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Abstract
Large-scale pre-trained audio-language models excel in general
multi-modal representation, facilitating their adaptation to down-
stream audio recognition tasks in a data-efficient manner. How-
ever, existing few-shot audio recognition methods based on audio-
languagemodels primarily focus on learning coarse-grained correla-
tions, which are not sufficient to capture the intricate matching pat-
terns between the multi-level information of audio and the diverse
characteristics of category concepts. To address this gap, we propose
multi-grained correspondence learning for bootstrapping audio-
language models to improve audio recognition with few training
samples. This approach leverages generative models to enrich multi-
modal representation learning, mining the multi-level information
of audio alongside the diverse characteristics of category concepts.
Multi-grainedmatching patterns are then established throughmulti-
grained key-value cache and multi-grained cross-modal contrast,
enhancing the alignment between audio and category concepts.
Additionally, we incorporate optimal transport to tackle tempo-
ral misalignment and semantic intersection issues in fine-grained
correspondence learning, enabling flexible fine-grained matching.
Our method achieves state-of-the-art results on multiple bench-
mark datasets for few-shot audio recognition, with comprehensive
ablation experiments validating its effectiveness.
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1 Introduction
Large-scale pre-trained audio-languagemodels [10, 11, 15, 38] demon-
strate powerful general multi-modal representation capabilities.
However, directly fine-tuning the audio-languagemodel with down-
stream task data will disrupt the pre-set embedding space. To adapt
the audio-languagemodel to downstream tasks, recentwork [24, 43]
has achieved good performance on few-shot audio recognition by
fine-tuning the audio-language model through efficient adapters
for coarse-grained correspondence learning. Among them, Treff-
adapter [24] mines the correlation between audio and category
concepts through coarse-grained key-value cache and zero-shot
coarse-grained cross-modal contrast.

The above methods achieve good performance, but their coarse-
grained correspondence learning is not sufficient to represent the
complex matching patterns between audio and category concepts.
Taking the audio of "moving train" as an example, the short whis-
tle sound and the continuous wheel rolling sound are the two
corresponding discriminant characteristics. The former requires
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attention to audio details (clip-level), while the latter requires at-
tention to the overall audio (overall-level). Coarse-grained audio
representation makes it difficult to pay attention to the whole and
details of the audio at the same time, and a short category name
("moving train") cannot fully represent the potential discriminative
characteristics of the category concept (e.g. whistle, wheel rolling).
Therefore, coarse-grained correspondence learning is difficult to
establish multi-grained matching patterns between the multi-level
information of audio and the diverse characteristics in category
concepts.

In order to solve the above problems, we propose to perform
multi-grained correspondence learning to better guide the audio-
language model to adapt to few-shot audio recognition. Our method
contains three core designs: gen-assisted multi-modal represen-
tation learning, multi-grained key-value cache and multi-grained
cross-modal contrast. Specifically, we first performmulti-modal rep-
resentation learning with the assistance of the generative models,
which is used to mine the multi-level information of audio and the
diverse characteristics of category concepts. We then propose multi-
grained key-value cache and multi-grained cross-modal contrast
for effectively learning multi-grained matching patterns between
audio and category concepts. The former maps the categories of test
audio by capturing multi-grained correlations between test audio
representations and known category audio representations. While
the latter mines caption-audio complementary patterns to learn
multi-grained correlations between audio fusion representations
and category explanation representations.

In addition, we noticed that there are problems of temporal mis-
alignment and semantic intersection when performing fine-grained
correspondence learning. Taking the audio of "moving train" as
an example, the key information in the audio (whistle sound, rail
banging, wheel rolling) can appear at the beginning, end or con-
tinuously of the audio. As shown in Fig.1-a, the relevant parts of
two similar audios may not appear in the same time segment (tem-
poral misalignment). And as shown in Fig.1-b, some segments in
the audio can express multiple semantics at the same time (seman-
tic intersection). In order to deal with the above problems, since
optimal transport can establish flexible correspondences between
sampling points of different probability distributions, we propose
to apply optimal transport to improve fine-grained key-value cache
and fine-grained cross-modal contrast. Specifically, we model the
empirical distribution of fine-grained audio representation and cat-
egory explanation representation, and guide flexible fine-grained
matching between audio and category by comparing the distance
between distributions under the optimal transport framework.

To effectively showcase the efficacy and performance of our pro-
posed method, we meticulously carry out a sufficient number of
experiments on two prominent few-shot audio recognition bench-
mark datasets, namely ESC-50 and FSDkaggle18. When contrasted
with the previously existing methods, our proposed multi-grained
correspondence learning approach successfully attains state-of-the-
art outcomes and demonstrates superior results. We hope that our
findings will inspire more research on few-shot audio recognition.
Our main contributions can be summarized as follows:

(a) Temporal misalignment
whistle sound rail bangingMoving train

(b) Semantic intersection

Moving
train

wheel rolling 

whistle sound

Coarse-grained

Fine-grained

Fine-grained
Coarse-grained

Figure 1: (a) Temporal misalignment: The relevant parts (yel-
low/red) of two similar audios do not appear in the same
time segment. (b) Semantic intersection: Some segments in
the audio can express multiple semantics at the same time.
The orange part of the audio contains both the sound of a
whistle and the sound of rolling wheels.

• We propose multi-modal representation learning assisted by
generative models, which effectively mine the multi-level in-
formation of audio and the diverse characteristics of category
concepts.

• We propose multi-grained correspondence learning to es-
tablish multi-grained matching patterns between audio and
category concepts through multi-grained key-value cache
and multi-grained cross-modal contrast.

• We propose to apply optimal transport to deal with the tem-
poral misalignment and semantic intersection problems ex-
isting in fine-grained correspondence learning, and to guide
the flexible fine-grained matching.

2 RELATEDWORK
2.1 Audio-Language Models
In recent years, audio-language models [10, 11, 15, 38, 44] have
attracted increasing attention due to their powerful universal multi-
modal representation capabilities. Taking the representative CLAP
[10] as an example, it follows the idea of Contrastive Image-Language
Pre-training (CLIP) [32]. Independent audio encoders and text en-
coders are employed to extract audio representations and their cor-
responding text representations. Subsequently, contrastive learning
is utilized to project both the audio and text representations into a
unified embedding space. This process brings matching audio-text
pairs closer together in the embedding space while pushing apart
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unmatched pairs, thus enhancing the alignment and discrimination
between relevant and irrelevant audio-text combinations. With the
assistance of training data of large-scale audio-text pairs, audio-
language model has good generalization ability to a wide range of
downstream audio tasks. By evaluating the similarity between au-
dio and category label names, audio-language models can perform
downstream audio recognition without training. However, the gap
between pre-training data and downstream task data reduces the
generalization performance of audio-language models, which has
prompted recent research on guiding audio-language models to
adapt to downstream tasks, such as efficient adapter [24, 43] for
few-shot audio recognition.

2.2 Few-shot Audio Recognition
With the introduction of large-scale audio datasets [9, 12, 13, 18, 28,
30] and the development of audio representation learning theory
[2, 3, 14, 27] in recent years, audio classification has made great
progress as a benchmark task in the audio field. Since the success
of existing audio classification methods is based on labor-intensive
acquisition of high-quality audio labels, inspired by the mature
few-shot image recognition methods [34, 42, 43, 46], few-shot au-
dio recognition [24, 33, 35] has received attention in data-limited
scenarios, where models are constrained to learn from limited audio
with labels. Early metric-based few-shot audio recognition methods
[5, 16, 17, 23, 33, 35, 37] aimed to cluster unlabeled examples based
on their distance from several examples of each category. Among
them, the matching network [35] learns a set of mapping matching
relationships between supporting data and queries. The prototype
network [33] learns different category prototype representations
and maps categories based on the Euclidean distance between the
query representation and the prototype representation.

However, without the support of multi-modal basic models [10,
11, 15, 38], it is difficult for early methods to perfectly solve the
problem of few-shot audio recognition. Recently, inspired by the
success of Tip-adapter [43] in image recognition, Treff-adapter
[24] conducts coarse-grained correspondence learning through ef-
ficient adapters to guide the audio-language model to adapt to
few-shot Audio Recognition. Specifically, Treff-adapter learns the
coarse-grained correlation between the test audio representation
and the audio representation of the known category, and utilizes
the key-value cache to map the category of the test audio. And
the zero-shot cross-modal contrast is performed to capture the
coarse-grained correlation between the category name represen-
tation and the coarse-grained audio representation. Although the
above methods achieve good performance, their coarse-grained cor-
respondence learning makes it difficult to establish multi-grained
matching patterns between audio and category concepts. Therefore,
we propose multi-grained correspondence learning for effectively
learning multi-grained matching patterns between multi-level au-
dio information and diverse category characteristics, which benefits
from our application of optimal transport for fine-grained corre-
spondence learning.

2.3 Optimal Transport
Optimal transport [29] was originally developed to solve the prob-
lem of how to move multiple materials at the same time at the

lowest cost, and can be used to evaluate the distance between two
probability distributions. Since many modern statistical and ma-
chine learning problems can be reformulated as finding optimal
transport graphs between two probability distributions, optimal
transport has recently attracted widespread attention in the fields
of machine learning and computer vision, such as document match-
ing [21, 40], image matching [1, 26, 36, 41, 45], video retrieval [25],
and visual-language models [4, 8, 19, 31, 39]. However, none of
these works specifically focus on few-shot audio recognition and
correspondence learning between audio and text, which is the main
focus of our research. Experimental results show that fine-grained
correspondence learning based on optimal transport effectively
establishes flexible fine-grained matching patterns between audio
and category concepts.

3 METHODOLOGY
In this section, we elaborate on each component of our proposed
method, whose overall structure is shown in Fig.2. We first intro-
duce how to learn multi-modal representations with the assistance
of generative models in Sec.3.1. Subsequently, we detailed how
to promote multi-grained correspondence learning through multi-
grained key-value cache and multi-grained cross-modal contrast in
Sec.3.2 and Sec.3.3. Finally, we describe in Sec.3.4 the evaluation of
the overall matching probability for few-shot recognition.

3.1 Gen-assisted multi-modal representation
3.1.1 Audio representation. For a sampled audio, the mel spectro-
gram of the audio is input into the CNN14 audio encoder [2] to
extract the audio feature map 𝐹𝑎 ∈ R𝑛𝑎×𝑓𝑎×𝑑 , where 𝑛𝑎/𝑓𝑎 rep-
resent the time/frequency dimension and 𝑑 is the latent feature
dimension. The width and height of an audio mel spectrogram rep-
resent different information (i.e. time and frequency bins). Since
the length of time is usually much longer than the length of fre-
quency bins, we perform average pooling on the audio feature map
𝐹𝑎 along the frequency direction to obtain a fine-grained audio
representation (clip-level) 𝑅 𝑓𝑎 = {𝑎𝑖 }𝑛𝑎𝑖=1 ∈ R𝑛𝑎×𝑑 , where 𝑛𝑎 repre-
sents the number of time segments. The average of the fine-grained
audio representation 𝑅 𝑓𝑎 can be utilized as the coarse-grained audio
representation (overall-level) 𝑅𝑐𝑎 ∈ R𝑑 .

3.1.2 Audio caption representation. We noticed that in real-world
scenarios, audio clips on video sharing platforms often come with
relevant textual descriptions, such as titles and tags. The semantic
information contained in these texts is crucial for improving audio
recognition in situations where data availability is limited. This
inspires us to utilize pre-trained encoder-decoder models [28] to
generate audio captions without training. Specifically, we adopt
HTSAT [2] as the audio encoder to extract audio features. The
HTSAT audio encoder is an audio transformer similar to the visual
transformer (VIT). And we use BART [22] as the language decoder
to generate captions based on the audio features extracted from the
encoder. From this, we generate a corresponding caption for each
audio, and BERT [7] is used as a text encoder to extract the audio
caption representation (cap-level) 𝑅𝑡 ∈ R𝑑 .
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Figure 2: Illustration of the proposed multi-grained correspondence learning, which is used to guide the adaptation of audio-
language models for few-shot audio recognition. Multi-modal representation learning with the assistance of generative models
is performed to mine the multi-level information of audio and the diverse characteristics of category concepts. Multi-grained
key-value cache and multi-grained cross-modal contrast are then proposed to effectively learn multi-grained matching patterns
between audio and category concepts through optimal transport modeling (OT) and late weighted fusion.

3.1.3 Category representation. Traditional audio recognition meth-
ods map category labels into discrete numerical codes for classifica-
tion, which ignores the semantic information contained in category
names. We use preset prompts to guide large language models (e.g.
chatgpt1) to generate descriptive explanations of category labels,
which are used to understand the potential meaning of category
concepts. Specifically, we carefully design a variety of prompt tem-
plates to guide chatgpt to generate 𝑛𝑡 descriptive explanations for
each category label. Different category explanations illustrate dif-
ferent discriminative characteristics of audio in that category. Since
BERT [7] has strong language modeling capabilities, it is used as
a text encoder to extract text representations of descriptive expla-
nations 𝑅𝑒 = {𝑒𝑖 }𝑛𝑒𝑖=1 ∈ R𝑛𝑒×𝑑 , where 𝑛𝑒 represents the number of
explanations corresponding to each category.

3.2 Multi-grained key-value cache
Multi-grained key-value cache is designed to capture multi-grained
correlations between test audio and known category audio to map
the category of the test audio. We consider key-value cache forms
of multi-grained audio representations, including coarse-grained
key-value cache and fine-grained key-value cache.

3.2.1 Coarse-grained key-value cache. The coarse-grained key-value
cache is used to map the corresponding categories by mining the
similarity between the coarse-grained representations of the test
audio and training audios. Under the "K-shot N-class" few-shot
recognition setting, audio needs to be divided into 𝑁 categories,
and each category provides 𝐾 audio samples of known categories.
For each audio 𝑎𝑖 in the 𝑁𝐾 training sets, the audio representations
are treated as keys and their corresponding categories are treated
as values after being converted into N-dimensional one-hot vectors

1https://openai.com/blog/chatgpt/

𝑉𝑖 ∈ R1×𝑁 . And the representations of test audio of unknown cate-
gories are treated as queries. The similarity between the query and
the key can be regarded as the affinity between the query and the
value, which is used to map the matching probability between the
query audio and 𝑁 categories.

Specifically, for coarse-grained key-value cache, we consider
coarse-grained representations of a test audio 𝑅𝑐𝑎,𝑡𝑒𝑠𝑡 ∈ R𝑑 and
training audios 𝑅𝑐

′
𝑎,𝑡𝑟𝑎𝑖𝑛

= {𝑅𝑐′
𝑎,𝑖
}𝑁𝐾
𝑖=1 ∈ R𝑁𝐾×𝑑 . Inspired by Treff-

adapter [24] , cosine similarity is used to evaluate the coarse-grained
affinity 𝑀𝑐

𝑎𝑓 𝑓 ,𝑖
between the test audio and the training audio set.

Finally, the matching probability 𝑃𝑟𝑜𝑐𝑘𝑐 ∈ R1×𝑁 between the test
audio and 𝑁 categories is determined by the coarse-grained affinity
and the one-hot category vector 𝑉𝑐 = {𝑉𝑖 }𝑁𝐾𝑖=1 ∈ R𝑁𝐾×𝑁 , defined
as follows:

𝑀𝑐
𝑎𝑓 𝑓 ,𝑖

= 𝜑 ((𝑅𝑐𝑎,𝑡𝑒𝑠𝑡 ) (𝑅𝑐
′
𝑎,𝑖 )

𝑇 ) (1)

𝑃𝑟𝑜𝑐𝑘𝑐 =

𝑁𝐾∑︁
𝑖=1

𝑀𝑐
𝑎𝑓 𝑓 ,𝑖

𝑉𝑖 (2)

where 𝜑 (𝑥) = 𝑒𝑥𝑝 (−𝛽 (1 − 𝑥))) represents the scaling function.

3.2.2 Fine-grained key-value cache. The fine-grained key-value
cache is used to map the corresponding categories by mining the
similarity between the fine-grained representations of the test and
training audios. However, as explained in Sec.1, there is a tempo-
ral misalignment problem between the test audio and the training
audios. The key information in audio is distributed randomly over
time, and it can appear at the beginning or end of the audio, so the
relevant parts of two similar audios may not appear in the same
time segment (Fig.1-a). Since fine-grained audio representations
encompass audio information across multiple segments in chrono-
logical order, We need a metric that is independent of segment
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order to establish flexible correspondences between fine-grained
representations of test and training audios.

Therefore, we propose to apply optimal transport (OT) to solve
the temporal misalignment problem by modeling the empirical
distribution of fine-grained audio representations and learning a
transport plan to capture the fine-grained flexible correspondence
of test and training audios. This is because the optimal transport
(OT) distance, as a metric for distribution comparison, can estab-
lish a flexible correspondence (regardless of the order) between
sampling points of different probability distributions. This allows
optimal transport to align relevant audio information at different
time periods between audios without being constrained by time
order. Specifically, taking a test audio sample and a training audio
sample as an example, we apply two empirical distributions 𝑃 and
𝑄 to model the fine-grained audio representation of a test sample
𝑅
𝑓
𝑎 = {𝑎𝑖 }𝑛𝑎𝑖=1 ∈ R𝑛𝑎×𝑑 and fine-grained audio representation of a

training sample 𝑅 𝑓
′

𝑎 = {𝑎′
𝑗
}𝑛

′
𝑎

𝑗=1 ∈ R𝑛
′
𝑎×𝑑 .

𝑃 =

𝑛𝑎∑︁
𝑖=1

𝑝𝑖𝛿𝑎𝑖 ,

𝑛𝑎∑︁
𝑖=1

𝑝𝑖 = 1 (3)

𝑄 =

𝑛
′
𝑎∑︁
𝑗=1

𝑞 𝑗𝛿𝑎
′
𝑖

,

𝑛
′
𝑎∑︁
𝑗=1

𝑞 𝑗 = 1 (4)

where 𝛿𝑡 represents the dirac function defined at 𝑡 , and the discrete

probability vectors 𝑝 = {𝑝𝑖 }𝑛𝑎𝑖=1 and 𝑞 = {𝑞 𝑗 }𝑛
′
𝑎

𝑗=1 belong to 𝑛𝑎 and
𝑛
′
𝑎-dimensional simplex. Optimal transport aims to minimize the
OT distance between distributions 𝑃 and 𝑄 . This is used to capture
flexible correlation patterns between test audio and training audios
without temporal order constraints, which can be formulated as an
optimization problem guided by entropy regularization:

𝑑𝜆
𝑂𝑇

(𝑃,𝑄 ;𝐶) =𝑚𝑖𝑛
𝑛𝑎∑︁
𝑖=1

𝑛
′
𝑎∑︁
𝑗=1

𝑇𝑖 𝑗𝐶𝑖 𝑗 − 𝜆ℎ(𝑇 ) (5)

𝑇1
𝑛
′
𝑎
= 𝑝 𝑇𝑇 1𝑛𝑎 = 𝑞 (6)

𝑐𝑖 𝑗 = 1 −
𝑎𝑖 (𝑎

′
𝑗
)𝑇

| |𝑎𝑖 | |2 | |𝑎
′
𝑗
| |2

(7)

Among them, 𝑇 ∈ R𝑛𝑎×𝑛
′
𝑎 is the transport plan to be learned, 𝑇𝑖 𝑗

represents the transport probability from the i-th audio segment
to the j-th audio segment. The larger its value, the closer the se-
mantic connection between the two segments. ℎ(𝑇 ) is the entropy
constraint, and 𝜆 ≥ 0 is the weight of entropy regularization. 𝐶𝑖 𝑗
is the transport cost between the i-th audio segment and the j-th
audio segment. Considering that the greater the transport cost, the
lower the transport probability, the cosine similarity between audio
segments is used to construct the cost matrix 𝐶 ∈ R𝑛𝑎×𝑛

′
𝑎 . And we

consider uniform distribution for 𝑝 and 𝑞. Then, we can obtain a
fast optimized matrix solution 𝑇 ∗ for the transport plan 𝑇 through
Sinkhorn fixed point iteration [6]:

𝑇 ∗ = 𝐷𝑖𝑎𝑔(𝑘1)𝑒𝑥𝑝 (−𝐶/𝜖)𝐷𝑖𝑎𝑔(𝑘2) (8)

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑙𝑦 : 𝑝/(𝑒𝑥𝑝 (−𝐶/𝜖)𝑘2)− > 𝑘1, 𝑞/(𝑒𝑥𝑝 (−𝐶/𝜖)𝑇𝑘1)− > 𝑘2

Among them, 𝑘1 and 𝑘2 are predefined left and right scaling vectors.
During the above optimization process, we obtain the optimal trans-
port plan 𝑇 ∗ ∈ R𝑛𝑎×𝑛

′
𝑎 between fine-grained representations of

test and training audios, which reflects the tightness of the seman-
tic connection between audio segments. Accordingly, the optimal
transport plan is used to define the fine-grained similarity 𝑆𝑖𝑚𝑂𝑇
between test audio representation 𝑅 𝑓 and training audio represen-
tation 𝑅 𝑓

′
as follows:

𝑆𝑖𝑚𝑂𝑇 (𝑅 𝑓 , 𝑅 𝑓
′
) =

𝑛𝑎∑︁
𝑖=1

𝑛
′
𝑎∑︁
𝑗=1

𝑇 ∗
𝑖 𝑗

𝑎𝑖 (𝑎
′
𝑗
)𝑇

| |𝑎𝑖 | |2 | |𝑎
′
𝑗
| |2

(9)

Similar to coarse-grained, for fine-grained key-value cache, we con-
sider fine-grained representations of a test audio 𝑅 𝑓𝑎,𝑡𝑒𝑠𝑡 ∈ R𝑛𝑎×𝑑

and 𝑁𝐾 training audios 𝑅 𝑓
′

𝑎,𝑡𝑟𝑎𝑖𝑛
= {𝑅 𝑓

′

𝑎,𝑖
}𝑁𝐾
𝑖=1 . The fine-grained sim-

ilarity 𝑆𝑖𝑚𝑂𝑇 is used to evaluate the fine-grained affinity 𝑀 𝑓

𝑎𝑓 𝑓 ,𝑖

between the test audio𝑅 𝑓𝑎,𝑡𝑒𝑠𝑡 and the training audios𝑅
𝑓 ′

𝑎,𝑖
∈ R𝑛

′
𝑎,𝑖×𝑑 .

Finally, the matching probability 𝑃𝑟𝑜 𝑓 𝑘𝑐 ∈ R1×𝑁 between the test
audio and 𝑁 categories is defined as follows:

𝑀
𝑓

𝑎𝑓 𝑓 ,𝑖
= 𝜑 (𝑆𝑖𝑚𝑂𝑇 (𝑅

𝑓
𝑎,𝑡𝑒𝑠𝑡 , 𝑅

𝑓 ′

𝑎,𝑖
)) (10)

𝑃𝑟𝑜 𝑓 𝑘𝑐 =

𝑁𝐾∑︁
𝑖=1

𝑀
𝑓

𝑎𝑓 𝑓 ,𝑖
𝑉𝑖 (11)

In summary, the overall matching probability of the multi-grained
key-value cache module can be defined as follows:

𝑃𝑟𝑜𝑐𝑎𝑐ℎ𝑒 = 𝑃𝑟𝑜𝑐𝑘𝑐 + 𝑃𝑟𝑜 𝑓 𝑘𝑐 (12)

3.3 Multi-grained cross-modal contrast
Multi-grained cross-modal contrast aims to mine multi-grained
correlations between audio and category explanations assisted by
audio captions. We explore the fusion method of multi-grained
audio representation and caption representation, and consider the
correlation form of multi-grained fusion representation and diverse
category explanation representation, including fine-grained cross-
modal contrast and coarse-grained cross-modal contrast.

3.3.1 Coarse-grained cross-modal contrast. Coarse-grained cross-
modal contrast aims to mine coarse-grained similarity between
audio and category explanations.We first perform representation in-
teraction between coarse-grained audio representation and caption
representation to obtain a semantically enhanced coarse-grained
fusion representation. Our motivation is that although captions
and audio are presented in different modal forms, they are essen-
tially expressions of audio information. Captions tend to focus on
salient concepts but miss out on details, while audio retains the
complete message but is interfered with by redundant segments.
A natural idea is to encourage cross-modal interaction of captions
with audio to learn complementary patterns of both. Specifically,
after the coarse-grained audio representation 𝑅𝑐𝑎 ∈ R𝑑 and caption
representation 𝑅𝑡 ∈ R𝑑 are spliced, linear transformation is used
to project them into a new embedding space as a coarse-grained
fusion representation 𝑅𝑐

𝑓 𝑢
∈ R𝑑 , which is defined as follows:

𝑅𝑐
𝑓 𝑢

=𝑊𝑐 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑅𝑐𝑎, 𝑅𝑡 )) (13)
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where𝑊𝑐 ∈ R2𝑑×𝑑 represents the learnable linear layer. Then, we
propose a late weighted fusion method (LW) to guide the matching
of coarse-grained fusion representations 𝑅𝑐

𝑓 𝑢
∈ R𝑑 with diverse

category explanation representations 𝑅𝑒 = {𝑒𝑖 }𝑛𝑒𝑖=1 ∈ R𝑛𝑒×𝑑 . Our
motivation is that different category explanations illustrate differ-
ent characteristics of audio in this category, but even if the audio
belongs to the same category, the significance of different charac-
teristics will be different. Therefore, we propose a late weighted
fusion method to guide the model to focus on the correlation be-
tween audio and salient discriminative characteristics. Specifically,
we consider the cosine similarity 𝑠𝑖𝑚𝑐

𝑖
between the coarse-grained

fusion representation 𝑅𝑐
𝑓 𝑢

∈ R𝑑 and the category explanation repre-

sentation 𝑒𝑖 ∈ R𝑑 , and adaptively obtain the characteristic saliency
weight𝑤𝑖 according to the correlation between the audio and differ-
ent characteristics. The coarse-grained similarity 𝑆𝑖𝑚𝑐

𝐿𝑊
between

coarse-grained fusion representation 𝑅𝑐
𝑓 𝑢

∈ R𝑑 and diverse cat-

egory explanation representation 𝑅𝑒 = {𝑒𝑖 }𝑛𝑒𝑖=1 ∈ R𝑛𝑒×𝑑 can be
defined as follows:

𝑠𝑖𝑚𝑐𝑖 =
𝑅𝑐
𝑓 𝑢

(𝑒𝑖 )𝑇

| |𝑅𝑐
𝑓 𝑢

| |2 | |𝑒𝑖 | |2
,𝑤𝑖 =

𝑒𝑠𝑖𝑚
𝑐
𝑖∑𝑛𝑒

𝑖=1 𝑒
𝑠𝑖𝑚𝑐

𝑖

(14)

𝑆𝑖𝑚𝑐𝐿𝑊 (𝑅𝑐
𝑓 𝑢
, 𝑅𝑒 ) =

𝑛𝑒∑︁
𝑖=1

𝑤𝑖𝑠𝑖𝑚
𝑐
𝑖 (15)

From this, thematching probability 𝑃𝑟𝑜𝑐𝑐𝑐 = {𝑃𝑟𝑜𝑐𝑐𝑐,𝑗 }𝑁𝑗=1 ∈ R1×𝑁

between the test audio and 𝑁 categories can be defined as follows:

𝑃𝑟𝑜𝑐𝑐𝑐,𝑗 = 𝑆𝑖𝑚
𝑐
𝐿𝑊 (𝑅𝑐

𝑓 𝑢
, 𝑅𝑒,𝑗 ) (16)

Among them, 𝑅𝑒,𝑗 represents the diverse category explanation rep-
resentation of the j-th category.

3.3.2 Fine-grained cross-modal contrast. Fine-grained cross-modal
contrast aims to mine fine-grained similarity between audio and
category explanations. We first perform representation interaction
between fine-grained audio representation 𝑅 𝑓𝑎 = {𝑎𝑖 }𝑛𝑎𝑖=1 ∈ R𝑛𝑎×𝑑

and caption representation 𝑅𝑡 ∈ R𝑑 to obtain semantically en-
hanced fine-grained fusion representation 𝑅 𝑓

𝑓 𝑢
= {𝑓𝑖 }𝑛𝑎𝑖=1 ∈ R𝑛𝑎×𝑑 .

Specifically, after each segment representation is spliced with the
caption representation, the learnable learnable linear layers𝑊𝑓 ∈
R2𝑑×𝑑 ,𝑊𝑙 ∈ R𝑑×𝑑 are used to project it into a new embedding
space as a fine-grained fusion representation 𝑅 𝑓

𝑓 𝑢
, which is defined

as follows:

𝑓𝑖 =𝑊𝑙𝑊𝑓 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑎𝑖 , 𝑅𝑡 )) (17)

However, as explained in Sec.1, we noticed that there is a semantic
intersection problem between audio and category explanations, that
is, some segments in the audio can express multiple semantics at
the same time (Fig.1-b). Since optimal transportation can establish
flexible associations between sampling points of different proba-
bility distributions (e.g. one-to-many, many-to-many), we propose
to apply optimal transportation (OT) to solve the semantic inter-
section problem. Specifically, similar to Sec.3.2.2, we first conduct
empirical distribution modeling of fine-grained fusion representa-
tions 𝑅 𝑓

𝑓 𝑢
= {𝑓𝑖 }𝑛𝑎𝑖=1 ∈ R𝑛𝑎×𝑑 and diverse category interpretation

representations 𝑅𝑒 = {𝑒𝑖 }𝑛𝑒𝑖=1 ∈ R𝑛𝑒×𝑑 . We then facilitate flexible
fine-grained correspondences between audio and corresponding
category explanations byminimizing the optimal transport (OT) dis-
tance between distributions. After an optimization process similar
to Eq.8, the fine-grained similarity 𝑆𝑖𝑚𝑓

𝑂𝑇
between the fine-grained

fusion representation 𝑅 𝑓
𝑓 𝑢

and the diverse category explanation
representation 𝑅𝑒 is defined as follows:

𝑆𝑖𝑚
𝑓

𝑂𝑇
(𝑅 𝑓
𝑓 𝑢
, 𝑅𝑒 ) =

𝑛𝑎∑︁
𝑖=1

𝑛𝑒∑︁
𝑗=1

𝑇
′∗
𝑖 𝑗

𝑓𝑖 (𝑒 𝑗 )𝑇

| |𝑓𝑖 | |2 | |𝑒 𝑗 | |2
(18)

The fast optimization matrix solution 𝑇
′∗
𝑖 𝑗

of the optimal transport
plan represents the closeness of the semantic connection from the
i-th audio segment to the j-th category explanation. From this, the
matching probability 𝑃𝑟𝑜 𝑓 𝑐𝑐 = {𝑃𝑟𝑜 𝑓 𝑐𝑐,𝑗 }𝑁𝑗=1 ∈ R1×𝑁 between the
test audio and 𝑁 categories can be defined as follows:

𝑃𝑟𝑜 𝑓 𝑐𝑐,𝑗 = 𝑆𝑖𝑚
𝑓

𝑂𝑇
(𝑅 𝑓
𝑓 𝑢
, 𝑅𝑒,𝑗 ) (19)

In summary, the overall matching probability of the multi-grained
cross-modal contrast module can be defined as follows:

𝑃𝑟𝑜𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑃𝑟𝑜𝑐𝑐𝑐 + 𝑃𝑟𝑜 𝑓 𝑐𝑐 (20)

3.4 Overall matching probability evaluation
The overall matching similarity is jointly evaluated by the two
modules of multi-grained key-value cache and multi-grained cross-
modal contrast, and is defined as follows:

𝑝𝑟𝑜𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑃𝑟𝑜𝑐𝑎𝑐ℎ𝑒 + 𝑃𝑟𝑜𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (21)

Among them, 𝑃𝑟𝑜𝑡𝑜𝑡𝑎𝑙 ∈ R1×𝑁 represents the overall matching
probability between a piece of test audio and the 𝑁 categories to
be classified, and 𝛼 represents the hyperparameter that adjusts the
effect of multi-grained key-value cache on the overall matching
probability. And we predict the audio category by choosing the
category with the highest probability. Cross-entropy loss is used
for optimization during training:

𝜁 (𝜃 ) = − 1
𝐵

𝐵∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦𝑖, 𝑗 𝑙𝑜𝑔𝑦𝑖, 𝑗 (22)

where 𝐵 is the total number of training examples.If the j-th category
of the i-th sample corresponds to the true category label, then
𝑦𝑖, 𝑗 = 1, otherwise 𝑦𝑖, 𝑗 = 0. 𝑦𝑖, 𝑗 represents the matching probability
between the i-th audio sample and the j-th category, which can be
defined as the j-th element of 𝑃𝑟𝑜𝑡𝑜𝑡𝑎𝑙 corresponding to the i-th
sample. 𝜃 = {𝑊𝑐 ,𝑊𝑙 ,𝑊𝑓 } represents learnable parameters.

4 EXPERIMENTS
4.1 Datasets
ESC-50 The ESC-50 dataset [30] is a widely used audio recognition
dataset. It consists of 2,000 environmental recording clips, each
being 5 seconds long, and has 50 semantic category labels. There
are 40 sample recordings for each category. For evaluation purposes,
the label set is repeatedly sampled into 5 subsets, with 15 label
classes in each subset, enabling 5-fold cross-validation, following
the setting in Treff-adapter [24].
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Table 1: Comparison of audio classification accuracy (%) with other state-of-the-art methods on ESC-50 dataset and FSDkaggle18
dataset under different training sample settings. Our proposed multi-grained correspondence learning method consistently
outperforms all compared methods in all settings. w/o CLAP: Non-CLAP backbone model, CLAP-base: Basic CLAP model,
CLAP-adapt: CLAP model adapted for audio recognition.

Dataset Type Method 5-way Acc 12-way Acc Avg1-shot 10-shot 1-shot 10-shot

ESC-50

w/o CLAP MatchNet(2016) [35] - 86.83 - 71.81 -
w/o CLAP ProtoNet(2017) [33] - 88.18 - 77.70 -
CLAP-base CLAP-zeroshot(2022) [10] 96.84 96.84 93.65 93.65 95.25
CLAP-adapt Tip-adapter-F(2022) [43] 96.97 97.52 93.97 95.58 96.01
CLAP-adapt Treff-adapter(2023) [24] 97.44 98.53 94.83 96.29 96.77
CLAP-adapt Ours 98.63 99.54 98.42 99.51 99.03

FSDkaggle18

CLAP-base CLAP-zeroshot(2022) [10] 88.76 88.76 80.24 80.24 84.50
CLAP-adapt Tip-adapter-F(2022) [43] 88.98 90.75 80.83 83.92 86.12
CLAP-adapt Treff-adapter(2023) [24] 89.37 92.31 81.58 86.94 87.55
CLAP-adapt Ours 90.67 94.88 88.06 93.33 91.74

FSDkaggle18 The FSDkaggle18 dataset [12] contains 11,073 au-
dio clips with durations ranging from 300ms to 30s. Each clip is
annotated with one of the 41 labels from the AudioSet Ontology
[13]. All audio samples have a corresponding label. Similar to ESC-
50, the class label set is repeatedly sampled into 5 subsets, each
with 10 label classes, for 5-fold cross-validation, following the data
segmentation method used in Treff-adapter [24].

4.2 Experimental Settings
Our framework selects the audio-language model CLAP [10] as
the backbone, in which CNN14 [2] is selected as the audio encoder
backbone and BERT [7] is selected as the text encoder. Pre-trained
weights fromCLAP are loaded by the model and frozen during train-
ing. For audio data, we adopt the same data preprocessingmethod as
Treff-adapter [24], and use the pre-trained encoder-decoder model
[28] to generate a caption for each audio. For category names, based
on our preset multiple prompt templates (e.g. what are the charac-
teristics of the sound of [class]?), we use the api provided by chatgpt
to generate 8 category explanations for each category name. During
the training phase, the training epochs are set to 20, 𝛽 is set to 5,
and 𝛼 is set to 1.1. The optimizer is Adam [20] and the learning
rate is set to 10-4. And like previous studies on few-shot audio
recognition [24, 43], we adopt the "N-way K-shot" setting. In this
case, 𝑁 categories are randomly selected for classification, and each
category contains 𝐾 training samples. During the testing phase,
we performed five-fold cross-validation and evaluated the model
performance as an accuracy metric. All experiments are performed
on a single 48GB A40 GPU based on the pytorch framework.

4.3 Comparison Experiments
Main Results Tab.1 presents a comparative analysis of few-shot au-
dio recognition results achieved by our proposed framework against
other leading methods on the ESC-50 and FSDkaggle18 datasets.
Notably, methods leveraging audio-language models (CLAP) gener-
ally surpass metric learning techniques [33, 35], emphasizing the
significance of guiding audio-language models to adapt to down-
stream audio recognition tasks. Among the various CLAP-adapt
methods [24, 43], our approach excels in comparison, delivering

superior performance under diverse shot settings. Furthermore, as
the number of training samples increases, our method exhibits a
commensurate enhancement in performance, highlighting its po-
tential to effectively facilitate the adaptation of audio-language
models to downstream audio recognition tasks.

In contrast to previous approaches, such as the state-of-the-art
Treff-adapter [24], which relies solely on audio data from limited
training sets for coarse-grained learning, our framework offers a
more comprehensive and nuanced approach to audio recognition.
As a testament to its effectiveness, our framework has demonstrated
reliable recognition accuracy across multiple shots settings in the
widely used ESC-50 dataset. Notably, we have achieved a signifi-
cant improvement of 2.26% in recognition performance compared
to Treff-adapter. Moreover, in the more challenging FSDkaggle18
dataset, our framework has achieved a remarkable recognition accu-
racy of 91.74%, surpassing the previous best method by an absolute
improvement of 4.19%.

Furthermore, it is noteworthy that our proposed method signif-
icantly enhances the performance of zero-shot CLAP [10] when
guided by a limited amount of training data. Remarkably, we ob-
served absolute improvements of 3.78% and 7.24% on the ESC-50
dataset and FSDkaggle18 dataset respectively. These results clearly
demonstrate that our method effectively boosts the adaptability
of the audio-language model to downstream audio recognition
datasets, making it a highly versatile and effective approach.

4.4 Ablation Experiments
In this section, we conduct comprehensive ablation experiments to
elucidate the impact of each component in our proposedmethod. All
ablation experiments were performed on the FSDkaggle18 dataset.
Effect of generated audio captions To delve deeply into the
influence of captions on multi-grained correspondence learning,
we meticulously crafted three models: a caption-solely dependent
model, an audio-solely dependent model, and a model that inte-
grates multi-modal information. As exhibited in Tab.2, it is challeng-
ing to attain reliable audio recognition solely relying on information
from a single modality. Conversely, the integration of multi-modal
information enhances the caption-only model by 10.18% and the
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audio-only model by 2.81%. This is attributed to the fact that cap-
tions and audio present audio information at different levels and
in distinct modal forms. Captions tend to concentrate on promi-
nent concepts but overlook finer details, whereas audio preserves
the entire message yet is often clouded by redundant segments.
The multi-modal representation interaction discussed in Sec.3.3
effectively learns the complementary nature between captions and
audio, resulting in a semantically enriched fusion representation.

Table 2: Ablation experimental results for generated audio
captions. Caption-only: Audio recognition using only cap-
tions, Audio-only: Audio recognition using only audios.

Model 5-way Acc 12-way Acc Avg1-shot 10-shot 1-shot 10-shot
Caption Only 85.04 85.87 77.16 78.17 81.56
Audio Only 90.23 93.38 83.86 88.25 88.93
Caption+Audio 90.67 94.88 88.06 93.33 91.74

Effect of generated category explanations As shown in Tab.3,
we discuss the impact of the number of generated category ex-
planations on model performance and compare the performance
of models using category names instead of category explanations.
We observe that models that rely solely on category name guid-
ance do not perform well. However, as the number of category
explanations gradually increases, the model performance shows
an improvement trend. This should be attributed to the fact that
rich category explanations illustrate the diverse characteristics of
category concepts and effectively capture the potential meaning
of category concepts. Considering the quality of text generated
by large language models, generating 8 corresponding category
explanations for each category is an efficient choice.

Table 3: Ablation experimental results for generated category
explanations. Category name:Model based on category name,
Explain: Model based on category explanations.

Model 5-way Acc 12-way Acc Avg1-shot 10-shot 1-shot 10-shot
Category Name 89.92 94.07 87.18 92.43 90.90
Explain (𝑛𝑒 = 2) 89.92 94.49 87.53 92.81 91.19
Explain (𝑛𝑒 = 4) 90.53 94.63 87.50 93.15 91.45
Explain (𝑛𝑒 = 6) 90.62 94.75 87.91 93.30 91.65
Explain (𝑛𝑒 = 8) 90.67 94.88 88.06 93.33 91.74

Effect of multi-grained key-value cache As shown in Tab.4,
we examine the impact of the multi-grained key-value cache mod-
ule and its components on model performance. We observe that
the multi-grained key-value cache module achieves an absolute
improvement of 1.17%, while the coarse-grained and fine-grained
key-value caches achieve an absolute improvement of 0.35% and
0.45% respectively. This is because key-value caches of different
granularities capture diverse correlations between audios and pro-
mote each other to achieve stronger recognition capabilities.
Effect ofmulti-grained cross-modal contrastAs shown in Tab.5,
we explored the impact of the multi-grained cross-modal contrast

Table 4: Ablation experimental results for multi-grained
key-value cache. 𝑃𝑟𝑜𝑐𝑎𝑐ℎ𝑒 : Matching probability of the multi-
grained key-value cache module, 𝑃𝑟𝑜𝑐𝑘𝑐 : Matching probabil-
ity of the coarse-grained key-value cache, 𝑃𝑟𝑜 𝑓 𝑘𝑐 : Matching
probability of the fine-grained key-value cache, w/o: Remove
this module from the entire model.

Model 5-way Acc 12-way Acc Avg1-shot 10-shot 1-shot 10-shot
Total 90.67 94.88 88.06 93.33 91.74
w/o 𝑃𝑟𝑜𝑐𝑘𝑐 90.49 94.11 87.83 93.14 91.39
w/o 𝑃𝑟𝑜 𝑓 𝑘𝑐 90.01 94.43 87.41 93.29 91.29
w/o 𝑃𝑟𝑜𝑐𝑎𝑐ℎ𝑒 89.72 93.08 86.96 92.53 90.57

module and its components on model performance. Among them,
the multi-grained cross-modal contrast module achieves an abso-
lute improvement of 12.07%, while the coarse-grained/fine-grained
cross-modal contrast achieves an absolute improvement of 5.22%
and 0.74% respectively. This may be due to the fact that each gran-
ularity of cross-modal contrast plays a different role in the audio
recognition task, and the different granularities of cross-modal
contrast can promote each other.

Table 5: Ablation experimental results for multi-grained
cross-modal contrast. 𝑃𝑟𝑜𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 : Matching probability of the
multi-grained cross-modal contrast module, 𝑃𝑟𝑜𝑐𝑐𝑐 : Match-
ing probability of the coarse-grained cross-modal contrast,
𝑃𝑟𝑜 𝑓 𝑐𝑐 : Matching probability of the fine-grained cross-modal
contrast, w/o: Remove this module from the entire model.

Model 5-way Acc 12-way Acc Avg1-shot 10-shot 1-shot 10-shot
Total 90.67 94.88 88.06 93.33 91.74
w/o 𝑃𝑟𝑜 𝑓 𝑐𝑐 89.54 94.18 87.43 92.85 91.00
w/o 𝑃𝑟𝑜𝑐𝑐𝑐 85.44 94.32 76.57 89.73 86.52
w/o 𝑃𝑟𝑜𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 75.36 92.57 63.59 87.16 79.67

5 Conclusion
In this paper, we proposemulti-grained correspondence learning for
bootstrapping audio-language models to improve audio recognition
with few training samples. Multi-modal representation learning
assisted by generative modeling is proposed for extracting potential
meanings of multi-level audio information and category concepts.
Multi-grained key-value cache and multi-grained cross-modal con-
trast are proposed to establish flexible correspondences between
multi-level audio information and diverse discriminative character-
istics through optimal transport modeling and late weighted fusion.
Extensive experiments validate the effectiveness of our proposed
multi-grained correspondence learning.
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