
Under review as a conference paper at ICLR 2023

LEARNING TO REASON WITH RELATIONAL
ABSTRACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have recently shown promising progress in mathematical
reasoning when fine-tuned with human-generated sequences walking through a
sequence of solution steps. However, the solution sequences are not formally
structured and the resulting model-generated sequences may not reflect the kind of
systematic reasoning we might expect an expert human to produce. In this paper,
we study how to build stronger reasoning capability in language models using the
idea of relational abstractions. We introduce new types of sequences that more ex-
plicitly provide an abstract characterization of the transitions through intermediate
solution steps to the goal state. We find that models that are supplied with such
sequences as prompts can solve tasks with a significantly higher accuracy, and
models that are trained to produce such sequences solve problems better than those
that are trained with previously used human-generated sequences and other base-
lines. Our work thus takes several steps toward elucidating and improving how
language models perform on tasks requiring multi-step mathematical reasoning.

1 INTRODUCTION

Deep learning has had tremendous success in a wide range of domains, such as vision (He et al.,
2016), language (Brown et al., 2020), and playing games at superhuman levels (Mnih et al., 2015;
Silver et al., 2016; Vinyals et al., 2019). Yet despite these accomplishments, these systems remain
limited in their formal and mathematical reasoning abilities (Saxton et al., 2019; Cobbe et al., 2021;
Hendrycks et al., 2021). Although there have be recent impressive gains Lewkowycz et al. (2022),
the models remain challenged to succeed at harder problems.

Recent work suggest that neural networks, like humans, benefit from relying on a chain of reasoning
steps rather than attempting to produce the final output as a direct mapping from the problem prompt
(Recchia, 2021; Nye et al., 2021; Hendrycks et al., 2021; Cobbe et al., 2021; Lewkowycz et al.,
2022). These works rely entirely on naturalistic data and manipulations, in the sense that problems
and their step-wise solutions are taken as they are found in existing sources, or human annotators
are asked to produce a sequence of solution steps using numbers interspersed with natural language.
However, while naturalistic sentences are certainly how we often communicate our solutions to
each other informally, we argue that formal and mathematical reasoning depends on identifying and
exploiting the set of abstract relationships that underlies the details of the problem at hand. Even
in settings where the focus is on the step-wise manipulation of quantities to obtain valid practical
results, a set of abstract relationships underlies the sequence of operations.

We build on this intuition by exploring the possibility that, if a problem-solver can formulate the
problem under consideration at an abstract level, this will be conducive to finding the correct se-
quence of more specific arithmetic operations. However, to our knowledge, no math dataset cur-
rently exists that utilizes natural language and also isolates key reasoning components such as en-
tities and their relations, i.e. there is no way to train the model to convert natural language inputs
into these core elements. We address this gap by proposing a new dataset, GSM8K-R, by expand-
ing on the GSM8K dataset (Cobbe et al., 2021), a dataset containing grade-school level math word
problems, with human annotations that highlight the relational abstractions that are central to math-
ematical reasoning. We also introduce a new synthetic task, called the unit conversion (UC) task,
in which the abstract relational problem is reduced to its essence that enables controlled analyses
without the complications that arise from naturalistic datasets.

1

Under review as a conference paper at ICLR 2023

Num 1

A. Numeric only B. Relational-First C. Interleaved D. Multitask

Num 2 Num 3

Num 1 Num 2 Num 3

Rel 1 Rel 2 Rel 3 Num 1

Num 2 Num 3

Rel 1 Rel 2

Rel 3 Num 1 Num 2 Num 3

Rel 1 Rel 2 Rel 3

<relation> eggs laid per day - eggs
for breakfast - eggs for baking =
remaining eggs;
remaining eggs * price per egg =
amount earned daily from eggs
OR
<equation> 16-3-4=9; 9*2=18

<relation> eggs laid per day - eggs
for breakfast - eggs for baking =
remaining eggs;
remaining eggs * price per egg =
amount earned daily from eggs
<equation> 16-3-4=9; 9*2=18

eggs laid per day - eggs for
breakfast - eggs for baking =
remaining eggs; 16-3-4=9;
remaining eggs * price per egg =
amount earned daily from eggs;
9*2=18

16-3-4=9; 9*2=18

Math Question: Janet's ducks lay 16 eggs per day. She eats 3 for breakfast every morning and bakes muffins for her friends every day with 4. She sells the
remainder at the farmers' market daily for $2 per fresh duck egg. How much does she make every day?

Unit Conversion Task: H = 2A; F = 3D; B = 3A; I = 3F; E = 3B; J = 2I; B = 3C; F = 4E; G = 3C; I = 4H; D = 2C; G = 1B;
Convert J to G (mod 5)

1 * 2 = 2; 2 * 3 = 1; 1 * 3 = 3; 3 * 2 =
1; 1 / 3 = 2;

<relation> J -> I; I -> F; F->D; D ->
C; C->G; <equation> 1 * 2 = 2; 2 * 3
= 1; 1 * 3 = 3; 3 * 2 = 1; 1 / 3 = 2;

J -> I; 1 * 2 = 2; I -> F; 2 * 3 = 1;
F->D; 1 * 3 = 3; D -> C; 3 * 2 = 1;
C->G; 1 / 3 = 2;

<relation> J -> I; I -> F; F->D; D ->
C; C->G;
OR
<equation> 1 * 2 = 2; 2 * 3 = 1; 1 * 3
= 3; 3 * 2 = 1; 1 / 3 = 2;

Figure 1: We explore abstract relational reasoning by partitioning the reasoning process into the abstract
relational and the numeric part, and compare four different possibilities: Numeric only (NN): Only numeric
steps are provided without any relational tokens; Relational-first: (RRNN) The abstract relational parts are
stated before the numeric; Interleaved: (RNRN): relational then numeric parts occur in alternating sequence;
and Multitask: (RR|NN): The network learns to produce either the abstract relational or the numeric sequence
to a task prompt, then prompted for the numeric sequence at test time.

At their core, both tasks involve reasoning about how different quantities relate to each other, and
formulating appropriate arithmetic equations to perform the corresponding numerical computations.
We can decompose each step of the solution into abstract relational reasoning and arithmetic expres-
sions, which can then be used to recompose the solution sequence in different forms.

We summarize our main contributions as follows:

• We decompose the problem solving process into identifying the relevant abstract relationships and
performing the corresponding arithmetic manipulations.

• We present a new dataset called GSM8K-R that adds relational abstraction annotations to the
original GSM8K dataset (Cobbe et al., 2021) (to be released with the paper).

• We introduce the new synthetic task Unit Conversion task that brings out the importance of en-
gaging with the relational abstractions, even in smaller transformer models.

• We find that teaching models to identify the relevant abstract relationships on trained problems can
lead to substantial performance gains at test, and identify several factors affecting this outcome.

• We find that identifying the crucial abstract relationships remains a challenge, and that providing
the relational abstraction at test time can produce drastic gains.

Taken together, we believe these findings highlight the importance of identifying the relevant abstract
relations to enable correct formal and mathematical reasoning. In the discussion, we consider next
steps that may allow the development of artificial systems that capture this ability.

2 INCORPORATING RELATIONAL ABSTRACTION

In this section, we describe our framework of incorporating relational abstractions into mathematical
reasoning. We begin with the notion that mathematical problem solving involves determining the
values of unknown quantities from known quantities, where a quantity is a numerical attribute of an
item or set, such as the price of an item or the number of items in the set. Quantities can be derived
from other quantities relying on rules that apply to quantities of relevant types. For example, as in
the problem shown in Table 1, the amount earned from selling some number of items (in this case,
eggs) is equal to the product of the number of items sold times the price per item.

In general, mathematical problem solving requires several operations on given quantities to obtain a
final answer – a specified target or goal quantity. In the problem in Table 1, we are given the number
of eggs Janet’s ducks lay each day, eggs eaten for breakfast, eggs used in baking, and we are told
that she sells the remainder for a specified price per egg. To solve for how much money she makes,
we must first determine the remainder by subtracting the number of eggs eaten and the number of
eggs used in baking from the number laid, and then determine the amount earned by multiplying the
remaining number of eggs times the price per egg.

2

Under review as a conference paper at ICLR 2023

This exemplifies what we call the abstract relational plan: a plan outlining the reasoning process
without invoking any numbers. Here, “eggs laid”, “eggs eaten”, “eggs used in baking”, “remaining
eggs” and “price per egg” are quantities needed to reach the target quantity. The abstract relational
plan specifies the steps that must be applied to the given quantities to reach the relevant intermediate
quantities, and then applied to these quantities to reach the final answer. What makes a plan abstract
is that it omits specific information – that is, the specific quantities involved – and connects items
through how they relate to each other at a more general or abstract level. What makes it relational is
that it specifies which entities are relevant to each other in the problem. An abstract relational plan
formulates the problem as a graph of interconnected abstract entities, whose specific values could
be replaced by others without changing the set of relationships.

The problems found in the GSM8K dataset can all be seen as solvable by extracting the correct
abstract relational plan from the verbal statement of the problem and then applying the plan to obtain
the numeric value of the target quantities given the values of the given quantities. The challenge here
is that GSM8K, and other math datasets like it, consists entirely of natural language data that makes
it difficult to systematically extract the relevant entities and their relations. We address this issue
through our human-annotated dataset GSM8K-R that provides the ground truth labels to train the
model with, and we explore several instructional forms that utilize these annotations.

Figure 1 enumerates a few possibilities for how we can incorporate abstract relational reasoning into
the training and testing of a decoder-only transformer of the kind used in the GPT model series. We
first decompose a solution sequence into an an abstract relational plan, consisting of a sequence of
abstract relational expressions as described above and a sequence of arithmetic expressions involving
only numbers and basic arithmetic operations. We can then train and test the models using conditions
of the following four types: numeric-only (NN) uses only the n arithmetic sequences, and serves as
our baseline. In relational-then-numeric, (RRNN) the relational expressions are presented before
numeric ones. This represents the strategy of generating a high-level relational plan first, and then
implementing the plan by performing the relevant arithmetic operations. The interleaved format
(RNRN) alternates between the abstract relational expressions and the arithmetic expressions, so
that each arithmetic expression is accompanied by the relevant abstract relational expression. Lastly,
in the multitask approach (RR| NN), the model is prompted to output the sequence of either the
relational or the numeric expressions, but not both. This may allow the model to learn to represent
the problem at the abstract level and exploit such representations even when it is only producing
the numerical expressions. This approach tests the claim that additional auxiliary language tokens
effectively function as regularizers or learning tools that can be discarded at test time and may
even suppress performance if included (Mu et al., 2020; Lampinen et al., 2022; Hendrycks et al.,
2021). Moreover, learning and generating the two sequences separately has the added advantage of
generating shorter sequences at test time, just like numeric-only. In this paper, we examine which
type of relational abstraction brings the best reasoning capability in each of our two task settings.

3 RELATED WORK

Although computational models of mathematical reasoning have been proposed for over half a
century (Bobrow, 1964), application of neural network models began much more recently using
recurrent networks for sequence-to-sequence prediction (Wang et al., 2017). Shortly after their
introduction in Vaswani et al. (2017), Saxton et al. (2019) found that transformers-based models
outperformed other architectures when trained to generate the answer directly from the problem
statement. Many researchers have explored enhancing model performance by fine-tuning to pro-
duce intermediate equations or programs (Shi et al., 2015; Upadhyay & Chang, 2015; Amini et al.,
2019; Miao et al., 2020; Drori et al., 2021). Recent advances rely on large transformer-based lan-
guage models (Brown et al., 2020; Thoppilan et al., 2022; Chowdhery et al., 2022; Lewkowycz
et al., 2022) and/or datasets involving full step-by-step solutions in natural language (Ling et al.,
2017; Hendrycks et al., 2021; Welleck et al., 2021; Cobbe et al., 2021; Drori et al., 2021).

Interestingly, prompting large language models such as GPT-3 to generate chains of thought with
just a few examples at test time can enhance performance considerably (Wei et al., 2022), indicating
that the models may already have the ability to engage in a step by step reasoning process, in part be-
cause such a process is exemplified in their training. Many recent works use multiple samples from
a model, either using a verifier trained on model-generated responses to re-rank candidate sequences
Cobbe et al. (2021) or relying on a majority voting scheme (Wang et al., 2022). The strongest results

3

Under review as a conference paper at ICLR 2023

overall to date (Lewkowycz et al., 2022) use a very large transformer based language model, fine-
tuned on scientific and mathematical text, provided with a chain of thought prompt, and assessed
using majority voting. However, these models still only achieve modest scores on harder problems,
consistent with the view Hendrycks et al. (2021) that simply scaling up the model size is an in-
tractable strategy for solving mathematics problems of higher difficulty, even with the added benefit
of chain-of-thought prompting, verifiers, or majority voting.

Common across these existing works is the use of human-generated solution sequences. In our work,
we introduce our GSM8K-R dataset to explicitly contrast performance on different types of solution
sequences and explore how explicit focus on generating a structured abstract relational plan can
improve learning, an analysis that would not be possible with existing datasets. We also introduce
the unit conversion (UC) task, a completely synthetic task domain to complement our exploration
of solving problems expressed in natural language. This parallels the approach of Gontier et al.
(2020), with a crucial difference. These authors investigated logical reasoning over a fixed data-
base of specific relational facts, training models to produce an inferable relation to a probe question,
and found only small advantages of a plan sequence compared to generating the answer directly.
In contrast, our UC task affords separating the abstract relational plan from the specific numerical
computations. This allows us to demonstrate a striking advantage from learning to produce the
abstract relational sequence rather than just the necessary numerical expressions.

4 EXPERIMENTS

We use two tasks to explore the possible benefits or relational abstractions: a set of natural language
math problems from the Grade School Math 8K (GSM8K) dataset (Cobbe et al., 2021), and an
abstract unit conversion task (UC) in which the model must determine how the number of units of
one type corresponds to a specified number of units of another type. Both tasks contain quantities
and relations that can be represented by a graph, and involve formulating and solving a series of
numerical equations. However, the two tasks pose different challenges, allow different approaches
to model training, and afford different comparison conditions and analyses.

The GSM8K dataset consists of realistic word problems requiring a broad understanding of mathe-
matical concepts and their application to grade school math problems. The dataset includes human-
generated mixed expressions that usually step through the problems in a linear order corresponding
to the problem statement in a fairly small number of solution steps. Because these are word prob-
lems, they challenge the model’s natural language understanding and general world knowledge (such
as the fact that a dozen consists of 12 items, or that the number of eggs increases when it is laid by
a chicken but decreases when it is used in baking cookies). We present our GSM8K-R dataset by
building on the GSM8K dataset, adding human annotations that extract the core components of the
reasoning process, namely the entities, quantities, and the arithmetic operations that define the enti-
ties’ relations. In this setting we fine-tune pre-trained language models and compare our proposed
conditions to the natural language based comparison conditions provided with the data set.

The unit conversion task avoids the natural language understanding and world knowledge issues by
presenting conversion rules in a simple symbolic form. This allows us to present problems requiring
the use of a larger number of specified relationships that are presented to the model in a random
order and requiring longer sequences of solution steps. In this setting we use smaller scale models
that we are able to train end-to-end, allowing us consider several additional variations of the training
regime and to analyze the model’s step-by-step performance more straightforwardly. Together our
two tasks offer both a rich, naturalistic environment with empirical results for broader applicability
and a systematic, synthetic environment that reduces mathematical reasoning to its most abstract
form, bringing out the advantage of relational abstractions more clearly.

Table 1 presents key results from the four conditions illustrated in Figure 1. In both the GSM8K-R
and UC tasks, the models perform very poorly after fine tuning to generate the answer directly from
a problem statement (25% correct is the chance level on the UC task), and training on numeric se-
quences produces some improvement for GSM8K-R but only a hint of a gain over chance level for
UC. The multitask condition produces slight gains for but models, but the real big gains are observed
when the models have been trained to produce relational sequences either before or alternating with
the numerical sequences. For GSM8K-R, the benefit only appears when the relational plan is in-
cluded in the prompt at test time. In the UC setting, we also see big gains when the model produces
the relational sequence for itself, and we also see that this advantage comes only on trials where the

4

Under review as a conference paper at ICLR 2023

Model, training regime, and dataset

GPT2-XL, fine-tuned on GSM8K Simple transformer trained from
scratch on unit conversion dataset

Type of steps
in training

Problem
prompt only

Problem & relational
plan prompt

Problem
prompt only

Problem & relational
plan prompt

Answer only
baseline 4.93 - 24.7 -

Numeric only
(NN)

22.97 - 25.9 -

Multitask
(RR|NN)

28.05 - 29.8 -

Relational First
(RRNN) 19.48 64.59

71.1
W/ correct plan: 96.8
W/ incorrect plan: 21.0
Plan accuracy: 66.2

96.7

Interleaved
(RNRN) 22.97 66.26

85.8
W/ correct plan: 99.9
W/ incorrect plan: 20.3
Plan accuracy: 82.3

99.9

Table 1: Key results demonstrating the key findings from the parallel conditions of our two experiments. Fuller
definition of the conditions are given in the caption for Figure 1.

model produces the relational sequence correctly. Indeed, either when the model produces the rela-
tional sequence correctly itself or when prompted with the correct relational sequence, performance
is at near-ceiling levels. In the next sections we describe the two data sets and experiments in more
detail, along with further many findings from many additional comparison conditions.

4.1 TASK 1: SOLVING GRADE SCHOOL MATH PROBLEMS

We first evaluate our framework on more realistic problems posed using natural language in the
GSM8K-R dataset, which contains around 7.7K training question and 1.3K test questions from the
original GSM8K dataset with additional human annotated solutions, all in the form of the English
language. An example of the problem and its solution can be found in the first two rows of Table 2.
The original dataset contains the following possible solution formats:
• The original solution format was used in the original paper. It provides solution steps in natural

language annotated with executable equations. It is similar to our interleaved approach in that the
target unit of each step often appears at the end of the sentence (e.g. Janet sells 16-3-4 eggs a day).

• The equation-only format contains the numerical equations without any use of natural language
to reference any objects or units.

• The socratic version contains questions that ask for intermediate answers, which we can prepend
before each step of the original solution (socratic + solution) or of the equation-only format (so-
cratic + equation). The questions are in the GSM8K dataset, but prior work did not use them.

In addition to these formats, we introduce the relation + equation format that features relational
abstractions. The input arguments and the types of transition functions are specified in addition
to the output quantity. For example, “amount earned” is the step output, and “number of eggs
multiplied by price per egg” is the relational statement needed to compute the output. Since the
original dataset only contains language solutions without any additional labels, we asked human
participants to annotate the entire GSM8K dataset so that each solution step would be paired with an
abstract relation. We include our labeling task instructions in the Appendix C. Both the socratic and
relation formats contain pairs consisting of an auxiliary sequence and a solution sequence. Following
the setup outlined in Section 2, we either place the auxiliary sequence first or interleave it with the
numerical expressions, which we refer to as aux-first and interleaved respectively in our results. We
also include a multitask variant of our relation format. Here, during training, the model is prompted
to generate relational sequences on 1/2 of the training batches, and numeric sequences on the other
half, then prompted at teste time to generate numeric sequences.

Implementation. Following Cobbe et al. (2021) we use pretrained GPT2-M and GPT2-XL mod-
els (Radford et al., 2019), first fine-tuning the model on the question & answer sequences for 40

5

Under review as a conference paper at ICLR 2023

Problem Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morn-
ing and bakes muffins for her friends every day with four. She sells the
remainder at the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’ market?

Natural language
Original solution (1) Janet sells 16 - 3 - 4 = ≪16-3-4=9≫ 9 duck eggs a day.

(2) She makes 9 * 2 = ≪9*2=18≫18 every day at the farmer’s market.
Numeric only

Equation only (1) ≪16-3-4=9≫
(2) ≪9*2=18≫

Socratic prompts
Socratic + solution (1) How many eggs does Janet sell? Janet sells 16 - 3 - 4 = ≪16-3-4=9≫ 9

duck eggs a day.
(2) How much does Janet make at the farmers’ market? She makes 9 * 2 =
≪9*2=18≫18 every day at the farmer’s market.

Socratic + equation (1) How many eggs does Janet sell? ≪16-3-4=9≫
(2) How much does Janet make at the farmers’ market? ≪9*2=18≫

Relational + numeric
Relation + equation (1) eggs laid per day - eggs for breakfast - eggs for baking = remaining eggs

≪16-3-4=9≫
(2) remaining eggs * price per egg = amount earned daily from eggs
≪9*2=18≫

Table 2: GSM math dataset sample problem and variants of solution sequence format.

epochs with the AdamW optimizer (Loshchilov & Hutter, 2019) and learning rate 1e-5. During
testing, We generate output sequences and use the calculator to evaluate the equations as in Cobbe
et al. (2021). We primarily use greedy decoding, but sometimes use a verifier following Cobbe et al.
(2021) (see Appendix A.1 for details). When conditioning with ground-truth auxiliary prompts, we
do not use verification as the same output samples are generated multiple times.

Results. Table 3 shows the main results using GPT2-M and -XL with greedy decoding. The
larger language model achieves better performance across the board, though the margin varies with
other factors. Note that our numbers are obtained using GPT-2, which is about 100× smaller than
GPT-3 in terms of parameter count, so lower accuracy is to be expected. Compared to the answer-
only baseline, in which the intermediate steps are omitted, all of the multi-step approaches offer an
improvement. Equation-only outperforms the original solution format (22.97% vs. 17.44%), which
contains both numbers and text, and this advantage generally holds in other matched comparisons.
When the model is fine-tuned with auxiliary sequences (socratic or relation sequences) paired with
solution sequences (either the original GSM8K solution or our numeric equation sequences), we
see generally worse performance when the model must generate both types of sequences compared
to the numerical only cases. However, the sequences the model is fine-tuned with are quite long,
and performance generally degrades as sequence length increases. Indeed, we find that accuracy
generally decreases with increasing solution steps and answer length, and the equation only format
suffers the most obvious degradation (see Appendix A.2 for details).

Our multitask regime avoids this difficulty. We see that multitask training leads to substantially
improved performance in the larger GPT2-XL model (28.05% correct compared to the baseline of
22.97%, a 22% relative improvement). This finding shows clearly that training to reason relationally
can improve test-time performance, even when at test-time the model is only generating numerical
sequences. Relation + equation (interleaved) achieves better results than equation-only (29.49% vs.
24.79%), and is almost on par with multitask (29.49% vs. 30.17%) when using 20 samples and the
external verifier. We find that verification is less helpful when the output format is purely numeric,
such as in the multitask and equation only formats.

As noted previously, model accuracy improves significantly when models trained with auxiliary and
solution sequences are prompted at test time with the ground-truth auxiliary sequence. Strikingly,
prompting with ground-truth relational sequences triples the accuracy compared to the equation-
only model (66.26% vs. 22.97%). Moreover, our relational sequences are far better prompts than
the GSM8K socratic questions (66.26% vs. 36.92%), suggesting that with a good abstract relational
plan, language models can solve the math questions much more easily. These results also indicate
that the challenge the models face lies primarily in constructing the correct relational plan.

All else being equal, generating the full relational sequence first as an overall plan is nearly always
slightly worse than interleaving relational and equation sequences, and this general pattern holds

6

Under review as a conference paper at ICLR 2023

Method GPT2-M (345M) GPT2-XL (1.5B) GPT2-XL (1.5B)
+ Verifier (345M)

Baseline without sequence generation

Answer only 3.56 4.93 -

Solution sequences only

Original Solution 10.69 17.44 23.35
Our Equation Only (NN) 15.32 22.97 24.97

Auxiliary and solution sequences: Model generates both

Socratic + Soln. (aux-first) 10.01 13.95 -
Socratic + Soln. (interleaved) 9.93 17.51 -

Socratic + Eqn. (aux-first) 13.27 19.03 23.35
Socratic + Eqn. (interleaved) 15.16 21.00 25.85

Relation + Eqn. (aux-first) (RRNN) 12.59 19.48 25.55
Relation + Eqn. (interleaved) (RNRN) 13.19 22.97 29.49

Auxiliary and solution sequences: Trained to generate either, prompted for numeric at test

Relation + Eqn. (multitask) (RN|RN) 15.62 28.05 30.17

Auxiliary and solution sequences: Prompt with auxiliary, model generates solution sequence

Socratic + Soln. (aux-first) 17.46 26.23 -
Socratic + Soln. (interleaved) 17.89 28.89 -

Socratic + Eqn. (aux-first) 20.47 35.56 -
Socratic + Eqn. (interleaved) 27.82 36.92 -
Relation + Eqn. (aux-first) 54.59 64.59 -

Relation + Eqn. (interleaved) 58.53 66.26 -

Table 3: GSM-8K Finetuning Top-1 Test Solve Accuracy (%). Labels NN, RRNN, RNRN, and RR|NN desig-
nate conditions also shown in Table 1

throughout our results in Tables 3 and 7. The fact that this pattern continues when the relational
sequences are provided as prompts suggests that proximity between the corresponding relational and
numerical reasoning components helps the model retrieve the correct numeric information.

4.2 TASK 2: UNIT CONVERSION

The unit conversion task takes as input a given quantity and unit, then requires finding the equivalent
quantity in another unit based on a set of conversion rules that are provided in the prompt (see
Table 4). Problems of this type correspond abstractly to a subset of the problem types encountered
in GSM8K. The conversion rules are presented in random order, and can collectively be viewed as
edges of a graph. Although conversions are bidirectional, only one direction is specified directly
in the prompt for each rule so that solving the task is equivalent to finding a path from the source
node to the destination node while performing the corresponding multiplication (forward) or division
(backward) operations when traversing each edge. This task offers a second context, using totally
synthetic problems that eliminate any world knowledge and linguistic uncertainties that the GSM8K
problems present, in which to explore the role of teaching the model to identify the abstract sequence
of unit conversion steps rather than just step through the required sequence of numeric conversions.
In this task setting, we find a very clear advantage from providing and training models to produce
relational, as well as numeric, sequences compared to producing numbers alone.

The task (Table 4) is presented as a sequence completion task using the graph description and the
conversion instruction as the task prompt. In addition to an answer-only baseline, we train the model
to produce solution sequences. There are eight single-task conditions, using four sequence types
each with or without an initial relational-plan specifying the sequence of units to traverse before
producing the sequence containing numeric calculations. The four sequence types are numeric-only,
containing only the numerical expressions, and three interleaved relational and numeric sequence
types: units-then-numbers gives the source and destination units of the traversing edge followed
by the numerical expression; numbers-then-units gives the numerical expression, followed by the
source and destination units; integrated states the source quantity and unit, then the remainder of the
numerical expression, followed by the destination unit.

As in the previous task, we also test each model’s capacity to execute a provided correct relational
plan by including the ground-truth plan as part of the given prompt for relational plan models. Lastly,
as in the GSM8K experiments, we also consider the multitask approach in four more conditions, in
which the network is prompted to generate either the relational plan or one of the four types of
sequences. The subset of the full set of these conditions corresponding to the NN, RRNN, RNRN
and RR|NN conditions as defined in Figure 1 are flagged in Table 5.

7

Under review as a conference paper at ICLR 2023

Task Prompt Relational Plan Sequence Types
(Optional)

Numeric Only Interleaved
Units Then Numbers Numbers Then Units Integrated

graph
H → 2 A F → 3 D relations steps steps steps steps
B → 3 A I → 3 F J → I → F → 1 * 2 → 2 J I 1 * 2 → 2 1 * 2 → 2 J I 1 J * 2 → 2 I
E → 3 B J → 2 I D → C → G 2 * 3 → 1 I F 2 * 3 → 1 2 * 3 → 1 I F 2 I * 3 → 1 F
B → 3 C F → 4 E 1 * 3 → 3 F D 1 * 3 → 3 1 * 3 → 3 F D 1 F * 3 → 3 D
G → 3 C I → 4 H 3 * 2 → 1 D C 3 * 2 → 1 3 * 2 → 1 C D 3 D * 2 → 1 C
D → 2 C G → 1 B 1 / 3 → 2 C G 1 / 3 → 2 1 / 3 → 2 C G 1 C / 3 → 2 G
convert 1 J to G <S> 2 G </S> <S> 2 G </S> <S> 2 G </S> <S> 2 G </S>

Table 4: Example of a unit conversion task problem represented in different formats.

Implementation. To maintain consistent difficulty across our analyses, we use graphs with 10
nodes and 12 edges, and problems that could be solved using exactly 5 edge traversals. All arithmetic
operations in this task are performed in modulo-5 to avoid the arbitrary fractions and large numbers
that would result from compounding multiplication and division operations involved in multi-step
problems. This allows us to focus on the reasoning component of the task rather than the numerical
accuracy of performing long arithmetic operations. We use 4-layer transformers encoders for all our
experiments in this task, which are trained using teacher-forcing on datasets of 10,000 randomly
generated problems. We measure correctness by extracting the tokens between <S> and </S>,
which in fully trained models always consists of 1, 2, 3, or 4 followed by the goal unit, resulting in
a 25% chance to correctly guess the answer, even with incorrect intermediary steps. More specific
model details and comparisons can be found in Appendix Section B.1.

Method Accuracy

Baseline

Answer only 24.7 (1.1)

Numeric Only

Numeric Sequences (NN) 25.9 (1.1)

Relational and Numeric

Relational plan then numeric (RRNN) 71.1 (2.1)
Interleaved: units then numbers (RNRN) 85.8 (1.1)
Interleaved: numbers then units 69.3 (2.9)
Interleaved: integrated 54.1 (3.0)
Plan + Interleaved: units then numbers 72.5 (2.2)
Plan + Interleaved: numbers then units 74.4 (1.7)
Plan + Interleaved: integrated 77.1 (1.9)

Relational (Prompted) and Numeric

Relational plan then numeric (RRNN) 96.67 (2.5)
Interleaved: units then numbers (RNRN) 99.9 (0.1)
Plan + Interleaved: units then numbers 96.7 (1.2)
Plan + Interleaved: numbers then units 95.5 (2.2)
Plan + Interleaved: integrated 97.6 (1.1)

Table 5: Unit conversion accuracy over 20 runs. Stan-
dard errors in parentheses.

Results. All models successfully learned to
generate sequences with the corresponding
template, but the accuracy of the generated
sequences varied from chance to nearly per-
fect across conditions. Our findings (Table 5)
demonstrate foremost the importance of having
the relational components as part of the target
sequence, indicated by the near-chance accu-
racy of the numeric-only model when trained
without planning, and the much higher success
rate of all variants including abstract variables
(variables corresponding to units).

Of the variants in which the model generates
both relational and numeric output at test, the
interleaved units-then-numbers model (RNRN)
has the highest accuracy. Producing the rela-
tional plan first followed by numeric sequences
(RRNN) is slightly worse, comparable to our
findings in GSM8K-R. The fact that units-then-
numbers is the best of the interleaved formats
when the model does not first generate a rela-
tional plan suggests that identifying all of the
relevant units that need to go in a numeric com-
putation prior to performing that computation
can be very helpful.

Although training the model to produce both a relational plan and relational steps interleaved with
numbers is helpful in numbers-then-units and integrated conditions, the reverse is true in the units-
then-numbers condition, where asking the model to produce an initial relational plan actually re-
duces accuracy from 83% to 72%. This pattern of results suggests that generating the correct initial
relational plan can itself be a challenge, and that an incorrect initial plan then interferes with per-
forming the correct computations. Consistent with this interpretation, we find that all models trained
to produce a relational plan do significantly better when given the ground truth plan as part of the
prompt, reaching over 95% accuracy in all but the numeric-only models. Conversely, when the
model uses an incorrect plan, its accuracy drops to near 20%. This suggests that the primary chal-
lenge of this task is not performing the correct arithmetic operations, but knowing which steps to
take next. For a more detailed breakdown, see Appendix Section B.2.

8

Under review as a conference paper at ICLR 2023

Graph # Graph # Solution Interleaved Numeric Only MT Numeric MT Plan
Nodes Edges Steps (RNRN) (NN) (RR|NN) (RR|NN)

5 5 2 100.0 94.2 100.0 100.0
6 6 2 100.0 50.0 98.4 89.6
7 8 3 99.0 27.8 85.8 50.2
10 12 5 83.5 25.9 71.6 29.8

Table 6: Unit conversion results by difficulty. MT Plan indicates the percent of relational plans correctly
traversed from the start to goal units by the multitask model. MT Numeric indicates final answer accuracy in
the numeric only outputs by the multitask model.

Limitations of numeric-only and multitask representations. The near-chance performances of
numeric-only (NN) and multitask (RR|NN) models are at odds with our results in GSM8K-R, as well
as some other previous works that solved word problems by mapping them to arithmetic expressions
first (Wang et al., 2017; Amini et al., 2019). Other than the synthetic nature of the UC task, one key
distinguishing feature from GSM8K and other naturalistic math datasets is the relatively higher
problem complexity. Consider the GSM8K problem shown in Table 2, which requires only a 2-step
solution using just 6 unique quantity-unit pairs, and where the quantities invoked in the solution steps
appear in the same order as presented in the prompt. In contrast, the graphs used in our analyses
contain 10 nodes with 12 edges, and the relations are always presented in random order with no
correspondence to how they appear in the solution. These features could make the unit conversion
task more difficult, requiring more relational planning.

We test this hypothesis by training the numeric-only (NN), multitask (RR|NN), and interleaved
units-then-numbers (RNRN) models on three easier datasets that contain problems involving smaller
graphs with 5, 6, 7 nodes and only 2 to 3 solution steps. We find that while the RNRN models reach
near perfect accuracy in all three problem complexities, the NN models only solve 94.2%, 50%,
and 28% of the 5, 6, and 7 node problems respectively. Likewise, the RR|NN solves 100%, 89.6%,
and 50.2% of the problems respectively, even though, interestingly, it produces correct plans 100%,
98.4%, and 85.8% of the time, indicating a weak transfer effect from learning to produce the plans
to correctly solving the problems. In sum, while the numeric-only and multitask approaches may be
effective on simpler problems, this strategy also does not scale well with problem complexity.

5 DISCUSSION
We find that relational reasoning is a key component of mathematical reasoning, whether using nat-
ural language or abstract symbols as indicated by our experiments on the GSM8K-R and the unit
conversion tasks. Models trained with relational abstractions outperform models trained with nu-
merical expressions only, and making these abstractions more salient improves performance further
still. While the models can solve some problems without relational abstractions at test time, and can
benefit from learning to generate the relational plan separately as in the multitask setup, performing
both relational and numerical reasoning together scales far better with model complexity.

We also find that even when all the relational and numerical components are present, how they are
ordered makes a significant difference. Among the variants we considered, performing the relational
reasoning step just before the numerical computation step is most advantageous, outperforming
cases where the full relational plan must be generated at the outset. Lastly, we find that providing
the model with the correct abstract steps produces a massive boost in performance, resulting in a
3-fold increase in accuracy for the GSM8K-R task and near-ceiling accuracy in unit conversion,
suggesting that the core of the challenge is indeed correct relational planning.

These results suggest that the popular approach to modeling mathematical reasoning through natural
language datasets may be limited, and echo the conclusion in Hendrycks et al. (2021) that making
significant strides in this domain will require a paradigmatic shift in how we understand the problem
space. The diversity of problems in GSM8K-R and the consistency of results across both and the UC
tasks provide confidence that relational abstractions are indeed central to mathematical reasoning.
This points to an exciting future direction in understanding how relational abstractions can not only
be used, but also identified by neural models, opening opportunities to engage with other math
datasets such as MathQA (Amini et al., 2019) and MATH (Hendrycks et al., 2021) without the
need for human annotations.We hope that our findings will motivate future research on the role of
relational abstraction in mathematical reasoning, leading to deeper insight and stronger performance
in this challenging and exciting domain.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 2357–2367, Minneapolis, Minnesota, June 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1245.

Daniel G Bobrow. Natural language input for a computer problem solving system. 1964.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways.
CoRR, abs/2204.02311, 2022. doi: 10.48550/arXiv.2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christo-
pher Hesse, and John Schulman. Training verifiers to solve math word problems. CoRR,
abs/2110.14168, 2021.

Iddo Drori, Sunny Tran, Roman Wang, Newman Cheng, Kevin Liu, Leonard Tang, Elizabeth Ke,
Nikhil Singh, Taylor L. Patti, Jayson Lynch, Avi Shporer, Nakul Verma, Eugene Wu, and Gilbert
Strang. A neural network solves and generates mathematics problems by program synthesis:
Calculus, differential equations, linear algebra, and more. CoRR, abs/2112.15594, 2021.

Nicolas Gontier, Koustuv Sinha, Siva Reddy, and Chris Pal. Measuring systematic generalization in
neural proof generation with transformers. Advances in Neural Information Processing Systems,
33:22231–22242, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Andrew K. Lampinen, Nicholas A. Roy, Ishita Dasgupta, Stephanie Cy Chan, Allison C. Tam,
James L. McClelland, Chen Yan, Adam Santoro, Neil C. Rabinowitz, Jane X. Wang, and Felix
Hill. Tell me why! explanations support learning relational and causal structure. In International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pp. 11868–11890. PMLR, 2022.

10

Under review as a conference paper at ICLR 2023

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V.
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models. CoRR, abs/2206.14858, 2022. doi: 10.48550/arXiv.2206.14858.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July
30 - August 4, Volume 1: Long Papers, pp. 158–167. Association for Computational Linguistics,
2017. doi: 10.18653/v1/P17-1015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 975–984. Association for
Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.92.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Jesse Mu, Percy Liang, and Noah D. Goodman. Shaping visual representations with language for
few-shot classification. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 4823–4830. Association for Com-
putational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.436.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Gabriel Recchia. Teaching autoregressive language models complex tasks by demonstration. arXiv
preprint arXiv:2109.02102, 2021.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. In International Conference on Learning Representations,
2019.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang Liu, and Yong Rui. Automatically solving
number word problems by semantic parsing and reasoning. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pp. 1132–1142. The Association for Computational Linguistics, 2015.
doi: 10.18653/v1/d15-1135.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven
Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin,
James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Yanqi
Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Kathleen S. Meier-
Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson,
Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna,

11

Under review as a conference paper at ICLR 2023

Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil,
Blaise Aguera-Arcas, Claire Cui, Marian Croak, Ed H. Chi, and Quoc Le. Lamda: Language
models for dialog applications. CoRR, abs/2201.08239, 2022.

Shyam Upadhyay and Ming-Wei Chang. Draw: A challenging and diverse algebra word problem
set. number. Technical report, MSR-TR-2015-78, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. CoRR, abs/2203.11171,
2022. doi: 10.48550/arXiv.2203.11171.

Yan Wang, Xiaojiang Liu, and Shuming Shi. Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
845–854, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and Denny Zhou.
Chain of thought prompting elicits reasoning in large language models. CoRR, abs/2201.11903,
2022.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hanna Hajishirzi, Yejin Choi, and Kyunghyun Cho.
Naturalproofs: Mathematical theorem proving in natural language. In Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and
Benchmarks 2021, December 2021, virtual, 2021.

12

Under review as a conference paper at ICLR 2023

Method Greedy Simple Plurality Verifier Rerank Verifier Weighted Plurality

Original Solution 17.44 21.53 19.86 23.35
Our Equation Only 22.97 23.58 23.96 24.79

Socratic + Eqn. (aux-first) 19.03 21.46 22.29 23.35
Socratic + Eqn. (interleaved) 21.00 22.21 25.85 25.47
Relation + Eqn. (aux-first) 19.48 22.97 22.75 25.55

Relation + Eqn. (interleaved) 22.97 26.31 25.63 29.49
Relation + Eqn. (multitask) 28.05 29.42 28.28 30.17

Table 7: GSM-8K Top-1 Test Accuracy (%) Using 20 Samples. Bold = Best Answer Format; Underline = Best
Voting Mechanism. We take results from the best voting mechanism for each method in the main paper.

Number of Samples

V
er

ifi
er

 R
er

an
k

A
cc

ur
ac

y

0.15

0.20

0.25

0.30

5 10 15 20

Eqn Only Soln Socratic + Eqn (Interleaved)
Relation + Eqn (Interleaved) Relation + Eqn (Multitask)

Figure 2: Verifier reranking accuracy
Number of Samples

V
er

ifi
er

 W
ei

gh
te

d
P

lu
ra

lit
y

0.15

0.20

0.25

0.30

5 10 15 20

Eqn Only Soln Socratic + Eqn (Interleaved)
Relation + Eqn (Interleaved) Relation + Eqn (Multitask)

Figure 3: Verifier weighted plurality accuracy

A ADDITIONAL RESULTS

A.1 GSM-8K RESULTS USING SAMPLES

In Table 7, we study more sample-based mechanisms for generating solutions. We generate 20
samples using softmax sampling (temperature = 0.9), and to aggregate the answers, we considered
plurality voting (Wang et al., 2022) and the following verification-based techniques:
• Verification. As originally proposed in Cobbe et al. (2021), we train a separate verifier model

using samples generated by our main model. The verifier takes as input the concatenated sequence
of question and answer, then outputs a sequence of scores predicting whether the answer is correct
or not. We generate the training samples using the main model after two epochs of fine-tuning,
then fine-tune the GPT2-M model as our verifier.

• Verifier weighted plurality. We find that as the number of samples grows, a simple reranking
mechanism performs worse as it has more incorrect options to choose from as the top choice.
Cobbe et al. (2021) proposes using the voting mechanism to select the top-K ranked samples
as seeds and voting among these candidates. However, this requires a larger number of samples
for the voting process, and moreover, K becomes yet another hyperparameter to tune. Here, we
explore a simpler approach of using the verifier score to weigh the votes. We find that it smooths
out predictions and achieves higher accuracy.

All models seem to improve with using 20 samples, and our verifier weighted plurality is the best
approach, achieve the best overall accuracy on all but one condition. Figure 2 and 3 show accuracy
as a function of number of samples, and the verifier weighted plurality achieves higher scores with
more samples.

Table 7 also indicates that performance of verification-based approaches benefits more from addi-
tional auxiliary information (whether in the form of natural language or abstract relations). For
instance, our proposed relation + equation (interleaved) format has a similar performance to equa-
tion only using greedy decoding, but achieves significantly better performance with a verification
voting procedure, while equation only receives a smaller boost (interleaved improved by +6.52%
vs. equation only +1.82%). The original solution also receives a boost of +5.91%, except that the
absolute accuracy is 6.14% lower than relation + equation (interleaved), a rather wide gap. This
dependence on a verification plus voting procedure suggests that relational abstraction is a more
computationally demanding task that requires repeated processing of information.

13

Under review as a conference paper at ICLR 2023

Number of Solution Steps

Te
st

 A
cc

ur
ac

y

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5+

Eqn Only Soln Socratic + Eqn (Interleaved)
Relation + Eqn (Interleaved) Relation + Eqn (Multitask)

Figure 4: Accuracy vs. number of reasoning steps
in the groundtruth answer.

Answer Length Percentile

Te
st

 A
cc

ur
ac

y

0.0

0.1

0.2

0.3

0.4

0.5

20% 40% 60% 80% 100%

Eqn Only Soln Socratic + Eqn (Interleaved)
Relation + Eqn (Interleaved) Relation + Eqn (Multitask)

Figure 5: Accuracy vs. percentile of solution
length (percentiled separately by condition).

A.2 GSM-8K RESULTS ON DIFFERENT SOLUTION LENGTH

In Figure 2 and Figure 3 we show the accuracy as a function of number of samples in both reranking
and weighted plurality voting schemes. Reranking sometimes suffers from lower accuracy with
more number of samples, whereas weighted voting has an overall positive trend as the number of
samples go up.

We compare the performance of problems with different numbers of solution steps (Figure 4) and
different generated sequence lengths (Figure 5). The overall trend confirms that models perform
worse with longer answers. Figure 5 suggests that Equation Only tends to suffer from more degra-
dation as the relative solution length increases.

14

Under review as a conference paper at ICLR 2023

Table 8: Hyperparameters of models in Table 9. All analyses reported elsewhere in the paper use Medium (M)
hyperparameters.

Size # Parameters Memory # Layers Layer Size # Heads Dim. Feedforward

Small (S) 1.60M 6.39 MB 3 256 4 512
Medium (M) 2.12M 8.49 MB 4 256 4 512
Large (L) 3.18M 12.714 MB 6 256 4 512
X-Large (XL) 12.65M 50.594 MB 6 512 8 1024

Table 9: Comparison of final answer accuracy for each solution type with models of different sizes. Medium
(M) contains averages of 20 models. Small (S), Large (L), and X-Large (XL) contain averages of 3 models.

Size Plan Numeric
Only

Interleaved:
Units-Then-Numbers

Interleaved:
Numbers-Then-Units

Interleaved:
Integrated

S Yes 72% 66% 70% 81%
S No 22% 58% 76% 57%
M Yes 69% 73% 74% 77%
M No 26% 83% 69% 54%
L Yes 75% 70% 72% 78%
L No 23% 94% 81% 63%
XL Yes 66% 62% 82% 67%
XL No 29% 89% 81% 55%

B UNIT CONVERSION

B.1 MODEL DETAILS

All models used in the unit conversion experiments consisted of a linear token embedding layer, a
transformer encoder, and a linear token decoder. We trained the models using teacher-forcing on
datasets of 10,000 randomly generated problems with 20,000 gradient updates on batches of 256
samples. All experiments in the main manuscript were conducted using Medium (M) size models
as detailed in Table 8.

We intentionally kept the model sizes small in the unit conversion tasks compared to the large lan-
guage models used in the GSM8K dataset. Within the range of modest model sizes we tested, we
observed the expected trend of increasing performance with larger models and consistent benefits
from learning with relational abstractions. Table 8 lists the model hyperparameters and Table ??
lists the accuracy results for each model size for each solution format. We trained 3 separate models
for each solution format for sizes S, L, and XL and 20 models for size M.

B.2 RELATIONAL PLANNING AND ARITHMETIC ACCURACIES

To understand the sources of error in our models, we break down our metrics to whether the model
correctly generated a valid plan and whether the plan is then correctly used in the numerical com-
putations. Here, we define a valid plan as a series of steps involving just the units that all exist in
the graph defined by the prompt and successfully connects the starting unit to the target unit. Ta-
bles 10 and 11 detail the accuracy results with rows representing the different solution formats and
columns representing our different metrics of accuracy. Each cell reports the average accuracy using
20 separate models.

We describe the metrics as they appear in Tables 10 and 11.

1. Overall accuracy: given just the prompt, we check whether the model’s final answer is
correct

2. Accuracy using ground-truth plan: given the prompt and a correct plan, we check whether
the final answer is correct

15

Under review as a conference paper at ICLR 2023

3. Plan accuracy: given just the prompt, we check whether the units correctly lead to the target
unit, regardless of the numerical accuracy

4. Accuracy when model generated plan is correct: we check whether the model’s final answer
is correct on problems that the model generated a correct plan, and the model uses its own
correct plan

5. Accuracy when model generated plan is incorrect: we check whether the model’s final
answer is correct on problems that the model generated an incorrect plan, and the model
uses its own incorrect plan

6. Accuracy using ground-truth plan when model generated plan is incorrect: we check
whether the model’s final answer is correct on problems that the model generated an in-
correct plan, but the model uses a given correct plan

B.3 MODULUS

The use of a modulo space is useful for our UC experiments, but it is possible that it could produce
unintended side effects. For example, using modulo-5 forces multiple conversion rules to use the
same numbers. To test for this, we generate additional 10-node graph problems using modulo-23
and modulo-53 which would have lower chances of multiple rules using the same numbers in a given
problem. We train 5 interleaved units-then-numbers (RNRN) and 5 numeric only (NN) models on
these datasets. Raising the modulus to 23 and 53 increases difficulty, reducing the accuracy of the
RNRN model to 71.0% and 31.6% respectively, but numeric-only accuracy drops further to 4.5%
and 1.9%, i.e. the expected accuracies for randomly guessing.

16

Under review as a conference paper at ICLR 2023

Ta
bl

e
10

:U
ni

tc
on

ve
rs

io
n

ac
cu

ra
cy

on
tr

ai
ni

ng
se

t.

O
ve

ra
ll

A
cc

ur
ac

y
A

cc
ur

ac
y

U
si

ng
G

ro
un

d-
Tr

ut
h

Pl
an

Pl
an

A
cc

ur
ac

y
A

cc
ur

ac
y

W
he

n
M

od
el

G
en

er
at

ed
Pl

an
is

C
or

re
ct

A
cc

ur
ac

y
W

he
n

M
od

el
G

en
er

at
ed

Pl
an

is
In

co
rr

ec
t

A
cc

ur
ac

y
U

si
ng

G
ro

un
d-

Tr
ut

h
Pl

an
W

he
n

M
od

el
G

en
er

at
ed

Pl
an

is
In

co
rr

ec
t

In
te

rl
ea

ve
d

71
.1

4%
96

.6
7%

66
.1

5%
96

.7
6%

21
.0

4%
96

.5
1%

Pl
an

+
N

um
er

ic
76

.2
6%

10
0%

69
.6

1%
10

0%
22

.1
8%

10
0%

Pl
an

+
In

te
rl

ea
ve

d:
U

ni
ts

T
he

n
N

um
be

rs
74

.0
3%

10
0%

66
.9

6%
10

0%
21

.2
7%

10
0%

Pl
an

+
In

te
rl

ea
ve

d:
N

um
be

rs
T

he
n

U
ni

ts
78

.8
6%

10
0%

73
.3

7%
10

0%
29

.9
0%

10
0%

Pl
an

+
In

te
rl

ea
ve

d:
In

te
gr

at
ed

85
.8

4%
99

.9
1%

82
.3

0%
99

.9
3%

20
.3

0%
99

.8
4%

17

Under review as a conference paper at ICLR 2023

Ta
bl

e
11

:U
ni

tc
on

ve
rs

io
n

ac
cu

ra
cy

on
te

st
se

t.

O
ve

ra
ll

A
cc

ur
ac

y
A

cc
ur

ac
y

U
si

ng
G

ro
un

d-
Tr

ut
h

Pl
an

Pl
an

A
cc

ur
ac

y
A

cc
ur

ac
y

W
he

n
M

od
el

G
en

er
at

ed
Pl

an
is

C
or

re
ct

A
cc

ur
ac

y
W

he
n

M
od

el
G

en
er

at
ed

Pl
an

is
In

co
rr

ec
t

A
cc

ur
ac

y
U

si
ng

G
ro

un
d-

Tr
ut

h
Pl

an
W

he
n

M
od

el
G

en
er

at
ed

Pl
an

is
In

co
rr

ec
t

In
te

rl
ea

ve
d

71
.1

4%
96

.6
7%

66
.1

5%
96

.7
6%

21
.0

4%
96

.5
1%

Pl
an

+
N

um
er

ic
76

.2
6%

10
0%

69
.6

1%
10

0%
22

.1
8%

10
0%

Pl
an

+
In

te
rl

ea
ve

d:
U

ni
ts

T
he

n
N

um
be

rs
74

.0
3%

10
0%

66
.9

6%
10

0%
21

.2
7%

10
0%

Pl
an

+
In

te
rl

ea
ve

d:
N

um
be

rs
T

he
n

U
ni

ts
78

.8
6%

10
0%

73
.3

7%
10

0%
29

.9
0%

10
0%

Pl
an

+
In

te
rl

ea
ve

d:
In

te
gr

at
ed

85
.8

4%
99

.9
1%

82
.3

0%
99

.9
3%

20
.3

0%
99

.8
4%

18

Under review as a conference paper at ICLR 2023

C HUMAN ANNOTATOR INSTRUCTIONS

We include our instruction for human annotators for collecting the abstract relational plan data for
GSM-8K dataset. The following pages contain an instruction as well as an example to be annotated
with empty fillable boxes. This shows the user interface that the human annotators used when the
labeling task was performed.

Surge AI !

!"My Projects

!"

!"Surger Teams

!"Inbox

!"Add Funds

!"Mengye Ren

Profile Organization Documentation Support Logout

1. Projects

2. Generating equation explanations for math problem solutions (try #3 Q61-8792)

3. Preview

Generating equation explanations for math problem

solutions (try #3 Q61-8792)

Instruction
You will be assigned with some grade school math questions. The full solution is provided below each
question. For most steps in the solution, there is a math equation being highlighted. Please add a line
of explanatory text for each equation. The explanation should follow the same format as the original
equation, while describing the items with short phrases that connect the equation with the relevant
quantities mentioned in the problem and with quantities computed in other problems. Try to construct
phrases that characterize the quantities succinctly while avoiding ambiguity and use the same phrase
to refer to the same quantity a second time.

Here are some example questions. The purple text below illustrates the kinds of phrases that we ask
you to fill in:

Example #1
Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2
per fresh duck egg. How much in dollars does she make every day at the farmers' market?

Solution: Janet sells 16 - 3 - 4 = <<16-3-4=9>>9 duck eggs a day.
She makes 9 * 2 = $<<9*2=18>>18 every day at the farmer’s market.

Preview - Generating equation explanations for math problem solutions (... https://app.surgehq.ai/tasks/c0aba69c-d2de-47c8-b3e2-166e79c3ab06?t...

1 of 8 2022-09-21, 4:32 PM

19

Final answer: 18.

Line 1: 16-3-4=9 Explanation: Eggs laid - eggs eaten - eggs baked = eggs sold
Line 2: 9*2=18 Explanation: Eggs sold * price per egg = amount earned

Note that we have preferred the use of very general names for variables such as “price” rather than
“dollars” to encourage the recognition of common structures of variables. We also used the exact
phase ‘eggs sold’ both for the result of line one and for the same quantity when it occurred on the left
hand side in line 2.

Please try to explain all quantities in the equations, including the item after the “=” sign.

Please also have white space before and after mathematical symbols like “+”, “-”, “*”, “/”, “=”, etc.

Example #2
Question: Jen is planning to sell her root crops. She has 6 yams which can be sold at $1.5 each, 10
sweet potatoes that cost $2 each, and 4 carrots which cost $1.25 each. If she sells everything, how
much will she earn?

Solution: Jen can earn $1.5 x 6 = $<<1.5*6=9>>9 for the yams.
She can earn $2 x 10 = $<<2*10=20>>20 for the sweet potatoes.
And she can earn $1.25 x 4 = $<<1.25*4=5>>5 for the carrots.
Therefore, she will earn $9 + $20 + $5 = $<<9+20+5=34>>34 if she sells everything.
Final answer: 34.

Line 1: 1.5*6=9 Explanation: Price per yam * number of yams sold = amount earned on
yams
Line 2: 2*10=20 Explanation: Price per sweet potato * number of sweet potatoes sold =
amount earned on sweet potatoes
Line 3: 1.25*4=5 Explanation: Price per carrot * number of carrots sold = amount earned on
carrots
Line 4: 9+20+5=34 Explanation: Amount earned on yams + amount earned on sweet
potatoes + amount earned on carrots = total amount earned

Note that we don’t repetitively mention the person’s name (Jen) since it does not help resolve any
ambiguity by mentioning her name.

Example #3

Preview - Generating equation explanations for math problem solutions (... https://app.surgehq.ai/tasks/c0aba69c-d2de-47c8-b3e2-166e79c3ab06?t...

2 of 8 2022-09-21, 4:32 PM

Under review as a conference paper at ICLR 2023

20

Question: John had a son James when he was 19. James is now twice as old as his sister Dora, who
will turn 12 in 3 years. How old will John's youngest son, who was born when John was 32, be in 3
years?

Solution: Dora is 12-3=<<12-3=9>>9.
So James is 9*2=<<9*2=18>>18 years old
That means John is 18+19=<<18+19=37>>37
Johns youngest son is 37-32=<<37-32=5>>5 years old
So he will be 5+3=<<5+3=8>>8 in 3 years
Final answer: 8.

Line 1: 12-3=9 Explanation 1: Dora’s age in three years - three years = Dora’s age now
Line 2: 9*2=18 Explanation 2: Dora’s age * ratio of James’ age to Dora’s age = James’ age
Line 3: 18+19=37 Explanation 3: James’ age + John’s age when James was born = John’s age
Line 4: 37-32=5 Explanation 4: John’s age - John’s age when his youngest son was born = John’s
youngest son’s age
Line 5: 5+3=8 Explanation 5: John’s youngest son’s age + three years = John’s youngest son’s
age in three years

In this example, it is necessary to mention people’s names to avoid ambiguity. Only do this when

necessary.

Example #4
Question: Every hour Joanne has to collect the coins out of the fountain inside the mall. During the
first hour, she collected 15 coins. For the next two hours, she collected 35 coins from the fountain. In
the fourth hour, she collected 50 coins from the fountain but she gave 15 of them to her coworker so
she could buy a soda. How many coins did she have after the fourth hour?

Solution: 15 coins collected in hour one
35 coins collected in hour two
35 coins collected in hour three
50 coins collected in hour four
Before giving her coworker some coins there were 15+35+35+50=<<15+35+35+50=135>>135 coins
The number of coins after given 15 to her coworker is 135-15=<<135-15=120>>120
Final answer: 120.

Line 1: 15 coins collected in hour one Explanation: Coins collected in hour one
Line 2: 35 coins collected in hour two Explanation: Coins collected in hour two
Line 3: 35 coins collected in hour three Explanation: Coins collected in hour three
Line 4: 50 coins collected in hour four Explanation: Coins collected in hour four

Preview - Generating equation explanations for math problem solutions (... https://app.surgehq.ai/tasks/c0aba69c-d2de-47c8-b3e2-166e79c3ab06?t...

3 of 8 2022-09-21, 4:32 PM

Under review as a conference paper at ICLR 2023

21

Line 5: 15+35+35+50=135 Explanation: Coins collected in hour one + coins collected in
hour two + coins collected in hour three + coins collected in hour four = total coins collected.
Line 6: 135-15=120 Explanation: Total coins collected - coins given to the
coworker = coins remaining

Note that not all lines will contain an equation, and in this case try to explain each solution line with
plain words.

In some cases, as with the first four lines here, the explanation may repeat the content of the Line, but
we ask you to provide such explanations, as in the example.

Equations with unknown variables
For each problem, before you can enter explanations, there will be a required question asking
whether any of the lines of the solution contain unknown variables. In the example below, "C" is the
unknown variable. If there are unknown variables, then please answer "yes" for the first question, and
follow the example below to provide an explanation for each line.

Question: Farmer Brown has 20 animals on his farm, all either chickens or cows. They have a total of
70 legs, all together. How many of the animals are chickens?

Solution: Let C be the number of chickens.
There are 20-C cows.
The cows have 4*(20-C) legs.
The chickens have 2C legs.
The total number of legs is 2C+4(20-C)=70.
2C+80-4C=70
2C=10
C=<<5=5>>5.
Final answer: 5.

In this case, you will be asked to provide explanations for each line of the solution which will be
displayed. These lines will not simply be an equation as in other cases. As before, the purple text
shows the kind of explanation we are asking you to provide.

Line 1: Let C be the number of chickens. Explanation 1: Define a variable for the number of
chickens
Line 2: There are 20-C cows. Explanation 2: Number of animals - number of chickens =

Preview - Generating equation explanations for math problem solutions (... https://app.surgehq.ai/tasks/c0aba69c-d2de-47c8-b3e2-166e79c3ab06?t...

4 of 8 2022-09-21, 4:32 PM

Under review as a conference paper at ICLR 2023

22

number of cows
Line 3: The cows have 4*(20-C) legs. Explanation 3: Number of legs each cow * number
of cows = number of cow legs
Line 4: The chickens have 2C legs. Explanation 4: Number of chicken * legs per chicken
= number of chicken legs
Line 5: The total number of legs is 2C+4(20-C)=70. Explanation 5: Number of chicken legs +
number of cow legs = total number of legs
Line 6: 2C+80-4C=70. Explanation 6: Simplify toward finding the number of chickens
Line 7: 2C=10. Explanation 7: Combine like terms toward finding the number
of chickens
Line 8: 5=5 Explanation 8: Divide by 2 to determine the number of
chickens

Note that we have asked you to restate the quantity referenced by the variable and also to use the
quantity, not the variable itself in your explanations.

Collapse Instructions

Question: Cynthia has four times as many water balloons as her husband, Randy. Randy has only half

as many water balloons as his daughter, Janice. If Janice throws all 6 of her water balloons at her

father, how many water balloons does Cynthia have, which she could also choose to throw at Randy?

Solution: Randy has only half as many water balloons as Janice’s 6, for a total of (½)*6=3 water

balloons.

Cynthia has 4 times as many water balloons as Randy, for a total of 4*3=<<4*3=12>>12 water

balloons

Final answer: 12

Does the solution seem correct?

Yes

No

Does the solution contain equations of unknown variables? (See instruction for an example of

equations of unknown variables)

Yes

No

(If the line is empty, please skip the response)

Preview - Generating equation explanations for math problem solutions (... https://app.surgehq.ai/tasks/c0aba69c-d2de-47c8-b3e2-166e79c3ab06?t...

5 of 8 2022-09-21, 4:32 PM

Under review as a conference paper at ICLR 2023

23

Line 1: Randy has only half as many water balloons as Janice’s 6, for a total of (½)*6=3 water

balloons.

Explanation 1:

(If the line is empty, please skip the response)

Line 2: 4*3=12

Explanation 2:

(If the line is empty, please skip the response)

Line 3:

Explanation 3:

(If the line is empty, please skip the response)

Line 4:

Explanation 4:

(If the line is empty, please skip the response)

Line 5:

Explanation 5:

(If the line is empty, please skip the response)

Line 6:

Explanation 6:

(If the line is empty, please skip the response)

Preview - Generating equation explanations for math problem solutions (... https://app.surgehq.ai/tasks/c0aba69c-d2de-47c8-b3e2-166e79c3ab06?t...

6 of 8 2022-09-21, 4:32 PM

Under review as a conference paper at ICLR 2023

24

Line 7:

Explanation 7:

(If the line is empty, please skip the response)

Line 8:

Explanation 8:

(If the line is empty, please skip the response)

Line 9:

Explanation 9:

(If the line is empty, please skip the response)

Line 10:

Explanation 10:

(If the line is empty, please skip the response)

Line 11:

Explanation 11:

(If the line is empty, please skip the response)

Line 12:

Explanation 12:

Additional comments

Preview - Generating equation explanations for math problem solutions (... https://app.surgehq.ai/tasks/c0aba69c-d2de-47c8-b3e2-166e79c3ab06?t...

7 of 8 2022-09-21, 4:32 PM

Under review as a conference paper at ICLR 2023

25

	Introduction
	Incorporating Relational Abstraction
	Related Work
	Experiments
	Task 1: Solving Grade School Math Problems
	Task 2: Unit Conversion

	Discussion
	Additional results
	GSM-8K results using samples
	GSM-8K results on different solution length

	Unit conversion
	Model Details
	Relational planning and arithmetic accuracies
	Modulus

	Human annotator instructions

