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Abstract

Vision-language models have been explored for radiology report generation with
promising results. Yet, uncertainty elaborated in findings and the reasoning pro-
cess for reaching clinical impressions are seldom explicitly modeled, reducing
the clinical accuracy and trustworthiness of the generated reports. We present
CURV, a novel framework that alleviates the limitations through integrated aware-
ness of uncertainty and explicit reasoning capabilities. Our approach consists of
three key components: (1) an uncertainty modeling mechanism that teaches the
model to recognize and express appropriate levels of diagnostic confidence, (2)
a structured reasoning framework that generates intermediate explanatory steps
connecting visual findings to clinical impressions, and (3) a reasoning coherence
reward that ensures logical consistency among findings, reasoning, and impres-
sions. We implement CURV through a three-stage training pipeline that combines
uncertainty-aware fine-tuning, reasoning initialization, and reinforcement learning.
In particular, we adopt a comprehensive reward function that addresses multi-
ple aspects of report quality, incorporating medical term matching, uncertainty
expression evaluation, and semantic coherence evaluation. Experimental results
demonstrate that CURV generates clinically relevant reports with appropriate un-
certainty expressions and transparent reasoning traces, significantly outperforming
previous methods. CURV2 represents a substantial advancement toward inter-
pretable and trustworthy AI-generated radiology reports, with broader implications
for the deployment of vision-language models in high-stakes clinical environments
where uncertainty awareness and reasoning transparency are essential.

1 Introduction

Chest X-rays (CXRs) are a cornerstone of diagnostic imaging, yet their interpretation is time-intensive,
straining healthcare systems amid radiologist shortages. Automated report generation using vision-
language models (VLMs) offers a promising solution to enhance efficiency and reduce workload
[31, 20]. Moreover, this technology can help bridge the gap in report quality between large and small
hospitals, where physicians in smaller facilities often have less experience compared to those in major
centers, enabling more consistent and accurate diagnoses across diverse settings.

Medical report generation, unlike general image captioning tasks, imposes unique challenges that
current VLMs are not fully equipped to address, particularly in handling diagnostic uncertainty and
providing transparent reasoning [35]. Radiologists routinely employ linguistic markers such as “likely”
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(a) Chest X-ray image

Structural Uncertainty (Findings): “Pulmonary nodules in the
left upper lobe are also not completely characterized on this study.
However, in addition, there is a more hazy widespread opacity
projecting over the left mid upper lung which could be compatible
with a coinciding pneumonia.”

Semantic Uncertainty (Impression): “Increasing left lung opaci-
fication which may reflect pneumonia superimposed on metastatic
disease, although other etiologies such as lymphangitic pattern
of metastatic spread could be considered. CT may be helpful to
evaluate further if needed clinically.”

(b) Corresponding uncertain expressions from the radiology report.

Figure 1: Illustration of Structural and Semantic Uncertainty. (a) A hazy opacity in the left mid-upper
lung (arrow) generates structural uncertainty regarding its nature. (b) This feeds into the semantic
uncertainty in the impression, where multiple etiologies are considered and further investigation (CT)
is suggested.

or “possible” to convey varying degrees of diagnostic confidence, ensuring clear communication
with referring physicians [32]. As diagnostic uncertainty is multifaceted, as illustrated in Figure 1,
it is crucial to distinguish between at least two key types: (1) Structural Uncertainty regarding
specific visual findings (e.g., a sentence in the “Findings” section stating “hazy opacity... could
be compatible with pneumonia”); and (2) Semantic Uncertainty stated in the overall “Impression”
(e.g., “opacification may reflect pneumonia... although other etiologies could be considered”). Accu-
rately modeling these uncertainties, and the reasoning that connects them, is crucial for generating
trustworthy reports to support effective clinical decision-making. Crucially, our work frames this
challenge not as quantifying a model’s internal statistical confidence, but as modeling the linguistic
expression of diagnostic uncertainty—the specific language radiologists use to convey confidence
levels. Moreover, robust clinical decision-making relies heavily on explicit reasoning that logically
connects such visual findings, with their structural uncertainties, to the more diagnosis-oriented
medical impressions and their associated semantic uncertainties.

Existing VLMs for CXR report generation often prioritize factual accuracy over modeling diagnostic
uncertainty or providing explicit reasoning pathways, resulting in reports that lack clinical nuance
and transparency [41, 29, 8, 38, 23]. This deficiency poses a significant barrier to their clinical
adoption, as physicians require both accurate uncertainty expression and transparent reasoning to trust
and effectively utilize AI-generated reports. Consequently, there is a pressing need for developing
approaches that address these critical gaps by integrating robust uncertainty awareness and transparent
reasoning mechanisms into the report generation process.

To tackle these challenges, we introduce CURV, a novel framework for uncertainty-aware vision-
language models with explicit reasoning capabilities for CXR report generation. CURV advances
the field through three key innovations: (1) a systematic uncertainty modeling approach that enables
the model to recognize anatomical structures and express appropriate diagnostic confidence using
a data-driven fine-tuning strategy and a specialized uncertainty reward; (2) a structured reasoning
framework that generates intermediate explanatory steps linking visual findings to clinical impressions,
thereby enhancing transparency. To enable the development and supervised initialization of this
reasoning capability, we created TRACE-CXR (Transparent Reasoning and Articulation for Clinical
Explanations - CXR), a novel dataset of 2,000 chest X-ray reports, each augmented with an explicit,
LLM-generated “thinking” section that models the reasoning pathway from findings to impression;
and (3) a multi-dimensional reward design in reinforcement learning that ensures logical consistency
across findings, reasoning, and impressions, addressing the need for coherent and trustworthy reports.
Our approach leverages a vision language model, augmented by a meticulously designed training
pipeline that embeds uncertainty awareness and reasoning capabilities directly into the model. The
uncertainty modeling component is developed through targeted fine-tuning with uncertainty-annotated
data, enabling the model to predict confidence levels for identified pathologies and map them to
appropriate linguistic expressions in the generated text. For the reasoning component, we employ a
structured generation process that articulates visual findings, produces intermediate reasoning steps,
and delivers clinical impressions—all while maintaining logical coherence across these elements
through a novel optimization strategy.
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The contributions of this study are as follows:

• We propose a framework for uncertainty-aware medical report generation, integrating a
specialized fine-tuning strategy with curated uncertainty-annotated data and uncertainty-
calibrated reward mechanism to enhance the clinical relevance of AI-generated CXR reports.

• We introduce a structured reasoning framework that leverages our TRACE-CXR dataset to
initialize explicit “thinking” pathways within a tripartite report structure (findings, thinking,
impression), supported by a multi-dimensional reward design in reinforcement learning, to
ensure transparent explanations and logical consistency between radiological observations
and clinical impressions.

• Through extensive experimentation, we demonstrate that CURV generates clinically relevant
CXR reports with appropriate uncertainty expressions and transparent reasoning traces,
outperforming existing methods in both qualitative and quantitative metrics, thus advancing
trustworthy AI in high-stakes clinical environments.

2 Related Work

2.1 Uncertainty in Medical Report Generation

Expressing diagnostic uncertainty is critical in radiology for clear communication and effective
clinical decision-making. Equipping vision-language models (VLMs) with uncertainty awareness is
thus essential for clinical adoption. Existing studies have approached this from various perspectives.
Wang et al. [32] used Monte Carlo dropout to estimate visual and textual uncertainty, integrating it
into a weighted loss function for reliable outputs. Similarly, Yan et al. [35] introduced the Diagnostic
Uncertainty Encoding framework to encode clinically inspired uncertainty concepts, enhancing report
accuracy. Najdenkoska et al. [22] proposed a probabilistic latent variable model with variational
topic inference to generate diverse CXR reports reflecting multiple interpretations. Additionally,
Yang et al. [37] demonstrated that training Bayesian neural networks with uncertain labels increases
predictive variance for ambiguous cases, while large-scale VLMs like Med-Gemini [25] employ
uncertainty-guided strategies for clinical reasoning tasks. However, many approaches lack explicit
differentiation between uncertainty in specific findings (Structural Uncertainty) and overall diagnostic
synthesis (Semantic Uncertainty), as noted by [41, 29]. CURV addresses this gap by systematically
modeling and expressing both types of uncertainty through a specialized reward mechanism and
fine-tuning with uncertainty-annotated data, aiming for clinically nuanced reports.

2.2 Reasoning by Reinforcement Learning

Reinforcement learning (RL) has shown promise in enhancing reasoning capabilities in language and
vision-language models [40, 18, 34]. DeepSeek-R1 [7] leverages Group Relative Policy Optimization
(GRPO) [28] to develop reasoning skills via rule-based rewards. Extending RL to VLMs, Huang et al.
[12] introduced Vision-R1, achieving strong performance through automated dataset construction
and Progressive Thinking Suppression Training with GRPO [26, 39]. In the medical domain, RL is
increasingly applied to radiology report generation for structured reasoning and trustworthiness [11,
42]. Jing et al. [15] proposed BoxMed-RL, focusing on explainable reports through CoT reasoning
and spatially verifiable RL, emphasizing spatial grounding via IoU-based rewards. Similarly, Shao
et al. [27] used RL to improve alignment between radiology images and reports, targeting linguistic
quality and anomaly detection. While these works highlight RL’s potential for logical consistency
and transparency, CURV uniquely integrates uncertainty modeling with structured reasoning, using a
multi-dimensional reward design to ensure coherent and trustworthy AI-generated reports.

3 The Proposed Method

The CURV framework, detailed in this section, is designed to produce radiology reports that embody
both diagnostic accuracy and a sophisticated understanding of clinical uncertainty. Our method
explicitly models the Structural Uncertainty (tied to individual findings) and Semantic Uncertainty
(concerning the overall diagnostic impression), along with the coherent reasoning that bridges them.
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Figure 2: The CURV framework architecture. The figure illustrates the three-stage training pipeline,
beginning with SFT for uncertainty awareness, followed by reasoning initialization, and culminating
in a Reinforcement Learning phase using GRPO to refine the final Vision-Language Model.

3.1 Problem Formulation

The generation of medical reports from chest X-ray (CXR) images using vision-language models
(VLMs) is a complex task requiring diagnostic accuracy, uncertainty expression, and transparent
reasoning. Formally, given a CXR image I and a prompt p (e.g., requesting a structured report), the
goal is to train a VLM πθ to generate a structured output y with three components: visual findings,
logical reasoning, and clinical impressions with uncertainty expressions. The objective is to optimize
report quality across accuracy, uncertainty awareness, and coherence, formulated as:

θ∗ = argmax
θ

E(I,p)∼D,y∼πθ
[r(y, I, p)], (1)

where D is the dataset of image-prompt pairs, y is the generated report, and r(y, I, p) is a multi-
dimensional reward function assessing format adherence, medical accuracy, uncertainty expression,
and reasoning coherence. This framework, CURV, aims to produce clinically relevant, transparent,
and trustworthy AI-generated reports by addressing these critical dimensions in a unified manner.

3.2 Empowering Uncertainty Awareness in Vision-Language Models

Current vision-language models (VLMs) often fail to capture the inherent uncertainty in medical report
generation, a critical limitation for clinical decision-making in radiology. The CURV framework
addresses this gap by instilling awareness of Structural Uncertainty, which pertains to specific
findings, as introduced in Section 1. This initial stage focuses on enabling the model to recognize and
articulate appropriate confidence levels for anatomical abnormalities, thereby enhancing the reliability
of the “Findings” section in generated reports. The supervised fine-tuning (SFT) process leverages
a curated uncertainty-annotated dataset D, where each instance includes a CXR image I , a prompt
p (e.g., instructing detection of anatomical objects with uncertainties), and ground-truth structural
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uncertainty specifications Ygt = ⟨f1, f2, . . . , fNI
⟩. Each finding fk = (bk, lk, tk) encapsulates a

bounding box, anatomical label, and textual uncertainty description. The model πθ is trained to
generate a serialized token sequence seq(Ygt) using the loss function:

Luncertainty = −
∑

(I,p,Ygt)∈D

log πθ(seq(Ygt)|I, p), (2)

where log πθ(seq(Ygt)|I, p) is the log-probability of producing the target sequence encoding all
structural findings. This loss guides the model to detect uncertain regions (via bk), identify them
(via lk), and articulate specific Structural Uncertainty (via tk) in a structured, sequentially generated
format.

3.3 Reasoning Initialization for Transparent Reporting

Building on the uncertainty awareness developed earlier, the second stage of CURV focuses on
initializing basic reasoning capabilities in the model. The objective is to generate transparent reports
by articulating logical connections between radiological findings and clinical impressions through an
intermediate reasoning path, enhancing interpretability for clinical validation.

To achieve this, a report generation task is structured with three components: Findings (F ), Reasoning
(R), and Impression (C), with R elucidating the transition F

R−→ C to mimic a radiologist’s inferential
steps. Inspired by frameworks like DeepSeek-R1 [7], which use structured data to improve reasoning
patterns, this stage employs supervised fine-tuning with a dataset we developed for this purpose,
Dreason . Each instance includes a CXR image I , a prompt p (e.g., “Generate a detailed radiology
report”), and a ground-truth structured report Ystructured = ⟨textF , textR, textC⟩. Here, textR provides
a logical narrative linking observations in textF to conclusions in textC , detailing abnormalities,
suspected conditions, differential diagnoses, and contextual information. The VLM πθ is fine-tuned
on Dreason to maximize the log-likelihood of the serialized sequence seq(Ystructured), with the loss
defined as:

Lreasoning = −
∑

(I,p,Ystructured)∈Dreason

log πθ(seq(Ystructured)|I, p). (3)

By training the model with Lreasoning, we instill a foundational capability to generate reports that
are not only descriptive but also explanatory, paving the way for more sophisticated coherence and
alignment in the subsequent reinforcement learning stage.

3.4 Enhancing Clinical Reasoning with Reinforcement Learning

Building upon the foundational capabilities empowered by the previous stages for uncertainty
awareness and structured reasoning, the final CURV stage employs Reinforcement Learning (RL) to
refine the model’s clinical reasoning process. Our SFT-then-RL methodology is designed to move
beyond simple imitation [6]. The preceding SFT stage uses the TRACE-CXR dataset to teach the
model the basic tripartite report structure, providing a foundational policy for exploration. In this
RL phase, however, the model is trained on the MIMIC-CXR dataset and is provided with only the
ground-truth findings and impression sections. This design avoids the “imitation trap” where models
simply reproduce potentially flawed or suboptimal reasoning paths from the SFT data. Instead, it
forces the model to discover a functionally coherent reasoning process on its own, guided only by
the reward signals that measure the logical connection between the human-authored findings and
impressions. This ensures the model learns to generate genuinely coherent reasoning rather than
engaging in “pseudo reasoning” by merely mimicking a template [4].

To this end, we use Group Relative Policy Optimization (GRPO) [28], guided by a novel, multi-
component reward function tailored for clinical report generation. A key advantage of this RL phase,
particularly through the coherence reward (Rcoh), is its ability to guide the model in generating the
intermediate “thinking” process that logically connects findings to impressions, without requiring
extensive supervised data for this specific reasoning component.

Given an input (I, p) and ground truth ygt, GRPO samples G reports {yg} from policy πθold and
updates πθ by maximizing:

J(θ) = E

[
1

G

G∑
g=1

(min(ρgAg, clip(ρg, 1− ϵ, 1 + ϵ)Ag))− βDKL(πθ||πref)

]
, (4)
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where J(θ) represents the objective function, which aims to maximize the expected reward for the
policy πθ while maintaining stability in training. The function incorporates a clipped advantage
term to limit large policy updates and a KL-divergence penalty term (DKL) with coefficient β to
prevent excessive deviation from a reference policy πref. The expectation E is taken over sampled
reports, with G denoting the number of sampled reports {yg} from the old policy πθold . And ρg is the
importance sampling ratio and Ag = Rtotal(yg, ygt)− mean({Rtotal(yk, ygt)}) is the advantage. The
total reward Rtotal(y, ygt) is a weighted sum of three components:

Rtotal(y, ygt) = wfmtRfmt(y) + waccRacc(y, ygt) + wcohRcoh(y). (5)
The total reward Rtotal(y, ygt) evaluates the quality of a generated report y compared to the ground
truth ygt by combining three distinct reward components with corresponding weights wfmt, wacc, and
wcoh. These components assess format adherence (Rfmt), medical accuracy and uncertainty alignment
(Racc), and reasoning coherence (Rcoh), respectively, ensuring a comprehensive evaluation of clinical
report quality.

Format Adherence Reward (Rfmt): A binary reward I(·) verifying strict adherence to the tripartite
structure (⟨findings⟩, ⟨thinking⟩, ⟨impression⟩), ensuring each tag appears exactly once and in order,
with no extraneous content.

Rfmt(y) = I (Sfull(y) ∧Nfind(y) = 1 ∧Nthink(y) = 1 ∧Nimpr(y) = 1) , (6)
where Rfmt(y) is a binary indicator function I(·) that returns 1 only if the generated report y fully
adheres to the required structure. Specifically, Sfull(y) checks if all required sections are present,
while Nfind(y) = 1, Nthink(y) = 1, and Nimpr(y) = 1 ensure that each section (findings, thinking,
impression) appears exactly once in the correct order.

Findings/Impression Uncertainty Accuracy Reward (Racc): Evaluates medical accuracy and
uncertainty in findings (Fy) and impression (Iy) sections against ygt, weighted as Racc = 0.7 ·RE +
0.3 ·RU . Returns 0 if sections are missing.

1. Entity Matching (RE): Average F1-score of RadGraph-extracted entities [14] between
Fy, Iy and Fygt , Iygt .

RE(y, ygt) =
1

2

(
F1(E(Fy), E(Fygt)) + F1(E(Iy), E(Iygt))

)
, (7)

where RE(y, ygt) computes the average F1-score for entity matching between the generated
report sections (Fy for findings and Iy for impression) and the ground truth sections (Fygt

and Iygt ). The function E(·) extracts entities using RadGraph, and F1(·, ·) measures the
overlap between entity sets, equally weighting the performance on findings and impression
sections.

2. Uncertainty Alignment (RU ): Average alignment of (entity, term, score) triples P(Sy′)
between sections.

RU (y, ygt) =
1

2

(
MatchPairs(P(Fy),P(Fygt)) + MatchPairs(P(Iy),P(Iygt))

)
, (8)

where RU (y, ygt) measures the alignment of uncertainty expressions between the generated
report sections (Fy and Iy) and the ground truth (Fygt and Iygt ). The function P(·) extracts
(entity, term, score) triples, and MatchPairs(·, ·) evaluates their similarity, averaging the
results for findings and impression sections. MatchPairs combines semantic term similarity
(0.4 weight) and score difference (0.6 weight) for common entities, then combines this
average similarity (0.7 weight) with entity coverage (0.3 weight).

Thinking Coherence Reward (Rcoh): Measures Jaccard similarity J(·, ·) between RadGraph-
extracted entities in the thinking section E(Ty) and the union of entities in findings E(Fy) and
impression E(Iy). Returns 0 if sections are missing or entity sets are empty.

Rcoh(y) = J (E(Ty), E(Fy) ∪ E(Iy)) , (9)
where Rcoh(y) quantifies the coherence of the thinking section (Ty) in the generated report y by
computing the Jaccard similarity J(·, ·) between entities extracted from Ty (via E(Ty)) and the union
of entities from the findings (E(Fy)) and impression (E(Iy)) sections. This ensures that the reasoning
process logically connects observations to conclusions. This multifaceted RL optimization aims for
reports that are structurally sound, factually accurate with appropriate uncertainty, and demonstrate
transparent clinical reasoning.
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4 Experiments and Analysis

4.1 Experimental Setup

We conducted experiments on 4xA100 GPUs using Qwen-2.5-VL-3B as the backbone model,
balancing efficiency and performance. Training spanned multiple stages over approximately 100
hours with a batch size of 16 and a learning rate of 1 × 10−6. CURV was benchmarked against
established vision-language models like LLaVA-1.5-7B and MAIRA-2 under consistent conditions.
Full details on configurations and baseline setups are provided in Appendix A.

4.2 Datasets

Our experiments leverage the MIMIC-CXR dataset. As a key contribution of this work, we curated
specialized data subsets: (1) an uncertainty-annotated dataset with 112,111 samples, and (2) our novel
TRACE-CXR dataset (Transparent Reasoning and Articulation for Clinical Explanations in CXR),
featuring 2,000 reports with explicit reasoning pathways. Both were developed to support uncertainty
modeling and structured reasoning, respectively, significantly improving data utility. The clinical
validity of our TRACE-CXR dataset was subsequently confirmed through a formal evaluation with a
board-certified radiologist, which revealed a strong concordance with expert judgment (see Appendix
B). Detailed curation processes and statistics for both datasets are also described in Appendix B.

4.3 Evaluation Metric

We assess CURV using standard NLP metrics (e.g., BLEU, ROUGE-L, METEOR) for textual
quality and clinical accuracy metrics (e.g., CheXbert, RadGraph F1-scores) for medical relevance.
Additionally, LLM-based evaluation protocols are employed to evaluate the unique “Thinking” section
and uncertainty expressions (structural and semantic). Complete metric definitions and evaluation
protocols are available in Appendix C.

Table 1: Generation metrics for radiology report generation across different models
Model B-1 B-2 B-3 B-4 METEOR R-L gritlm
LLaVA-1.5-7B [21] 19.09 7.46 2.81 1.25 19.16 18.36 44.25
LLaVA-1.5-7B-SFT-CXR 22.58 15.06 9.43 6.13 25.71 28.09 50.28
HuatuoGPT-Vision-7B [5] 19.33 9.42 4.64 1.93 26.01 20.78 47.32
MAIRA-2 [3] 24.94 14.12 9.01 6.14 26.78 28.65 47.48
Qwen2.5-VL-3B [1] 13.09 5.42 2.08 0.89 20.81 15.23 44.57
Gemini 2.5 pro 12.54 5.20 2.25 1.05 21.19 15.01 40.41
CURV_stage1 14.96 7.08 3.33 1.61 23.47 19.07 45.15
CURV_stage2 10.72 5.22 2.43 1.10 18.57 14.59 42.76
CURV 25.38 15.58 9.85 6.18 30.43 31.19 50.48

Table 2: Clinical accuracy metrics for radiology report generation across different models

Model CheXbert RadGraph
Acc. Macro F1 Micro F1 Ent. F1 F1

LLaVA-1.5-7B [21] 63.25 4.94 38.54 7.61 4.95
LLaVA-1.5-7B-SFT-CXR 72.72 5.00 51.51 17.57 13.06
HuatuoGPT-Vision-7B [5] 71.15 5.34 48.62 15.92 9.06
MAIRA-2 [3] 67.39 6.34 46.53 25.01 17.05
Qwen2.5-VL-3B [1] 67.78 4.75 37.66 9.46 4.66
Gemini 2.5 pro 74.35 5.35 48.45 13.09 7.71
CURV_stage1 57.59 4.51 30.75 17.00 9.95
CURV_stage2 56.57 3.87 26.83 11.11 6.03
CURV 76.93 5.22 57.12 25.95 19.54
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4.4 Main Results

Overall Metric The experimental results in Tables 1 and 2 highlight the effectiveness of the CURV
framework in radiology report generation, with notable insights from both metric interpretations and
model scale perspectives. From the metrics’ standpoint, CURV achieves superior generation quality
with top scores in BLEU (e.g., BLEU-3: 9.85), METEOR (30.43), and ROUGE_L (31.19) compared
to SOTA method like MAIRA-2 (BLEU-3: 9.01), indicating enhanced fluency and textual relevance.
Likewise, CURV’s ability to produce medically relevant content is underscored by its strong clinical
accuracy. This advantage is particularly pronounced when compared to frontier generalist models;
while such models are powerful, CURV’s specialized approach significantly outperforms Gemini
2.5 Pro across all clinical metrics, achieving a RadGraph F1 score of 19.54 versus 7.71. This
demonstrates the critical value of a targeted framework for this complex medical task. Finally, from a
model scale perspective, CURV, with a compact 3B parameter size, outperforms larger 7B models
like HuatuoGPT-Vision-7B and MAIRA-2, demonstrating that our proposed method enables efficient
performance without requiring extensive computational resources.

Table 3: Generation metrics for radiology report generation on IU X-ray dataset
Model B-1 B-2 B-3 B-4 METEOR R-L gritlm
LLaVA-1.5-7B 16.52 6.60 3.00 1.40 19.65 17.48 45.78
LLaVA-1.5-7B-SFT-CXR 21.42 12.95 8.03 5.20 23.24 26.40 46.21
HuatuoGPT-Vision-7B 19.33 10.70 6.28 2.81 31.02 23.42 50.22
MAIRA-2 26.37 15.60 9.64 6.03 25.52 31.18 54.18
Qwen2.5-VL-3B 11.38 5.05 2.28 1.05 21.65 15.01 45.95
CURV_stage1 12.51 6.24 3.18 1.57 23.64 18.18 46.76
CURV_stage2 10.18 5.32 2.75 1.27 18.64 13.93 44.46
CURV 29.23 18.76 12.08 6.86 38.30 39.08 54.89

Table 4: Clinical accuracy metrics for radiology report generation on IU X-ray dataset

Model CheXbert RadGraph
Acc. Macro F1 Micro F1 Ent. F1 F1

LLaVA-1.5-7B 72.03 4.66 46.81 13.37 8.76
LLaVA-1.5-7B-SFT-CXR 76.34 5.84 53.33 16.19 10.31
HuatuoGPT-Vision-7B 89.89 5.72 67.07 22.98 13.96
MAIRA-2 88.74 6.22 70.75 34.53 24.01
Qwen2.5-VL-3B 80.64 4.92 49.47 12.70 6.26
CURV_stage1 68.89 4.57 40.30 20.59 12.13
CURV_stage2 67.59 3.76 33.67 12.83 7.28
CURV 91.56 5.86 74.36 36.99 25.65

Out-of-Distribution Evaluation To assess the framework’s generalization capabilities, we con-
ducted a rigorous out-of-distribution (OOD) evaluation using the IU X-ray [9] dataset, which was not
used during training. As shown in the results (Tables 3 and Tables 4), CURV maintains its strong
performance, outperforming all baseline methods on this new dataset. This successful performance
demonstrates that the model’s learned capabilities for reasoning and expressing uncertainty are robust
and can generalize well beyond the MIMIC-CXR dataset it was trained on. These findings provide
strong evidence that CURV is not overfit to its training data and can be effectively applied to different
clinical data sources.

LLM-based Evaluation The LLM-based evaluation, as shown in Figure 3, demonstrates substantial
qualitative improvements in CURV-generated reports throughout the reinforcement learning phase.
This evaluation is based on criteria defined in Appendix C. The “Thinking” section shows consistent
and significant enhancements across all assessed criteria—Logical Coherence, Depth of Analysis,
Relevance, Evidence-Based Nature, and Consistency—with the corresponding scores progressively
rising (e.g., Logical Coherence from 2.23 to 4.55 and Consistency from 2.88 to 4.76 by step 3,200).
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(a) LLM-based thinking evaluation (b) LLM-based uncertainty evaluation
Figure 3: LLM-based evaluation of report quality during reinforcement learning. (a) shows the
progressive improvement of the ‘Thinking’ section across five qualitative criteria. (b) tracks the
increasing scores for both structural and semantic uncertainty expression, demonstrating the model’s
refinement over training steps.

This indicates the model’s increasing ability to articulate a transparent and sound reasoning process.
Regarding uncertainty expression, Semantic Uncertainty scores steadily improved from 1.60 to
2.60, indicating better conveyance of overall diagnostic confidence. Structural Uncertainty scores
also increased from an initial value of 0.60 to 0.76 (following an early dip), signifying progress in
articulating confidence for specific findings, albeit with more complex learning dynamics observed.
Collectively, these trends underscore the efficacy of the CURV framework, especially its RL stage, in
fostering clinically nuanced reports that are more interpretable, trustworthy, and adept at expressing
diagnostic uncertainty, thereby enhancing clinical utility.

(a) Format Reward (b) Accuracy Reward (c) Coherence Reward
Figure 4: Reward trends during the reinforcement learning phase. The plots show the rapid conver-
gence of the (a) Format Reward, the steady increase of the (b) Accuracy Reward, and the significant
late-stage ascent of the (c) Coherence Reward, validating the effectiveness of the multi-component
reward function.

Reward Changing The evolution of reward components during reinforcement learning, as depicted
in Figure 4, underscores the efficacy of the CURV training strategy. The Format Adherence Reward
(Rfmt) exhibits a rapid increase early in training, quickly reaching near-optimal values (Figure 4a).
This indicates the model’s swift adoption of the required tripartite report structure. Concurrently, the
Accuracy Reward (Racc), encompassing both entity matching and uncertainty alignment, demon-
strates a steady, more gradual improvement throughout the training process (Figure 4b). This reflects
the nuanced challenge of enhancing medical accuracy and appropriate uncertainty expression in the
“Findings” and “Impression” sections. Most notably, the Thinking Coherence Reward (Rcoh) initially
remains low but undergoes a significant and steep ascent in later training stages, eventually plateauing
at a high level (Figure 4c). This trajectory strongly suggests that the reinforcement learning phase,
guided by Rcoh, successfully teaches the model to generate a logically sound “thinking” process
that effectively connects radiological findings to clinical impressions. Collectively, these trends
validate the multi-component reward function and the RL approach in progressively refining the
model towards generating structurally correct, clinically accurate, and coherently reasoned radiology
reports.

Case Study To qualitatively illustrate the model’s advanced capabilities, we present an analysis of
Case Study in Figure 5. The model proficiently generated a clinically coherent and structured report,
comprising distinct “Findings,” “Thinking,” and “Impression” sections, adhering to the desired output
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(a) Chest X-ray image, the “bibasal atelectasis”
mentioned in both findings and impression is cor-
responding to right and left lower lung zone as
annotated in the image, and the “pleural effusions”
is related with left and right costophrenic angle.

Strong Correspondence in Key Findings:

Generated Findings: “...bibasal atelectasis...
There is likely bilateral pleural effusions of mod-
erate extent.”

Ground Truth Findings: “GT: ...bibasilar
opacities compatible with... adjacent atelec-
tasis. Persistent moderate bilateral pleural ef-
fusions...”

Alignment in Overall Clinical Assessment:
Generated Impression: “...bibasal atelectasis
and moderate pleural effusions... the concern
is likely the effects of... management of any
underlying atelectasis and effusions...”

Ground Truth Impression: “GT: Persistent
moderate bilateral pleural effusions with adja-
cent atelectasis.”

(b) Generated report sections.
Figure 5: Case Study: Illustrating robust VLM performance in identifying key clinical findings
and generating a useful reasoning process. (b) Generated report sections demonstrate strong cor-
respondence with ground truth on core observations such as bibasilar atelectasis and moderate
pleural effusions, including appropriate use of uncertainty terms (e.g., “likely”). The model’s explicit
“<thinking>” section (analyzed in the main text, full content at D) provides a valuable, transparent
pathway by linking these findings to patient context (e.g., supine position, HF history) and potential
implications, showcasing the utility of structured reasoning in enhancing clinical report generation.

format. Due to page limit, key excerpts are shown, the full case is detailed in Appendix D. In the
Findings section, the model accurately identified significant pathologies, including bibasilar atelectasis
and moderate bilateral pleural effusions. These observations demonstrated strong correspondence
with the ground truth report, and the model appropriately applied structural uncertainty terms (e.g.,
“likely”), showcasing its uncertainty-aware learning. The “Thinking” section proved particularly
valuable, offering a transparent reasoning pathway. It successfully linked the identified visual findings
with crucial patient context, such as supine positioning and history of biventricular heart failure, and
considered their clinical implications. This explicit articulation of the thought process significantly
enhances report interpretability and trustworthiness. Finally, the “Impression” section aligned well
with the ground truth’s primary assessment, correctly summarizing the key findings of atelectasis
and effusions and focusing on their management. This case exemplifies the model’s robust ability to
produce accurate, contextually-aware, and clinically useful radiological interpretations with a clear
and valuable reasoning structure, highlighting the strengths of our proposed framework.

5 Conclusion

We introduced CURV, a novel framework that enhances radiology report generation by integrating
uncertainty awareness and explicit reasoning into vision-language models. CURV’s key innova-
tions—uncertainty modeling, a structured reasoning module, and a coherence-driven reinforcement
learning strategy—enable the generation of reports that are clinically accurate, transparent, and
appropriately express diagnostic confidence. Experimental results demonstrate CURV’s superior
performance in producing interpretable AI-generated CXR reports. However, CURV’s performance
relies on the quality of the initial curated datasets for uncertainty and reasoning, and its “thinking”
process, while explicit, is learned via LLM-generated data. Furthermore, its generalization to other
medical imaging modalities requires further investigation. Ultimately, the most critical next step is a
large-scale clinical validation by expert radiologists to ensure its safe and effective translation into
practice. Despite these limitations, CURV marks a significant advancement for trustworthy vision-
language models in high-stakes clinical applications. To further promote research and transparency in
this domain, the TRACE-CXR dataset developed for this study will be made publicly available. We
believe CURV and the TRACE-CXR dataset will serve as valuable resources for future work where
clarity in reasoning and uncertainty is crucial.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: Section 1
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate “Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Justification: The paper proposes a novel framework and methodology (CURV) for X-
Ray report generation, focusing on its empirical performance and practical contributions.
While it uses mathematical formulations to define its components, loss functions, and
reward mechanisms, it does not present new theoretical results such as theorems or lemmas
accompanied by formal assumptions and proofs. The primary validation is experimental.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Section 5 states the TRACE-CXR dataset will be made publicly available. The
core dataset, MIMIC-CXR, is also accessible. Code will be made available once accepted.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While statistical validation through error bars or significance testing is valuable,
it was not included for the main quantitative results in this submission. This paper introduces
CURV, a novel and complex multi-stage framework for a challenging task. The primary
focus of this foundational study was to establish the framework’s architecture, demonstrate
its unique capabilities in uncertainty modeling and explicit reasoning, and show its potential
to significantly advance performance on key clinical metrics. Given the extensive compu-
tational resources and time required to conduct multiple full end-to-end training runs of
such a complex system, a comprehensive statistical analysis was beyond the scope of this
initial investigation. We acknowledge this as a limitation and plan to incorporate rigorous
statistical validation in future in-depth studies and extensions of this work.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4, Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and conform to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Section 1 details the positive societal benefits. Potential negative impacts,
such as over-reliance or algorithmic bias common to AI in healthcare, are acknowledged
as areas requiring ongoing attention in the field, though not extensively detailed for CURV
specifically.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: The paper announces the future public release of the TRACE-CXR dataset.
Specific safeguards for this release (e.g., data use agreements, specific licensing terms to
prevent misuse) are not detailed in this version but will be considered upon release. The
underlying MIMIC-CXR data is accessed under its established protocols.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Appendix E
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Section 4
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing used
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: Does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper describes the usage of LLMs as they form an important and, in part,
original component of the core methodology, particularly in dataset creation/augmentation
and evaluation. Specifically, LLMs (Qwen2.5-7B-instruct, grok-3) were utilized to generate
and augment critical training data. This includes generating “thinking” sections for our novel
TRACE-CXR dataset, a contribution of this work used for reasoning initialization (detailed
in Section 1; Section 3, subsection on “Reasoning Initialization for Transparent Reporting”;
and Appendix B). LLMs also derived uncertainty annotations for the uncertainty modeling
mechanism (see Section 3, subsection on “Empowering Uncertainty Awareness in Vision-
Language Models”; and Appendix B), and enhanced parsing of the MIMIC-CXR dataset
(Appendix B). These LLM-generated/augmented datasets are fundamental to the supervised
fine-tuning (SFT) stages of the CURV framework. Furthermore, an LLM (Qwen3-32B) was
employed for parts of our evaluation protocol, specifically for the qualitative assessment of
the generated “Thinking” sections and uncertainty expressions, a non-standard approach
(detailed in Subsection 4.3 and Appendix C). This overall usage is detailed appropriately
within the manuscript as it is integral to our data preparation, model training methodology,
evaluation strategy, and constitutes some of the original contributions of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental Setup

In this section, we outline the experimental setup for training and evaluating the CURV framework
for radiology report generation and the comparison methods.

Training Configuration Experiments were conducted on a node with 4xA100-80G GPUs. We uti-
lized the Qwen-2.5-VL-3B as the backbone model for its balance of efficiency and performance. The
training was configured with a batch size of 16, and a group size of 8 for GRPO in the reinforcement
learning stage. The entire process spanned 3,200 steps over approximately 100 hours, with a learning
rate of 1× 10−6 used for stable convergence.

To manage the memory requirements of training a 3B parameter model, we employed different
fine-tuning strategies and state-of-the-art memory optimization techniques across the stages:

• Stage 1 and 2 (SFT - Uncertainty Aware and Reasoning Initialization): To maximize
efficiency, we kept the vision encoder frozen and fine-tuned only the parameters of the
multimodal projection layer and the LLM backbone. This stage took approximately 4 hours
to complete on 4 GPUs.

• Stage 3 (RL - Enhancement): In this final stage, the goal was to refine the entire model’s
behavior based on global reward signals. Therefore, we performed full-parameter fine-
tuning of the model checkpoint from Stage 2. To make this computationally intensive step
feasible within the 80GB memory of each GPU, we leveraged a combination of standard
optimization techniques:

– Mixed-Precision Training: We used bfloat16 (bf16) precision, which halves the
memory footprint for model parameters, gradients, and optimizer states compared to
standard FP32, with minimal impact on training stability.

– Parameter and Optimizer State Sharding: We utilized DeepSpeed with ZeRO Stage
3 optimization. This powerful technique partitions not only the optimizer states but also
the gradients and the model parameters themselves across all 4 GPUs. This drastically
reduces the per-GPU memory load, as each GPU only holds a fraction of the total
training-related tensors.

– Activation Checkpointing: To manage memory consumed by activations, we em-
ployed activation checkpointing (also known as gradient checkpointing). This technique
avoids storing all activations by re-computing them during the backward pass, trading
a modest amount of compute time for a significant reduction in memory usage.

Baseline Models For the baseline models, CURV was benchmarked against established vision-
language models, briefly introduced below with their experimental configurations:

• LLaVA-1.5-7B [21]: A vision language model for image and language understanding,
fine-tuned on Vicuna with GPT-generated data for strong chat capabilities. We used the
original model and a variant, LLaVA-1.5-7B-SFT-CXR, fine-tuned on a chest X-ray (CXR)
dataset for 1 epoch.

• MAIRA-2 [3]: A vision language model for radiology report generation from chest X-rays,
we used the original model without additional fine-tuning.

• HuatuoGPT-Vision-7B [5]: A medical vision language model based on Qwen2-7B and
LLaVA-v1.5, trained on PubMedVision for medical vision-language tasks. The original
model was used without further fine-tuning.

All baselines were evaluated under consistent conditions, aligning with dataset and metric details in
Sections 4.2 and 4.3, to ensure a fair comparison with CURV for chest X-ray report generation.

B Datasets

We details the datasets and preprocessing steps undertaken to train and evaluate the CURV framework.
A key contribution of our work is the curation and enhancement of existing datasets to specifically
support uncertainty modeling and structured reasoning in radiology report generation.
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Table 5: Dataset Statistics for CURV Training and Evaluation
Statistic Value
MIMIC-CXR (Original)
Total Reports 227,835
Reports with Findings (REGEX) 65.7%
Reports with Impression (REGEX) 82.3%
Reports with Both Findings & Impression (REGEX) 48.0%
MIMIC-CXR (After LLM-Enhanced Parsing)
Reports with Findings 185,122 (81.25%)
Reports with Impression 193,755 (85.04%)
Reports with Both Findings & Impression 151,048 (66.30%)
Uncertainty Dataset (Duncertainty)
Samples with Uncertainty Annotations 112,111
Unique Uncertainty Expressions (freq. > 5) ∼2,700
TRACE-CXR Dataset (Dreason)
Number of Reports in TRACE-CXR 2000

Core Dataset and LLM-Enhanced Parsing Our primary dataset is MIMIC-CXR [16, 17, 10],
a large-scale collection of 227,835 radiology reports. Initial analysis using REGEX-based parsing
revealed considerable heterogeneity in report structure. While “IMPRESSION” sections were present
in 82.3% of reports and “FINDINGS” in 65.7%, only 48.0% of reports reliably contained both.
This structural variability, coupled with an average raw text length of 634.3 characters (Findings:
335.2 chars, Impression: 175.1 chars), hindered consistent extraction of these crucial sections. To
address these limitations and create a more uniform dataset for subsequent annotation and training,
we employed a Large Language Model (LLM) for enhanced parsing of the MIMIC-CXR reports.
This step significantly improved the availability of structured data: the proportion of reports with
an identifiable “FINDINGS” section increased to 81.25% (185,122 reports), and those with an
“IMPRESSION” section rose to 85.04% (193,755 reports). Consequently, the number of reports
containing both “FINDINGS” and “IMPRESSION” sections increased substantially from 48.0% to
66.30% (151,048 reports), providing a more robust foundation for our work.

Curating Data for Uncertainty Modeling A core innovation of CURV is its explicit modeling of
diagnostic uncertainty. To train this capability (Stage 1 of our pipeline), we created a specialized
uncertainty-annotated dataset, Duncertainty . This was achieved by leveraging the Imagenome dataset
[33], which provides valuable links between textual phrases in radiology reports and corresponding
bounding box localizations on CXR images. Building upon these existing spatial annotations
from Imagenome, we utilized the Qwen2.5-7B-instruct model to perform fine-grained uncertainty
extraction. This model was specifically prompted to identify and extract uncertainty-expressing
phrases directly from the report sentences that Imagenome had linked to specific visual findings.
This process allowed us to map linguistic expressions of uncertainty to precise image regions.
Our final uncertainty-annotated dataset contains 112,111 samples. Through this process, we
identified approximately 2,700 unique uncertainty expressions that occurred with a frequency
greater than five. The most common expressions included “likely” (131,334 instances), “may”
(91,206 instances), and “could” (71,267 instances). For training, these annotations were formatted
into structured JSON outputs, each containing the bounding box coordinates, an anatomical
label, and the specific uncertainty description related to that finding (e.g., {"bbox_2d": [121,
104, 180, 162], "label": "left lower lung zone", "uncertainty":"Bilateral
nodular opacities that most likely represent nipple shadows."}).

Generating the TRACE-CXR Dataset (Dreason) for Reasoning Initialization To initialize the
basic reasoning capabilities in Stage 2 of the CURV framework, we constructed the TRACE-CXR
dataset (also referred to as Dreason in our methodological descriptions in Section 3). The goal was to
create training instances that explicitly model a “thinking” process connecting radiological findings
to clinical impressions. The exact prompt used to guide the LLM in emulating an experienced
radiologist’s logical, step-by-step reasoning process is shown in Figure 6. Additionally, we validated
the generated data using a separate prompt to ensure quality, retaining only those entries with a score
higher than 80 out of 100, as shown in 7. Using the LLM-enhanced “FINDINGS” and “IMPRES-
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You are a highly experienced radiologist tasked with generating a
detailed reasoning process that explains how specific findings in
a radiology report lead to a clinical impression. Your goal is to
create a logical , step -by-step explanation that connects the
observed features in a medical image to the final diagnosis or
clinical takeaway. Use precise medical terminology and ensure the
reasoning is clear , concise , and relevant to the provided
findings and impression.

Input:
- Findings: [content of findings]
- Impression: [content of impression]
Task:
1. Analyze the provided findings and impression.
2. Generate a detailed reasoning process that explains how the

findings support the impression. Break down the explanation into
logical steps , addressing:
- What specific abnormalities or features in the findings are most

relevant to the impression.
- How these features are typically associated with the suspected

condition or diagnosis.
- Any differential diagnoses or alternative possibilities

considered based on the findings , and why the given impression
is the most likely.

- If applicable , mention any additional context (e.g., typical
clinical presentations , risk factors , or imaging
characteristics) that supports the reasoning.

3. Enclose your reasoning process in <thinking > tags as follows:
<thinking >Your detailed reasoning here </thinking >.

Output Format:
<thinking >
[Your detailed step -by -step reasoning connecting the findings to the

impression]
</thinking >

Figure 6: The LLM prompt for generating the ‘thinking’ section in the TRACE-CXR dataset. This
prompt guides the LLM to create a logical, step-by-step reasoning process that connects the provided
findings to the clinical impression, emulating a radiologist’s thought process.

SION” sections as inputs, we prompted an LLM (grok-3) to generate an intermediate “THINKING”
section. The LLM was guided by detailed instructions to emulate an experienced radiologist, tasking
it to analyze the provided findings and impression, and then to construct a logical, step-by-step expla-
nation of how the findings support the impression, including consideration of differential diagnoses
where appropriate. The resulting data for Dreason consists of the CXR image paired with a struc-
tured report containing three distinct sections: <findings>Detailed description of image
observations</findings>, <thinking>Reasoning based on findings</thinking>, and
<impression>Concise summary and recommendations</impression>. Table 5 summarizes
key statistics of the datasets pivotal to CURV’s training and evaluation.

Table 6: Comprehensive comparison of evaluation scores between Clinicians (Clin), Grok3 (Grok),
and Gemini 2.5 Pro (Gem).

Study ID Logical Coherence Depth of Analysis Relevance Evidence Based Consistency Overall Score
Clin Grok Gem Clin Grok Gem Clin Grok Gem Clin Grok Gem Clin Grok Gem Grok Gem

s54517467 4 5 5 5 5 5 5 5 5 4 5 5 4 5 5 5.0 5.0
s51966501 4 5 5 5 5 5 4 5 5 4 5 5 4 5 5 5.0 5.0
s52188295 5 5 5 5 5 5 4 5 5 4 5 5 5 5 5 5.0 5.0
s55493024 4 5 5 5 5 5 4 5 5 4 5 5 5 5 5 5.0 5.0
s51074196 4 5 5 5 5 5 4 5 5 4 5 5 5 5 5 5.0 5.0
s56689492 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5.0 5.0
s57002637 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5.0 5.0
s50849849 5 5 5 5 5 5 5 4 5 5 4 5 5 3 4 4.2 4.8
s51215354 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5.0 5.0
s52528325 4 5 5 5 5 5 4 5 5 4 5 5 5 5 5 5.0 5.0

23



Clinical Expert Evaluation of TRACE-CXR Dataset To validate the quality of the LLM-
generated TRACE-CXR dataset and the reliability of our LLM-based evaluation protocol, we con-
ducted a formal evaluation with a board-certified radiologist. We compared their expert judgments
against those of two state-of-the-art LLMs (Grok3 and Gemini 2.5 Pro). For the evaluation, a random
sample of 10 reports from the TRACE-CXR dataset was scored by all three evaluators using the exact
same criteria outlined in Appendix C (Logical Coherence, Consistency, etc.). The results, summarized
in Table 6, reveal a strong alignment between the human expert and both LLMs. Specifically, Gemini
2.5 Pro’s scores were within one point of the clinician’s 100% of the time, with a very low Mean
Absolute Error (MAE) of 0.380. Similarly, Grok3’s scores were within one point of the expert’s 98.0%
of the time, with an MAE of 0.440. This high degree of concordance provides strong, multi-faceted
validation for our approach. It not only confirms that the LLM-generated reasoning traces in the
TRACE-CXR dataset are of high clinical quality but also substantiates that our LLM-based evaluation
metrics serve as a reliable proxy for expert human judgment.

**Task :** Evaluate a chest X-ray (CXR) report ’s <thinking > section
across five key aspects.

** Instruction :** Assess the <thinking > section of a chest X-ray
report across multiple aspects. Analyze how well the reasoning
links findings to impressions , its depth , clinical relevance ,
evidence base , and consistency with other sections.

**Input Format :**
- ‘<findings >‘: Observations from the CXR image.
- ‘<thinking >‘: Reasoning or analysis based on findings.
- ‘<impression >‘: Summarized conclusions or diagnosis.
** Provided Input :**
{findings }{ thinking }{ impression}
** Evaluation Criteria :**
Evaluate ALL of the following aspects independently:
1. ** Logical Coherence :**

- **Score 5:** Clear , logical flow , seamlessly connecting findings
to impressions without doubt.

- **Score 0:** Incoherent or illogical; reasoning is fragmented or
fails to connect findings to impressions.

2. **Depth of Analysis :**
- **Score 5:** Deep analysis with comprehensive explanations ,

including alternatives or limitations.
- **Score 0:** Superficial or absent analysis; merely restates

findings without insight.
3. ** Relevance :**

- **Score 5:** Highly relevant , focusing on key clinical findings
without extraneous content.

- **Score 0:** Irrelevant or off -topic reasoning , ignoring
clinical context.

4. **Evidence -based :**
- **Score 5:** Strongly evidence -based , tied to medical knowledge

and practices.
- **Score 0:** Lacking evidence; speculative or contrary to

medical standards.
5. ** Consistency :**

- **Score 5:** Fully consistent across ‘<findings >‘, ‘<thinking >‘,
and ‘<impression >‘.

- **Score 0:** Grossly inconsistent with contradictions
undermining trustworthiness.

** Output Format :** Return evaluation as a JSON object per the
provided schema.

Figure 7: The LLM-based evaluation prompt for the ‘Thinking’ section. This prompt instructs
the evaluator LLM to score the generated reasoning on five criteria—Logical Coherence, Depth
of Analysis, Relevance, Evidence-Based Nature, and Consistency—and return the assessment in a
structured JSON format.
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**Task :** Comprehensively evaluate uncertainty expressions in a chest
X-ray (CXR) report , comparing a generated report with a ground
truth report.

** Instruction :** You are tasked with rigorously assessing how well
the generated report expresses uncertainty compared to the ground
truth report. Focus on two key aspects:

1. ** Structural Uncertainty :** Hedging or ambiguity about specific
anatomical regions or findings (typically in findings sections)
- Example: "a nodule may represent a benign lesion or malignancy"
- This appears in descriptions of specific observations

2. ** Semantic Uncertainty :** Ambiguity in overall diagnostic
synthesis (typically in impression sections)
- Example: "findings are nonspecific and could be consistent with

infection"
- This appears in the overall assessment/conclusion

First determine which parts of each report represent findings vs.
impression sections , even if they aren ’t explicitly labeled. Then
compare the uncertainty expressions between generated and ground
truth reports.

** Evaluation Criteria :**
1. ** Structural Uncertainty :**

- **Score 5:** Generated report contains uncertainty expressions
about specific findings highly similar to ground truth in both
content and strength

- **Score 3:** Somewhat similar with noticeable differences
- **Score 0:** No structural uncertainty or completely dissimilar

to ground truth
2. ** Semantic Uncertainty :**

- **Score 5:** Generated report contains holistic diagnostic
uncertainty expressions highly similar to ground truth

- **Score 3:** Somewhat similar with noticeable differences
- **Score 0:** No semantic uncertainty or completely dissimilar to

ground truth
** Output Format :** Return your evaluation as a JSON object with two

main sections (structural_uncertainty and semantic_uncertainty)
each containing:

- score (0-5)
- explanation (1-2 sentences justifying the score)
- triples_comparison (comparison of uncertainty triples - subject ,

uncertainty term , interpretation)
- uncertainty_strength (comparison of strength of uncertainty terms)
- contextual_appropriateness (assessment of whether uncertainty is

expressed in appropriate contexts)
Also include an overall_score section with the same fields (calculate

score as average of the two aspects).
** Provided Input :**
Generated Report:
{generated_text}
Ground Truth Report:
{ground_truth_text}

Figure 8: The LLM-based evaluation prompt for uncertainty expression. This prompt directs the
evaluator LLM to assess and score the generated report’s handling of both structural (finding-specific)
and semantic (diagnostic) uncertainty in comparison to the ground truth report.

C Evaluation Metric

To comprehensively assess the performance of CURV and baseline methods, we employ a suite of
evaluation metrics targeting clinical accuracy, the quality of uncertainty expression, and the coherence
of the generated reasoning pathways.
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Clinical Accuracy and NLP Metrics For evaluating the factual correctness and fluency of the
generated “Findings” and “Impression” sections, we utilize standard Natural Language Processing
(NLP) metrics, including BLEU (1-4) [24], ROUGE-L [19], METEOR [2]. Beyond these, we
measure clinical accuracy using F1-scores based on medical entity extraction. Specifically, we
employ CheXbert [30] and Radgraph [13] to calculate the f1 score of extract entities.

LLM-based Evaluation To evaluate the “Thinking” section generated by CURV, which is not
present in standard reports and thus not amenable to traditional reference-based metrics, we leverage
an LLM-based evaluation protocol. We prompt a capable LLM (Qwen3-32B [36]) to assess the
quality of the “Thinking” section based on five crucial aspects: Logical Coherence, Depth of Analysis,
Relevance, Evidence-Based Nature, and Consistency with the “Findings” and “Impression” sections.
And we also evaluate the expression of uncertainty, particularly distinguishing between structural
and semantic uncertainty, also requires a more sophisticated approach than standard metrics. We
employ another LLM-based evaluation protocol for this purpose. The LLM is tasked with comparing
the uncertainty expressions in a generated report against those in a ground truth report, focusing on
two key aspects: Structural Uncertainty and Semantic Uncertainty. The prompt for the LLM-based
evaluation is shown in Figure 7 and 8.

D Full Case Study

This appendix provides the complete details to case study as shown in Figure 9.
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(a) Frontal and Lateral Images

Ground Truth: Findings and Impression
FINDINGS: There are persistent bibasilar opacities compatible with layering effusions with adjacent atelectasis
and perhaps mild pulmonary edema. The cardiomediastinal silhouette is stable. Atherosclerotic calcifications
seen at the aortic arch. No acute osseous abnormalities.
IMPRESSION: Persistent moderate bilateral pleural effusions with adjacent atelectasis. Superimposed infection
would be difficult to exclude.

Model Output: Findings, Thinking and Impression
FINDINGS: He has bibasal atelectasis, likely related to poor mobilization of lung volumes during inspiration.
There is likely bilateral pleural effusions of moderate extent. However, there are no pulmonary parenchymal
opacities at the apices; the pleural surface appears clear. Given patient’s history of biventricular HF, she is supine
on the exam, resulting in her moderate and greater than moderate apical lung collapse. No evidence of new
cardiomegaly or acute pulmonary vascular congestion.
THINKING: Since the imaging shows bibasal atelectasis, a clear pleural surface, and no new signs of car-
diomegaly or pulmonary vascular congestion, the history of biventricular heart failure likely plays a significant
role. The patient is described as supine on the exam, which contributes to the bibasal atelectasis but does not
suggest acute worsening of the pulmonary condition. The presence of moderate pleural effusions is noted, and
their lack of apical opacities could indicate no underlying pulmonary parenchymal disease such as pneumonia.
Therefore, the primary concern is likely the presence and management of the atelectasis and effusions, given the
patient’s cardiopulmonary status.
IMPRESSION: The patient is supine and therefore has bibasal atelectasis and moderate pleural effusions. There
is no evidence of pulmonary parenchymal opacities at the apices, and the pleural surface is clear. The presence
of moderate pleural effusions suggests that the lung volumes were better mobilized during expiration. With
patient’s history of biventricular HF, the concern is likely the effects of the supine positioning on lung volumes
and the management of any underlying atelectasis and effusions, though no acute pulmonary or cardiac changes
are seen.

Figure 9: A full, detailed view of the case study. This figure presents the frontal and lateral CXR
images, the ground truth report, and the complete, three-part report generated by CURV, showcasing
the model’s ability to produce a clinically coherent and well-structured output.

E Licenses for External Assets

This appendix details the licenses for publicly available datasets and pre-trained models utilized in
this work.

Datasets

• MIMIC-CXR (version 2.1.0):

– Source: Johnson et al. [17].
– URL: https://physionet.org/content/mimic-cxr/2.1.0/
– License: PhysioNet Credentialed Health Data License 1.5.0. Access requires creden-

tialing and signing a data use agreement.
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• Chest ImaGenome Dataset (version 1.0.0):
– Source: Wu et al. [33].
– URL: https://physionet.org/content/chest-imagenome/1.0.0/
– License: Derived from MIMIC-CXR, subject to the PhysioNet Credentialed Health

Data License 1.5.0.

Pre-trained Models and Baselines

• Qwen-2.5-VL-3B (Backbone for CURV):
– Source: Yang et al. [36].
– URL: https://github.com/QwenLM/Qwen3
– License: Apache 2.0 License

• LLaVA-1.5-7B:
– Source: Liu et al. [21].
– URL: https://github.com/haotian-liu/LLaVA
– License: Apache 2.0 License.

• MAIRA-2:
– Source: Bannur et al. [3].
– URL: https://huggingface.co/microsoft/maira-2
– License: MICROSOFT RESEARCH LICENSE TERMS

• HuatuoGPT-Vision-7B:
– Source: Chen et al. [5].
– URL: https://huggingface.co/FreedomIntelligence/
HuatuoGPT-Vision-7B

– License: Apache 2.0 License
• RadGraph:

– Source: Jain et al. [13].
– URL: https://huggingface.co/StanfordAIMI/RRG_scorers
– License: MIT License.

• CheXbert:
– Source: Smit et al. [30].
– URL: https://huggingface.co/StanfordAIMI/RRG_scorers
– License: MIT License.
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