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ABSTRACT

Modern machine learning models for scene understanding, such as depth estima-
tion and object tracking, rely on large, high-quality datasets that mimic real-world
deployment scenarios. To address data scarcity, we propose an end-to-end system
for synthetic data generation for scalable, high-quality, and customizable 3D in-
door scenes. By integrating and adapting text-to-image and multi-view diffusion
models with Neural Radiance Field-based meshing, this system generates high-
fidelity 3D object assets from text prompts and incorporates them into pre-defined
floor plans using a rendering tool. By introducing novel loss functions and train-
ing strategies into existing methods, the system supports on-demand scene gener-
ation, aiming to alleviate the scarcity of current available data, generally manually
crafted by artists. This system advances the role of synthetic data in address-
ing machine learning training limitations, enabling more robust and generalizable
models for real-world applications.

1 INTRODUCTION AND BACKGROUND

Synthetic data has become a cornerstone in the training and development of machine learning (ML)
models, particularly for perception tasks in computer vision. Applications spanning autonomous
navigation, indoor scene understanding, and robotic interaction rely on vast amounts of high-quality,
annotated training data that reflects real-world complexity (Nikolenko| 2021). However, acquiring
such data at scale poses significant challenges, including privacy and fairness concerns, high annota-
tion costs, and domain-specific constraints. Synthetic data generation offers an efficient and scalable
solution, enabling the creation of diverse, controlled datasets that enhance model generalization to
real-world environments. In the context of scene understanding, synthetic 3D indoor environments
play a crucial role. Realistic room layouts populated with diverse and customizable assets provide
valuable training grounds for perception tasks such as depth estimation, object segmentation, and
scene reconstruction (Roberts et al., [2021; Zheng et al., 2020). By simulating variations in object
type, color, placement, and material properties, synthetic data can bridge domain gaps that arise from
the limited variability of real-world datasets. This ability to generalize across domains is pivotal for
deploying perception models in unpredictable real-world scenarios.

Existing approaches to synthetic data generation and representation for 3D scenes span a wide range
of methodologies, including procedural content creation (Raistrick et al.l [2024), diffusion-based
multi-view approaches (Gao et al.|[2024), Neural Radiance Fields (NeRFs) (Mildenhall et al.,|2021),
3D Gaussian Splatting (Kerbl et al.,2023)), and 3D supervised latent generative models (Hong et al.).
Meshes in 3D modeling are essential for bridging the mentioned abstract 3D representations with
practical applications. By defining geometry through vertices, edges, and faces, they enable real-
istic rendering, efficient texture mapping, and seamless integration into graphics pipelines. Their
lightweight structure ensures real-time performance, making them crucial for AR/VR, gaming, vir-
tual prototyping, and scientific visualization. As demand for photorealistic 3D content grows, high-
quality meshes remain vital for immersive and interactive experiences. This deepens the need for
synthetic data in the form of 3D meshes. However, generating complete meshes of 3D scenes re-
mains a challenge (Hollein et al., 2023). We include an extensive description of prior related work
in Appendix |A] In this work, by focusing on single asset generations in combination with existing
synthetic scenes, we introduce a system to leverage prior synthetic data and scale up 3D indoor
scene generations in a mesh format from a text prompt.
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We introduce a hybrid system for scalable and customizable 3D room generation, combining pre-
existing floor plans with prompt-engineered 3D asset creation. This approach enhances diversity,
fidelity, and scalability while reducing reliance on manually designed datasets, supporting robust
downstream ML models for perception tasks. By addressing common challenges, such as back-
ground speckles, global 3D consistency, and geometry fidelity, we incorporate refined prompt en-
gineering, instance segmentation, object-based fine-tuning, and sparsity and normal regularization.
Our key contributions are: (i) We propose an automated prompt generation system that scales syn-
thetic asset creation while ensuring high diversity and consistency for indoor scenes. (ii) We extend
and integrate state-of-the-art techniques in multi-view generation, NeRF representation, and mesh-
ing. Our improvements include fine-tuning diffusion models, applying sparsity loss functions, en-
hancing background segmentation, and leveraging advanced monocular depth estimation for precise
surface normal supervision. (iif) We introduce an end-to-end system that integrates generated assets
into artist-defined room layouts. We evaluate the synthesized environments showing their potential
to bridge the gap between synthetic and real-world data, setting a new benchmark for synthetic scene
generation in ML perception tasks. Figure [T]illustrates an overview of the proposed system.
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Figure 1: Overview of the proposed system from scalable prompt generation (1)-Section[2.1] through
text-to-image diffusion (2)-Section 2.2} multi-view latent diffusion (3)-Section [2.3] and NeRF (4)-
Section[2.4] onto the resulting meshes (5)-Section [2.3] integrated in existing rooms (6)-Section 2.6]

3D Point Cloud: Densities

2 METHODS

The system integrates existing and adapted methods into a pipeline with subcomponents, as seen
in Figure [} This modular architecture grants flexibility to adapt to future advancements in ML
research. The following section provides a detailed description of the components.

2.1 PROMPT ENGINEERING AND SCALABILITY

Prompt engineering plays a critical role in generating high-quality synthetic 3D scenes. Automated
prompt generation expands object diversity in the synthetic data by incorporating domain-specific
details. This involves designing precise textual inputs to ensure outputs meet desired specifications,
including object type, material, color, and style. The nuances of prompt engineering significantly
influence the quality, coherence, and scalability of generated assets.

Contextual Precision We conducted a study including specific contextual phrases to refine the text
prompts. We found that adding in “in an empty white background” and “in the middle” improved
spatial clarity, preventing issues like object cropping or awkward placements. These ensured that
generated assets align with the pipeline’s requirements, as shown in Figure [5]in Appendix

Scalable Prompt Generations We introduce a procedure for automating the generation of diverse,
high-quality text prompts for synthetic room assets: (i) Gemini is used to generate category lists for
objects, materials, colors, and high-level themes, each with 10 to 20 realistic entries, as described in
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Steps 1 and 2 of Algorithmm For instance, objects might include chairs, tables, and vases, while
materials range from wood and metal to fabric and glass. Descriptive colors such as blue or metallic
gray further diversify the dataset. (i1) Gemini creates natural language templates (Step 3) to integrate
these categories in various sentence structures, avoiding redundancy. Examples include: “Design a
[Color] [Material] [Object] inspired by [High-level Theme] aesthetics,” or “Create a [Object] that
is both functional and aesthetically pleasing, using [Color] [Material] within a [High-level Theme]
setting.” (iii) Next, we combine the generated categories and templates to create diverse prompts by
permuting the variables (Step 4). (iv) Gemini evaluates each prompt based on coherence, specificity,
and creativity (Step 5), to ensure the prompts are realistic, plausible, and visually inspiring. (v)
Finally, we rank the prompts based on the final score (Step 6) and save them as a csv file to feed them
to the next step. This corresponds to Part 1 as shown in Figure[I] A comprehensive explanation of the
procedure is included via pseudocode in Algorithm[I] and Table[I] shows examples of the different
ranges of scores of the resulting prompts with each resulting generated mesh, both in Appendix [B]

2.2 TEXT-TO-IMAGE GENERATION

This section builds upon previous prompt engineering by utilizing state-of-the-art text-to-image dif-
fusion models, to generate high-quality 2D images for 3D reconstruction pipelines. Text prompts
allow for scalable, adaptable, and diverse synthetic data generation, reducing reliance on real-world
captures while offering fine-grained control over content (see part 2 in Figure [I). Furthermore,
we integrate a segmentation step using DeepLab (Chen et al., [2017) to isolate objects and ensure
smooth, homogeneous backgrounds, as well as adding a background with a padding of 20% around
the object, key for isolated object generation. This design choice in particular addresses common
issues in text-to-image models when the goal is to generate single objects. Generally, extraneous
elements or cluttered backgrounds are present and can interfere. Segmentation improves the quality
and consistency of inputs for 3D isolated object reconstruction. This refinement step is visualized
as data processing between Part 2 and Part 3 in Figure|T]

2.3 MULTI-VIEW DIFFUSION

We build upon state-of-the-art multi-view latent diffusion model (LDM) approaches to generate
globally consistent views. In particular, we focus on CAT3D (Gao et al.| [2024)), which has demon-
strated superior performance in the literature. Prior models offering multi-view outputs like MV-
Dream (Shi et al.| 2023b), ImageDream (Wang & Shil [2023), SyncDreamer (Liu et al., 2023a)),
SPAD (Cusini et al.,[2022), SV3D (Voleti et al.| 2024), and Zero123++ (Shi et al., [2023a)) could be
used instead to generate the image-to-3D assets. The CAT3D framework, in particular, extends tra-
ditional diffusion models by introducing a multi-view diffusion process that generates consistent 2D
projections from single-image inputs and camera poses. Additionally, an autoregressive sampling of
the views ensures geometric alignment across views, which is critical for accurate 3D reconstruction.

CAT3D addresses the challenge of generating coherent views from sparse inputs through the use
of a multi-view latent diffusion model. The approach is structured around three core processes.
First, latent representation encoding is performed by employing a variational auto-encoder (VAE) to
transform input images into a latent space, capturing both spatial and semantic features necessary for
reasoning about unseen views. Second, pose-conditioned diffusion ensures the model is conditioned
on camera poses corresponding to observed and target viewpoints, achieved by concatenating a
relative raymap representation of the camera’s position and orientation with the latent embeddings.
Third, progressive view synthesis is executed, where the model generates multiple target views by
iteratively refining noisy latents into high-fidelity projections, thereby ensuring spatial consistency
across synthesized outputs, as illustrated in Part 3 in Figure[I]

Consistency across synthesized views is paramount for downstream 3D reconstruction tasks. To this
end, CAT3D incorporates innovations such as 3D self-attention layers and binary masks to indicate
observed inputs during training, addressing the inherent challenges of sparse input scenarios. Strate-
gic anchor views are selected using an autoregressive sampling strategy, enabling efficient reasoning
from limited data. To scale to dense viewpoints, the model clusters proximal camera positions and
leverages anchor views to maintain coherence across hundreds of target viewpoints. Robustness
to sparse inputs is further enhanced by advanced loss functions, including LPIPS perceptual loss,
which preserves semantic integrity even in conditions of high uncertainty. CAT3D generates all
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kinds of 3D scenarios and multi-object scenes. However, full scenes pose a big challenge with the
objective of generating 3D object mesh outputs. Therefore, in the system, we fine-tune CAT3D with
internal high-quality single object datasets, specified in Section [3] to avoid background speckles or
inconsistencies when shifting the focus from scene-based data.

2.4 NERF TO CREATE 3D REPRESENTATIONS

NeRFs transform multi-view 2D projections into detailed 3D scene representations. They are neural
network-based models that generate high-quality 3D scenes from 2D images by learning to represent
volumetric density and view-dependent color at any 3D point, as illustrated in Part 4 in Figure[I] Our
approach inherits ZipNeRF (Barron et al.| [2023)) with the modifications done for CAT3D and builds
on it with novel enhancements, which allow for more robust and photorealistic 3D reconstruction
focused on single objects, even from sparse data. These are: Density Regularization for better
geometric fidelity to a single object, by including a logarithmic sparsity loss on the output densities
(0), Ly = mean(log(o)); Input Segmentation of all the input views using DeepLab for background
consistency; Normal Smoothness and Orientation Losses, as introduced originally in [Verbin et al.
(2022); and Estimated Normal Supervision, by leveraging MariGold (MG) (Gupta et al.l [2022)),
a state-of-the-art monocular depth estimation model. This last step uses the estimated depth to
compute its gradients and use them as view-corresponding normals to regularize the geometry of the
resulting asset. In particular, we compute the cosine loss on the estimated normal from the NeRF
density, i, and the normal predicted from the MG approximation, a™MC. Note that by leveraging
existing models we alleviate the need to train with geometry-informed 3D data. Figure[2]shows this
step in a more comprehensive manner with the visualization of the predicted normals.
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Figure 2: Normal estimation and its use in the NeRF, expanding on Steps 3 and 4 from Figure[]

) : s 2
P ‘Dtpth map

CAT3D

2.5 NERFMESHING: DISTILLING NERF INTO MESHES

NeRFMeshing (Rakotosaona et al., [2024) is a method designed to extract geometrically accurate
3D meshes from NeRFs, enabling their integration into standard computer graphics and simulation
pipelines. By introducing a novel Signed Surface Approximation Network (SSAN), it distills the
volumetric representation of NeRFs into a compact mesh format with precise geometry and view-
dependent color properties. This process facilitates real-time rendering and supports physics-based
simulations, overcoming traditional NeRF limitations in geometry accuracy and compatibility with
graphics workflows. We use NeRFMeshing with additional (i) SSIM and (ii) LPIPS supervision for
improved rendering after the mesh extraction.

2.6 APPLICATION: PLACING GENERATED OBJECTS IN ROOMS

We demonstrate the scalability of our system by incorporating generated 3D assets into complex
room layouts using Blender, open source rendering software. The process includes: Asset Scaling
and Placement by importing assets for intuitive scaling and alignment and Scene Composition, by
positioning objects to achieve realistic spatial arrangements. This supports creating realistic, editable
scenes for applications like simulation, architectural visualization, and interactive media.

3 EXPERIMENTAL SETUP

Dataset: The data used to finetune CAT3D consists of internal high-quality datasets containing
more than 300K isolated objects. These datasets highlight synthetic data’s capacity to generalize
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across domains. Furthermore, we apply the system to place objects in more than 64 rooms (crafted
by 3D artists from Evermotion) in Blender.

Resources: The system uses 16 A100 GPUs to sample the multi-view diffusion model and to train
and evaluate the NeRF and NerfMeshing architectures in up to 15 minutes. Note that prior work on
mesh asset generation, i.e. TextMesh (Tsalicoglou et all,[2024)), takes 2 hours to generate a single
asset due to SDS optimization. Our system allows for flexibility of generations based on a prompt,
as most steps have not been trained on specific 3D datasets, unlike prior models trained end-to-end
with 3D-geometry-informed supervision that can struggle to generate out-of-domain when the input
prompts are diverse. Our model is implemented in Jax v0.5 and room generation in Blender 4.3.

4 RESULTS

Our results highlight the effectiveness of our approach in 3D asset generation and scene composition,
demonstrating geometric consistency, texture quality, and overall realism. Comprehensive visual
evaluations establish our method as a new benchmark in the field.

4.1 EFFECT OF OBJECT SEGMENTATION, FINE-TUNING AND SPARSITY

To evaluate the effect of object segmentation, fine-tuning of CAT3D, and density regularization, we
compare results generated by our system without these components against those generated with
their inclusion. Without them, the generated assets lack precise boundaries and exhibit blending
artifacts with the background, we see a significantly enhancement of the fidelity of textures and geo-
metric details. Visual comparisons that illustrate the marked improvement in multi-view consistency
and realism are displayed in Figure 3.

4.2 NERF AND NERFMESHING GEOMETRY ADAPTATIONS

To evaluate the impact of our introduced modifications to NeRF, particularly the normal smoothness,
orientation loss and normal supervision, we visualize assets generated from the same prompt with
and without this components, as shown in Figure [3p. The introduced changes reduce artifacts and
improve the quality of reconstructions, in particular visible with improved smoothness at the edges
of the 3D meshes and in complex or sharp regions.

Effect of object-based adaptations b) Effect of normal regularization
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Figure 3: Qualitative evaluation of the contributions of our system to the different subcomponents.
(a) Impact of object-based adaptations including segmentation, fine-tuning of the LDM, and density
regularization. (b) Effect of NeRF and NeRFMeshing adaptations focusing on normal regularization.
In particular, adding normal smoothness, orientation loss, and normal supervision.
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4.3 QUALITATIVE RESULTS

To showcase the results of the complete end-to-end system, Figure [] illustrates the results of Step
6 in Figure[T] the 3D Room Assembly. It displays an example starting from an original room (top
left), where sequentially, annotated objects are replaced by semantic equivalents generated with
the proposed system, to produce permutations of the same room. Further results for individually
generated objects and failure modes have been included in Figure[6]in Appendix [C|

Figure 4: Synthetic 3D room variations generated by the system. From the original room (top left),
annotated objects are replaced by generated semantic equivalents to produce room permutations.

5 DIScUSSION AND CONCLUSION

We introduce an automated system that successfully generates high-fidelity 3D assets from text de-
scriptions, leveraging state-of-the-art diffusion models, NeRF-based meshing, and advanced prompt
engineering. The approach shows object consistency and realism while enabling scalable synthetic
data generation for downstream ML and perception applications. Key contributions include fine-
tuned multi-view diffusion, object segmentation, and normal estimation supervision, all of which
significantly improve geometric accuracy and visual fidelity, as shown through visualizations. We
show how these assets can be placed and ensure seamless integration into existing environments. Its
relevance lies in addressing the key challenge of generating 3D models, which stems from the lim-
ited availability of 3D training data. This limitation results in significantly smaller datasets compared
to those used in other domains like 2D image synthesis. Despite these advancements, challenges re-
main in handling complex multi-object scenes and automated object placement. Future work could
focus on optimizing spatial arrangements. Our system controls synthetic data creation, bypassing
privacy and copyright concerns, and sets a new benchmark in synthetic scene assembly and gener-
ation, bridging the gap between real and artificial data, with applications in virtual reality, gaming,
and Al-driven simulation.
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A RELATED WORK

3D Generation Techniques Recent advancements in neural generative models have significantly
improved the quality and scalability of 3D object generation from single-view reconstruction
tasks (Chen et al., |2020; Mescheder et al.l 2019} [Liu et al., 2019; [Wang et al., 2018) to image-
conditioned generative models (Melas-Kyriazi et al., 2023 [Wu et al., 2023; |Alliegro et al., 2023;
Liu et al.,|2023b;|Cheng et al.,[2023;Zheng et al.| 2023} |Gupta et al.,[2023; |Miiller et al., | 2023;Zhang
et al.,|2023)). More recently, methods like Zero123++ (Shi et al.} 2023a)), ImageDream (Wang & Shil,
2023), MVDream (Shi et al.,[2023b), SyncDreamer (Liu et al.,[2023a) and CAT3D (Gao et al.|[2024)
leverage multi-view diffusion models to synthesize novel views with high cross-view consistency.
By leveraging cross-view attention mechanisms, these approaches enhance 3D reconstruction from
sparse input images, resolving depth ambiguities and ensuring globally coherent asset generation.
Video-based diffusion models, like ViVid-1-to-3 (Kwak et al.| [2024) and AnimateDiff (Guo et al.,
2023), have also demonstrated the capability to simulate smooth camera trajectories and produce
3D-consistent representations, although with limited flexibility for static 3D object generation.

Similarly, Large Reconstruction Models (Hong et al.; Wang et al. [2023) map image tokens to im-
plicit 3D representations such as triplanes or meshes through a transformer using multi-view su-
pervision. By directly optimizing on mesh representations, approaches like InstantMesh (Xu et al.,
2024a)) and Instant3D (Li et al., 2023) integrate differentiable isosurface extraction modules to en-
hance geometric accuracy and reduce memory overhead, achieving efficient and high-quality 3D
mesh generation from single images. These frameworks build on scalable transformer architec-
tures, enabling generalization across diverse datasets. Extensions like GRM (Xu et al., [2024b)) and
MVD?2 (Zheng et al., 2024)) explore Gaussian-based representations and mesh-specific optimizations
to improve rendering efficiency and surface quality. Despite their advancements, they often struggle
with capturing fine details in complex scenes and require carefully curated 3D datasets for robust
performance and geometry supervision, unlike the prior multi-view diffusion based approaches.
This constrains them to the data distribution they are trained on, unlike the work proposed in this
manuscript, where assets can be generated with total freedom of prompts.

Finally, procedural generation techniques, such as those employed in Infinite Photorealistic
Worlds (Raistrick et al., 2023) and Infinigen Indoors (Raistrick et all [2024), utilize algorithmic
rules to create diverse and scalable datasets. These systems employ probabilistic programs and
node-based tools like Blender to generate photorealistic indoor scenes. While highly effective for
creating diverse training datasets, procedural approaches are often constrained by predefined content
types and can be computationally expensive to enforce certain constraints, such as semantically rich
asset integration in indoor environments.

NeRF-based Representations Neural Radiance Fields (NeRFs) have emerged as a powerful
framework for 3D scene representation due to their ability to synthesize novel views with high
fidelity (Mildenhall et al., 2021)). Extensions such as Zip-NeRF (Barron et al.,2023)) introduce regu-
larization techniques to improve density, sparsity, and texture consistency, facilitating more efficient
rendering and reducing artifacts. Advanced methods like Text2NeRF (Zhang et al., [2024) and Set-
the-Scene (Cohen-Bar et al.| [2023) integrate NeRFs with pre-trained text-to-image diffusion mod-
els, enabling text-driven 3D object and scene generation. Despite these advancements, NeRFs are
inherently volumetric, making direct integration into standard graphics pipelines challenging. Ap-
proaches like NerfMeshing (Rakotosaona et al.,|2024) address this limitation by converting radiance
fields into explicit 3D meshes introducing a Signed Surface Approximation Network (SSAN) and
using techniques such as isosurface extraction.

3D Mesh Generation Focusing on mesh-based representations, TextMesh (Tsalicoglou et al.,
2024) extends NeRFs to Signed Distance Functions (SDFs) for precise mesh extraction, address-
ing issues such as oversaturation and texture inconsistency present in earlier methods like Dream-
Fusion (Poole et al., 2022)). This comes at the expense of a computational overhead by leveraging
multi-view supervision and SDF backbones, where each asset takes around 2 hours to generate.
InstantMesh (Xu et al.l 2024a), on the other hand, combines multi-view diffusion models with
sparse-view reconstruction frameworks to generate 3D meshes directly from single images. This
approach integrates geometric supervision on the mesh surface using differentiable isosurface ex-
traction modules. Despite these advancements, existing mesh generation approaches still struggle
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with producing highly detailed meshes in complex scenes and maintaining consistent performance
across diverse object categories.

Text-to-3D and Synthetic Data for Scene Understanding Recent advancements in text-driven
3D generation have evolved from early CLIP-guided methods, such as CLIPMesh (Moham-
mad Khalid et al., [2022)), to more sophisticated diffusion-based systems leveraging large-scale text-
to-image models (Zhang et al.}[2024). Prompt engineering is critical to improving object placement,
spatial alignment, and scene composition. Techniques like ShowRoom3D (Mao et al., 2023) and
SceneScape (Fridman et al., |2024) refine 3D scene synthesis using score distillation and camera
trajectory optimization, but often require extensive fine-tuning and are computationally intensive.

Synthetic data generation helps address the challenge of acquiring annotated datasets for scene un-
derstanding (Paulin & Ivasic-Kos, [2023)), with methods like Text2Room (Hollein et al., 2023), Sce-
neScape (Fridman et al 2024)), and Ctrl-Room (Fang et al., 2023)) using text-to-image models to
generate 3D meshes, though they face challenges with geometric distortion, occlusion handling, and
scalability. Conditional diffusion models, such as DiffuScene (Tang et al., [2024)), enhance seman-
tic control over scene composition. Despite these improvements, many methods still struggle with
achieving global consistency, geometry fidelity, and artifact-free outputs, especially in complex or
occluded scenes. A limitation in these approaches is the dependence on additional 3D supervision,
such as geometry through depth or normal maps. In contrast, our method leverages a multi-view
Latent Diffusion Model (LDM) pre-trained on RGB instances and camera poses, eliminating the
need for extra 3D supervision while maintaining high-quality mesh generation. Additionally, we are
not restricted by the domain of the data on which the mesh generation was trained, unlike existing
approaches. This grants us the capability to generate assets from previously unseen distributions and
enhances the scalability of the later-assembled synthetic rooms. By focusing on generating isolated
assets and placing them in existing 3D rooms, we scale existing room data and improve the qual-
ity and scalability of synthetic 3D indoor scene generation, bridging the gap between synthetic and
real-world data.
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B PROMPT ENGINEERING RESULTS

Contextual Precision Figure [5] shows examples of the effect of the contextual precision in the
generated outputs, as discussed in Section 2.1} By adding in “in an empty white background”
and “in the middle”, we improve spatial clarity (Right), preventing issues like object cropping or
awkward placements (Left).

<4 Contextual precision
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white background and in the middle
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Figure 5: Samples of the effect of the contextual precision in the generated outputs.

Scalable Prompt Generations A comprehensive explanation of the procedure to generate
prompts in a scalable manner is included via a pseudocode in Algorithm [T} as explained in Sec-
tion 2] Table[I]shows examples of the different ranges of scores of the resulting prompts together
with the corresponding generated asset.

Algorithm 1 Structured Dataset Creation and Evaluation for 3D Object Text Prompts

Input: Initial category lists: {Objects, Materials, Colors, High-level Themes}
Output: Final dataset of ranked and filtered text prompts ready for 3D asset generation.

Step 1: Generate Initial Category Lists
Prompt LLM to create 10 to 20 diverse and realistic items for each category.
Organize results into a structured table.

Step 2: Refine and Validate Category Lists
Remove duplicates and nonsensical combinations from raw lists.

Step 3: Generate Structured Prompt Templates
Define template variables: {Object, Color, Material, High-level Theme}.
Prompt LLM to generate 20 templates with diverse sentence structures.

Step 4: Combine Categories to Create Text Prompts
Randomly sample combinations of {Object, Material, Color, High-level Theme}.
Fill placeholders in structured templates with sampled values.

Step 5: Evaluate and Refine Prompts
Feed generated prompts into LLM for evaluation based on:
(a) Coherence: Does the object-material-color combination make sense?
(b) Specificity: Is the object and setting clearly described?
(c) Creativity: Does the prompt inspire visually compelling designs?
Assign a realism score (1-10) to each prompt, with explanations.

Step 6: Rank and Output Results
Sort prompts by realism scores and output resulting list as csv file.

return Final dataset of filtered and ranked prompts.
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Table 1: Samples of prompts, scores, and corresponding figures resulting from the proposed prompt
engineering approach. The explanations behind the scores given by the Gemini are: Coherence
- Materials and colors are plausible for the object, Specificity - Clarity of the design details, and
Creativity - Suggests visually compelling design elements.

Prompt Score

Create a green toaster, suitable for 9.0:

a Japanese environment in an empty  Coherence 9/10,

white background and in the middle.  Specificity 9/10,
Creativity 9/10.

An antique concept: a white arm-  8.0:

chair that seamlessly integrates into  Coherence 9/10,

the design in an empty white back-  Specificity 7/10,

ground and in the middle. Creativity 8/10.

An industrial interpretation of a 1.0:

plant, realized in pink ceramic in an  Coherence 5/10,

empty white background and in the Specificity 9/10,

middle. Creativity 7/10.

Design a vase that is black and 5.4:

crafted from cotton reflecting the Coherence 3/10,

core principles of Art Deco design  Specificity 9/10,

in an empty white background and  Creativity 4/10.

in the middle.
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C ADDITIONAL QUALITATIVE RESULTS
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Figure 6: Visualization of generated 3D objects. Note samples of failure cases where holes are
present due to reconstruction errors.
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