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Abstract

Software engineering activities frequently involve
edits to existing code. However, contemporary
code language models (LMs) lack the ability to
handle diverse types of code-edit requirements.
In this work, we attempt to overcome this short-
coming through (1) a novel synthetic data gen-
eration pipeline and (2) a robust model adapta-
tion algorithm. Starting with seed code examples
and diverse editing criteria, our pipeline gener-
ates high-quality samples comprising original and
modified code, along with natural language in-
structions in different styles and verbosity. To-
day’s code LMs come bundled with strong abili-
ties, such as code generation and instruction fol-
lowing, which should not be lost due to fine-
tuning. To ensure this, we propose a novel adap-
tation algorithm, SeleKT, that (a) leverages a
dense gradient-based step to identify the weights
that are most important for code editing, and (b)
does a sparse projection onto the base model to
avoid overfitting. Using our approach, we ob-
tain a new series of models NextCoder (adapted
from QwenCoder-2.5) that achieves strong results
on five code-editing benchmarks, outperforming
comparable size models and even several larger
ones. We show the generality of our approach on
two model families (DeepSeekCoder and Qwen-
Coder), compare against other fine-tuning ap-
proaches, and demonstrate robustness by showing
retention of code generation and general problem-
solving abilities post adaptation. We opensource
the models, synthetic dataset, and implementation
at aka.ms/nextcoder.
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Figure 1. Performance of state-of-the-art code LMs, in the parame-
ter range 6.7B-16B, on code editing benchmarks. NextCoder-7B
is our code-editing model with QwenCoder-2.5-7B as the base,
fine-tuned using the proposed SeleKT algorithm on synthetic and
real code editing tasks. For NoFunEval, we consider instances
with binary oracles to ensure consistency with other benchmarks.
We present detailed results in Section 5.2, Table 4.

1. Introduction
Code editing is a fundamental ability with pervasive use in
automating software engineering activities. Recent bench-
marks reveal that contemporary code language models
(LMs), particularly the smaller and open-weight LMs, strug-
gle to edit code based on natural language instructions
(Muennighoff et al., 2023; Guo et al., 2024b; Cassano et al.,
2023; Singhal et al., 2024). This is despite many of them
incorporating commit-data from GitHub in pre-training (Li
et al., 2023; Lozhkov et al., 2024) or fine-tuning (Muen-
nighoff et al., 2023; Cassano et al., 2023; Xie et al., 2025),
where the commit messages are used as instructions.

In this work, we aim to enhance the ability of code LMs to
handle diverse types of code-edit requirements. This poses
two challenges: (1) lack of high-quality fine-tuning data and
(2) the risk of losing the strong and general abilities (such
as code comprehension, code generation and instruction fol-
lowing, acquired during pre-training and instruction tuning)
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due to catastrophic forgetting (Goodfellow et al., 2013).

We address both these challenges in this paper. We pro-
pose (1) a synthetic data generation pipeline which starts
with seed code examples and diverse code editing aspects
to generate samples comprising original and modified code,
along with natural language instructions. The code edit-
ing aspects are at a high-level and simply state dimensions
along which samples should be generated (e.g., bug fixing,
runtime improvement, etc.). Our multi-stage pipeline gener-
ates original code which is intentionally deficient in some
dimension so that a meaningful edit that addresses the de-
ficiency can be generated. Inspired by (Wei et al., 2024b),
seed code is used to ensure diversity in the generated code
and its scale (ranging from functions, classes, to files). It is
important to support diversity in prompting styles as well.
Our instruction generation stage samples natural language
edit instructions, that are well-fitted to the change from the
original to the modified code, in different styles (instruction
versus conversation) and verbosity (concise versus detailed).
We generate synthetic data using GPT-4o and Llama-3.3-70B
models, and use it together with high-quality commit data
from CommitPackFT (Muennighoff et al., 2023).

We observe that supervised fine-tuning on the curated data
hampers pre-learned abilities of code LMs like code genera-
tion. We therefore (2) devise a robust adaptation algorithm,
called "selective knowledge transfer" (SeleKT), which se-
lectively adjusts the base model weights with respect to a
subset of fine-tuned model weights. Unlike existing model
adaptation techniques (Nguyen et al., 2024a) which select
the updatable weights a priori, we select the weights period-
ically based on their magnitude of change during fine-tuning.
(3) We experimentally show superiority of our model adap-
tation algorithm over existing methods.

Putting all of these together, (4) we construct a new series of
models NextCoder, adapted from QwenCoder-2.5 instruct
variants fine-tuned on eight programming languages, that
achieves strong results on five code-editing benchmarks.
These benchmarks cover multiple programming languages
and test a variety of scenarios, including function, class
or file level edits, code improvements, and bug fixing. As
shown in Figure 1, NextCoder-7B consistently outperforms
models of comparable size. On several tasks, it even out-
performs larger models such as DeepSeekCoder-V2-16B,
DeepSeekCoder-33B and Llama-3-70B. We further show
that (5) our approach generalizes to other model families by
improving the code editing performance of DeepSeekCoder-
6.7B. To illustrate the robustness of our SeleKT approach,
(6) we show that unlike full fine-tuning (SFT), LoRA (Hu
et al., 2021) or a model merging approach TIES (Yadav
et al., 2024), the performance of models fine-tuned using
our method does not degrade their code generation abilities.
(7) We demonstrate the effectiveness of our approach on dif-

ferent model sizes by finetuning 3B, 14B, and 32B variants
of the QwenCoder-2.5 instruct model. On the challenging
Aider Polyglot (Gauthier, 2024b) benchmark, NextCoder-
32B outperforms several strong models such as GPT-4o
(2024-11-20), DeepSeek-V2.5 and QwenCoder-2.5-32B.

In summary, we make the following contributions:
1. Synthetic pipeline for diverse code-editing examples:
We present a multi-stage pipeline and sample 127K high-
quality, diverse code editing examples (comprising 229M
tokens), where the diversity comes from multiple dimen-
sions: (a) granularity of code, (b) types of code-editing
requirements, (c) the style and verbosity of natural language
instructions, and (d) choice of programming language.
2. Robust adaptation algorithm: To prevent catastrophic
forgetting due to fine-tuning, we propose an algorithm, Se-
leKT, which only selectively updates model weights. We
demonstrate that this helps retain the code generation abili-
ties after fine-tuning on code-editing data.
3. Strong code-editing models: We demonstrate signifi-
cant improvements in code-editing performance for models
like QwenCoder-2.5 and DeepSeekCoder, showing that
SeleKT outperforms full and parameter-efficient finetun-
ing methods across four code-editing benchmarks. Our
NextCoder-7B derived from Qwen2.5-Coder-7B, outper-
forms other models of comparable size and even matches
larger models across multiple tasks (Figure 1). On the popu-
lar Aider and Aider Polyglot benchmarks, NextCoder-32B is
SOTA against open-source models up to 236B parameters.
4. Opensource: We opensource the models, synthetic
dataset, and implementation at aka.ms/nextcoder.

2. Related Work
Language Models for Code Editing Language models of
code demonstrate varying levels of proficiency in following
code-editing instructions, as measured by benchmarks such
as CanItEdit (Cassano et al., 2023), NoFunEval (Singhal
et al., 2024), SWE-Bench (Jimenez et al., 2023), Aider (Gau-
thier, 2024a), CodeEditorBench (Guo et al., 2024b), EditE-
val (Hu et al., 2023), and RES-Q (LaBash et al., 2024). Prior
research has explored ways to specialize language models
for code editing. For example, StarCoder (Li et al., 2023),
OctoCoder (Muennighoff et al., 2023), and EditCoder (Cas-
sano et al., 2023) leverage git commits as part of their
pre-training (Li et al., 2023) or fine-tuning datasets (Muen-
nighoff et al., 2023; Cassano et al., 2023) to enable mod-
els to edit source files based on natural language commit
messages. Similarly, StarCoder2 (Lozhkov et al., 2024)
incorporates GitHub issues, pull requests, and associated
files containing code edits, potentially equipping the model
with code-editing capabilities during pre-training. SWE-
Fixer (Xie et al., 2025) specializes the Qwen2.5-72B model
for code editing by fine-tuning it on GitHub issues. We
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focus on generating synthetic data that samples diverse code
edits and on robust adaptation of pre-trained models through
fine-tuning on such data.

Synthetic Generation of Coding Data Generating syn-
thetic instruction-response pairs has become a standard ap-
proach for post-training alignment of models to follow in-
structions (Wei et al., 2024a; Wang et al., 2023; Xu et al.,
2023; Luo et al., 2023; Zhao et al., 2024; Li et al., 2024).
These methods have been extended to code LMs. For ex-
ample, WizardCoder (Luo et al., 2023) employs the EvolIn-
struct framework (Xu et al., 2023) to enhance the complex-
ity of instructions in the CodeAlpaca dataset (Chaudhary,
2023), creating a more challenging instruction-following
dataset. The CodeAlpaca dataset itself was synthetically
generated using the Alpaca (Taori et al., 2023) and Self-
Instruct (Wang et al., 2023) pipelines. Both EvolInstruct
and CodeAlpaca primarily focus on function-level coding
tasks, with limited coverage of code-editing problems.

A more recent class of methods condition the example gen-
eration process on seed-code derived from real code files.
Methods such as Self-CodeAlign (Wei et al., 2024a), Wave-
Coder (Yu et al., 2024), and OSS-Instruct (Wei et al., 2024b)
belong to this category. These approaches significantly im-
prove task and instruction diversity by leveraging diverse
seed codes. However, they remain untested for generating
file-level coding examples that include multiple classes or
functions, and they do not emphasize code-editing tasks. To
the best of our knowledge, InstructCoder (Hu et al., 2023)
is the only method explicitly designed to generate diverse
synthetic data for code-editing tasks by conditioning on
seed examples. Nevertheless, the examples produced by the
InstructCoder pipeline are limited to short, function-level
code snippets and are restricted to Python. In contrast, our
method supports the generation of both function/class-level
and file-level code-editing examples across multiple task
categories and programming languages.

Overcoming Catastrophic Forgetting and Robust Fine-
tuning We find that fine-tuning LMs on code-editing ex-
amples worsen their performance on code-generation tasks,
in line with the catastrophic forgetting phenomenon (Good-
fellow et al., 2013; Kirkpatrick et al., 2017). Model-
merging (Xiao et al., 2023; Morrison et al., 2024; Yadav
et al., 2024) has recently emerged as a method for learning
new tasks while avoiding catastrophic forgetting of knowl-
edge acquired during pre-training. The sparse adaptation
technique of Nguyen et al. (2024b) selects the parameters
to be fine-tuned based on the top-k components of the task
vector, similar to our method. However, they do this a priori,
and then only fine-tune the selected parameters (i.e., sparse
gradients only). In contrast, our algorithm periodically re-
assesses the parameters, and performs full fine-tuning of the
entire model (Dense Gradients step in Algorithm 1).

Language GPT-4o Llama-3.3-70B Total Tokens(M)
Python 8406 6963 15279 28.63

C 7039 10114 17153 33.48
C++ 6272 11065 17337 30.93
Java 6447 9881 16328 27.61
JS 7367 8663 16030 25.92

Rust 4701 11737 16438 30.43
Go 4503 10701 15204 28.56

Kotlin 3470 9802 13272 22.16
Total 48205 78926 127041 227.72

Table 1. Number of synthetic examples and tokens generated per
programming language and model type.

3. Synthesizing a Diverse Code Editing Dataset
Git commits promise to be a readily available source of
supervision for adapting models for file-level code editing,
as also explored by OctoCoder (Muennighoff et al., 2023).
However, in our preliminary experiments (Table 8), we find
that fine-tuning on source-target file pairs from Commit-
PackFT (Muennighoff et al., 2023), a dataset derived from
GitHub commits, with commit messages as instructions,
yields limited improvements in code editing. We attribute
this to the generally limited quality and diversity of data on
GitHub and the lack of informative commit messages.

Thus, in addition to using CommitPackFT as a source of
supervision, we propose a novel method for generating high-
quality code-editing examples starting with real seed data
from GitHub using large and medium LMs, such as GPT-
4o and the instruct version of Llama-3.3-70B. Our method
provides greater diversity by offering explicit control over
varying levels of granularity (function, class, and file-level
code edits), a wide range of code edit types (e.g., bug fix-
ing, latency and runtime improvements, addressing security
vulnerabilities, optimizing resource utilization, and enhanc-
ing maintainability), diversity in programming languages,
and varying levels of instruction complexity (both concise
and verbose, and single-turn as well as multi-turn style con-
versations). Table 1 provides statistics of the code editing
data generated using our method across eight programming
languages. We generate approximately 127K examples and
229M tokens, with 48K examples produced using GPT-4o.
We perform contamination analysis of our generated data
with respect to the evaluation benchmarks in Section A.1.5.

Figure 2 illustrates our data generation pipeline and Fig-
ure 9 shows an example seed code passed through GPT-4o
in our pipeline, which comprises four main components:
(i) Problem and Source Code Generation, (ii) Target Code
Generation, (iii) Instruction Generation, and (iv) Quality-
Based Filtering. Each component is described below.

i) Problem and Source Code Generation The LLM
used for synthetic-data generation is prompted to gener-
ate the problem description and source code as solution,
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Figure 2. Our synthetic data generation pipeline: The input to the pipeline is a seed code snippet, modularities (function, class
or file) which defines the scope of the output code and aspects to improve up on (latency, resource utilization, runtime efficiency,
maintainability, security, and general improvements along with bug fixing). The output is a synthetic example, approved by the final
quality checker, consisting of problem statement, source code, target code, and instructions in different styles and verbosity (detailed,
concise, human-like, conversational). The details of the pipeline stages are presented in the running text.

which is conditioned on required code modularity (function-
level/class-level/file-level) and the provided seed code sam-
pled from the StarCoder dataset (Kocetkov et al., 2022; Li
et al., 2023), where we sample only from files that have more
than 10 lines and contains logic like loop, functions, con-
ditional statements or classes. The generated source code
contains flaws that align with the identified improvement
areas (e.g., Bug Fixing, Improving Latency, Optimizing Re-
source Utilization) in the prompt. Additionally, the LLM
generates metadata that outlines the specific flaws present
in the code. Each instance of the synthetic data is generated
using a single seed code. The prompt used for this step is
given in Figure 5.

ii) Target-Code Generation Next, we prompt the LLM to
generate the target code conditioned on the problem descrip-
tion, source code and the metadata produced in the previous
step. We design this prompt to also output an explanation of
the edits made by the model to source code to obtain target
code. The prompt used for this step is given in Figure 6.

iii) Instruction Generation In the subsequent step, we
prompt the LLM to generate code-editing instructions using
the source code, target code, and the editing explanation gen-
erated in previous steps as input. A parameter in the prompt
specifies whether the instruction should be in Concise, De-
tailed, Human, or Conversational format. Concise instruc-
tions are high-level, often under-specified, three-line de-
scriptions that do not explicitly detail the required changes.
Detailed instructions are more verbose and provide specific
information about the required changes, such as specify-
ing the exact function to be modified for improved runtime.
Human instructions are very brief, informal, and natural-
language-based messages that are typically 1-2 sentences
long and provide a high-level overview of the necessary
changes without going into technical detail (e.g., "Hey mod-
ify the given code to improve its runtime"). Conversational
instructions represent a user-assistant interaction in a chat
format, where the user sequentially specifies the required
changes. Each instance therefore offers four fine-tuning
examples, one for each format. The prompt used for this

step is given in Figure 7.

iv) Quality-based Filtering Finally, to ensure high qual-
ity of generated examples, we prompt the LLM to verify
whether the target file is a correctly edited version of the
source file, consistent with the instructions generated in the
previous step. The model evaluates the instance by assign-
ing a score from 0 to 10 across five criteria: (1) Correctness
of edits w.r.t. requested improvements (e.g. latency), (2)
adherence of the edits to the instructions, (3) code quality,
(4) instruction quality, and (5) the usefulness of the example
for fine-tuning small models. An instance is deemed valid
if its average score is at least 7, and all individual scores
exceed 5. The prompt used for this step is given in Figure 8.
We also performed a human study to assess the quality of
the generated data, and the details are in Section A.3.

4. Robust Model Adaptation
Pre-training LMs on large amounts of data followed by
fine-tuning them on relatively smaller amounts of data from
downstream scenarios is now a standard practice. But naïve
fine-tuning can result in poor generalization performance.

The state-of-the-art code LMs such as DeepSeekCoder and
Qwen already have gone through a rigorous pipeline of pre-
training and instruction-tuning, on vast amounts of code
and text tokens (as many as 5.5T tokens (Hui et al., 2024),
in the case of Qwen-2.5). At the same time, these pre-
trained LMs find several code-editing scenarios challenging
(as we show in Section 5.2). So, the key question is how
we can strike a good balance between task-specific (i.e.,
code editing scenarios) performance and the generalization
abilities of the pre-trained model (i.e., code comprehension,
instruction-following, code generation, etc.). In this section,
we present our technique for robustly adapting code LMs to
diverse code editing tasks.

Robust Adaptation Problem Formally, we want to fine-
tune a given code LM, denoted by θbase, such that: (a) the
resulting LM θFT, has improved code editing abilities, as
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determined by the training loss on the data presented in the
previous section, (b) while preserving the generalization
abilities of the base LM (as determined by the performance
on real-world code benchmarks). The robust adaptation
problem (Wortsman et al., 2022; Tian et al., 2023) can be
posed as:

argmin
θ
L(θ) s.t. ∥θ − θbase∥ ≤ c , (1)

where L denotes the next-token prediction loss on the train-
ing data, ∥ · ∥ is a suitable norm, and c is a constant.

Inadequacy of Existing Solutions State-of-the-art tech-
niques for adaptation (robust or otherwise) largely follow
the parameter-efficient fine-tuning (PEFT) paradigm. That
is, fine-tuning is localized to a small fraction of the parame-
ters of the base model. For instance, the widely-used LoRA
technique (Hu et al., 2021) fine-tunes a small number of
parameters added to the base LM, keeping the entirety of the
base LM frozen otherwise. More recent techniques carefully
select the parameters to fine-tune, e.g., a few layers (Lee
et al., 2023) or a few parameters across the layers (Nguyen
et al., 2024b). The crux of these techniques seems to be that:
(A1) focus on fine-tuning a small number of parameters to
avoid overfitting on a small amount of training data, and
(A2) fix the parameters to be fine-tuned a priori, before the
training even begins. Although the design choice (A1) is
reasonable and is arguably prudent, we question the design
choice (A2) of these techniques.

While recent robust adaptation techniques try to achieve the
model accuracy-efficiency trade-off using sparse gradients
in their updates, the appeal for efficiency during fine-tuning
seems to be at cross with the desire to also achieve low gener-
alization error and out-of-domain robustness. We show this
empirically in our experiments (Table 4); Hu et al. (2021)
also observe that there is some degradation in performance
due to the choices made in LoRA.

Our key insights are simple:
(1) What parameters need to be fine-tuned for the task(s) at
hand should be continuously re-assessed conditioned on
the difficulty of the downstream scenario as dictated by the
fine-tuning data and the training loss.
(2) (Dense Gradients) We can update all the model param-
eters to determine the direction of parameter changes that
best minimizes the training loss on the code editing tasks,
unlike PEFT methods, and then (Sparse Projection) com-
pute a suitable projection to ensure that the parameters are
guaranteed to be close to the base model (Figure 3).

Proposed Solution To implement the two insights above,
we choose the L0-norm in (1), i.e., we want the updates to
be localized to a small set of parameters of the base model.
The L0-norm makes the projection step computationally
easy: we first compute dense gradients by doing full fine-

Base Model
θ

Finetune for
M steps

Checkpoint
θ

Checkpoint
θ

SeleKT Operation

  base M FT

...Finetune for 

M steps

...

Figure 3. Proposed adaptive fine-tuning technique SeleKT.

Algorithm 1 SeleKT: Selective Knowledge Transfer
Require: Base LM weights θbase, training data D, epochs

E, periodicity M , sparsity α.
Ensure: Final fine-tuned weights θFT.

1: Initialize θ ← θbase.
2: for epoch e = 1 to E do
3: for each minibatch D[s] do
4: θ ← TrainStep(θ,D[s]) [Dense Gradients]
5: if s mod M = 0 then
6: Compute task vector: τ ← θ − θbase
7: Select top-αN parameters:

γ[i] =

{
1, i ∈ top-k(|τ |, ⌊α ·N⌋)
0, otherwise

8: θ ← θbase + γ ⊙ τ [Sparse Projection]
9: end if

10: end for
11: end for
12: return θ as θFT.

tuning of the model θ, and the compute the top-k non-zero
entries (by magnitude) on the (accumulated) gradient vector
or the “task vector” θ − θbase. This also ensures that the
parameter selection is global and not confined to specific
layers or other heuristics employed in earlier robust fine-
tuning strategies (Lee et al., 2023). The resulting “selective
knowledge transfer” problem is:

argmin
θ
L(θ) s.t. ∥θ − θbase∥0 ≤ c . (2)

Our algorithm, SeleKT, short for Selective Knowledge
Transfer, is presented in Algorithm 1. It is parameterized by
(i) sparsity α, or the fraction of the total number of model
parameters N to be updated, and (ii) periodicity M , or how
often the projection step needs to be performed.

Choice of Training Loss L in (2) We use cross-entropy
loss for next token prediction as the objective function in
our experiments. For examples formatted as (instruction,
response) pairs, we apply the loss on the entire example. For
examples formatted as multi-turn conversations (Section 3),
we apply the loss only to the final response generated by the
model and not on the conversations.

Lemma 1. For any given a base LM θbase, and for the
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Method HumanEvalFix CanItEdit Aider
Update θbase 79.5 48.0 55.6
Fix θbase 81.1 50.5 65.7

Table 2. Performance of SeleKT with and without periodically
updating the base model QwenCoder-2.5-7B as in Remark 2.

setting α = c/N , where N is the model size, the fine-tuned
model θFT satisfies the constraint in the objective (2).

The proof is straight-forward as (i) in Step 6 of Algorithm 1,
we always compute the task vector with respect to the base
model, (ii) the mask vector computed in Step 7 selects c co-
ordinates. Together with the update in Step 8, the constraint
is guaranteed to satisfy.

Remark 1 (Efficiency). While the projection step itself
is straight-forward, computation of dense gradients can be
more expensive. The cost is mitigated to some extent by do-
ing mini-batching and restricting the total number of epochs
to a few. We show in Sections 5.2 and 5.4 that the resulting
improvements in generalization accuracy are significant.

Remark 2 (Alternative Update). An alternative style of
update in Algorithm 1 is to periodically also update the
base model, i.e. θbase ← θ after Step 8. So the future
task vector (in Step 6) will be computed with respect to the
updated base model. This update style also guarantees that
the final θFT will be close to the base model in the L0-norm
sense. To be precise, we can show, an albeit weak bound,
∥θFT − θbase∥0 ≤ c ·E · |{D[s]}|/M , where |{D[s]}| is the
number of mini-batches, M is periodicity, for a sufficiently
small choice of α. We also find that this style (denoted by
“Update θbase”) performs worse empirically, from Table 2
(details of fine-tuning and benchmarks in Section 5.1).

5. Experiments
We present the details of our experimental setup, followed
by a discussion of the main results and an ablation study.

5.1. Experimental Setup

Fine-tuning Dataset In addition to the synthetic data (Ta-
ble 1), we used 127K instances from CommitPackFT to
fine-tune our models. CommitPackFT, restricted to the eight
languages (Table 1), consists of 153K real GitHub commits.
We filtered out the examples from the dataset which do not
have source code (e.g., edits only to config files) to retain
only code-editing instances (Table A.1).

Our Models and Baselines For fine-tuning, we consider
the instruct versions of DeepSeekCoder-6.7B (Guo et al.,
2024a) and Qwen2.5-Coder-7B (Hui et al., 2024). To demon-
strate effectiveness of our approach across model sizes,
we also fine-tuned the 3B, 14B, and 32B variants of the

Benchmark Description Examples
CanItEdit Bug fixing (class-level) 210
HumanEvalFix Bug fixing (function-level) 164
NoFunEval Code improvements (file-level) 397
Aider Bug fixing (conversational, file-level) 133
Aider Polyglot Bug fixing (conversational, file-level) 225
HumanEval+ Code generation (function-level) 164
MBPP+ Code generation (function-level) 378
GSM8K Mathematical problem solving 1.32K
MMLU Multiple-choice STEM knowledge 3.15K

Table 3. Evaluation datasets: We use four diverse code editing
benchmarks with varying input granularity and code-editing crite-
ria. Additionally, we also evaluate on two code generation tasks
and two non-coding tasks.

QwenCoder-2.5 instruct model. We compare our fine-tuned
models against models from DeepSeekCoder, Llama, and
Qwen families in the range 6.7B to 70B parameters. We also
compare with GPT-4o (Hurst et al., 2024) and the Qwen-7B
distilled from the latest, reasoning-enhanced DeepSeek-R1
model (Guo et al., 2025). For Aider Polyglot, we compare
against leading models from their public leaderboard.

Hardware For fine-tuning and inference, we use 8 NVIDIA
H100 GPUs, each with 80GB of VRAM. For data generation
using GPT-4o (version 2024-05-13), we use the OpenAI API.
Fine-tuning takes about six hours per epoch of wall-clock
time. Following Singhal et al. (2024), we perform run-time
evaluations for NoFunEval on an Azure NC16 VM (NC16).

Implementation We fine-tune for 3 epochs, across all our
experiments, using AdamW optimizer (Loshchilov & Hut-
ter, 2017) with a learning rate of 10−5, and a WarmupLR
scheduler (Kim et al., 2021) with a warmup ratio of 0.1.
For efficient memory management, we use sample pack-
ing with a maximum sequence length of 8192 tokens for
DeepSeekCoder-6.7B and 16384 tokens for QwenCoder
variants. We initialize the models from their respective pre-
trained checkpoints (instruct versions), and fine-tune them
on their respective chat templates (HuggingFace, 2025). Ap-
pendix A.1.2 provides additional implementation details.

Hyperparameters (i) We used a temperature of 0.6 for
data generation for both Llama-3.3-70B and GPT-4o. (ii)
We fix the periodicity to 1 epoch in the SeleKT algorithm
unless specified otherwise, i.e., M = total number of mini-
batches. We set sparsity α = 0.05 per layer. We selected
these values based on initial experiments. In Section 5.7, we
show ablations on these choices. Additional hyperparameter
tuning for SFT and LoRA are detailed in Section A.1.4.

Evaluation Datasets and Metrics Table 3 presents the
diverse datasets we use for evaluating our and baseline mod-
els. Specifically, we use CanItEdit (Cassano et al., 2023),
HumanEvalFix (Muennighoff et al., 2023), NoFunEval (Sing-
hal et al., 2024), Aider (Gauthier, 2024a) and Aider Poly-
glot (Gauthier, 2024b) to evaluate on code-editing tasks. We
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Models NoFunEval HumanEvalFix Aider CanItEdit
Latency Res. Util. Runtime Eff. Maintain. Security

GPT-4o 45.6⋆ 39.3⋆ 3.389⋆ 57.6 55.1 90.2⋆ 74.4 59.5
Llama-3-70B-Inst 34.4 28.3 2.816 43.7 58.1 77.4 51.1 56.7
DeepSeekCoder-33B 30.0 24.0 2.589 38.0 53.9 74.4 58.6 49.5
DeepSeekCoder-V2-16B 23.6 21.4 2.274 37.5 54.7 72.0 48.1 42.8
QwenCoder-2.5-32B 42.1 36.9 3.006 64.0⋆ 58.6 90.2⋆ 75.2⋆ 60.9⋆

QwenCoder-2.5-14B 38.1 32.2 2.597 50.7 55.8 87.8 66.9 58.1
Llama-3-8B-Inst 22.5 18.7 1.255 20.6 55.1 56.7 39.8 29.0
DeepSeek-R1-Qwen-7B 14.4 8.8 1.185 9.6 41.2 67.7 13.5 33.3
DeepSeekCoder-6.7B 20.5 21.0 2.275 35.3 61.8 71.3 43.6 38.1
DeepSeekCoder-6.7B-LoRA 21.0 18.0 1.245 28.3 54.0 70.7 41.4 37.2
DeepSeekCoder-6.7B-SFT 22.4 15.0 1.359 23.8 57.2 65.2 30.8 41.4
DeepSeekCoder-6.7B-TIES 22.1 25.3 2.166 37.6 62.9 73.8 48.1 45.7
DeepSeekCoder-6.7B-SeleKT 24.8 22.0 2.150 40.0 63.6 76.0 47.1 49.6
QwenCoder-2.5-7B 26.5 24.7 2.190 39.3 58.7 73.8 59.4 48.1
QwenCoder-2.5-7B-LoRA 26.9 21.7 2.133 38.2 55.0 70.7 40.6 44.3
QwenCoder-2.5-7B-SFT 25.1 22.5 1.387 30.6 54.8 70.1 48.9 36.7
QwenCoder-2.5-7B-TIES 27.8 24.9 2.180 44.4 60.1 79.5 60.2 47.0
QwenCoder-2.5-7B-SeleKT (NextCoder) 26.4 23.2 2.286 46.1 65.3 ⋆ 81.1 65.7 50.5

Table 4. Performance of baseline and fine-tuned code LMs on code-editing benchmarks: The numbers (the higher the better) denote
score for NoFunEval, and % accuracy for all others. For NoFunEval, we considered the scores for the best (Max) performing prompt.
The rows shaded blue are the models obtained using our approach; the rows shaded gray are baseline models of comparable sizes. Best
number in the comparable group is in bold, and overall best is indicated by star ⋆.

choose these datasets to ensure diversity in terms of (a) scale
(class or function or file level), (b) requirements (func-
tional improvements such as bug fixing and non-functional
improvements such as runtime efficiency and security), (c)
instruction details (terse vs. detailed), and (d) scenarios
(standard vs. chat-based). Each dataset comes with its own
metrics to automatically evaluate the model outputs. While
the common metric is execution accuracy on test cases, the
NoFunEval benchmark also utilizes runtime improvements,
static analysis checks, and DiffBLEU scores (Bairi et al.,
2023) for evaluation. We also evaluate the larger 14B and
32B model variants on Aider Polyglot benchmark (Gauthier,
2024a). This benchmark has gained popularity as it contains
particularly challenging problems across multiple program-
ming languages, proving difficult even for very large models.
Notably, even advanced models like GPT-4o (2024-11-20)
solve only 18.2% of the problems in this benchmark.

Additionally, we also evaluate the models on (a) standard
code generation benchmarks, HumanEval+ and MBPP+ (Liu
et al., 2023) (Table 3, rows 6–7), to measure the extent
to which models fine-tuned for code editing still retain
their code generation abilities. These benchmarks require a
model to complete a function given its signature and a short
description. The evaluation metric is execution accuracy
on test cases. Further, we do evaluation on (b) non-coding
benchmarks, GSM8K (Cobbe et al., 2021) and STEM sub-
set of MMLU (Hendrycks et al., 2021) (Table 3, rows 8–
9), to gauge how well they maintain math problem solv-
ing and natural-language understanding capabilities. Ap-
pendix A.1.3 provides details on the benchmarks.

5.2. Performance on Code-Editing Benchmarks

Table 4 presents the main results of our experiments cover-
ing four well-known benchmarks for code editing. We com-
pare (i) our adapted models with existing language models
for code (ii) SeleKT, our adaptation method, with standard
model adaptation methods like supervised fine-tuning (SFT),
LoRA (Hu et al., 2021) and TIES (Yadav et al., 2024). In Ta-
ble 4, our SeleKT based adaptations (DeepSeekCoder-6.7B-
SeleKT and QwenCoder-2.5-7B-SeleKT) are highlighted in
blue . Rows in Table 4 highlighted in gray refer to various

similarly sized models in the parameter range 6.7B to 8B.
Our main observations can be summarized as follows.

i) SeleKT provides consistent gains over the original
instruct models. For example, DeepSeekCoder-6.7B-
SeleKT outperforms DeepSeekCoder-6.7B on all tasks ex-
cept the run-time improvement task in NoFunEval. In-
terestingly, on CanItEdit benchmark, DeepSeekCoder-
6.7B-SeleKT provides 11.5 point gains in accuracy over
DeepSeekCoder-6.7B. Similarly, NextCoder-7B outper-
forms QwenCoder-2.5-7B on all tasks except for Latency
and Resource Utilization in NoFunEval.

ii) SeleKT frequently outperforms the standard model
adaptation methods. Surprisingly, supervised fine-tuning
of models like QwenCoder-2.5-7B frequently resulted in
worse performance across various benchmarks w.r.t. the
original model ( QwenCoder-2.5-7B-SFT vs QwenCoder-
2.5-7B in Table 4), indicating overfitting. To address this
problem, we designed SeleKT (Section 4), for robust model
adaptation. We see that SeleKT outperforms parameter-
efficient fine-tuning methods like LoRA (Hu et al., 2021)
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and model-merging methods like TIES (Yadav et al., 2024),
often used for adapting models while limiting loss in prior
knowledge (NextCoder-7B vs QwenCoder-2.5-7B-LoRA vs
QwenCoder-2.5-7B-TIES in Table 4).

iii) SeleKT provides best code-editing performance
among models of its size. Baseline models of compa-
rable size include a reasoning based DeepSeek-R1-Qwen-
7B (Guo et al., 2025), Llama-3-8B-Inst (Dubey et al., 2024),
DeepSeekCoder-6.7B (Guo et al., 2024a) and its adapta-
tions, QwenCoder-2.5-7B (Hui et al., 2024) and its adap-
tations. We observe that our best model QwenCoder-2.5-
7B-SeleKT, referred as NextCoder-7B, has the best overall
performance across all models in this parameter range.

iv) Performance of adapted SeleKT models depends on
the performance of their unadapted versions. We ob-
serve that QwenCoder-2.5-7B and NextCoder-7B gener-
ally outperform DeepSeekCoder-6.7B and DeepSeekCoder-
6.7B-SeleKT, respectively. This suggests that higher-
performing models lead to more accurate adaptations, even
when model sizes are similar.

v) Comparison with larger models. Notably,
NextCoder-7B matches or even surpasses larger
models on many tasks. For instance, it outperforms
DeepSeekCoder-V2-16B (twice its size) on all tasks. Simi-
larly, NextCoder-7B clearly outperforms Llama-3-70B-Inst
and DeepSeekCoder-33B on HumanEvalFix, Aider, and
the Maintainability and Security splits of NoFunEval.
As expected, much stronger models like GPT-4o and
QwenCoder-2.5-32B substantially outperform smaller
models, including our SeleKT models.

In Appendix C, we present qualitative examples on differ-
ence between the base model and our fine-tuned version.

5.3. Effectiveness of SeleKT on Different Model Sizes

Models HumanEvalFix CanItEdit Aider Aider Polyglot
QwenCoder-2.5-3B 73.2 37.1 36.8 -
QwenCoder-2.5-3B-LoRA 64.6 36.2 35.8 -
QwenCoder-2.5-3B-SFT 76.2 32.4 30.1 -
NextCoder-3B 75.6 42.4 37.6 -
QwenCoder-2.5-14B 87.8 58.1 66.9 9.3
QwenCoder-2.5-14B-LoRA 78.0 50.9 66.2 5.3
QwenCoder-2.5-14B-SFT 79.9 42.4 36.8 3.1
NextCoder-14B 89.8 60.2 72.2 12.2
QwenCoder-2.5-32B 90.2 61.0 72.9 16.4
QwenCoder-2.5-32B-LoRA 82.3 52.4 60.2 6.7
QwenCoder-2.5-32B-SFT 81.7 49.5 66.9 8.4
NextCoder-32B 88.9 62.4 74.7 23.6

Table 5. Comparison of base QwenCoder-2.5 models of different
sizes and their SeleKT-enhanced versions across three code edit-
ing benchmarks.

Table 5 demonstrates the performance of our SeleKT al-
gorithm across various model sizes, including multilin-
gual capabilities measured by the Aider Polyglot bench-

mark. For the smaller 3B model, NextCoder-3B shows
significant improvements over the base model across most
benchmarks, with a substantial gain on the CanItEdit bench-
mark (+5.3%). Notably, while the QwenCoder-2.5-3B-SFT
achieves slightly better performance on HumanEvalFix, our
approach excels on other benchmarks. At the 14B scale,
NextCoder-14B consistently outperforms all baseline vari-
ants, achieving gains across all four benchmarks, with par-
ticularly impressive improvements on the Aider Polyglot
benchmark (+2.9% over base model). For the largest 32B
model, while there is a slight decrease in HumanEvalFix per-
formance compared to the base model (-1.3%), NextCoder-
32B achieves the highest scores across all other benchmarks,
with a remarkable improvement on Aider Polyglot (+7.2%).
These results demonstrate that our training approach pro-
vides consistent gains across model sizes.

5.4. Preserving Pre-learned Knowledge

Models HumanEval+ MBPP+
DeepSeekCoder-6.7B 71.3 65.6
DeepSeekCoder-6.7B-LoRA 64.6 64.3
DeepSeekCoder-6.7B-SFT 70.1 59.5
DeepSeekCoder-6.7B-TIES 70.1 64.0
DeepSeekCoder-6.7B-SeleKT 73.2 65.3
QwenCoder-2.5-7B 85.4 72.5
QwenCoder-2.5-7B-LoRA 81.7 70.9
QwenCoder-2.5-7B-SFT 79.3 67.2
QwenCoder-2.5-7B-TIES 82.3 71.7
NextCoder-7B 84.8 72.0

Table 6. Comparing (% accuracy) of base and fine-tuned models
on code generation benchmarks.

The results in Table 6 show that our SeleKT method largely
preserves the code generation capabilities of the original
models, as evaluated on the HumanEval+ and MBPP+ (Liu
et al., 2023) benchmarks. For both DeepSeekCoder-6.7B
and Qwen2.5-Coder-7B, full fine-tuning (SFT) and LoRA
lead to performance drops of up to 6.7 accuracy points. In
contrast, model merging using TIES helps mitigate these
drops significantly. Notably, our method consistently out-
performs TIES, further reducing performance degradation.

Model MMLU GSM8K

QwenCoder-2.5-7B 53.0 83.40
QwenCoder-2.5-32B 71.9 93.71
NextCoder-7B 54.5 81.65
NextCoder-32B 72.7 92.65

Table 7. Accuracy (%) on MMLU and GSM8K benchmarks.

The results in Table 7 demonstrate that NextCoder-32B
improves on MMLU scores (+0.8 points), but has a small
regression on GSM8K (-1.06 points). Overall, these results
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demonstrate that our training methodology induces special-
ized code editing capabilities without sacrificing math prob-
lem solving and natural-language understanding abilities.

5.5. Effectiveness of Synthetic Data

Table 8 compares the performance of DeepSeekCoder-6.7B
fine-tuned separately on CommitPackFT and on the syn-
thetic data generated by our pipeline. While synthetic data
offers a performance advantage over CommitPackFT, the
latter represents a high-quality sample of real-world devel-
oper commits. To enhance generalizability, we incorporate
both datasets in our fine-tuning process. Performance vari-
ations across different data sizes are further analyzed in
Section A.2.

Data HumanEvalFix CanItEdit Aider
CommitPackFT 59.8 37.6 21.1
Synthetic 68.3 41.4 33.8

Table 8. Comparison of synthetic data and CommitPackFT data
when used for fine-tuning the DeepSeekCoder-6.7B model.

5.6. Performance on Aider and Aider Polyglot
Benchmarks

Evaluating code-editing models requires benchmarks that
assess both general coding capabilities and multi-language
proficiency. The Aider Polyglot benchmark has gained promi-
nence for evaluating multilingual coding capabilities, featur-
ing 225 exercises specifically selected as the most challeng-
ing problems from Exercism across multiple programming
languages.

NextCoder models demonstrate impressive performance
on both Aider and Aider Polyglot benchmarks compared
to state-of-the-art code LMs (Figure 4). NextCoder-32B
scores 74.7% on Aider, outperforming 71.4% of GPT-4o
(2024-11-20) and approaching top models like Gemini-
exp-1206 (80.5%). It also achieves 23.6% on Aider Poly-
glot against GPT-4o’s 18.2%. Similarly, NextCoder-14B
matches Deepseek-V2.5 on Aider (72.2%) despite having
orders of magnitude fewer parameters. These results demon-
strate that our training pipeline helps smaller, more effi-
cient models to compete with much larger, more resource-
intensive alternatives. The Aider Polyglot benchmark results
further validate our approach, with all NextCoder models
achieving relative performance advantages over comparably
sized alternatives. While we demonstrate clear benefits in
Aider Polyglot, the generally lower scores on this benchmark
across all models reflect the benchmark’s inherent difficulty
with multi-language challenges. This suggests scope for
improvement and line of investigation for our future work.

5.7. Ablation of Choices in SeleKT

Effectiveness of Sparsity To investigate the impact of
sparsity parameter α in the SeleKT algorithm, we fine-tune
the Qwen2.5-Coder-7B model with different α values: 0.05,
0.2, and 0.5. We fix the periodicity M to the epoch boundary
which is our default setting, and the number of epochs to
3. As seen in Table 9, with α = 0.05 (most sparse, selecting
only 5% of parameters to be updated), the model achieves
the best overall performance. This is in agreement with our
motivation that the updates remain tightly close to the base
model in the L0 sense to avoid overfitting, while selecting
the parameters to be updated globally and periodically.

α HumanEvalFix CanItEdit Aider
0.05 81.1 50.5 65.7
0.2 76.8 45.7 53.4
0.5 81.7 43.3 54.9

Table 9. Ablation of the sparsity factor in the SeleKT algorithm
used to fine-tune Qwen2.5-Coder-7B.

Effectiveness of Periodicity To examine the impact of the
periodicity parameter M in SeleKT, we fine-tune Qwen2.5-
Coder-7B using different values of M (0.1, 0.5, and 1.0
times the number of mini-batches in an epoch) while keep-
ing the sparsity parameter α = 0.05. Additionally, we com-
pare against a baseline that follows full fine-tuning (without
sparse updates) but applies a single SeleKT operation at
the end, mimicking model merging techniques. As shown
in Table A.6, aligning periodicity with epoch boundaries
yields the best results for CanItEdit and Aider, whereas lower
periodicity leads to worse performance. Performing a sin-
gle SeleKT operation at the end, similar to model merging,
achieves the high accuracy only on HumanEvalFix. These
findings indicate that sparse updates are essential for robust
fine-tuning, but excessive frequency may not be beneficial.

6. Conclusions
The ability of code LMs to accurately edit code at different
scales and based on diverse instructions is central to their
use in software engineering. In this paper, we present the
next step in enhancing the code-editing ability of code LMs
by developing a synthetic data pipeline and a robust adap-
tation algorithm SeleKT. Our pipeline produces diverse
data that improves model performance and the adaptation
algorithm ensures that the general, pre-learned abilities of
the models are not lost during fine-tuning. We comprehen-
sively evaluate our method on multiple code editing and
generation benchmarks to establish these claims. In future,
we want to extend our pipeline to cover more scenarios and
evaluate SeleKT in tasks other than code-editing such as
mathematical reasoning and natural language tasks.
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Impact Statement
This paper presents work whose goal is to advance the field
of language models for code. We do not foresee any poten-
tial societal consequences related to the specific contribu-
tions of our work.
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A. Appendix
A.1. Additional Details

A.1.1. FINE-TUNING DATASET

Language Instances Tokens(M)
Python 42094 9.50

C 6854 1.50
C++ 3816 0.90
Java 13443 3.25
JS 51704 11.60

Rust 2316 0.51
Go 4950 1.08

Kotlin 1819 0.44
Total 126996 28.78

Table A.1. Number of instances from CommitPackFT after filtration.

For CommitPackFT, we retain only those examples that contain both source and target code for the code-editing task (see
Table A.1). The initial dataset consists of 153K instances across eight languages, and after filtration, 127K instances remain.

A.1.2. TRAINING SETUP

SFT We finetuned DeepSeekCoder-6.7B model on 4xH100 GPUs and Qwen2.5-Coder-7B model on 8xH100 GPUs.
For efficient memory management, we employed sample packing to a maximum sequence length of 8192 tokens for
DeepSeekCoder-6.7B and 16384 tokens for Qwen2.5-Coder-7B, with batch sizes of 4 and 1 per GPU, respectively. Gradient
accumulation steps were set to 4, resulting in respective effective batch sizes of 64 and 32. Additionally, DeepSpeed’s ZeRO
Stage 3 (Rajbhandari et al., 2020) offloading to CPU, using bfloat16 for memory optimizations, was applied to both models.

LoRA The Qwen2.5-Coder-7B model was fine-tuned using LoRA (Hu et al., 2021), with a rank of 64 applied to all linear
layers of the base model. The LoRA hyperparameters included an α value of 16 and a dropout rate of 0.05, without training
the bias term. Batch size remained the same as in the SFT setup.

SeleKT The models were fine-tuned on 8xH100 GPUs. Sample packing, batch sizes and gradient accumulation steps were
configured as reported for SFT. The samples were packed into a maximum sequence length of 8192 tokens for Deepseek
and 16384 tokens for Qwen, with gradient accumulation steps of 4 and an effective batch size of 128 for Deepseek and 32
for Qwen. DeepSpeed’s ZeRO Stage 2 offloading to CPU was used for both models with the bfloat16 data type for memory
optimization. Additionally, the SeleKT algorithm was deployed with a sparsity factor of α = 0.05 and a periodicity factor
M set to the epoch boundary.

TIES For the TIES variant of both DeepSeekCoder-6.7b and Qwen2.5-Coder-7b, we performed model merging by
integrating the final third checkpoint into their respective base models. The merging process was conducted with both
density and weight parameters set to 0.5, without applying normalization or int8 quantization.

A.1.3. BENCHMARKS

We compared all the models on the following well-established benchmarks for code-editing (Table 3).

CanItEdit (Cassano et al., 2023) benchmark measures class and function-level code editing abilities of language models in
Python for domains like Data Science, Mathematics, and Language Processing. Each problem instance is accompanied with
descriptive (verbose) and lazy (terse) instructions, and correctness of edits is measured using execution accuracy over test
cases. For this benchmark, we used a temperature of 0.2, top_p 0.95 and reported pass@1,1 scores.

NoFunEval (Singhal et al., 2024) benchmarks language models for their ability to edit file-level code in multiple programming
languages based on non-functional requirements such as improving latency, resource utilization, security, and maintainability
of existing code. Each problem instance is associated with four different types of prompts. Correctness of edits is
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measured using run-time improvements, static-analysis based tools like CodeQL, or DiffBLEU scores, depending upon the
non-functional requirement. We used greedy sampling for this benchmark and reported pass@1,1 scores.

Aider code-editing benchmark (Gauthier, 2024a) offers 133 small coding exercises in Python from Exercism dataset
requiring an LM to edit python file for implementing a function or class as per natural language instructions. For this
benchmark, we used a temperature of 0 and a whole-format setup (prompting the model to rewrite the entire code) and
reported pass@2 scores.

Aider Polyglot code-editing benchmark (Gauthier, 2024b) offers 225 coding exercises from Exercism dataset. It contains
exercises in multiple programming languages: C++, Go, Java, JavaScript, Python and Rust. The setup was the same as for
Aider’s code-editing benchmark. For this benchmark, we used a temperature of 0 and a whole-format setup (prompting the
model to rewrite the entire code) and reported pass@2 scores.

HumanEvalFix benchmark (Muennighoff et al., 2023) evaluates models on the bug-fixing task, where models are given a
code snippet along with an instruction to fix the code. We used a temperature of 0.2, top_p 0.95 and reported pass@1,1
scores for this task.

We also evaluate the models on standard code generation benchmarks.

HumanEval+ benchmark (Liu et al., 2023) tests the models’ performance in generating correct code based on textual
descriptions with high-quality test cases. We used greedy sampling for this benchmark and reported pass@1,1 scores.

MBPP+ benchmark (Liu et al., 2023) focuses on evaluating the models’ ability to solve programming tasks that require
mathematical reasoning and algorithmic thinking. We used greedy sampling for this benchmark and reported pass@1,1
scores.

Additionally, we evaluate the models on non-coding benchmarks.

MMLU benchmark (Hendrycks et al., 2021) (STEM subset) comprises 3.15K problems spanning Physics, Chemistry, Biology,
Computer Science, Mathematics, and Engineering. We employed the few-shot setting (N=4) with the prompt configuration
from Qwen models’ official evaluation script.

GSM8K benchmark (Cobbe et al., 2021) contains grade-school mathematical problems that test reasoning abilities. For
evaluation, we used the few-shot setting (N=4) with the prompt configuration from Qwen models’ official evaluation script.

A.1.4. HYPERPARAMETER TUNING FOR BASELINES

Method CanItEdit HumanEvalFix Aider
SFT 46.2 78.6 52.6
LoRA 43.8 79.9 54.1
SeleKT 50.48 81.10 65.70

Table A.2. Results for the best versions of LoRA and SFT for Qwen2.5-Coder-7B

To ensure fair comparison between our proposed method and baseline approaches, we conducted systematic hyperparameter
tuning experiments for SFT and LoRA methods. Since SeleKT was optimized with a learning rate of 1e-5 and weight decay
of 0.0, we explored comparable configurations for the baseline methods. For both SFT and LoRA, we investigated learning
rates of 2e-6 and 5e-6 combined with weight decay values of 0.10 and 0.05. For LoRA specifically, we further evaluated
rank values ranging from 16 to 64 and alpha parameters of 8 and 16.

While this comprehensive tuning process yielded performance improvements for both baseline methods, Table A.2 demon-
strates that a substantial performance gap persists between these optimized baselines and our NextCoder-7B model. Across
all three evaluation benchmarks (CanIEdit, HumanEvalEdit, and Aider), SeleKT consistently outperforms the tuned baseline
approaches. The most pronounced difference appears in the Aider benchmark, where SeleKT achieves a 11.6% improvement
over the best baseline. These results underscore the effectiveness of our selective parameter updating approach beyond what
can be achieved through standard hyperparameter optimization of conventional fine-tuning methods.

14



NextCoder: Robust Adaptation of Code LMs to Diverse Code Edits

A.1.5. DECONTAMINATING SYNTHETIC TRAINING DATA

To ensure the integrity of our evaluations, we adopted the decontamination procedure used in prior works such as Star-
Coder (Li et al., 2023; Lozhkov et al., 2024). Specifically, we applied near-duplicate detection using MinHash and Locality
Sensitive Hashing (LSH) to identify and remove any potential overlaps between our training dataset and evaluation bench-
marks (CanItEdit, HumanEvalFix, Aider, NoFunEval). Our decontamination analysis confirmed 0% data leakage, verifying
that no benchmark data was present in the training set.

A.2. Robustness of SeleKT across dataset sizes

Dataset size CanItEdit HumanEvalFix Aider
Base model (QwenCoder-2.5-7B) 48.1 73.8 59.4
25% 47.67 80.20 60.90
50% 48.57 81.43 62.70
75% 49.01 81.02 63.80
100% (NextCoder-7B) 50.48 81.10 65.70

Table A.3. Performance of QwenCoder-2.5-7B when finetuned on splits of different sizes of our dataset

To assess scalability w.r.t. to training data size, we finetuned the QwenCoder-2.5-7B model on varying fractions (random
sampling 25%, 50% and 75%) of our dataset which includes both synthetic and CommitPackFT data. The results are
presented in the Table A.3. All models were trained for 3 epochs. The results show a clear trend: while performance on
CanItEdit and Aider sees a drop at 25% w.r.t to the base model, increasing the dataset size consistently improves performance
across all benchmarks (CanItEdit, HumanEvalFix, and Aider).

A.3. Human Evaluation of Synthetic Dataset

We conducted a pilot human-study to assess the quality of the generated training dataset. In this study, we involved three
participants who have 3-4 years of experience in software development with strong expertise in Python. We randomly
selected 100 samples from the Python split of our synthetic dataset and asked participants to rate each sample on the scale of
1-5 (1 being poor quality and 5 being excellent quality) on the following three questions:

i) Instruction Usefulness: How well does the detailed instruction capture a potential code-editing scenario with respect to
the original code?

ii) Instruction Consistency: How consistent are the three styles of instructions (detailed, concise and human-like) with
each other and with the respective styles?

iii) Solution Correctness: How well does the edited code match the edit described in the detailed instruction?

Metric Participant 1 Participant 2 Participant 3 Overall Mean Overall SD
Instruction Usefulness 4.92 ± 0.27 4.93 ± 0.26 4.38 ± 0.60 4.74 0.48
Instruction Consistency 4.29 ± 0.48 4.88 ± 0.32 4.55 ± 0.54 4.57 0.51
Solution Correctness 4.92 ± 0.27 4.96 ± 0.24 4.60 ± 0.51 4.83 0.40
Overall Mean ± SD 4.71 ± 0.46 4.92 ± 0.28 4.51 ± 0.56

Table A.4. Evaluation of Instruction Usefulness, Consistency, and Solution Correctness

In the table A.4, we present the mean (along with standard deviations) ratings by participant and by question. The scores
are consistently close to the highest score of 5 across all participants and questions. This provides a strong indication of
human-machine alignment, with low to moderate variance. This study helps validate that our synthetic data generation
pipeline is able to generate samples that meet human expectations in terms of quality and consistency.

In the table A.5, we have shown the scores distribution. Clearly, all samples received scores 3 (neutral quality) or above on
all the questions. We particularly inspected the samples that received the neutral rating (score 3) since those were perceived
as relatively low-quality samples by one or more participants. We made the following observations:

15



NextCoder: Robust Adaptation of Code LMs to Diverse Code Edits

Score (Higher is better) Instruction Usefulness Instruction Consistency Solution Correctness
5 229 175 250
4 65 122 48
3 6 3 2

Total 300 300 300

Table A.5. Distribution of Evaluation Scores

i) Instruction-Edit Misalignment: In some cases, instructions correctly described the intent but the edits were not entirely
appropriate. For example, in response to an instruction to handle datetime parsing, the edited code parsed dates against raw
strings, which would cause runtime errors.

ii) Incomplete Error Handling: Some examples did introduce error handling, but overlooked edge cases (e.g., what if the
‘tasks.json‘ file exists but is empty?).

iii) Style Inconsistency: A few participants noted that stylistic or structural variations across instruction formats led to
minor misunderstandings of the code-editing intent.

Figure 4. Performance of state-of-the-art code LMs on Aider and Aider Polyglot benchmarks. NextCoder-x is our code-editing model
with Qwen2.5-Coder-x as the base, fine-tuned using the proposed SeleKT algorithm on synthetic and real code editing tasks. Baseline
scores are sourced from the official leaderboard (Gauthier, 2024b).

M HumanEvalFix CanItEdit Aider
0.1 Epoch 80.5 37.1 51.1
0.5 Epoch 83.5 50.4 59.4
1.0 Epoch 81.1 50.5 65.7
At the end 84.2 50.0 53.2

Table A.6. Performance comparison of using SeleKT with different values of M on the Qwen2.5-Coder-7B model.
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A.4. Prompts

You are an expert programmer tasked with creating a programming problem and corresponding code based on a given seed code. Your task is to
understand the concepts and patterns in the seed code and create an inspired but different problem with intentionally imperfect code.

CONTEXT:
- Modular Level: {level} (This defines whether you should create a function-level, class-level, or file-level solution)
- Improvement Areas Needed:
    {area1_name}: {area1_desc}
    {area2_name}: {area2_desc}
    {area3_name}: {area3_desc}
  
  The solution should have deficiencies in these specified areas that can be improved later

Follow these steps:
1. Carefully analyze the given seed code to understand its core concepts and patterns.
2. Create a NEW programming problem that is inspired by these concepts but is not a direct copy.
3. Write a code solution that:
   - Matches the specified modular level
   - Takes inspiration from the seed code but creates a different implementation
   - Contains natural imperfections and inconsistencies
   - Implements core functionality but with flaws
   - May have unimplemented critical sections or clear bugs
   - Mixes different approaches to solving similar problems
   - Looks like code written by someone learning or in a hurry

The code should feel authentic - like something found in a real codebase with organic issues. Do not include comments about potential
improvements or issues. The code should work for basic cases but have natural flaws in its implementation.

IMPORTANT NOTE: Do not add comments pointing out issues or suggesting improvements. The code should stand on its own with its natural
imperfections.

Your output MUST strictly follow this format using the exact delimiters:

###PROBLEM_STATEMENT###
Write a clear, detailed problem statement describing what the code should accomplish.
The problem should be non-trivial and require a substantial solution.
###END_PROBLEM_STATEMENT###

###ORIGINAL_CODE###
Provide the code solution here, including comments.
The code should be functional but contain intentional deficiencies in the specified areas.
###END_ORIGINAL_CODE###

###METADATA###
MODULAR_LEVEL: {level}-level
LANGUAGE: {lang}

IMPROVEMENT_AREA_1: [name of the first improvement area]
LINES: [specific line numbers where improvements can be made, comma-separated or ranges e.g., 1,3,5-8]
DESCRIPTION: [detailed description of what deficiencies exist and how they could be improved]
TYPE: [specific type of issue within this improvement area]

IMPROVEMENT_AREA_2: [name of the second improvement area]
LINES: [affected line numbers]
DESCRIPTION: [detailed description of deficiencies]
TYPE: [specific type of issue]

IMPROVEMENT_AREA_3: [name of the third improvement area]
LINES: [affected line numbers]
DESCRIPTION: [detailed description of deficiencies]
TYPE: [specific type of issue]
###END_METADATA###

IMPORTANT:
- The code should be functional but intentionally suboptimal in the specified improvement areas
- Include comments in the code to help understand the logic
- Do not create trivial problems; ensure the solution has sufficient complexity
- Ensure deficiencies are realistic and improvable
- Follow the exact delimiter format - do not modify the delimiter strings
- Do not include any text outside the delimited sections

Here's the seed code to inspire your problem and solution:

```{lang}
{seed_code}
```

Figure 5. Prompt used for generating a problem and source code conditioned on the given seed code.
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You are an expert programmer tasked with generating three different corrected versions of a code that has specific issues identified in the
metadata. Based on the original improvement areas requested and the issues found, you will generate:
- An improved solution that implement the improvements

Solution should specifically address the improvements requested in the original improvement areas while fixing the issues identified in the
metadata.

CONTEXT:
## Problem Statement:
{problem}

## Original Code:
```{lang}
{code}
```

## Requested Improvement Areas:
{area1_name}: {area1_desc}
{area2_name}: {area2_desc}
{area3_name}: {area3_desc}

## Identified Issues (Metadata):
{metadata}

Your task is to generate:
An improved solution that:
   - Fix all identified issues from metadata
   - Follow best coding practices
   - Implement proper error handling
   - Use efficient and maintainable approaches
   - Include clear comments explaining the improvements
   - Include all necessary imports
   - May use good implementation strategies

Your output MUST strictly follow this format using the exact delimiters:

###IMPROVED_SOLUTION_1###
# All imports here
[First version of the improved code with detailed comments explaining improvements]
###END_IMPROVED_SOLUTION_1###

###DIFFERENCES_EXPLAINED###
IMPROVED:
[Brief description of the approach and key improvements]

IMPORTANT:
- Solution must be fully functional
- Include descriptive comments explaining the implementation and improvements
- Solution should include ALL required imports
- Solution should be complete and standalone
- Maintain the same interface/API as the original code

Figure 6. Prompt used for generating the target code (improved code).
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You are an expert prompt engineer tasked with generating three different types of instructions that guide an LLM to transform the original code
into the improved version. Use the provided context to generate detailed, human-like, and conversational instructions.

CONTEXT:
## Problem Statement:
{problem}

## Original Code:
```{lang}
{code}
```

## Target Improved Version:
```{lang}
{edited_code}
```

## Key Improvements Made:
{explanations}
Generate four different instruction formats and Your output MUST strictly follow this format using the exact delimiters:

###DETAILED_INSTRUCTION###
[Generate a detailed instruction (not exceeding 8-10 lines) that:
- Clearly outlines each improvement needed
- Specifies exactly what changes are required
- Mentions specific functions/areas to modify
- Maintains clarity while being concise
Should provide enough detail for LLM to understand the required changes.]
###END_DETAILED_INSTRUCTION###

###CONCISE_INSTRUCTION###
[Generate a concise instruction (3-4 lines) that:
- Contains essential improvement points
- Covers all necessary changes
- Is clear but not overly detailed
Should provide just enough information to guide the changes.]
###END_CONCISE_INSTRUCTION###

###HUMAN_INSTRUCTION###
[Generate a very brief, human-like instruction that:
- Uses natural language
- Is concise (1-2 lines max)
- Captures core improvements needed
- Sounds like a quick dev chat message]
###END_HUMAN_INSTRUCTION###

###CONVERSATIONAL_INSTRUCTION###
[Generate a natural conversation between user and assistant that follows this flow:

USER: [General opening that naturally leads into code discussion]
ASSISTANT: [Engaging response following the user's direction]

USER: [Introduces the problem and initial code structure, showing interest in getting it right]
ASSISTANT: [Detailed acknowledgment and analysis of the problem/structure]

USER: Here's my current implementation: <code_placeholder> [Don't add the code just put the same place holder there]
ASSISTANT: [Provides clear explanation of code's current structure and functionality]

USER: [Final message containing:
- Moderate level of detail about required changes (between human and detailed)
- Clear instructions about what needs to be improved
- Reference to specific improvements needed
- Natural tone while being specific enough]]
ASSISTANT: [Brief acknowledgment of the requirements and indication that implementation will follow, followed by a
<code_output_placeholder>]
###END_CONVERSATIONAL_INSTRUCTION###

IMPORTANT:
- Each instruction type should guide towards the same end result
- Instructions should be clear and unambiguous
- Maintain natural language appropriate to each format
- Do not include actual code changes in the instructions
- Use the target improved version and key improvements as guide, but don't reference them directly in instructions
- Keep focus on what changes are needed, not how they were implemented

Figure 7. Prompt used for generating different types of instructions.
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You are a quality assurance expert tasked with validating a training sample for code editing. Analyze the following components and provide a
comprehensive assessment:

COMPONENTS TO ANALYZE:
## Seed Code:
```{lang}
{seed_code}
```
## Generated Data:
### Problem Statement: {problem}

### Original Code:
```{lang} 
{original_code}
```
### Improved Edit:
```{lang}
{improved_edit}
```
### Instructions:
- Detailed: {detailed_instruction}
- Human: {human_instruction}
- Conversational: 
{conversational_instruction}

Perform the following quality checks and provide scores (0-10) with explanations and Your output MUST strictly follow this format using the
exact delimiters::
###COHERENCE_CHECK###
1. Original-Edit Alignment:
   - Do edits properly address the code's issues?
   - Are improvements meaningful and substantial?
   - Do changes align with requested improvement areas?
Score: [0-10]
Explanation: [Brief analysis]

2. Edit-Instructions Alignment:
   - Do instructions clearly guide towards the implemented changes?
   - Are all significant changes covered in instructions?
   - Is the instruction complexity appropriate for each format?
Score: [0-10]
Explanation: [Brief analysis]
###END_COHERENCE_CHECK###

###QUALITY_CHECK###
1. Code Quality:
   - Original code deficiencies: Are they realistic and fixable?
   - Edit improvements: Are they meaningful and well-implemented?
   - Code structure: Is it clear and maintainable?
Score: [0-10]
Explanation: [Brief analysis]

2. Instruction Quality:
   - Detailed: Clear, specific, and comprehensive?
   - Human: Natural, concise, and effective?
   - Conversational: Logical flow and clear final request?
Score: [0-10]
Explanation: [Brief analysis]

3. Training Value:
   - Will this help SLM learn code editing?
   - Are the examples diverse and meaningful?
   - Is complexity appropriate for training?
Score: [0-10]
Explanation: [Brief analysis]
###END_QUALITY_CHECK###

###FINAL_VERDICT###
Strengths:
- [List key strengths]
Weaknesses:
- [List areas needing improvement]
Recommendations:
- [Specific suggestions if any improvements needed]
###END_FINAL_VERDICT###

Figure 8. Prompt used for assessing the quality of the data generated.
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B. Instance Generated from Our Data Pipeline
We present a synthetic data instance generated using our pipeline in Figure 9.

Model

Model

Model

Add checks for transaction
structure and positive amounts.
Initialize balances only if
missing and skip invalid
transactions ...

<filename>eth2/beacon/chains/base.py

Validate transactions for
correct structure and positive
amount. Initialize user balances
if missing ...

from abc import abstractmethod,
import logging
    ...
class BeaconChain(BaseBeaconChain):
    ...
    def __init__(self, base_db: BaseAtomicDB) :
        ...
    @classmethod
    def get_chaindb_class(cls):
        ...
    @classmethod
    def from_genesis(cls,
                     base_db: BaseAtomicDB,
                     genesis_state: BeaconState,
                     genesis_block: BaseBeaconBlock):
        ...
    
    def get_block_class(self, block_root:
Hash32):
        ...
    def get_canonical_head(self):
        ... USER: Hey, I've been working

on a function to process user
transactions and update
balances. Could use some help
refining it.
ASSISTANT: Sure, I’d be happy
to help! What specifically are
you looking to improve?
USER: I have a function that ...

Create a function
`process_transactions` that takes a
list of transactions and processes
them to update user balances. Each
transaction is a dictionary
containing a `from_user`, `to_user`,
and `amount`...

user_balances = {}
def
process_transactions(transactions):
    failed_transactions = []
    for transaction in transactions:
        from_user =
transaction['from_user']
        ...
        if from_user not in
user_balances:
            user_balances[from_user] = 0
        if to_user not in user_balances:
            user_balances[to_user] = 0
        ...
    return failed_transactions

user_balances = {}
def process_transactions(transactions):
    failed_transactions = []
    for transaction in transactions:
        if not isinstance(transaction, dict) or
'from_user' not in transaction or 'to_user' not
in transaction or 'amount' not in transaction:
            
failed_transactions.append(transaction)
            continue
        from_user = transaction['from_user']
        ...
        if not isinstance(amount, (int, float)) or
amount <= 0:
            
failed_transactions.append(transaction)
            continue
        if from_user not in user_balances:
            user_balances[from_user] = 0
        ...
    return failed_transactions

'Bug Fixes': 'Code should have
multiple layers of significant issues
including:
        - Completely unimplemented
critical functions
'Performance': 'Code has inefficient
algorithms, unnecessary loops,
redundant computations, or poor
data structure choices that impact
execution speed' ...

This solution initializes user balances within
the transaction processing loop only when
necessary, and it validates each transaction
for correct structure and positive amount.
This avoids redundant checks and ensures
the integrity of the data.

Target Code

Explanation

Concise

Human

Conversational

Model

APPROVED

SeedCode

Filename

Problem

Source Code

Metadata

To improve the
`process_transactions`
function, follow these steps:
1. Add validation to ensure each
transaction is a dictionary with
'from_user', 'to_user', and
'amount' keys.
2. Check that the 'amount' is a
positive number ...

Detailed

Figure 9. Figure showing an example passed through the data generation pipeline for GPT-4o.
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C. Examples Showing the Quality of Our Model Outputs

Qwen Output:

def annotate(minefield):
    if not minefield or not all(len(row) == len(minefield[0]) for row in minefield):
        raise ValueError("The board is invalid with current input.")

    def count_mines(x, y):
        ...

    result = []
    for i, row in enumerate(minefield):
        new_row = []
        for j, cell in enumerate(row):
            if cell == '*':
                new_row.append('*')
            else:
                mine_count = count_mines(i, j)
                new_row.append(str(mine_count) if mine_count > 0 else ' ')
        result.append(''.join(new_row))

    return result

NextCoder Output:
def annotate(minefield):
    if not minefield:
        return []

    # Validate the input board
    row_length = len(minefield[0])
    for row in minefield:
        if len(row) != row_length:
            raise ValueError("The board is invalid with current input.")
        for char in row:
            if char not in ' *':
                raise ValueError("The board is invalid with current input.")

    # Function to count mines around a given cell
    def count_mines(x, y):
        ...

    # Create a new board to store the annotated values
    annotated_board = []
    for i in range(len(minefield)):
        new_row = []
        for j in range(len(minefield[0])):
            if minefield[i][j] == '*':
                new_row.append('*')
            else:
                mine_count = count_mines(i, j)
                new_row.append(str(mine_count) if mine_count > 0 else ' ')
        annotated_board.append(''.join(new_row))

    return annotated_board

Instruction: Your task is to add the mine counts to empty squares in a completed Minesweeper board.
The board itself is a rectangle composed of squares that are either empty (`' '`) or a mine (`'*'`).

For each empty square, count the number of mines adjacent to it (horizontally, vertically, diagonally).
If the empty square has no adjacent mines, leave it empty.
Otherwise replace it with the adjacent mines count.

For example, you may receive a 5 x 4 board like this (empty spaces are represented here with the '·' character for display on screen):

```text
·*·*·
··*··
··*··
·····
```

Which your code should transform into this:

```text
1*3*1
13*31
·2*2·
·111·
```

Input Code:
def annotate(minefield):
    if not minefield or not all(len(row) == len(minefield[0]) for row in minefield):
        raise ValueError("The board is invalid with current input.")

    def count_mines(x, y):
        count = 0
        for i in range(max(0, x-1), min(x+2, len(minefield))):
            for j in range(max(0, y-1), min(y+2, len(minefield[0]))):
                if minefield[i][j] == '*':
                    count += 1
        return count

    result = []
    for i, row in enumerate(minefield):
        new_row = []
        for j, cell in enumerate(row):
            if cell not in ['*', '.']:
                raise ValueError("The board contains invalid characters.")
            if cell == '*':
                new_row.append('*')
            else:
                mine_count = count_mines(i, j)
                new_row.append(str(mine_count) if mine_count > 0 else ' ')
        result.append(''.join(new_row))

    return result

Figure 11. Example code-editing task (top) from Aider benchmark. NextCoder (RHS) solves the task correctly in the first attempt: The
input can only contain spaces or ‘*’s. However, in the example in the prompt, ’.’ is used to represent space and the same is explicitly
stated. Despite this, Qwen2.5-Coder-7B accepts inputs which contain characters other than ’*’ and space. This problem is fixed by
NextCoder by rejecting any input which violates this constraint. The relevant code in NextCoder’s output is highlighted in bold.
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Instruction: In word search puzzles you get a square of letters and have to find specific words in them.
For example:
```text
jefblpepre
camdcimgtc
oivokprjsm
pbwasqroua
rixilelhrs
wolcqlirpc
screeaumgr
alxhpburyi
jalaycalmp
clojurermt
```
There are several programming languages hidden in the above square.
Words can be hidden in all kinds of directions: left-to-right, right-to-left, vertical and diagonal.
Given a puzzle and a list of words return the location of the first and last letter of each word.

Input Code:
class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __eq__(self, other):
        return self.x == other.x and self.y == other.y

class WordSearch:
    def __init__(self, puzzle):
        self.puzzle = puzzle
        self.rows = len(puzzle)
        self.cols = len(puzzle[0])

    def search(self, word):
        directions = [
            (0, 1),  # left-to-right
            (0, -1), # right-to-left
            (1, 0),  # top-to-bottom
            (-1, 0), # bottom-to-top
            (1, 1),  # top-left to bottom-right
            (-1, -1),# bottom-right to top-left
            (1, -1), # top-right to bottom-left
            (-1, 1)  # bottom-left to top-right
        ]

        for row in range(self.rows):
            for col in range(self.cols):
                for dx, dy in directions:
                    if self._search_from(row, col, word, dx, dy):
                        return (Point(col, row), Point(col + (len(word) - 1) * dx, row + (len(word) - 1) * dy))
        return None

    def _search_from(self, row, col, word, dx, dy):
        for i in range(len(word)):
            if row < 0 or row >= self.rows or col < 0 or col >= self.cols:
                return False
            if self.puzzle[row][col] != word[i]:
                return False
            row += dx
            col += dy
        return True

Qwen Output:
class Point:
    ...
class WordSearch:
    def __init__(self, puzzle):
        ...

    def search(self, word):
        ...

        for row in range(self.rows):
            for col in range(self.cols):
                for dx, dy in directions:
                    if self._search_from(row, col, word, dx, dy):
                        return (Point(col, row), Point(col + (len(word) - 1) * dx, row + (len(word) - 1) * dy))
        return None

    def _search_from(self, row, col, word, dx, dy):
        for i in range(len(word)):
            if row < 0 or row >= self.rows or col < 0 or col >= self.cols:
                return False
            if self.puzzle[row][col] != word[i]:
                return False
            row += dx
            col += dy
        return True

NextCoder Output:
class Point:
    ...

class WordSearch:
    def __init__(self, puzzle):
        ...

    def search(self, word):
        ...
        for direction in directions:
            for i in range(self.rows):
                for j in range(self.cols):
                    if self._search_from_point(word, i, j, direction):
                        return (Point(j, i), Point(j + (len(word) - 1) * direction[0], i + (len(word) - 1) * direction[1]))
        return None

    def _search_from_point(self, word, start_row, start_col, direction):
        for k in range(len(word)):
            row = start_row + k * direction[1]
            col = start_col + k * direction[0]
            if row < 0 or row >= self.rows or col < 0 or col >= self.cols or self.puzzle[row][col] != word[k]:
                return False
        return True

Figure 10. Example code-editing task (top) from Aider benchmark. NextCoder (RHS) solves the task correctly in the first attempt, while
Qwen2.5-Coder-7B (LHS) gets it wrong in both the attempts: The directions are represented by pairs of the form (a,b) where a is
the y-coordinate and b is the x-coordinate. However, Qwen2.5-Coder-7B incorrectly assumes that a and b are respectively x and y
coordinates and generates edited code accordingly. NextCoder interprets the instruction accurately and generates correct code. The
relevant code in NextCoder’s output is highlighted in bold.
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