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Abstract

Large language models (LLMs) have demonstrated remarkable prediction perfor-
mance for a growing array of tasks. However, their rapid proliferation and in-
creasing opaqueness have created a growing need for interpretability. Here, we
ask whether we can automatically obtain natural language explanations for black
box text modules. A text module is any function that maps text to a scalar continu-
ous value, such as a submodule within an LLM or a fitted model of a brain region.
Black box indicates that we only have access to the module’s inputs/outputs. We
introduce Summarize and Score (SASC), a method that takes in a text module
and returns a natural language explanation of the module’s selectivity along with
a score for how reliable the explanation is. We study SASC in 2 contexts. First,
we evaluate SASC on synthetic modules and find that it often recovers ground
truth explanations. Second, we use SASC to explain modules found within a pre-
trained BERT model, enabling inspection of the model’s internals. All code for
using SASC and reproducing results is made available on Github.

1 Introduction

Large language models (LLMs) have demonstrated remarkable predictive performance across a
growing range of diverse tasks [1, 2]. However, the inability to effectively interpret these mod-
els has led them to be characterized as black boxes. This opaqueness has debilitated their use in
high-stakes applications such as medicine [3], and raised issues related to regulatory pressure [4],
safety [5], and alignment [6]. This lack of interpretability is particularly detrimental in scientific
fields, where trustworthy interpretation itself is the end goal [7].

To ameliorate these issues, we propose Summarize and Score (SASC). SASC produces natural
language explanations for text modules. We define a text module f as any function that maps text
to a scalar continuous value, e.g. a neuron in a pre-trained LLM1. Given f , SASC returns a short
natural language explanation describing what elicits the strongest response from f . SASC requires
only black-box access to the module (it does not require access to the module internals) and no
human intervention.

1Note that a neuron in an LLM typically returns a sequence-length vector rather than a scalar, so a transfor-
mation (e.g. averaging) is required before interpretation.
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Figure 1: SASC pipeline for obtaining a natural language explanation given a module f. (i) SASC
first generates candidate explanations (using a pre-trained LLM) based on the ngrams that elicit the
most positive response from f . (ii) SASC then evaluates each candidate explanation by generating
synthetic data based on the explanation and testing the response of f to the data.

SASC uses two steps to ground explanations in the responses of f (Fig. 1). In the first step, SASC
derives explanation candidates by sorting f ’s responses to ngrams and summarizing the top ngrams
using a pre-trained LLM. In the second step, SASC evaluates each candidate explanation by generat-
ing synthetic text based on the explanation (again with a pre-trained LLM) and testing the response
of f to the text; these responses to synthetic text are used to assign an explanation score to each ex-
planation, that rates the reliability of the explanation. Decomposing explanation into these separate
steps helps mitigate issues with LLM hallucination when generating and evaluating explanations.

We evaluate SASC in two contexts. In our main evaluation, we evaluate SASC on synthetic modules
and find that it can often recover ground truth explanations under different experimental conditions
(Sec. 3). In our second evaluation, we use SASC to explain modules found within a pre-trained
BERT model after applying dictionary learning (details in Sec. 4), and find that SASC explana-
tions are often of comparable quality to human-given explanations (without the need for manual
annotation). Furthermore, we verify that BERT modules which are useful for downstream text-
classification tasks often yield explanations related to the task.

2 Method

SASC aims to interpret a text module f , which maps text to a scalar continuous value. For example
f could be the output probability for a single token in an LLM, or the output of a single neuron
extracted from a vector of LLM activations. SASC returns a short explanation describing what
elicits the strongest response from f , along with an explanation score, which rates how reliable
the explanation is. In the process of explanation, SASC uses a pre-trained helper LLM to perform
summarization and to generate synthetic text. To mitigate potential hallucination introduced by the
helper LLM, SASC decomposes the explanation process into 2 steps (Fig. 1) that greatly simplify
the task performed by the helper LLM:

Step 1: Summarization The first step generates candidate explanations by summarizing ngrams.
All unique ngrams are extracted from a pre-specified corpus of text and fed through the module f .
The ngrams that elicit the largest positive response from f are then fed through the helper LLM for
summarization. To avoid over-reliance on the very top ngrams, we select a random subset of the
top ngrams in the summarization step. This step is similar to prior works which summarize ngrams
using manual inspection/parse trees [8, 9], but the use of the helper LLM enables flexible, automated
summarization.
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The summarization step requires 2 choices: the corpus underlying the extracted ngrams, and the
length of ngrams to extract. Using a larger corpus/higher order ngrams can make SASC more
accurate, but the computational cost grows linearly with the unique number of ngrams in the corpus.
The corpus should be large enough to include relevant ngrams, as the corpus limits what generated
explanations are possible. (e.g. it is difficult to recover mathematical explanations from a corpus
that contains no math).

Step 2: Synthetic scoring The second step aims to evaluate each candidate explanation and select
the most reliable one. SASC generates synthetic data based on each candidate explanation, again
using the helper LLM. Intuitively, if the explanation accurately describes f , then f should output
large values for text related to the explanation (Text+) compared to unrelated synthetic text (Text−).
We thus compute the explanation score as follows:

Explanation score = E[f(Text+)− f(Text−)] with units σf , (1)

where a larger score corresponds to a more reliable explanation. We report the score in units of σf ,
the standard deviation of the module’s response to the corpus. An explanation score of 1σf means
that synthetic text related to the explanation increased the mean module response by one standard
deviation compared to unrelated text. SASC returns the candidate explanation that maximizes this
difference, along with the synthetic data score.

Limitations and hyperparameter settings While effective, the explanation pipeline described
here has some clear limitations. First and foremost, SASC assumes that f can be concisely described
in a natural language string. This excludes complex functions or modules that respond to a non-
coherent set of inputs. Second, SASC only describes the inputs that elicit the largest responses
from f , rather than its full behavior. Finally, SASC requires that the pre-trained LLM can faithfully
perform its required tasks (summarization and generation). If an LLM is unable to perform these
tasks sufficiently well, users may treat the output of SASC as candidate explanations to be vetted by
a human, rather than final explanations to be used.

We use GPT-3 (text-davinci-003, Feb. 2023) [1] as the helper LLM (see LLM prompts in
Appendix A.2). In the summarization step, we use word-level trigrams, choose 30 random ngrams
from the top 50 and generate 5 candidate explanations. In the synthetic scoring step, we generate 20
synthetic strings (each is a sentence) for each candidate explanation, half of which are related to the
explanation.

3 Recovering ground truth explanations for synthetic modules

Experimental setup for synthetic modules We construct 54 synthetic modules based on the pre-
trained Instructor embedding model [10] (hkunlp/instructor-xl). Each module is based on a
dataset from a recent diverse collection [11, 12] that admits a simple, verifiable keyphrase descrip-
tion describing each underlying dataset, e.g. related to math (full details in Table A3). Each module
is constructed to return high values for text related to the module’s groundtruth keyphrase and low
values otherwise. Specifically, the module computes the Instructor embedding for an input text and
for the groundtruth keyphrase; it then returns the negative Euclidean distance between the embed-
dings. The synthetic modules reliably produce large values for text related to the desired keyphrase
(Fig. A2).

We test SASC’s ability to recover accurate explanations for each of our 54 modules in 3 settings:
(1) The Default setting extracts ngrams for summarization from the dataset corresponding to each
module, which contains relevant ngrams for the ground truth explanation. (2) The Restricted corpus
setting checks the impact of the underlying corpus on the performance of SASC. To do so, we restrict
the ngrams we use for generating explanation candidates to a corpus from a random dataset among
the 54, potentially containing less relevant ngrams. (3) The Noisy module setting adds Gaussian
noise to all module responses in the summarization step; the standard deviation of the added noise
is set to 3σf .

SASC can recover ground truth descriptions Table 1 shows the performance of SASC at recov-
ering ground truth explanations in terms of accuracy (calculated by verifying whether the ground
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Table 1: Explanation recovery performance. For both metrics, higher is better. Each value is aver-
aged over 54 modules and 3 random seeds; errors show standard error of the mean.

SASC Baseline (ngram summarization)
Accuracy BERT Score Accuracy BERT Score

Default 0.883 ±0.03 0.712 ±0.02 0.753 ±0.02 0.622 ±0.05
Restricted corpus 0.667 ±0.04 0.639 ±0.02 0.540 ±0.02 0.554 ±0.05
Noisy module 0.679 ±0.04 0.669 ±0.02 0.456 ±0.02 0.565 ±0.06

Table 2: Examples of recovered explanations for different modules in the Default setting.

Groundtruth Explanation SASC Explanation

C
or

re
ct

atheistic atheism and related topics, such as theism, religious beliefs, and atheists
environmentalism environmentalism and climate action
crime crime and criminal activity
sports sports
definition defining or explaining something
facts information or knowledge

In
co

rr
ec

t

derogatory negative language and criticism
ungrammatical language
subjective art and expression

truth is essentially equivalent to the recovered explanation via manual inspection) and BERT-
score [13]2. In the Default setting, SASC successfully identifies 88% of the ground truth expla-
nations. In the two noisy settings, SASC still manages to recover explanations 67% and 68% of
the time for the Restricted ngrams and Noisy module settings, respectively. In all cases, SASC out-
performs the baseline method which summarizes ngrams [8, 9] but does not use explanation scores
to select among candidate explanations. Table A2 shows the results for the Default setting when
varying different modeling choices and comparisons to additional baselines.

Table 2 shows examples of correct and incorrect recovered explanations along with the ground truth
explanation. For some modules, SASC finds perfect keyword matches, e.g. sports, or slight para-
phrases, e.g. definition → defining or explaining something. For the incorrect examples, the gen-
erated explanation is often similar to the ground truth explanation, e.g. derogatory → negative
language and criticism, but occasionally, SASC fails to correctly identify the underlying pattern,
e.g. ungrammatical → language. Some failures may be due to the inability of ngrams to cap-
ture the underlying explanation, whereas others may be due to the constructed module imperfectly
representing the ground truth explanation.

Fig. 2 shows the cumulative accuracy at recovering the ground truth explanation as a function of the
explanation score. Across all settings, accuracy increases as a function of explanation score, sug-
gesting that higher explanation scores indicate more reliable explanations. This also helps validate
that the helper LLM is able to sucessfully generate useful synthetic texts for evaluation.

4 Generating explanations for BERT transformer factors

Next, we evaluate SASC using explanations for modules within BERT [2] (bert-base-uncased).
In the absence of ground truth explanations, we evaluate the explanations by (i) comparing them to
human-given explanations and (ii) checking their relevance to downstream tasks.

BERT transformer factor modules One can interpret any module within BERT, e.g. a single
neuron or an expert in an MOE [15]; here, we choose to interpret transformer factors, following
a previous study that suggests that they are amenable to interpretation [16]. Transformer factors
learn a transformation of activations across layers via dictionary learning (details in Appendix A.3;
corpus used is the WikiText dataset [17]). Each transformer factor is a module that takes as input

2BERT-score is calculated with the recommended base model microsoft/deberta-xlarge-mnli [14].
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Figure 2: Cumulative accuracy at recovering the ground truth explanation increases as a function of
explanation score. Error bars show standard error of the mean.

a text sequence and yields a scalar dictionary coefficient, after averaging over the input’s sequence
length. There are 1,500 factors, and their coefficients vary for each of BERT’s 13 encoding layers.

Comparison to human-given explanations Table 3 compares SASC explanations to those given
by humans in prior work (31 unique explanations from Table 1, Table 3 and Appendix in [16]). They
are sometimes similar with different phrasings, e.g. leaving or being left versus Word “left”, and
sometimes quite different, e.g. publishing, media, or awards versus Institution with abbreviation.
For each transformer factor, we compare the explanation scores for SASC and the human-given
explanations. The SASC explanation score is higher 61% of the time and SASC’s mean explanation
score is 1.6σf compared to 1.0σf for the human explanation. This evaluation suggests that the SASC
explanations can be of similar quality to the human explanations, despite requiring no manual effort.

Table 3: Comparing sample SASC to human-labeled explanations for BERT transformer factors.
See all explanations and scores in Table A5.

SASC Explanation Human Explanation

names of parks Word “park”. Noun. a common first and last name.
leaving or being left Word “left”. Verb. leaving, exiting
specific dates or months Consecutive years, used in football season naming.
idea of wrongdoing or illegal activity something unfortunate happened.
introduction of something new Doing something again, or making something new again.
versions or translations repetitive structure detector.

SASC win percentage: 61% Human explanation win percentage: 39%
SASC mean synthetic score: 1.6σf Human explanation mean synthetic score: 1.0σf

Mapping explained modules to text-classification tasks We now investigate whether the learned
SASC explanations are useful for informing which downstream tasks a module is useful for. Given a
classification dataset where the input X is a list of n strings and the output y is a list of n class labels,
we first convert X to a matrix of transformer factor coefficients XTF ∈ Rn×19,500, where each row
contains the concatenated factor coefficients across layers. We then fit a sparse logistic regression
model to (XTF , y), and analyze the explanations for the factors with the 25 largest coefficients
across all classes. Ideally, these explanations would be relevant to the text-classification task; we
evaluate what fraction of the 25 explanations are relevant for each task via manual inspection.

We study 3 widely used text-classification datasets: emotion [18] (classifying tweet emotion as
sadness, joy, love, anger, fear or surprise), ag-news [19] (classifying news headlines as world, sports,
business, or sci/tech), and SST2 [20] (classifying movie review sentiment as positive or negative).
Table 4 shows results evaluating the BERT transformer factor modules selected by a sparse linear
model fit to these datasets. A large fraction of the explanations for selected modules are, in fact,
relevant to their usage in downstream tasks, ranging from 0.35 for Emotion to 0.96 for AG News.
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Table 4: BERT modules selected by a sparse linear model fit to text-classification tasks. First row
shows the fraction of explanations for the selected modules which are relevant to the downstream
task. Second row shows test accuracy for the fitted linear models. Bottom section shows sample
explanations for modules selected by the linear model which are relevant to the downstream task.
Values are averaged over 3 random linear model fits (error bars show the standard error of the mean).

Emotion AG News SST2

Fraction
relevant 0.35±0.082 0.96±0.033 0.44±0.086

Test
accuracy 0.75±0.001 0.81±0.001 0.84±0.001

Sa
m
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negative emotions such as
hatred, disgust, disdain,
rage, and horror

people, places, or things related
to japan

a negative statement, usu-
ally in the form of not or
nor

injury or impairment professional sports teams hatred and violence
humor geography harm, injury, or damage

BE
R

T 
la

ye
r

Figure 3: Explanation score for BERT modules. As the BERT layer increases, the explanation score
tends to decrease, implying modules are harder to explain with SASC. Boxes show the median and
interquartile range. The mean explanation score across all layers is 1.77σf .

The AG News task has a particularly large fraction of relevant explanations, with many explanations
corresponding very directly to class labels, e.g. professional sports teams → sports or financial
investments → business. See the full set of generated explanations in Appendix A.3.

Explanation scores across layers SASC provides 1,500 explanations for transformer factors in
13 layers of BERT. Fig. 3 shows that the explanation score decreases with increasing layer depth,
suggesting that SASC better explains factors at lower layers. Appendix B analyzes the character-
istics of explanations for different BERT transformer factors and compares them to explanations
generated for models fitted to fMRI brain responses to natural language.

5 Related work

A few related works study generating natural language explanations. MILAN [21] uses patch-
level information of visual features to generate descriptions of neuron behavior in vision models.
iPrompt [22] uses automated prompt engineering and D5 [12, 23]/GSClip [24] use LLMs to de-
scribe patterns in a dataset (as opposed to describing a module, as we study here). In concurrent
work, [25] propose an algorithm similar to SASC that explains individual neurons in an LLM by
predicting token-level neuron activations. A related line of work generates explanations that are
approximately in natural language. [8] builds an explanation by manually inspecting the top ngrams
eliciting the largest module responses from a corpus. [9] similarly extracts the top sentences from
a corpus, but summarizes them using a parse tree. [26] use a gradient-based method to generate
maximally activating text inputs and [27] builds a graph of ngrams to explain individual neurons.
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Most prior works have focused on the problem of explaining a single prediction with natural lan-
guage, rather than an entire module, e.g. for text classification [28–30], or computer vision [31, 32].
Besides natural language explanations, some works explain individual prediction via feature impor-
tances [33, 34], feature-interaction importances [35, 36], or extractive rationales [37, 38]. We build
on a long line of recent work that explains neural-network representations, e.g. via probing [39, 40],
via visualization [41, 42], by categorizing neurons [43–47], or localizing LLM knowledge [48, 49].
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A Appendix

A.1 Methodology details extended

Table A1: Statistics on corpuses used for explanation. Wikitext is used for BERT explanation and
Moth stories are used for fMRI voxel explanation.

Unique unigrams Unique bigrams Unique trigrams

Wikitext [17] 157k 3,719k 9,228k
Moth stories [50] 117k 79k 140k
Combined 158k 3,750k 9,334k

Prompts used in SASC The summarization step summarizes 30 randomly chosen ngrams
from the top 50 and generates 5 candidate explanations using the prompt Here is a list of
phrases:\n{phrases}\nWhat is a common theme among these phrases?\nThe common theme
among these phrases is .

In the synthetic scoring step, we generate similar synthetic strings with the prompt Generate 10
phrases that are similar to the concept of {explanation}:. For dissimilar synthetic strings we use the
prompt Generate 10 phrases that are not similar to the concept of {explanation}:. Minor automatic
processing is applied to LLM outputs, e.g. parsing a bulleted list, converting to lowercase, and
removing extra whitespaces.

A.2 Synthetic module interpretation

Table A2 shows the results for the Default setting when varying different modeling choices. Per-
formance is similar across various choices, such as using bigrams or 4-grams rather than trigrams
in the summarization step, or when using the LLaMA-2 13-billion parameter model [51] as the
helper LLM rather than GPT-3. Additionally, we find that explanation performance increases with
the capabilities of the helper LLM used for summarization/generation (Fig. A1).

Table A2 also shows comparisons to two additional baselines. Gradient-based explanations [26]
use the gradients of f with respect to the input to generate maximally activating inputs, but fail
to accurately identify the underlying groundtruth text, consistent with previous work in prompt-
ing [22, 52]. The topic modeling baseline generates explanations via topic modeling [53]: it learns
a 100-component dictionary over ngrams. Then, explanation accuracy for a module is evaluated by
taking the top-30 scoring ngrams for the module (as is done with SASC), finding the 5 topics with
the highest scores for these ngrams, and manually checking whether there is a match between the
groundtruth and any of the top-5 words in any of these topics. This method fails, largely because the
topic model fails to construct topics relevant to each specific module, as the same input ngrams are
shared across all modules.

Table A2: Explanation recovery accuracy when varying hyperparameters for the Default setting;
averaged over 54 modules and 3 random seeds;

SASC
(Original)

SASC
(Bigrams)

SASC
(4-grams)

SASC
(LLaMA-2

summarizer)

SASC
(LLaMA-2
generator)

Baseline
(Gradient-based)

Baseline
(Topic

modeling)

0.883±0.03 0.815±0.04 0.889±0.03 0.870±0.03 0.852±0.04 0.093±0.01 0.111±0.01

10



ad
a

ba
bb

ag
e

cur
ie

da
vin

ci

0.7

0.8

BE
RT

 S
co

re

Figure A1: The BERT score between generated explanation and groundtruth explanation gen-
erally increases as the size of the helper LLM for summarization/generation increases. Mod-
els are accessed via the OpenAI API (text-ada-001, text-babbage-001, text-curie-001,
text-davinci-003) and are in order of increasing size. BERT score for each module is computed
as the maximum over the 5 generated explanations.
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3-god
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Figure A2: Synthetic modules respond more strongly to phrases related to their keyphrase (diagonal)
than to phrases related to the keyphrase of other datasets (off-diagonal). Each value shows the mean
response of the module to 5 phrases and each row is normalized using softmax. Each module is
constructed using Instructor [10] with the prompt Represent the short phrase for clustering: and
the groundtruth keyphrase given in Table A3. Related keyphrases are generated manually.
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Table A3: 54 synthetic modules and information about their underlying data corpus. Note that some
modules use the same groundtruth Keyword (e.g. environmentalism), but that the underlying data
corpus contains different data (e.g. text that is pro/anti environmentalism).

Module name Groundtruth keyphrase Dataset explanation Examples Unique unigrams

0-irony sarcasm contains irony 590 3897
1-objective unbiased is a more objective description of what happened 739 5628
2-subjective subjective contains subjective opinion 757 5769
3-god religious believes in god 164 1455
4-atheism atheistic is against religion 172 1472
5-evacuate evacuation involves a need for people to evacuate 2670 16505
6-terorrism terrorism describes a situation that involves terrorism 2640 16608
7-crime crime involves crime 2621 16333
8-shelter shelter describes a situation where people need shelter 2620 16347
9-food hunger is related to food security 2642 16276
10-infrastructure infrastructure is related to infrastructure 2664 16548
11-regime change regime change describes a regime change 2670 16382
12-medical health is related to a medical situation 2675 16223
13-water water involves a situation where people need clean water 2619 16135
14-search rescue involves a search/rescue situation 2628 16131
15-utility utility expresses need for utility, energy or sanitation 2640 16249
16-hillary Hillary is against Hillary 224 1693
17-hillary Hillary supports hillary 218 1675
18-offensive derogatory contains offensive content 652 6109
19-offensive toxic insult women or immigrants 2188 11839
20-pro-life pro-life is pro-life 213 1633
21-pro-choice abortion supports abortion 209 1593
22-physics physics is about physics 10360 93810
23-computer science computers is related to computer science 10441 93947
24-statistics statistics is about statistics 9286 86874
25-math math is about math research 8898 85118
26-grammar ungrammatical is ungrammatical 834 2217
27-grammar grammatical is grammatical 826 2236
28-sexis sexist is offensive to women 209 1641
29-sexis feminism supports feminism 215 1710
30-news world is about world news 5778 13023
31-sports sports news is about sports news 5674 12849
32-business business is related to business 5699 12913
33-tech technology is related to technology 5727 12927
34-bad negative contains a bad movie review 357 16889
35-good good thinks the movie is good 380 17497
36-quantity quantity asks for a quantity 1901 5144
37-location location asks about a location 1925 5236
38-person person asks about a person 1848 5014
39-entity entity asks about an entity 1896 5180
40-abbrevation abbreviation asks about an abbreviation 1839 5045
41-defin definition contains a definition 651 4508
42-environment environmentalism is against environmentalist 124 1117
43-environment environmentalism is environmentalist 119 1072
44-spam spam is a spam 360 2470
45-fact facts asks for factual information 704 11449
46-opinion opinion asks for an opinion 719 11709
47-math science is related to math and science 7514 53973
48-health health is related to health 7485 53986
49-computer computers related to computer or internet 7486 54256
50-sport sports is related to sports 7505 54718
51-entertainment entertainment is about entertainment 7461 53573
52-family relationships is about family and relationships 7438 54680
53-politic politics is related to politics or government 7410 53393
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A.3 BERT interpretation

Details on fitting transformer factors Pre-trained transformer factors are taken from [16]. Each
transformer factor is the result of running dictionary learning on a matrix X described as follows.
Using a corpus of sentences S (here wikipedia), embeddings are extracted for each input, layer, and

sequence index in BERT. The resulting matrix X has size

num layers︸ ︷︷ ︸
13 for BERT

·
∑

s∈S len(s)

× d︸︷︷︸
768 for BERT

.

Dictionary learning is run on X with 1,500 dictionary components, resulting in a dictionary D ∈
R1,500×d. Here, we take the fitted dictionary released by [16] trained on the WikiText dataset [17].

During our interpretation pipeline, we require a module which maps text to a scalar coefficient. To
interpret a transformer factor as a module, we specify a text input t and a layer l. This results in
len(t) embeddings with dimension d. We average over these embeddings, and then solve for the
dictionary coefficients, to yield a set of coefficients A ∈ R1500. Finally, specifying a dictionary
component index yields a single, scalar coefficient.

Extended BERT explanation results Table A5 shows examples comparing SASC explanations
with human-labeled explanations for all BERT transformer factors labeled in [16]. Tables A6 to A8
show explanations for modules selected by linear models finetuned on text-classification tasks.

Table A4: Fraction of top logistic regression coefficients that are relevant for a downstream task
(extends Table 4). Averaged over 3 random seeds; parentheses show standard error of the mean.

Emotion AG News SST2

Top-10 0.50 ±0.08 1.00 ±0.00 0.80 ±0.14

Top-15 0.47 ±0.05 0.98 ±0.03 0.69 ±0.13

Top-20 0.42 ±0.09 0.98 ±0.02 0.55 ±0.10
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Table A5: Comparing SASC explanations to all human-labeled explanations for BERT transformer
factors. Explanation scores are in units of σf .

Factor
Layer

Factor
Index Explanation (Human) Explanation (Ours)

Explanation
score

(Human)

Explanation
score

(Ours)

4 13 Numerical values. numbers -0.21 -0.08
10 42 Something unfortunate happened. idea of wrongdoing or illegal activity 2.43 1.97
0 30 left. Adjective or Verb. Mixed senses. someone or something leaving 3.68 5.87
4 47 plants. Noun. vegetation. trees 6.26 5.04

10 152 In some locations. science, technology, and/or medicine -0.41 0.03
4 30 left. Verb. leaving, exiting. leaving or being left 4.44 0.90

10 297 Repetitive structure detector. versions or translations -0.36 0.98
10 322 Biography, someone born in some year... weapons and warfare 0.19 0.38
10 13 Unit exchange with parentheses. names of places, people, or things -0.11 -0.10
10 386 War. media, such as television, movies, or video

games
0.20 -0.15

10 184 Institution with abbreviation. publishing, media, or awards -0.42 0.14
2 30 left. Verb. leaving, exiting. leaving or being left 5.30 0.91

10 179 Topic: music production. geography -0.52 0.21
6 225 Places in US, followings the convention

”city, state”.
a place or location 1.88 1.33

10 25 Attributive Clauses. something related to people, places, or
things

0.01 1.19

10 125 Describing someone in a para- phrasing
style. Name, Career.

something related to buildings, architec-
ture, or construction

-0.13 0.44

6 13 Close Parentheses. end with a closing punctuation mark (e.g -0.08 0.47
10 99 Past tense. people, places, or things -0.77 -0.04
10 24 Male name. people, places, and things related to history 0.03 0.38
10 102 African names. traditional culture, with references to tra-

ditional territories, communities, forms,
themes, breakfast, and texts

0.35 1.60

4 16 park. Noun. a common first and last name. names of parks -0.03 1.87
10 134 Transition sentence. a comma 1.16 0.38
6 86 Consecutive years, used in foodball season

naming.
specific dates or months 0.85 0.76

4 2 mind. Noun. the element of a person that
enables them to be aware of the world and
their experiences.

concept of thinking, remembering, and
having memories

0.77 11.19

10 51 Apostrophe s, possesive. something specific, such as a ticket, tenure,
film, song, movement, project, game,
school, title, park, congressman, author, or
art exhibition

0.37 -0.01

8 125 Describing someone in a paraphrasing
style. Name, Career.

publications, reviews, or people associated
with the media industry

-0.34 0.42

4 33 light. Noun. the natural agent that stimu-
lates sight and makes things visible.

light 6.25 3.43

10 50 Doing something again, or making some-
thing new again.

introduction of something new 0.84 -0.27

10 86 Consecutive years, this is convention to
name foodball/rugby game season.

a specific date or time of year 1.35 -0.75

4 193 Time span in years. many of them are related to dates and his-
toric places

0.07 1.39

10 195 Consecutive of noun (Enumerating). different aspects of culture, such as art,
music, literature, history, and technology

-0.83 9.83
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Table A6: SASC explanations for modules selected by 25-coefficient linear model on SST2 for a
single seed. Green shows explanations deemed to be relevant to the task.

Layer, Factor index Explanation Linear coefficient

(0, 783) something being incorrect or wrong -862.82
(0, 1064) negative emotions and actions, such as hatred, violence, and disgust -684.27
(1, 783) something being incorrect, inaccurate, or wrong -577.49
(1, 1064) hatred and violence -499.30
(0, 157) air and sequencing 463.80
(9, 319) a negative statement, usually in the form of not or nor -446.58
(0, 481) harm, injury, or damage -441.98
(8, 319) lack of something or the absence of something -441.04
(10, 667) two or more words 424.48
(2, 783) something that is incorrect or inaccurate -415.56
(0, 658) thrice -411.26
(0, 319) none or its variations (no, not, never) -388.14
(0, 1402) dates -377.74
(0, 1049) standard -365.83
(3, 1064) negative emotions or feelings, such as hatred, anger, disgust, and brutality -360.47
(4, 1064) negative emotions or feelings, such as hatred, anger, and disgust -357.35
(5, 152) geography, history, and culture -356.10
(0, 928) homelessness and poverty -355.05
(2, 691) animals and plants, as many of the phrases refer to species of animals and plants -351.62
(0, 810) catching or catching something 350.98
(0, 1120) production -350.01
(0, 227) a period of time -345.72
(2, 583) government, law, or politics in some way -335.40
(2, 1064) negative emotions such as hatred, disgust, and violence -334.87
(4, 125) science or mathematics, such as physics, astronomy, and geometry -328.55

Table A7: SASC explanations for modules selected by 25-coefficient linear model on AG News for
a single seed. Green shows explanations deemed to be relevant to the task.

Layer, Factor index Explanation Linear coefficient

(5, 378) professional sports teams 545.57
(4, 378) professional sports teams in the united states 542.25
(3, 378) professional sports teams 515.37
(0, 378) names of sports teams 508.73
(6, 378) sports teams 499.62
(2, 378) professional sports teams 499.57
(1, 378) professional sports teams 492.01
(7, 378) sports teams 468.66
(8, 378) sports teams or sports in some way 468.39
(11, 32) activity or process 461.46
(12, 1407) such 450.70
(5, 730) england and english sports teams 427.33
(12, 104) people, places, and events from history 425.49
(10, 378) locations 424.71
(6, 730) sports, particularly soccer 424.24
(12, 730) sports 415.21
(4, 396) people, places, or things related to japan -415.13
(10, 659) sports 410.89
(4, 188) history in some way 404.24
(12, 1465) different aspects of life, such as activities, people, places, and objects 403.77
(0, 310) end with the word until -400.10
(5, 151) a particular season, either of a year, a sport, or a television show 396.41
(12, 573) many of them contain unknown words or names, indicated by <unk -393.27
(12, 372) specific things, such as places, organizations, or activities -392.57
(6, 188) geography 388.69
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Table A8: SASC explanations for modules selected by 25-coefficient linear model on Emotion for a
single seed. Green shows explanations deemed to be relevant to the task.

Layer, Factor index Explanation Linear coefficient

(0, 1418) types of road interchanges 581.97
(0, 920) fame 577.20
(6, 481) injury or impairment 566.44
(5, 481) injury or impairment 556.58
(0, 693) end in oss or osses 556.53
(12, 1137) ownership or possession -537.45
(0, 663) civil 524.88
(6, 1064) negative emotions such as hatred, disgust, disdain, rage, and horror 523.41
(3, 872) location of a campus or facility -518.85
(5, 1064) negative emotions and feelings, such as hatred, disgust, disdain, and viciousness 489.25
(0, 144) lectures 482.85
(0, 876) host 479.18
(0, 69) history -467.80
(0, 600) many of them contain the word seymour or a variation of it 464.64
(0, 813) or phrases related to either measurement (e.g -455.11
(1, 89) caution and being careful 451.73
(11, 229) russia and russian culture -450.28
(0, 783) something being incorrect or wrong 448.55
(12, 195) dates 442.14
(12, 1445) breaking or being broken 439.81
(0, 415) ashore -438.22
(0, 118) end with a quotation mark 437.66
(1, 650) mathematical symbols such as >, =, and ) -437.28
(4, 388) end with the sound ch -437.15
(0, 840) withdrawing -436.38

16



B Generating explanations for fMRI-voxel modules
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Figure B1: Explanation score for BERT modules. As the BERT layer increases, the explanation
score tends to decrease, implying modules are harder to explain with SASC. Boxes show the median
and interquartile range.
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Figure B2: Topics found by LDA for explanations of BERT factors and fMRI voxels. Topic pro-
portion is calculated by assigning each explanation to the topic with the largest coefficient. Topic
proportions for BERT/fMRI explanations largely overlap, although the bottom topic consisting of
physical/social words is much more prevalent in fMRI explanations.

fMRI voxel modules A central challenge in neuroscience is understanding how and where seman-
tic concepts are represented in the brain. To meet this challenge, one line of study predicts the re-
sponse of different brain voxels (i.e. small regions in the brain) to natural language stimuli [54, 55].
We analyze data from [50] and [56], which consists of fMRI responses for 3 human subjects as
they listen to 20+ hours of narrative stories from podcasts. We fit modules to predict the fMRI re-
sponse in each voxel from the text that the subject was hearing by extracting text embeddings with
a pre-trained LLaMA model (decapoda-research/llama-30b-hf) [57]. After fitting the mod-
ules on the training split and evaluating them on the test split using bootstrapped ridge regression,
we generate SASC explanations for 1,500 well-predicted voxel modules, distributed evenly among
the three human subjects and diverse cortical areas (see details on the fMRI experimental setup in
Appendix B.1).

Voxel explanations Table B1 shows examples of explanations for individual voxels, along with
three top ngrams used to derive the explanation. Each explanation unifies fairly different ngrams
under a common theme, e.g. sliced cucumber, cut the apples, sauteed shiitake... → food prepa-
ration. In some cases, the explanations recover language concepts similar to known selectivity in
sensory modalities, e.g. face selectivity in IFSFP [58] and selectivity for non-speech sounds such
as laughter in primary auditory cortex [59]. The ngrams also provide more fine-grained hypotheses
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Table B1: Examples of recovered explanations for individual fMRI voxel modules. All achieve
an fMRI predicted correlation greater than 0.3 and an explanation score of at least 1σ. The third
column shows 3 of the ngrams used to derive the explanation in the SASC summarization step.

Explanation ROI Example top ngrams

looking or staring in some way IFSFP eyed her suspiciously, wink at, locks eyes with
relationships and loss ATFP girlfriend now ex, lost my husband, was a miscarriage
physical injury or pain Broca infections and gangrene, pulled a muscle, burned the skin
counting or measuring time PMvh count down and, weeks became months, three more seconds
food preparation ATFP sliced cucumber, cut the apples, sauteed shiitake
laughter or amusement ATFP, AC started to laugh, funny guy, chuckled and

for selectivity (e.g. physical injury or pain) compared to the coarse semantic categories proposed in
earlier language studies (e.g. emotion [54, 60, 61]).

Fig. B2 shows the topics that fMRI explanations best fit into compared with BERT transformer
factors. The proportions for many topics are similar, but the fMRI explanations yield a much greater
proportion for the topic consisting of social words (e.g. relationships, communication, family) and
perceptual words (e.g. action, movement, physical). This is consistent with prior knowledge, as
the largest axis of variation for fMRI voxels is known to separate social concepts from physical
concepts [54].

The selected 1,500 voxels often achieve explanation scores considerably greater than zero for their
explanations (mean explanation score 1.27σf ± 0.029). Fig. B1 (bottom) shows the mean explana-
tion score for the six most common fMRI regions of interest (ROIs) among the voxels we study here.
Across regions, the fMRI voxel modules generally attain explanation scores that are slightly lower
than BERT modules in early layers and slightly higher than BERT modules in the final layers. We
also find some evidence that the generated fMRI voxel explanations can explain not just the fitted
module, but also brain responses to unseen data (see Appendix B.2). This suggests that the voxel
explanations here can serve as hypotheses for followup experiments to affirm the fine-grained selec-
tivity of specific brain voxels. The trends in Fig. B2 and Fig. B1 are consistent whether the fMRI
explanations are generated using ngrams from the original narrative stories or from the WikiText
dataset (see Appendix B.3).

B.1 fMRI data and model fitting

This section gives more details on the fMRI experiment analyzed in Appendix B. These MRI data are
available publicly [50, 56], but the methods are summarized here. Functional magnetic resonance
imaging (fMRI) data were collected from 3 human subjects as they listened to English language
podcast stories over Sensimetrics S14 headphones. Subjects were not asked to make any responses,
but simply to listen attentively to the stories. For encoding model training, each subject listened to
at approximately 20 hours of unique stories across 20 scanning sessions, yielding a total of ∼33,000
datapoints for each voxel across the whole brain. For model testing, the subjects listened to two
test story 5 times each, and one test story 10 times, at a rate of 1 test story per session. These test
responses were averaged across repetitions. Functional signal-to-noise ratios in each voxel were
computed using the mean-explainable variance method from [62] on the repeated test data. Only
voxels within 8 mm of the mid-cortical surface were analyzed, yielding roughly 90,000 voxels per
subject.

MRI data were collected on a 3T Siemens Skyra scanner at University of Texas at Austin using a 64-
channel Siemens volume coil. Functional scans were collected using a gradient echo EPI sequence
with repetition time (TR) = 2.00 s, echo time (TE) = 30.8 ms, flip angle = 71°, multi-band factor
(simultaneous multi-slice) = 2, voxel size = 2.6mm x 2.6mm x 2.6mm (slice thickness = 2.6mm),
matrix size = 84x84, and field of view = 220 mm. Anatomical data were collected using a T1-
weighted multi-echo MP-RAGE sequence with voxel size = 1mm x 1mm x 1mm following the
Freesurfer morphometry protocol [63].

All subjects were healthy and had normal hearing. The experimental protocol was approved by
the Institutional Review Board at the University of Texas at Austin. Written informed consent was
obtained from all subjects.
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All functional data were motion corrected using the FMRIB Linear Image Registration Tool (FLIRT)
from FSL 5.0. FLIRT was used to align all data to a template that was made from the average across
the first functional run in the first story session for each subject. These automatic alignments were
manually checked for accuracy.

Low frequency voxel response drift was identified using a 2nd order Savitzky-Golay filter with a
120 second window and then subtracted from the signal. To avoid onset artifacts and poor detrend-
ing performance near each end of the scan, responses were trimmed by removing 20 seconds (10
volumes) at the beginning and end of each scan, which removed the 10-second silent period and the
first and last 10 seconds of each story. The mean response for each voxel was subtracted and the
remaining response was scaled to have unit variance.

We used the fMRI data to generate a voxelwise brain encoding model for natural language using the
intermediate hidden states from the the 18th layer of the 30-billion parameter LLaMA model [57],
and the 9th layer of GPT [64]. In order to temporally align word times with TR times, Lanczos
interpolation was applied with a window size of 3. The hemodyanmic response function was ap-
proximated with a finite impulse response model using 4 delays at -8,-6,-4 and -2 seconds [54]. For
each subject x, voxel v, we fit a separate encoding model g(x,v) to predict the BOLD response B̂

from our embedded stimulus, i.e. B̂(x,v) = g(x,v)(Hi(S)).
To evaluate the voxelwise encoding models, we used the learned g(x,v) to generate and evaluate
predictions on a held-out test set. The GPT features achieved a mean correlation of 0.12 and LLaMA
features achieved a mean correlation of 0.17. These performances are comparable with state-of-the-
art published models on the same dataset that are able to achieved decoding [56].

To select voxels with diverse encoding, we applied principal components analysis to the learned
weights, g(x,v), for GPT across all significantly predicted voxels in cortex. Prior work has shown
that the first four principal components of language encoding models weights encode differences
in semantic selectivity, differentiating between concepts like social, temporal and visual concepts.
Consequently, to apply SASC to voxels with the most diverse selectivity, we found voxels that lie
along the convex hull of the first four principal components and randomly sampled 1,500 of them
(500 per subject). The mean voxel correlation for the 1,500 voxels we study is 0.35. Note that these
voxels were selected for being well-predicted rather than easy to explain: the correlation between
the prediction error and the explanation score for these voxels is 0.01, very close to zero.

B.2 Evaluating top fMRI voxel evaluations

Table B2 shows two evaluations of the fMRI voxel explanations. First, similar to Fig. B1, we
find the mean explanation score remains significantly above zero. Second, we evaluate beyond
whether the explanation describes the fitted module and ask whether the explanation describes the
underlying fMRI voxel. Specifically, we predict the fMRI voxel response to text using only the
voxel’s explanation using a very simple procedure. We first compute the (scalar) negative embedding
distance between the explanation text and the input text using Instructor [10]3. We then calculate
the spearman rank correlation between this scalar distance and the recorded voxel response (see
Table B2). The mean computed correlation is low4, which is to be expected as the explanation is
a concise string and may match extremely few ngrams in the text of the test data (which consists
of only 3 narrative stories). Nevertheless, the correlation is significantly above zero (more than 15
times the standard error of the mean), suggesting that these explanations have some grounding in
the underlying brain voxels.

Table B2: Evaluation of fMRI voxel explanations. For all metrics, SASC is successful if the value
is significantly greater than 0. Errors show standard error of the mean.

Explanation score Test rank correlation

1.27σf ±0.029 0.033 ±0.002

3The input text for an fMRI response at time t (in seconds) is taken to be the words presented between t−8
and t− 2.

4For reference, test correlations published in fMRI voxel prediction from language are often in the range of
0.01-0.1 [65].
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B.3 fMRI results when using WikiText Corpus
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Figure B3: Results in Fig. B1 when using WikiText as the underlying corpus for ngrams rather than
narrative stories.
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Figure B4: Results in Fig. B2 when using WikiText as the underlying corpus for ngrams rather than
narrative stories.
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