

Clusters connectivity

TRUNCATED SBP

Soft assignments

Figure 7: The SEL operation of BN-Pool and the components of the auxiliary loss. One or more MP layers
(not part of the pooling operator) generate the node embeddings X ′, which are passed to the MLP that
outputs the variational parameters α̃ and β̃. These are used by the truncated SBP to generate the assignment
matrix S, which is passed further to the RED and CON operators to compute the pooled graph. S is also fed
into the SBM decoder for reconstructing the adjacency matrix Ã, conditioned by the block matrix K. We
note that K and Ã are generated solely for the computation of the auxiliary loss Laux, which influences the
parameters of the MLP and all the trainable parameters of previous layers in the GNN.

each graph i, the SEL operator generates a cluster assignment matrix Si ∈ RN×C with Ki columns containing
non-zero values. The entry suj = πuj represents the membership of node u to cluster j, where we use πuj to
denote a sample from its posterior q(πuj) to simplify the notation.

The RED and CON functions follow the standard implementation of other pooling methods, as described in
Section 2.3: Xpool = S⊤X and Âpool = S⊤AS. In addition, following (Bianchi et al., 2020a), we set the
diagonal elements of Âpool to zero to prevent self-loops from dominating the propagation in the MP layers
after pooling, and we symmetrically normalize it by the nodes’ degree: Apool = D̂

−1/2
pool ÂpoolD̂

−1/2
pool .

3.4 Training Procedure

All the neural parameters Θ = {ΘMP, ΘMLP}, and the variational parameters µ̃, are learned by maximising
the Evidence Lower-BOund (ELBO):

log p(A) ≥
∑

u

∑
v

Eq(π′)q(K) [log p(Auv | π,K)]︸ ︷︷ ︸
−Lrec

−
∑

u

∑
i

DKL(q(π′
ui) | p(π′

ui))︸ ︷︷ ︸
−Lπ

−
∑

i

∑
j

DKL(q(Kij) | p(Kij))︸ ︷︷ ︸
−LK

.
(11)

The first term in Equation 11 is the reconstruction loss that measures how well the model reconstructs
the adjacency matrix. The last two terms measure the distances between the prior and the variational
distributions, and they act as a regularisation. While the reconstruction loss Lrec has a straightforward
interpretation, we can think of Lπ as the cost of having a certain number of clusters active. Hence, Lπ

reflects the clusterisation property of the DP in reusing non-empty clusters. On the other hand, LK penalizes
the discrepancy from the connectivity across clusters described by the SBM prior.

9

Under review as submission to TMLR

In practice, instead of maximising the ELBO in Equation 11, we train the model by minimising the loss:

Laux = 1
N2 Lrec + γ

1
N2 Lπ + 1

N2 LK , (12)

where N is the number of nodes in the input graph, and it is used to rescale the losses, while γ is a
hyperparameter that balances the contrasting effect of Lrec and Lπ. The interplay between all the loss terms
is crucial for an effective adaptive nonparametric method. The normalization and scaling parameters avoid a
dominance of the KL divergence and have already been applied on VAEs (Higgins et al., 2017; Asperti &
Trentin, 2020). We refer to the loss in Equation 12 as auxiliary since, during pooling, it is combined with
the supervised loss of the downstream task. It is important to note that these terms are not independent
auxiliary objectives but are intrinsically linked as they constitute the ELBO. Therefore, removing one of
these terms would not be meaningful, as it would invalidate the variational lower bound derivation and the
probabilistic foundation of the model.

The training is performed by employing the Stochastic Gradient Variational Bayes (SGVB) framework (Kingma
& Welling, 2014), where the expectation in the reconstruction term is approximated with a Monte Carlo
estimate of the binary cross-entropy between the true edges and the probabilities predicted by the model:

Lrec ≈
T∑

t=1

∑
u

∑
v

−Auv log pt
uv − (1 − Auv) log(1 − pt

uv), (13)

where T is the number of samples used for the Monte Carlo approximation and pt
uv = σ(

∑
i

∑
j π

t
uiµ̃ijπ

t
vj)

being the values πt
u and πt

v the t-th samples of the soft assignments for the node u and v. Each sampling step
π′

ui ∼ Beta(α̃ui, β̃ui) needed to approximate Lrec is not differentiable and prevents the gradient from being
back-propagated to the neural parameters Θ. A common approach to solve this issue is the reparameterization
trick (Kingma & Welling, 2014), which, however, cannot be applied to the Beta distribution (Figurnov et al.,
2018). Therefore, in BN-Pool, we implement the backpropagation by approximating the pathwise gradient of
the sampled values w.r.t. the distribution parameters2 (Jankowiak & Obermeyer, 2018).

To reduce the stochasticity of the approximation, we assume that the variational distribution q(K) has a
low variance (i.e., ε → 0 in Equation 9) and directly use the variational parameter µ̃ rather than sampling
the cluster connectivity from its variational distribution. Finally, we initialise the neural parameters ΘMLP
by using the default initialisation of the backend (He et al., 2015), while the variational parameter µ̃ of
the cluster connectivity matrix is initialised by setting the elements on-diagonal (off-diagonal) equal to ηK
(−ηK), where ηK is a hyperparameter.

3.4.1 Lrec with O(E) complexity.

The computation of Lrec requires O(N2) operations, as the number of samples T is negligible compared to
N2. While this complexity is consistent with other soft-clustering pooling methods that rely on a dense
representation of the input adjacency matrix (e.g., DiffPool (Ying et al., 2018)), we introduce a sparse variant
of BN-Pool that reduces the complexity to O(E).

The sparse variant of BN-Pool operates only on the observed edges, i.e., the set of node pairs (u, v) such that
Au,v = 1, and a sampled set of missing edges, i.e., Au,v = 0. Concretely, let E− = {(u, v) | (u, v) /∈ E} be a
sampled set of missing edges such that |E−| = E. We approximate the summation over all the possible pairs
of (u, v) of nodes in equation 13 as:

Lrec ≈ −
T∑

t=1

 ∑
(u,v)∈E

log pt
uv +

∑
(u,v)∈E−

log(1 − pt
uv)

 . (14)

Note that, differently from equation 13, here the references to the adjacency matrix A are omitted, since
Au,v = 1 if and only if (u, v) ∈ E . By construction, the summation in equation 14 contains 2E terms. To
ensure an overall complexity of O(E), we compute the values pt

u,v only for the node pairs appearing in the
2This approximation is already implemented in the PyTorch library. See Appendix A for more details about our implementation.

10

Under review as submission to TMLR

summation, avoiding materialization of the full N ×N matrix. All other components of the training procedure
remain unchanged, except for the constant used to normalize the terms of Laux: instead of using N2, we
normalize each term by |E| + |E−|.

While this approximation is conceptually simple, its implementation is not straightforward and must be done
carefully. For example, sampling the set of negative edges E− must avoid O(N2) memory allocation and should
be performed efficiently on the GPU to prevent performance degradation. We discuss the implementation
details in Appendix A.4.

3.5 Prior Hyperparameters Interpretation

To fully define BN-Pool model, we have to specify three hyperparameters: αDP, µK and σK . The probabilistic
nature of our method allows for a direct interpretation that facilitates their tuning.

The value of αDP ∈ R+ defines the shape of the prior over the cluster assignments; in particular, it specifies
the concentration of the DP. To understand the effect of αDP, we recall that the loss Lπ is the cost to pay to
have a certain number of clusters active. The value αDP is inversely proportional to the price to activate
a new cluster: low values force the model to use a few clusters (only one in the extreme case). Conversely,
higher values do not penalise the model when it uses more clusters to reduce the reconstruction loss. Since
in practice we truncate the posterior to at most C clusters, too high values of αDP can create degenerate
solutions where the last cluster is always used.

The other two hyperparameters µK ∈ R+ and σK ∈ R+ specify the prior over the block matrix K, which
affects the reconstruction loss. Again, the most intuitive way to understand the effect of K is in terms of costs:
if the value Kij is positive (negative), the price of creating an edge between a node in cluster i and a node in
cluster j is low (high). Thus, to encode our prior belief that most of the edges appear between nodes in the
same cluster, we impose that the elements on the diagonal are positives with value µK (i.e., intra-cluster
edges are cheap), while the off-diagonal elements are negatives with value −µK (i.e., inter-cluster edges are
costly). The hyperparameter σK controls the strength of the prior: the lower, the more the posterior matches
the prior rather than the data.

The values of µK and σK also affect the number of active clusters. For example, the degenerate solution that
assigns all the nodes to the first cluster satisfies the clusterisation property of the DP. However, by referring
at Equation 13, this means paying − log(1 − σ(µ̃11)) = − log σ(−µ̃11) every time Auv = 0. If the posterior
matches our prior (i.e., µ̃11 ≈ µK), this results in a great cost since µK ≫ 0 implies − log σ(−µK) ≫ 0; thus,
the model will likely prefer to reduce Lrec at the price of having more clusters, i.e., a larger Lπ. Finally, we
note that while the other hyperparameters (truncation level C, number of samples T , and initialisation of the
neural and variational parameters Θ and ηK) influence the training procedure, they do not affect the model
definition.

4 Related work

BN-Pool belongs to the family of Soft-Clustering pooling methods discussed in Section 2.3 and the closest
approach is Diffpool (Ying et al., 2018), which employs an auxiliary loss ∥A−SS⊤∥F to align the assignments
to the graph topology. In this work, we go beyond the formulation of such a simple loss and define a whole
generative process for the adjacency matrix.

Related to our work is the Dirichlet Graph Variational Auto-Encoder (DGVAE) (Li et al., 2020), which
defines a VAE with a Dirichlet prior over the latent variables to cluster graph nodes. We extend DGVAE in
different ways. First, we define a more flexible generative process for the adjacency matrix thanks to the
block matrix K. Second, we allow an infinite number of clusters by specifying a DP prior over the latent
variables. Finally, we do not rely on the Laplace approximation of the Dirichlet distribution, whose behaviour
is similar to a Gaussian prior (Joo et al., 2020).

The Stick-Breaking Variational Auto-Encoder (SB-VAE) (Nalisnick & Smyth, 2017) shares our idea of
specifying a non-parametric prior over the hidden variables by using a DP prior that leverages the stick-
breaking construction, but does not focus on graphs. We also employ a different approximation of the

11

Under review as submission to TMLR

posterior, which is based on pathwise gradients rather than the Kumaraswamy distribution Kumaraswamy
(1980).

Another work that shares similarities with our method is (Mehta et al., 2019). It introduces a sparse VAE for
overlapping SBM that also allows an infinite number of clusters, but uses a different nonparametric prior:
the Indian Buffet Process (IBP) (Griffiths & Ghahramani, 2011). The IBP is suitable to model multiple
cluster membership, i.e., a node can belong to more than one cluster, which is not desirable in the context
of pooling. Moreover, Mehta et al. use for each node another dense latent variable with a Gaussian prior
to gain more flexibility during the generation process of the adjacency matrix. Instead, in BN-Pool all the
information useful for the generation is encoded in the soft cluster assignments S.

5 Experiments

The purpose of our experiments is twofold. Being BN-Pool the first BNP pooling method, we start by
analyzing its ability in detecting communities on a single graph. Then, we test the effectiveness of BN-Pool
in GNNs for graph-level tasks such as graph classification and graph regression. In all experiments, we use
very simple GNN models to better quantify the differences in performance between each pooling method.
Indeed, while GNNs with larger capacity can achieve SOTA performance, it is harder to disentangle the
actual contribution of the pooling operator in a more complex model.

In the following, we consider the configurations of the hyperparameters of BN-Pool specified in Table 1.
As discussed in Section 3.5, the value of each parameter can be set according to the characteristics of the
dataset at hand or by monitoring some performance metrics while training. In each experiment, we select the
configuration that yields the lowest value of the reconstruction loss Lrec in the node clustering task and the
highest validation accuracy in the graph classification.

Table 1: Values of the hyperparameters of BN-Pool considered.

Hyperparameter Values

αDP 1.0, 10.0
µK 1.0, 10.0, 30.0
σK 0.1, 1.0

We found that setting αDP = 10.0, µK = 1.0, and σK = 1.0 yields generally good performance and, thus,
it represents our default configuration. Regarding the other hyperparameters, we kept the truncation level
C = 50, the number of particles T = 1, and the initialization of the variational parameter ηK = 1.0 fixed in
all experiments.

5.1 Community detection

This task consists of learning a partition of the graph nodes in an unsupervised fashion, only based on the
node features and the graph topology. Even if our primary focus is on graph pooling, this experiment allows
us to evaluate the auxiliary losses in terms of the consistency between the node labels y and the cluster
assignments.

The architecture used for clustering consists of a stack of MP layers that generate the feature vectors X ′. As
MP layers we used two Graph Convolutional Network (GCN) layers (Kipf & Welling, 2017) with 32 hidden
units and ELU activations (Clevert, 2015). The features X ′ are processed by the SEL operator that produces
the cluster assignments S. Since clustering is an unsupervised task, the GNN is trained by minimizing only
the auxiliary losses. The architecture used for clustering is depicted in Figure 8.

Before training, we apply to the adjacency matrix the same pre-transform used in Just-balance Graph Neural
Network (JBGNN):

A → I − δ ∗ L, (15)

12

Under review as submission to TMLR

Figure 8: Architecture used for node clustering task.

where L is the symmetrically normalized graph Laplacian and δ is a constant that we set to 0.85 as in (Bianchi,
2022). As the training algorithm, we used Adam (Kingma & Ba, 2015) with initial learning rate 1e − 3. For
BN-Pool, we increased γ defined in Equation 12 from 0 to 1 over the first 5, 000 epochs according to a cosine
scheduler. This scheduling procedure, often referred to as “KL annealing” (Bowman et al., 2016; Sønderby
et al., 2016), is a standard practice when training VAEs to prevent the model from converging to degenerate
solutions early in the training due to, e.g.,, posterior collapse.

During training, we monitored the auxiliary losses for early stopping with patience 1, 000. When the GNN
was configured with BN-Pool, we monitored only Lrec since LK and Lπ are regularization losses that usually
increase and might dominate the total loss.

Clustering performance is commonly measured with Normalized Mutual Information (NMI), Completeness,
and Homogeneity scores, which only work with hard cluster assignments. While the latter can be obtained by
taking the argmax of a soft assignment, the discretisation process can discard useful information. Consider
for example a case where two nodes u and v have assignment vectors su = [.0, .5, .5, .0] and sv = [0, .5, 0, .5].
Taking the argmax would map both nodes in the 2nd cluster, even if the two assignment vectors are clearly
distinguishable. This problem is exacerbated when we do not fix the number of clusters K equal to the true
number of classes; in this case, there is no direct correspondence between the clusters and the classes, and
nothing prevents different classes from being represented by partially overlapping assignment vectors with
multiple non-zero entries.

Therefore, to measure the agreement between S and y, we first consider the cosine similarity between the
cluster assignments and the one-hot representation of the node labels:

COS =
∑

i,j

[
SS⊤ ⊙ Y Y ⊤]

i,j√∑
i,j [SS⊤]i,j +

∑
i,j [Y Y ⊤]i,j

(16)

where Y = one-hot(y). As a second measure, we consider the accuracy (ACC) obtained by training a simple
logistic regression classifier to predict y from S.

We compare the performance of BN-Pool with the assignments obtained by four other soft-clustering
pooling methods, DiffPool (Ying et al., 2018), MinCut (Bianchi et al., 2020a), Deep Modularity Network
(DMoN) (Tsitsulin et al., 2023), and JBGNN (Bianchi, 2022), which are optimized by minimizing their own
auxiliary losses. Importantly, we note that the other methods leverage supervised information by setting the
number of clusters K equal to the number of node classes, while BN-Pool is completely unsupervised.

As datasets, we consider Community, a synthetic dataset generated from a SBM, and four real-world citation
networks. The details about the datasets are in Appendix B. Table 2 reports the results and shows that,
despite not knowing the real number of classes, BN-Pool achieves excellent performance.

Discussion. Figure 9a shows a typical situation where BN-Pool splits a community in two. This happens if
there are a few edges within the community, and increasing K yields more compact clusters. This cannot
occur in other soft-clustering methods such as MinCut. The latter always find the same pre-defined number
of clusters (K = 5 in this case, see Figure 9b) but create clusters that are more spurious.

13

Under review as submission to TMLR

Table 2: Mean and standard deviations of ACC and COS for vertex clustering.

Method Community Cora Citeseer Pubmed DBLP

ACC COS ACC COS ACC COS ACC COS ACC COS
DiffPool 81.9±1.3 62.9±0.6 50.4±1.1 43.3±0.0 37.9±1.4 42.4±0.0 52.4±0.7 59.8±0.0 49.5±4.9 57.4±0.0

MinCut 97.1±0.3 94.3±0.5 57.0±2.1 40.1±1.8 54.3±5.0 36.9±3.8 61.3±0.2 46.6±0.3 69.2±3.4 52.5±3.9

DMoN 96.2±0.9 92.5±1.6 57.9±3.8 40.1±2.3 50.7±2.4 34.6±1.6 59.6±1.4 45.5±0.7 63.7±3.2 45.4±1.3

JBGNN 83.9±8.7 83.0±8.9 55.4±2.4 39.0±2.8 48.1±5.0 36.1±3.3 55.8±3.8 44.6±2.0 68.6±1.8 53.0±4.4

BN-Pool 98.5±0.5 83.0±1.4 66.8±1.0 47.7±1.3 47.9±1.7 37.8±0.3 81.3±0.5 62.5±0.7 75.2±0.7 58.5±0.7

(a) BN-Pool (b) MinCut

Figure 9: Clusters found on a 5-community graph.

Figure 10 shows the original adjacency matrix of the Cora dataset, a visualization of the class labels (Y Y ⊤),
and the adjacency matrix reconstructions SKS⊤ and SS⊤ obtained by BN-Pool and MinCut, respectively.
While the SKS⊤ produced by BN-Pool follows more closely the actual sparsity pattern of the adjacency
matrix, in MinCut SS⊤ has a block structure.

This difference is explained by the different optimisation objectives: while BN-Pool tries to reconstruct the
whole adjacency matrix, MinCut recovers the communities by cutting the smallest number of edges. In
addition, MinCut uses a regularization to encourage clusters to have the same size. This makes it difficult
to isolate the two smallest clusters that, instead, are distinguishable in BN-Pool. Given that in Cora the
average edge density between nodes of the same class is only 0.001, a natural way for BN-Pool to lower Lrec
is to activate new clusters and generate assignments with multiple non-zero, yet low, membership values.

To better visualize this behavior, in Figure 11, we show the cluster assignments S, split according to the
node classes, found by BN-Pool on Cora. We see that there is no direct correspondence between the classes
and the clusters, since each class is assigned to multiple clusters. This is expected when we do not fix the
number of clusters equal to the number of classes, like in the case of BN-Pool that, potentially, can activate
an infinite number of clusters. We also notice that the same clusters are active across different classes, albeit
with different membership values. Despite such an overlap, there is a clear and consistent pattern in terms
of cluster memberships for each class. It is important to notice that the membership values are lower for
the nodes of class 3, which is the most populated in the graph. As discussed in Section 5.1, activating
many clusters with low membership values is a natural solution found by BN-Pool to reduce Lrec when the
intra-class density is very low, like in Cora (0.006).

The clusters found by MinCut on Cora are very different, as shown in Figure 11b. MinCut relies on supervision
to set the number of clusters equal to the number of class labels. While this provides a good correspondence
between the classes and the clusters, it limits the extent to which MinCut can split a class into multiple

14

Under review as submission to TMLR

(a) Original adj. A (b) Class labels Y Y ⊤ (c) BN-Pool SKS⊤ (d) MinCut SS⊤

Figure 10: Adjacency matrix of Cora, class labels visualization, and adjacency matrix reconstruction by
BN-Pool and MinCut.

(a) BN-Pool (b) MinCut

Figure 11: Cluster assignments S found on Cora.

clusters, encoding nodes of the same class differently. This implies that if there is a significant variability
within each class, MinCut might only assign some of its nodes to the right cluster.

5.2 Graph-level tasks

In graph classification and regression, a target yi is assigned to the i-th graph {Ai,Xi}. Unlike in the
community detection task, here the GNN is optimized by jointly minimizing the task loss (e.g., cross-entropy
or MSE) between true and predicted target and the auxiliary loss Laux. The architecture used for graph
classification and regression is depicted in Figure 12.

Before and after pooling, we use a Graph Isomorphism Network (GIN) (Xu et al., 2019) layer with 32 hidden
units and ELU activations. The readout is an MLP with [32 × 32 × 16 × Nclass] units, dropout 0.5, and ELU
activation. For datasets with edge features, we replace the first GIN layer with the MP operator proposed by
(Hu et al., 2019). For the Molhiv and Peptides-struct datasets, we use a slightly modified architecture with 2
MP layers before and after pooling with 64 hidden units. After each MP layer, we inserted a dropout layer
with probability 0.1 and a batch normalization layer. In addition, we use the standard AtomEncoder and
BondEncoder provided by the OGB library3 with embedding dimension 100 to transform the original node
and edge features. Like in the node clustering setting, we apply the pre-transform in Equation 15. In those
datasets containing edge features, we assign to the self-loops that we introduce zero vectors as surrogate
features.

3https://github.com/snap-stanford/ogb

15

https://github.com/snap-stanford/ogb

Under review as submission to TMLR

Figure 12: Architecture for graph classification and regression.

Table 3: Mean and standard deviations of the graph classification accuracy (ROC-AUC for Molhiv and MAE
for Pep-struct).

Pooler Collab Colors3 Mutag. NCI1 RedditB MUTAG Enzymes Proteins Molhiv Pep-struct Multip.

– 70±4 74±9 78±1 73±3 86±1 78±13 33±13 71±4 74±2 .295±.007 14±12

Graclus 72±3 68±1 80±2 77±2 90±3 82±12 33±7 73±4 74±3 .264±.001 48±2

ECPool 72±3 69±2 80±2 77±3 91±2 84±12 35±8 74±5 74±1 .262±.006 51±2

k-MIS 71±2 84±1 79±2 75±3 90±2 83±10 33±8 73±5 74±2 .263±.001 63±2

Top-k 72±2 78±1 75±3 73±2 77±2 82±10 29±7 74±5 76±1 .266±.000 45±3

SEP 72±3 71±1 80±2 77±3 90±1 81±9 40±6 73±7 75±0 .350±.002 61±2

DiffPool 70±2 65±1 78±2 75±2 90±2 81±11 36±7 75±3 70±4 .276±.018 56±3

MinCut 70±2 69±1 78±3 73±3 87±2 81±12 34±9 77±5 76±1 .265±.003 56±3

DMoN 68±2 69±2 80±2 73±3 88±2 82±11 37±7 76±4 77±1 .280±.001 62±3

JBGNN 72±2 68±2 80±2 78±3 90±1 87±14 39±6 75±5 73±2 .264±.001 56±3

Eigen 73±3 40±2 79±2 75±3 89±3 69±12 39±6 72±4 74±2 .276±0.002 61±2

HOSC 73±2 72±1 80±2 78±3 90±2 84±7 36±9 75±5 74±2 .283±0.001 49±7

BN-Pool 75±2 99±0 81±1 80±2 91±2 88±7 54±7 75±4 78±1 .255±.001 58±2

While BN-Pool can autonomously discover the number of nodes Ki of each pooled graph, we need to specify
the size of the pooled graphs K for the other Soft-Clustering pooling methods and the pooling ratio κ for
the Score-Based methods. Therefore, for every dataset, we set κ = 0.5 and K = 0.5N̄ , where N̄ represents
the average number of nodes in a given dataset. We note that this is the standard rule of thumb used in
the original papers proposing the competing methods. In Appendix C we report the results obtained by the
Soft-Clustering methods for different values of K.

As optimizer, we used Adam with an initial learning rate 5e − 4. Regarding the callbacks, we monitored
the validation accuracy and lowered the learning rate by a factor of 0.5 after a plateau of 30 epochs and
performed early stopping with patience 100 epochs. For BN-Pool, we increase γ from 0 to 1 over the first 50
epochs using a cosine scheduler.

In addition to the poolers from Section 5.1, here we also compare against two additional Soft-Clustering
operators, Higher-Order Clustering and Pooling (HOSC) (Duval & Malliaros, 2022) and EigenPooling
(Eigen) (Ma et al., 2019), and Score-Based and One-Every-K pooling operators, such as Top-k (Gao &
Ji, 2019; Knyazev et al., 2019), Edge-Contraction Pooling (ECPool) Diehl (2019), k Maximal Independent
Sets Pooling (k-MIS) Bacciu et al. (2023), Graclus Defferrard et al. (2016), and Structural Entropy Pooling
(SEP) (Wu et al., 2022), which have no auxiliary losses. We also consider a baseline without hierarchical
pooling, consisting only of a stack of MP layers. As datasets, we consider TUData (Morris et al., 2020)
including Colors3 (Knyazev et al., 2019), GCB-H (Bianchi et al., 2022), ogbg-molhiv (Wu et al., 2018),
Peptides-struct (Dwivedi et al., 2022), and Multipartite (Abate & Bianchi, 2025). The details about the
datasets are in Appendix B.

Discussion. We report the results in Table 3 and in Table 12. In general, BN-Pool performs on par or
better than any other pooling operator, especially those from the Soft-Clustering family. This indicates

16

Under review as submission to TMLR

(a) Original

(b) BN-Pool assignments (c) MinCut assignments (d) Top-k scores (e) k-MIS assignments

0 20 40

0

20

40

60

80

100

(f) BN-Pool S

0 20 40 60

0

20

40

60

80

100

(g) MinCut S

0 20 40

0

20

40

60

80

100

(h) Top-k S

0 5 10 15

0

20

40

60

80

100

(i) k-MIS S

(j) BN-Pool {A′,X ′} (k) MinCut {A′,X ′} (l) Top-k {A′,X ′} (m) k-MIS {A′,X ′}

Figure 13: Example from GCB-H.

that BN-Pool can effectively: i) find a meaningful number of clusters, and ii) learn more compact pooled
graphs without sacrificing useful information. Noteworthy results are obtained on the datasets Colors-3 and
Enzymes, where BN-Pool significantly outperforms any other pooling method and sets the new SOTA.

Figure 13 shows the actual node features from a graph from the GBC-H dataset and the node-to-supernodes
assignments found by different pooling operators. Interestingly, BN-Pool creates clusters that match the node

17

Under review as submission to TMLR

0 3 6 9 12 15 18 21 24 27 30

COLLAB

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42

COLORS-3

0 3 6 9 12 15 18 21 24 27 30

Mutagenicity

0 3 6 9 12 15 18

NCI1

0 3 6 9 12 15 18

REDDIT-BINARY

0 3 6 9 12 15 18

MUTAG

0 3 6 9 12 15 18 21 24

ENZYMES

0 3 6 9 12

PROTEINS

0 3 6 9 12

ogbg-molhiv

0 3 6 9 12

peptides-struct

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42

Multipartite

Figure 14: Distribution of non-empty clusters found by BN-Pool on different datasets.

features well (Figure 13b). By contrast, MinCut, which is also a Soft-Clustering method, places nodes with
different features in the same clusters (Figure 13c). In particular, MinCut finds 4 clusters even though there
are 5 different feature values.

Top-k and k-MIS are pooling operators from different families (Score-Based and One-Over-K) that pool the
graph in a very different way. In particular, Top-k (Figure 13d) keeps only half of the nodes and drops the
others, shown in black. On the other hand, k-MIS does not use the node features, so there is no direct match
between the features and the clusters it finds. Figures 13f-i show the different assignment matrices S from
these methods, and Figures 13j-m show the topology and node features of the pooled graphs.

BN-Pool uses only 5 clusters that match the 5 types of features. As a result, the pooled graph summarizes
effectively the original, with just 5 supernodes, each one tied to a certain feature. On the other hand,
MinCut produces a denser assignment matrix S, where each node belongs to multiple supernodes, and several
supernodes have the same role. This overlap is also visible in the pooled graph, which has many supernodes
with similar features. Unlike BN-Pool, this pooled graph is less compact, is very dense, and, thus, more costly
to process.

Looking at Top-k, we see that its pooled graph is simply a subset of the original, which means some parts
of the graph are left out. This is known to be a potential issue in Score-Based methods as it affects their
expressivity (Bianchi & Lachi, 2023). Finally, k-MIS yields a pooled graph that, like BN-Pool, is both small
and very sparse. However, while it represents all parts of the graph, it does not match its supernodes to the
node features, as it does not consider them when creating the pooled graph.

Our experimental evaluation mainly focuses on homophilic settings, which is the one BN-Pool and most of
the existing pooling methods are designed for. In homophilic graphs such as the one in Figure 13, nodes with
the same features are strongly connected with each other, making it perfectly reasonable to assign nodes with
the same features to the same supernode in the pooled graph. To provide a more comprehensive evaluation of
our method and its limitations, we also consider a completely heterophilic dataset: the Multipartite dataset.
In this dataset, there are ten different types of node features, and each node is connected to all the nodes in
the graph with a different feature. Thus, the topology is adversarial and should be overlooked to solve the
task correctly. In such a heterophilic setting, BN-Pool does not perform well: its architecture and the losses
implement a homophilic bias that connected nodes should be clustered together.

Table 4: Mean and standard deviation of the non-empty clusters found by BN-Pool on different datasets.

Dataset Collab Colors3 Mutagenicity NCI1 RedditB MUTAG
16.5±4.5 31.0±4.1 24.1±2.8 6.5±1.0 10.0±1.5 5.5±1.4

Dataset Enzymes Proteins Molhiv Peptides-struct Multipartite
13.5±2.3 6.3±1.5 5.7±1.0 6.7±1.4 35.4±2.1

We conclude by noting that all Soft-Clustering methods pool each graph in the same predefined number
of supernodes K. Instead, BN-Pool does not require specifying K and finds a different Ki for each graph,

18

Under review as submission to TMLR

resulting in a non-trivial distribution of the pooled graphs’ sizes. Figure 14 shows the distributions of
non-empty clusters found by BN-Pool on different datasets, which gives us further insights about the desired
number of pooled nodes in each dataset. The statistics of the non-empty clusters found in each dataset are
reported in Table 4.

Sensitivity Analysis. In Table 5, we report the validation accuracy, averaged over 10 folds, for different
configurations of the hyperparameters µK , σK , and αDP.

Table 5: Average validation accuracy for different hyperparameter configurations.

µK σK αDP Enzymes Colors3

1 0.1 0.1 59±2 98.6 ±0.4

1 0.1 1 58±2 98.3 ±0.4

1 0.1 10 57±3 98.5 ±0.2

1 1 0.1 59±2 98.8 ±0.2

1 1 1 58±2 98.5 ±0.3

1 1 10 59±4 98.6 ±0.2

10 0.1 0.1 61±3 98.8 ±0.2

10 0.1 1 60±3 98.8 ±0.3

10 0.1 10 60±3 99.1 ±0.2

10 1 0.1 61±3 98.8 ±0.3

10 1 1 60±4 98.8 ±0.3

10 1 10 57±4 99.1 ±0.3

30 0.1 0.1 61±3 99.0 ±0.2

30 0.1 1 61±3 99.1 ±0.3

30 0.1 10 59±6 99.2 ±0.3

30 1 0.1 60±1 99.0 ±0.2

30 1 1 59±2 98.9 ±0.3

30 1 10 58±4 99.3 ±0.2

As shown in Table 5, the average validation accuracy remains remarkably stable across different configurations.
For both Enzymes and Colors3, the accuracy fluctuates only slightly — i.e., the differences are not statistically
significant — indicating that the model is robust to changes in these hyperparameters. These results
suggest that the proposed method does not require extensive hyperparameter tuning to achieve competitive
performance, making it suitable for practical applications where computational resources or tuning time may
be limited.

5.3 Computational resources

The experiments were performed using seven different servers equipped with one Nvidia GeForce RTX 3090
(24GB VRAM), two Nvidia GeForce RTX 4090 (24GB VRAM), two Nvidia RTX A6000 (48GB VRAM),
and two Nvidia RTX 6000 Ada Generation (48GB VRAM), respectively. In Table 6, and 7 we report the
maximum usage of the GPU memory and the average time to complete an epoch for a GNN configured with
different pooling operators on node- and graph-level tasks, respectively. Pooling methods that pre-computes
the coarsening of the graph (e.g., SEP and Eigen) are not considered. Times are measured on an Nvidia
GeForce RTX 3090.

Regarding the node-level tasks, on the two largest datasets, DBLP and PubMed, BN-Pool uses approximately
20% more GPU memory. The reason is that BN-Pool uses the binary cross-entropy as the reconstruction
loss: during back-propagation, the autograd framework retains the input of the sigmoid to compute the
gradient. This extra operation also affects the average training times, but the results are comparable with
other methods. Conversely, the sparse variant of BN-Pool (SP-BN-Pool) consistently reduces both memory
footprint and training time across all datasets except Cora, being the dataset with the highest edge density.
This behaviours is expected since the negative edge sampling becomes less effective as the input graph density
increases (see Appendix A.4 for details).

In the case of graph-level tasks, we process batches of size 16. We considered the three datasets with the
highest average number of vertices (Pep-struct, RedditB, and DD), the dataset with the highest average

19

Under review as submission to TMLR

Table 6: Maximum usage of the GPU VRAM (Gigabytes) and average training time (seconds per epoch) by
different pooling operators on node-level tasks.

CiteSeer Cora DBLP PubMed
VRAM time VRAM time VRAM time VRAM time

(max GB) (s/epoch) (max GB) (s/epoch) (max GB) (s/epoch) (max GB) (s/epoch)

DiffPool 0.59 0.91 0.49 0.78 5.43 1.22 6.52 1.16
MinCut 0.55 0.99 0.49 0.81 5.43 3.56 6.52 4.06
DMoN 0.55 0.93 0.49 0.82 5.43 1.10 6.52 1.00
JBGNN 0.55 0.88 0.49 0.79 5.43 1.07 6.52 0.95
BN-Pool 0.65 0.92 0.53 0.88 6.70 1.79 8.09 1.61
SP-BN-Pool 0.55 0.67 0.51 1.38 4.49 1.11 5.26 0.93

Table 7: Maximum usage of the GPU VRAM (Gigabytes) and average training time (seconds per epoch) by
different pooling operators on graph-level tasks.

DD RedditB Molhiv Pep-struct
VRAM time VRAM time VRAM time VRAM time

(max GB) (s/epoch) (max GB) (s/epoch) (max GB) (s/epoch) (max GB) (s/epoch)

Graclus 1.05 0.48 1.06 0.47 1.00 22.74 1.03 23.88
ECPool 1.08 0.52 1.08 0.46 1.00 21.24 1.05 22.70
k-MIS 1.05 0.51 1.06 0.46 1.00 23.27 1.03 21.53
Top-k 1.08 0.48 1.07 0.46 1.00 23.61 1.03 23.78
DiffPool 2.58 0.53 6.39 0.55 1.00 22.03 1.09 22.11
MinCut 1.84 0.49 3.78 0.60 1.00 25.52 1.07 42.51
DMoN 1.37 0.48 3.35 0.50 1.00 22.33 1.05 22.17
JBGNN 1.45 0.46 2.43 0.47 1.00 22.83 1.05 22.72
HOSC 1.05 0.84 7.23 0.93 1.00 21.64 1.06 20.92
BN-Pool 2.53 0.61 5.97 0.82 1.01 24.05 1.13 37.05
SP-BN-Pool 1.13 0.88 1.14 0.83 1.00 20.72 1.05 20.83

number of edges (DD), and the dataset with the highest number of graphs (MolHiv). See Table 10 for the
details. Soft-clustering methods use significantly more GPU memory only on DD and RedditB, as these
datasets contain large and sparse graphs. In particular, Diffpool and BN-Pool require additional memory to
compute the reconstruction loss over all non-edges. Although the memory footprint remains fully manageable
on modern GPUs, SP-BN-Pool drastically reduces memory usage, making it comparable to One-Every-K
methods such as Top-k. Similarly, the training times of BN-Pool are higher on datasets containing larger
graphs (e.g., DD and RedditB). Conversely, on MolHiv and Pep-struct, the training times are comparable
to those of One-Every-K methods. Again, SP-BN-Pool reduces training time in most cases, except for DD,
which is the dataset with the highest edge density. This result highlights that, while reconstructing the full
adjacency matrix is negligible for small graphs and enables scalability on datasets with a large number of
graphs, the sparse implementation of the reconstruction loss effectively reduces both memory footprint and
training time on graphs with low edge density.

In Table 8 we report statistics for the number of epochs needed to train the GNN for the graph-level
tasks, configured with the different pooling operators. The statistics are computed over different weights
initialization and dataset folds, which creates a degree of variability. As discussed in Section 5.2, we use
an early stop with patience 100. We see that the number of epochs required by BN-Pool is comparable to
the other methods, with the observed differences being largely attributable to the variability arising from
different weight initializations and dataset folds.

20

Under review as submission to TMLR

Table 8: Average number (and standard deviation) of epochs used to train the GNN in graph-level tasks
when using different poolers.

GCB-H Colors3 IMDB-BINARY Molhiv DD

Graclus 1205±197 2266±539 791±193 609±55 557±20

ECPool 862±196 1667±446 880±242 607±82 562±34

k-MIS 703±78 1437±449 620±151 782±135 541±13

Top-k 1147±686 1813±462 760±323 845±131 552±28

DiffPool 998±152 1777±540 771±117 877±262 1410±508

MinCut 1043±243 1389±216 788±206 796±193 379±75

DMoN 1941±1284 1140±136 690±236 872±259 581±21

JBGNN 2096±1405 879±251 830±493 523±4 607±74

HOSC 792±90 1459±125 733±306 1016±443 1139±372

BN-Pool 2196±523 2127±503 958±133 800±162 696±213

6 Conclusions

We introduced BN-Pool, an elegant graph pooling method that automatically discovers the number of
supernodes in each input graph in a principled way. BN-Pool defines a SBM-like generative process for
the adjacency matrix. By specifying a DP prior over the cluster memberships, our model can handle a
theoretically unbounded number of clusters, providing flexibility across datasets with graphs of heterogeneous
sizes. Due to the probabilistic nature of BN-Pool, training is performed through the variational inference
framework. We employ a GNN to approximate the posterior of the node cluster membership, which allows
conditioning the posterior on the node and edge features, and the downstream task at hand.

Experiments showed that BN-Pool can effectively find a meaningful number of clusters, both to solve
unsupervised node clustering, graph classification, and graph regression tasks. This is especially true in
the hompohilic setting, where the generative model assumeptions align naturally with the data. Notably,
on two graph classification datasets, it outperforms any other pooling method by a significant margin. We
also provided a measrument of the computational resources required by oour method. While the O(N2)
complexity associated with the reconstruction loss is generally not a bottleneck for typical graph-classification
datasets, we additionally proposed a sparse implementation that reduces the complexity to O(E), enabling
the application of BN-Pool to datasets with substantially larger graphs.

To the extent of our knowledge, this is the first attempt to employ BNP techniques to perform graph pooling.
This contribution opens the door to a broader integration of Bayesian methods in graph machine learning
and GNNs in particular. The probabilistic framework underlying BN-Pool offers several promising directions
for future research. First, it can be extended to heterophilic graphs by modifying the prior on the generative
process of the adjacency matrix to capture connectivity patterns that differ from homophily. Second, the
approach can be adapted to dynamic graphs, where the input graph evovles over time. In this setting, the
generative process could be conditioned on previous time steps, following principles similar to hidden Markov
models (Beal et al., 2001), thereby enabling temporal dependencies to be modeled in a principled way.

21

Under review as submission to TMLR

A Implementation details

In this section, we show how we implement the key operations in BN-Pool by using as backend the PyTorch
library.

A.1 Priors and Posteriors Definition

Listing 1 shows how we define the prior and the variational parameters, and how we compute the coarsened
graph during the forward pass. In particular, the hyperparameters representing the priors are defined as
buffers since they are not optimised during the training. Conversely, the variational parameters are defined
as parameters since they are modified by the training algorithm. The variational parameters α̃, β̃ are not
defined explicitly since we compute them by applying an MLP to the node embeddings of size emb_size
generated by a GNN. The value of n_clusters indicates the maximum number of clusters we consider
(i.e., the truncation level C of the posterior approximation), and k_init is the value used to initialise the
variational parameter µ̃ (i.e., ηK in the main text).� �

1 import torch .nn. functional as F
2 import torch as th
3 from custom_layers import MLP # A generic MLP
4

5 # --- Priors (hyperparameters) ---
6 # Prior for the Stick Breaking Process
7 register_buffer (’alpha_DP ’, th.ones(n_clusters - 1) * alpha_DP)
8

9 # Prior for the cluster - cluster prob. matrix
10 register_buffer (’sigma_K ’, th. tensor (sigma_K))
11 register_buffer (’mu_K ’, mu_K * th.eye(n_clusters , n_clusters) -
12 mu_K * (1-th.eye(n_clusters , n_clusters)))
13

14 # --- Posteriors (parameters) ---
15 # Transforms node embeddings into posterior distributions for the sticks (alpha_tilde

and beta_tilde)
16 self.MLP = MLP(emb_size , hidden_size , 2*(n_clusters -1) , bias= False)
17

18 # variational parameters for the connectivity matrix K
19 self. mu_tilde = th.nn. Parameter (k_init * th.eye(n_clusters , n_clusters) -
20 k_init * (1-th.eye(n_clusters , n_clusters)))
21

22 def forward (node_embs , adj):
23

24 # Compute the node assignment matrix S
25 S, q_z = get_S (node_embs)
26

27 # Compute the auxiliary loss
28 rec_loss = rec_loss (S, adj)
29 kl_loss = pi_prior_loss (q_z)
30 K_prior_loss = K_prior_loss ()
31 aux_loss = rec_loss + gamma * kl_loss + K_prior_loss
32

33 # rescale the loss
34 aux_loss = aux_loss / N2
35

36 # compute the coarsened graph
37 x_pool = th. einsum (’bnk ,bnf ->bkf ’, S, x)
38 adj_pool = th. matmul (th. matmul (S. transpose (1, 2) , adj), S)
39

40 return aux_loss , adj_pool , x_pool� �
Listing 1: Priors hyperparameters and trainable parameters definition.

In the forward function, we show how the BN-Pool computes the coarsened graph and the auxiliary loss.
The function has two input parameters: node_embeddings represents the node embeddings X ′ obtained by
the previous MP layers, while adj represents the adjacency matrix A. At first, we compute the posterior

22

Under review as submission to TMLR

distributions q_z, and the cluster-assignment matrix S. Then, we use these values to compute the auxiliary
loss aux_loss, the coarsened graph adj_pool, and the new input features x_pool.

A.2 Cluster Assignments Computation

Listing 2 shows the key operations in the forward pass of our model: given the node embeddings produced
by a GNN, we compute the cluster assignment matrix S. The forward pass also computes the variational
distributions qπ, which will be useful later to compute the losses.� �
1 def compute_pi_given_sticks (stick_fractions):
2 # Compute the sticks length given the stick fractions
3 log_v = th. concat ([th.log(stick_fractions), th. zeros (* stick_fractions . shape [: -1] , 1)

], dim = -1)
4 log_one_minus_v = th. concat ([th. zeros (* stick_fractions . shape [: -1] , 1) ,
5 th.log (1 - stick_fractions)], dim = -1)
6 pi = th.exp(log_v + th. cumsum (log_one_minus_v , dim = -1))
7 return pi # has shape : [T, batch , N, C]
8

9 def get_S (node_embs , n_particles , n_clusters):
10 # Compute soft cluster assignments .
11 out = th. clamp (F. softplus (self.MLP(node_embs)), min =1e-3, max =1 e3)
12 alpha_tilde , beta_tilde = th. split (out , n_clusters -1, dim = -1)
13 q_pi = th. distributions .Beta(alpha_tilde , beta_tilde)
14 stick_fractions = q_z. rsample ([n_particles])
15 S = compute_pi_given_sticks (stick_fractions)
16 return S, q_pi� �

Listing 2: Forward computation of the cluster assignments.

At first, on lines 15-16, we obtain the variational parameters α̃, β̃ by applying the MLP to the node embeddings
produced by the GNN. Note that both variational parameters should be greater than 0; thus, we apply the
softplus activation function. Moreover, to avoid numerical errors, we clamp the values between 10−3 and
103.

Once we have the variational parameters, we define the variational distribution by employing the PyTorch
class torch.distributions.Beta. Then, we sample n_particles (i.e., T in the main text) values that
will be used to approximate the reconstruction loss by using the rsample method. The r in the rsample
name stands for reparametrization, that is, the trick which allows to separate the distribution parameters
from the randomness by allowing to back-propagate the gradient from the samples to the distribution
parameters. This technique is also denoted as pathwise gradient estimator. As we mentioned in Section 3.4,
the reparametrization trick cannot be applied to the Beta distribution explicitly. Therefore, we rely on an
approximation of the pathwise derivative Figurnov et al. (2018); Jankowiak & Obermeyer (2018) which does
not require reparametrising the Beta distribution explicitly. This approximation is already implemented
in the Pytorch framework: when we call the rsample method, the backend computes (if it is possible) or
approximates (as in our case) the pathwise derivative. Thus, the gradient flows from the reconstruction loss
to the variational parameters α̃, β̃, and then to the GNN parameters Θ.

The function compute_pi_given_sticks computes the stick length π1, . . . , πC given the stick fractions
π′

1, . . . , π′
C by applying Equation 4. The computation is performed in the log-space to avoid numerical errors.

A.3 Losses Computation

Listing 3 shows the computation of the losses Lrec, Lπ, LK . The function rec_loss computes the recon-
struction loss Lrec. As shown in Equation 13, the value of the loss corresponds to the Binary Cross-Entropy
(BCE) loss computed between the adjacency matrix A and the probability to have an edge for each node
pair. Note that we use BCE_with_logits rather than applying the sigmoid function to each π⊤

u µ̃πv. Since
the number of edges is usually much less than the total number of possible edges, we assign different weights
to the positive and negative classes to achieve balancing. The weights for the positive class are computed in
line 10 and stored in the variable balance_weights.

23

Under review as submission to TMLR

The loss Lπ is equal to the KL divergence between the prior p(π′
ui) and the variational posterior q(π′

ui) for
each node u and a cluster i. Since all the distributions involved are Beta distributions, the KL divergence has a
closed form, and it is already implemented in PyTorch. This loss is computed by the function pi_prior_loss.� �
1 def rec_loss (S, A):
2

3 # Compute the percentage of non -zero links
4 # N is the number of nodes
5 # E is the number of edges
6 balance_weights = (N*N / E) * adj + (N*N / (N*N -E)) * (1 - adj)
7

8 # compute the probability to have and edge for each node pairs , i.e. S K S^T
9 p_adj = S @ self. mu_tilde @ S. transpose (-1,-2)

10

11 loss = F. binary_cross_entropy_with_logits (p_adj , A, weight = balance_weights ,
reduction =’none ’)

12

13 return loss
14

15 def pi_prior_loss (self , q_pi):
16 alpha_DP = self. get_buffer (’alpha_DP ’)
17 p_pi = Beta(th. ones_like (alpha_DP), alpha_DP)
18 loss = kl_divergence (q_pi , p_pi).sum (-1)
19 return loss
20

21 def K_prior_loss (self):
22 mu_K , sigma_K = self. get_buffer (’mu_K ’), self. get_buffer (’sigma_K ’)
23 K_prior_loss = (0.5 * (self. mu_tilde - mu_K) ** 2 / sigma_K).sum ()
24 return K_prior_loss� �

Listing 3: Losses computation.

The last loss LK is equal to the KL divergence between normal distributions since q(Kij) and p(Kij) are
Gaussians for all clusters i and j. Since we do not optimise the variance of the variational distribution, we
can ignore all the terms that do not involve the variational parameters µ̃. Thus, we compute LK as the mean
squared error between µ̃ and µK scaled by the variance prior σK . This loss is computed by the function
K_prior_loss.

A.4 Sparse Computation of the Reconstruction Loss

The implementation of the sparse reconstruction loss defined in equation 14 relies on efficient negative edge
sampling. The goal is to generate non-existent edges (i.e., the “negative edges”) that are used in the loss
computation, avoiding the materialization of the full adjacency matrix. The efficiency of negative edge
sampling relies on balancing memory usage and computational cost, depending on the sparsity of the graph.
The critical factor is the relationship between the number of observed edges (E) and the total number of
possible edges (N2).

For sparse graphs (E ≪ N2), where the number of edges is much smaller than the total possible edges, it is
highly likely that a randomly sampled edge is a negative one, i.e.,, the edge is not present in the original
graph. Thus, we can efficiently sample negative edges by randomly generating node pairs without explicitly
enumerating all possible edges. This approach has a significantly lower memory complexity and computational
cost, as it operates only on the existing edges and avoids creating a dense adjacency structure.

As the graph density increases and E approaches N2, the probability of randomly sampling a negative edge
decreases. In this case, producing E negative samples may require O(N2) sampling trials. Moreover, for
dense graphs, the memory complexity of storing E edges is already O(N2), meaning that the additional
memory cost in explicitly enumerating all possible edges is lower. Therefore, in such scenarios, we explicitly
enumerate all possible edges, excluding the observed ones, and directly sample from the remaining set of
negative edges.

To determine whether to use sparse sampling or dense enumeration, we employ a heuristic considering
the sparsity of the input graph. The heuristic operates on the probability of sampling a valid negative

24

Under review as submission to TMLR

edge, estimated as 1 − (E/N2). If the probability is above a threshold (e.g., 50%), sparse sampling is used;
otherwise, the dense approach is preferred. This adaptive mechanism ensures an optimal trade-off between
computational and memory requirements.

All the operations are performed directly on the GPU to avoid unnecessary data transfer.

B Datasets details

The details of the datasets used in the node clustering task are reported in Table 9. We also reported the
intra-class and inter-class density, which is the average number of edges between nodes that belong to the
same or to different classes, respectively. The Community dataset is generated using the PyGSP library4.
The other datasets are obtained with the PyG loaders5.

Table 9: Details of the vertex clustering datasets.

Dataset Vertices Edges Vertex attr. Vertex classes Intra-class density Inter-class density

Community 400 5,904 2 5 0.1737 0.0025
Cora 2,708 10,556 1,433 7 0.0065 0.0004
Citeseer 3,327 9,104 3,703 6 0.0034 0.0003
Pubmed 19,717 88,648 500 3 0.0005 0.0001
DBLP 17,716 105,734 1,639 4 0.0008 0.0001

Table 10: Details of the graph classification datasets.

Dataset Samples Classes Avg. vertices Avg. edges Vertex attr. Vertex labels Edge attr.

GCB-H 1,800 3 148.32 572.32 – yes –
Collab 5,000 3 74.49 4,914.43 – no –
Colors3 10,500 11 61.31 91.03 4 no –
IMDB 1,000 2 19.77 96.53 – no –
Mutag. 4,337 2 30.32 61.54 – yes –
NCI1 4,110 2 29.87 64.60 – yes –
RedditB 2000 2 429.63 497.75 – no –
D&D 1,178 2 284.32 1,431.32 – yes –
MUTAG 188 2 17.93 19.79 – yes –
Proteins 1,113 2 39.06 72.82 1 yes –
Enzymes 600 6 32.63 62.14 18 yes –
Molhiv 41,127 2 25.5 27.5 9 no 3
Pep-struct 15,535 – 150.9 307.3 9 no 3
Multipartite 5,000 10 99.79 4,477.43 – yes 3

The details of the datasets used in the graph classification task are reported in Table 10. All datasets besides
GCB-H, Multipartite, Pep-struct, and ogbg-molhiv are downloaded from the TUDataset repository6 using
the PyG loader. For the GCB-H, we used the data loader provided in the original repository7. Molhiv is
obtained from the OGB repository8 through the loader from the OGB library. The Multipartite dataset is
obtained from the original repository9, and Pep-struct is downloaded using the PyG loader for the Long
Range Graph Benchmark datasets10.

4https://pygsp.readthedocs.io/en/laetst/
5https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
6https://chrsmrrs.github.io/datasets/
7https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification
8https://ogb.stanford.edu/docs/graphprop/
9https://zenodo.org/records/11617423

10https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.LRGBDataset.html

25

https://pygsp.readthedocs.io/en/laetst/
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://chrsmrrs.github.io/datasets/
https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification
https://ogb.stanford.edu/docs/graphprop/
https://zenodo.org/records/11617423
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.LRGBDataset.html

Under review as submission to TMLR

B.1 Hyperparameters configuration

In Table 11 we report the optimal configuration of αDP, µK , and σK in each dataset, i.e., those that yield
the best classification accuracy, MSE, or AUROC on the validation set.

Table 11: Optimal configuration of the hyperparameters of BN-Pool for each dataset.

Dataset αDP µK σK

GCB-H 10.0 30.0 1.0
Collab 1.0 10.0 0.1
Colors3 10.0 30.0 1.0
IMDB 10.0 10.0 0.1
Mutag. 10.0 30.0 1.0
NCI1 10.0 1.0 0.1
RedditB 1.0 1.0 1.0
D&D 30.0 1.0 1.0
MUTAG 1.0 10. 1.0
Proteins 1.0 1.0 0.1
Enzymes 1.0 30.0 0.1
Molhiv 10.0 1.0 0.1
Pep-struct 1.0 0.1 0.1
Multipart. 1.0 10.0 1.0

C Additional experiments

In Table 12 we report the results obtained on the datasets omitted in the main text due to formatting
constraints.

Table 12: Mean and standard deviations of the graph classification accuracy.

Pooler GCB-H IMDB DD

Graclus 75±3 77±6 73±4

ECPool 75±4 75±7 73±5

k-MIS 75±4 74±7 75±3

Top-k 56±5 74±5 72±5

SEP 74±2 72±6 77±3

DiffPool 51±8 72±6 75±4

MinCut 75±5 73±6 78±5

DMoN 74±3 73±6 78±5

JBGNN 75±4 75±6 79±4

Eigen 62±2 71±6 74±4

HOSC 75±2 74±5 79±2

BN-Pool 75±3 76±5 80±3

In Table 13 we report the results obtained by other soft-clustering method by sweeping the number of
suprnodes K in the set K = 0.25N̄ and K = 0.1N̄ .

In Table 13 we report the performance achieved by the Soft-Clustering pooling methods when using a different
pooling ratio, K = 0.25N̄ and K = 0.1N̄ , respectively. In Table 12, instead, we report additional results on
datasets where we did not observe a statistically significant difference in the results obtained by the different
pooling operators.

26

Under review as submission to TMLR

Table 13: Mean and standard deviations of the graph classification accuracy (ROC-AUC for Molhiv and
MAE for Pep-struct) when using different pooling ratios K = 0.25N̄ and K = 0.1N̄ .

Pooler Collab Colors3 Mutag. NCI1 RedditB MUTAG Enzymes Proteins Molhiv Pep-struct Multip.

DiffPool (0.25) 65±3 56±3 79±2 73±3 78±2 87±8 21±6 73±5 73±2 .330±0.010 54±2

DiffPool (0.1) 66±5 65±4 80±2 71±5 77±7 79±10 20±4 71±4 68±2 .341±0.019 58±1

MinCut (0.25) 71±2 68±2 81±2 78±3 90±1 86±8 34±5 74±6 75±3 .270±0.003 58±5

MinCut (0.1) 70±2 75±1 80±2 78±2 90±2 85±9 36±6 74±6 72±5 .288±0.007 60±3

DMoN (0.25) 69±3 72±1 82±3 79±2 90±1 88±8 35±8 73±5 76±2 .277±0.003 55±5

DMoN (0.1) 70±1 69±1 80±1 78±3 91±2 85±9 40±9 74±3 75±0 .306±0.014 62±2

JBGNN (0.25) 71±1 69±1 80±2 79±3 92±1 88±6 40±5 74±5 75±0 .317±0.003 51±3

JBGNN (0.1) 70±2 67±2 80±2 77±3 92±1 85±9 37±7 73±4 76±1 .317±0.004 59±3

HOSC (0.25) 72±2 77±1 80±2 77±2 90±1 87±5 37±7 74±5 76±1 .277±0.004 24±3

HOSC (0.1) 70±1 78±1 80±2 77±2 91±1 87±5 36±8 74±6 75±2 .285±0.006 18±8

References
Carlo Abate and Filippo Maria Bianchi. Maxcutpool: differentiable feature-aware maxcut for pooling in

graph neural networks. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=xlbXRJ2XCP.

Andrea Asperti and Matteo Trentin. Balancing reconstruction error and kullback-leibler divergence in
variational autoencoders. IEEE Access, 8:199440–199448, 2020.

Davide Bacciu, Alessio Conte, and Francesco Landolfi. Graph pooling with maximum-weight k-independent
sets. In Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with graph
multiset pooling. In Proceedings of the 9th International Conference on Learning Representations, 2021.

Matthew Beal, Zoubin Ghahramani, and Carl Rasmussen. The infinite hidden markov model. Advances in
neural information processing systems, 14, 2001.

Filippo Maria Bianchi. Simplifying clustering with graph neural networks. arXiv preprint arXiv:2207.08779,
2022.

Filippo Maria Bianchi and Veronica Lachi. The expressive power of pooling in graph neural networks. In
Advances in Neural Information Processing Systems, volume 36, pp. 71603–71618, 2023.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural networks
for graph pooling. In International conference on machine learning, pp. 874–883. PMLR, 2020a.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Hierarchical representation
learning in graph neural networks with node decimation pooling. IEEE Transactions on Neural Networks
and Learning Systems, 33(5):2195–2207, 2020b.

Filippo Maria Bianchi, Claudio Gallicchio, and Alessio Micheli. Pyramidal reservoir graph neural network.
Neurocomputing, 470:389–404, 2022. ISSN 0925-2312.

David Blackwell and James B MacQueen. Ferguson distributions via pólya urn schemes. The annals of
statistics, 1(2):353–355, 1973.

David M Blei and Michael I Jordan. Variational methods for the dirichlet process. In Proceedings of the
twenty-first international conference on Machine learning, pp. 12, 2004.

Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio. Generating
sentences from a continuous space. In Proceedings of the 20th SIGNLL conference on computational natural
language learning, pp. 10–21, 2016.

27

https://openreview.net/forum?id=xlbXRJ2XCP

Under review as submission to TMLR

Andrea Cini, Danilo Mandic, and Cesare Alippi. Graph-based Time Series Clustering for End-to-End
Hierarchical Forecasting. International Conference on Machine Learning, 2024.

Djork-Arné Clevert. Fast and accurate deep network learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289, 2015.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural information processing systems, 29, 2016.

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a multilevel
approach. IEEE transactions on pattern analysis and machine intelligence, 29(11):1944–1957, 2007.

Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv preprint arXiv:1905.10990, 2019.

Alexandre Duval and Fragkiskos Malliaros. Higher-order clustering and pooling for graph neural networks.
In Proceedings of the 31st ACM international conference on information & knowledge management, pp.
426–435, 2022.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and
Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

Mikhail Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradients. Advances in
neural information processing systems, 31, 2018.

H. Gao, Y. Liu, and S. Ji. Topology-aware graph pooling networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(12):4512–4518, dec 2021. ISSN 1939-3539.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pp.
2083–2092. PMLR, 2019.

Xing Gao, Wenrui Dai, Chenglin Li, Hongkai Xiong, and Pascal Frossard. ipool—information-based pooling
in hierarchical graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 33
(9):5032–5044, 2022.

Samuel J Gershman and David M Blei. A tutorial on bayesian nonparametric models. Journal of Mathematical
Psychology, 56(1):1–12, 2012.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pp. 1263–1272. PMLR,
2017.

Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare Alippi. Understanding pooling in
graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2022.

Thomas L. Griffiths and Zoubin Ghahramani. The indian buffet process: An introduction and review. Journal
of Machine Learning Research, 12(32):1185–1224, 2011.

Jonas Berg Hansen, Andrea Cini, and Filippo Maria Bianchi. On time series clustering with graph neural
networks. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL https://openreview.
net/forum?id=MHQXfiXsr3.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pp. 1026–1034, 2015.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational
framework. In International Conference on Learning Representations, 2017.

28

https://openreview.net/forum?id=MHQXfiXsr3
https://openreview.net/forum?id=MHQXfiXsr3

Under review as submission to TMLR

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps.
Social Networks, 5(2):109–137, 1983. ISSN 0378-8733. doi: https://doi.org/10.1016/0378-8733(83)90021-7.
URL https://www.sciencedirect.com/science/article/pii/0378873383900217.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

Martin Jankowiak and Fritz Obermeyer. Pathwise derivatives beyond the reparameterization trick. In Jennifer
Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 2235–2244. PMLR, 10–15 Jul 2018.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation for
graph neural networks. arXiv preprint arXiv:2110.07580, 2021.

Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon. Dirichlet variational autoencoder. Pattern
Recognition, 107:107514, 2020.

Amir Hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, and Quaid Morris. Memory-based graph
networks. In International Conference on Learning Representations, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization in
graph neural networks. Advances in neural information processing systems, 32, 2019.

Ponnambalam Kumaraswamy. A generalized probability density function for double-bounded random
processes. Journal of hydrology, 46(1-2):79–88, 1980.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International conference on
machine learning, pp. 3734–3743. PMLR, 2019.

Roel J Leenhouts, Tara Larsson, Sebastian Verhelst, and Florence H Vermeire. Property prediction of fuel
mixtures using pooled graph neural networks. Fuel, 381:133218, 2025.

Jia Li, Jianwei Yu, Jiajin Li, Honglei Zhang, Kangfei Zhao, Yu Rong, Hong Cheng, and Junzhou Huang.
Dirichlet graph variational autoencoder. Advances in Neural Information Processing Systems, 33:5274–5283,
2020.

Mario Lino, Stathi Fotiadis, Anil A Bharath, and Chris D Cantwell. Multi-scale rotation-equivariant graph
neural networks for unsteady eulerian fluid dynamics. Physics of Fluids, 34(8), 2022.

Ning Liu, Songlei Jian, Dongsheng Li, Yiming Zhang, Zhiquan Lai, and Hongzuo Xu. Hierarchical adaptive
pooling by capturing high-order dependency for graph representation learning. IEEE Transactions on
Knowledge and Data Engineering, 35(4):3952–3965, 2021.

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks with eigenpooling.
In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 723–731, 2019.

29

https://www.sciencedirect.com/science/article/pii/0378873383900217

Under review as submission to TMLR

Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path integral based convolution and
pooling for graph neural networks. Advances in Neural Information Processing Systems, 33:16421–16433,
2020.

Ivan Marisca, Cesare Alippi, and Filippo Maria Bianchi. Graph-based forecasting with missing data through
spatiotemporal downsampling. In Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 34846–34865. PMLR, 2024.

Nikhil Mehta, Lawrence Carin Duke, and Piyush Rai. Stochastic blockmodels meet graph neural networks.
In International Conference on Machine Learning, pp. 4466–4474. PMLR, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on
Graph Representation Learning and Beyond (GRL+ 2020), 2020.

Eric Nalisnick and Padhraic Smyth. Stick-breaking variational autoencoders. In International Conference on
Learning Representations, 2017.

Peter Orbanz and Yee Whye Teh. Bayesian nonparametric models. Encyclopedia of machine learning, 1,
2010.

Yunsheng Pang, Yunxiang Zhao, and Dongsheng Li. Graph pooling via coarsened graph infomax. In
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 2177–2181, 2021.

Jim Pitman. Poisson–dirichlet and gem invariant distributions for split-and-merge transformations of an
interval partition. Combinatorics, Probability and Computing, 11(5):501–514, 2002.

Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling for learning
hierarchical graph representations. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 5470–5477, 2020.

Jayaram Sethuraman. A constructive definition of dirichlet priors. Statistica sinica, pp. 639–650, 1994.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder variational
autoencoders. Advances in neural information processing systems, 29, 2016.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph neural
networks. J. Mach. Learn. Res., 24:127:1–127:21, 2023.

Mario Lino Valencia, Tobias Pfaff, and Nils Thuerey. Learning distributions of complex fluid simulations
with diffusion graph networks. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=uKZdlihDDn.

Pengyun Wang, Junyu Luo, Yanxin Shen, Siyu Heng, and Xiao Luo. A comprehensive graph pooling
benchmark: Effectiveness, robustness and generalizability. arXiv preprint arXiv:2406.09031, 2024.

Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. Structural entropy guided graph hierarchical pooling.
In International conference on machine learning, pp. 24017–24030. PMLR, 2022.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl
Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical science, 9
(2):513–530, 2018.

Fanding Xu, Zhiwei Yang, Lizhuo Wang, Deyu Meng, and Jiangang Long. Mespool: Molecular edge
shrinkage pooling for hierarchical molecular representation learning and property prediction. Briefings in
Bioinformatics, 25(1):bbad423, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019.

30

https://openreview.net/forum?id=uKZdlihDDn

Under review as submission to TMLR

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pooling. Advances in neural information processing
systems, 31, 2018.

Hao Yuan and Shuiwang Ji. Structpool: Structured graph pooling via conditional random fields. In Proceedings
of the 8th International Conference on Learning Representations, 2020.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI Open, 1:57–81,
2020. ISSN 2666-6510.

31

