
DyCodeEval: Dynamic Benchmarking of Reasoning Capabilities
in Code Large Language Models Under Data Contamination

Simin Chen 1 Pranav Pusarla 1 Baishakhi Ray 1

1Columbia University

Abstract

The rapid advancement of code large language
models (Code LLMs) underscores the critical
need for effective and transparent benchmarking
methods. However, current benchmarking pre-
dominantly relies on publicly available, human-
created datasets. The widespread use of these
static benchmark datasets makes the evaluation
process particularly susceptible to data contam-
ination—an unavoidable consequence of the ex-
tensive data collection processes employed dur-
ing LLM training. Existing methods for ad-
dressing data contamination typically face sig-
nificant limitations, including reliance on sub-
stantial human effort and difficulty in manag-
ing class imbalances. To overcome these chal-
lenges, we propose DyCodeEval, a novel bench-
marking suite specifically designed to evaluate
Code LLMs under realistic contamination scenar-
ios. Given an initial seed programming problem,
DyCodeEval utilizes multiple agents to system-
atically extract and modify contextual informa-
tion without changing the core logic, generating
semantically equivalent variations. We introduce
a dynamic data generation method and conduct
extensive empirical studies on two seed datasets
involving 18 Code LLMs. The results demon-
strate that DyCodeEval effectively assesses the
reasoning capabilities of Code LLMs under con-
tamination conditions while producing diverse
problem variants, thereby ensuring robust and
consistent benchmarking outcomes. Our project
webpage can be found at this link1.

1Department of Computer Science, Columbia University. Cor-
respondence to: Simin Chen <sc5687@columbia.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1https://codekaleidoscope.github.io/
dycodeeval.html

1. Introduction
Large language models (LLMs) have demonstrated signifi-
cant potential as assistant software developers, particularly
in code generation (Chen et al., 2021; Guo et al., 2024;
Jiang et al., 2024; Di et al., 2024). Consequently, numerous
code-focused LLMs have been developed. These models
are trained on vast corpora of natural language and program-
ming language data. Once well trained, they can compre-
hend human instructions and generate the corresponding
code snippets.

As diverse model architectures and training algorithms
for code LLMs continue to emerge (Vaswani et al., 2017;
Shazeer et al., 2017), a key focus in code LLM research is
the effective benchmarking of each model’s code reasoning
capability. Without a standardized and transparent bench-
marking suite, assessing these models’ performance and
driving improvements becomes a significant challenge.

However, existing benchmarking suites for evaluating code
LLMs are inadequate due to their static benchmarking
schema, which can lead to potential data contamination from
unintended data crawling. Research suggests that such con-
tamination may already be present in current LLMs (Chen
et al., 2025; Jain et al., 2024; Dong et al., 2024). Although
some methods aim to provide contamination-free bench-
marking for code LLMs, they still rely on manual efforts.
For example, LiveCodeBench (Jain et al., 2024) pro-
poses crawling new programming problems from online
platforms and benchmarking LLMs based on timestamps,
while PPM (Chen et al., 2024) attempts to systematize new
programming problems by combining manually defined op-
erators. However, these methods have several limitations:
(1) Significant Manual Effort: These methods still require
substantial manual input to create such datasets. For exam-
ple, PPM necessitates manually defining the lambda opera-
tor, while LiveCodeBench shifts the burden of manual
design to question authors on coding platforms. (2) Imbal-
anced Semantic Complexity: The newly generated bench-
marking datasets often lack semantic equivalence with the
original ones. As a result, when a model performs worse on
these benchmarks, it is challenging to determine whether

1

https://codekaleidoscope.github.io/dycodeeval.html
https://codekaleidoscope.github.io/dycodeeval.html

Dynamic Benchmarking of Code LLMs

the lower score reflects diminished model capabilities or
increased benchmark complexity. Thus, these new bench-
mark results fail to provide meaningful guidance for model
developers to improve their models effectively.

To address this limitation, rather than manually creating
benchmarking datasets with uncertain semantic complexity,
we aim to develop an automated method for dynamically
evaluating code LLMs. However, designing such a method
presents two key challenges: (1) Generating Semantically
Diverse Yet Complexity-Controlled Problems. The first chal-
lenge is how to ensure the generated problems vary in seman-
tics while maintaining controlled complexity. (2) Providing
Comprehensive Benchmarking. A proper benchmark pro-
gramming problem must include fine-grained test cases and
canonical solutions to rigorously assess correctness.

To address these challenges, we draw inspiration from meta-
morphic testing (Chen et al., 2018), a widely used approach
in software testing to tackle the oracle problem. In our
case, we leverage the principles of metamorphic testing
to automate comprehensive benchmarking. Specifically,
we define a metamorphic relationship for programming
problems. A programming problem includes complexity-
related algorithmic abstraction and complexity-unrelated
context description. Modifying the complexity-unrelated
context description alters the problem’s semantics with-
out changing its inherent complexity. Building on this
relationship, DyCodeEval employs LLM-based agents
to generate diverse contexts for a seed problem, automat-
ically transforming existing problems into semantically
varied yet complexity-preserving versions. Additionally,
DyCodeEval integrates a validation agent as a probabilis-
tic oracle to verify the correctness and consistency of the
newly generated problems, ensuring reliability.

We used DyCodeEval to generate new evaluation sets to
assess Code LLM performance under both data contami-
nation and real-world benchmarking scenarios. Our key
findings are as follows:

1. Our method effectively reflects Code LLMs’ reason-
ing capabilities in a manually crafted contamination
environment (§4.2).

2. The performance of some Code LLMs on our dynamic
benchmarks degraded significantly, suggesting poten-
tial data contamination of these Code LLMs (§4.3).

3. DyCodeEval generates semantically diverse pro-
gramming problems, and its inherent randomness
makes the likelihood of generating identical problems
extremely low, thereby reducing the risk of data con-
tamination (§4.4).

4. Despite its randomness, DyCodeEval consistently

produces stable benchmarking results, ensuring reli-
able evaluation (§4.5).

We summarize our contribution as follows:

• Novel Problem Characterization. We identify a limi-
tation in current static benchmarking schemas, as they
are insufficient for effectively evaluating modern Code
LLMs, especially when data contamination occurs and
the model’s training process lacks transparency.

• New Methodology Design. We propose a novel ap-
proach that separates context and algorithm in program-
ming problems. Building on this concept, we introduce
a dynamic benchmarking method, DyCodeEval,
which generates programming problems for bench-
marking without introducing additional complexity to
the dataset. This approach mitigates the impact of
data contamination, ensuring transparent and reliable
benchmarking.

• Empirical Findings. We conduct an empirical eval-
uation of DyCodeEval, and the results demonstrate
that traditional static benchmarks can create a false
sense of accuracy. In contrast, our dynamic bench-
marking approach provides consistently reliable re-
sults, even under data contamination scenarios. Ad-
ditionally, DyCodeEval generates semantically di-
verse programming problems while maintaining stable
benchmarking results.

2. Background & Related Work
2.1. Benchmarking Code LLMs

Code LLMs have been widely adopted in various real-
world software engineering applications, leading to the de-
velopment of numerous benchmarks for evaluating their
capabilities in code understanding and reasoning (Chen
et al., 2021; Li et al., 2024a; Guan et al., 2025; Austin
et al., 2021; Chen et al., 2024; Austin et al., 2021; Yu
et al., 2024; Jimenez et al., 2024; Ding et al., 2023; Mathai
et al., 2024). Among the many tasks designed to assess
code reasoning, this work focuses specifically on the task
of natural language to code generation and reviews rep-
resentative benchmarks in this area. HumanEval (Chen
et al., 2021) introduced a human-crafted dataset to evaluate
the code generation capabilities of large language models.
EvalPlus (Liu et al., 2023) later identified the limitations
of HumanEval and MBPP—particularly their limited test
case coverage—and proposed a more rigorous benchmark.
HumanEval-XL (Peng et al., 2024) further extended Hu-
manEval to support multilingual settings. Fig. 1 illustrates
an example from HumanEval, a widely used benchmark

2

Dynamic Benchmarking of Code LLMs

Prompt Canonical Solution Test Cases

def check(candidate):
 assert candidate([1.0, 3.9, 4.0], 0.3) == True
 assert candidate([1.0, 3.9, 4.0], 0.05) == False
 assert candidate([1.0, 5.9, 5.0], 0.95) == True
…..

def has_close_elements(numbers: List[float], threshold: float):
 """
 Check if in given list of numbers, are any two numbers
 closer to each other than given threshold

 >>> has_close_elements([1.0, 2.0, 3.0], 0.5
 False
 """

for idx, elem in enumerate(numbers):
 for idx2, elem2 in enumerate(numbers):
 if idx != idx2:
 distance = abs(elem - elem2)
 if distance < threshold:

 return True
return False

Figure 1. Benchmark programming problem example

for the natural language to code generation task. Each pro-
gramming problem typically consists of three components:
a prompt, a canonical solution, and a set of test cases. The
prompt is first fed into the Code LLM to generate a can-
didate solution, which is then executed against hidden test
cases to evaluate its correctness.

2.2. Data Contamination Free Benchmarking

Data contamination has become a significant concern in
benchmarking large language models (LLMs) (Brown et al.,
2020; Jain et al., 2024; Chen et al., 2025), as it can lead
to inflated performance scores and unreliable evaluations.
To mitigate this issue, researchers have proposed various
contamination-free benchmarking strategies, which can be
broadly categorized into three approaches. The first line
of work focuses on data protection through encryption and
privatization. For instance, Jacovi et al.(Jacovi et al., 2023)
and Rajore et al.(Rajore et al., 2024) propose techniques
to safeguard benchmark data from being included in LLM
training corpora. The second line of research emphasizes
timely benchmark updates. LiveBench (White et al., 2024),
for example, compiles questions from recent sources such
as math competitions held within the past year and regu-
larly updates its dataset. Similarly, LiveCodeBench (Jain
et al., 2024) continuously collects new human-authored pro-
gramming problems from online platforms like LeetCode
to maintain freshness and reduce the risk of contamination.
The third line of research explores dynamic generation of
evaluation sets. DyVal (Zhu et al., 2024a) uses DAG struc-
tures to create dynamic benchmarks, TreeEval (Li et al.,
2024b) employs high-performing LLMs to generate and
evaluate problems via tree planning, and ITD (Inference-
Time Decontamination) (Zhu et al., 2024c) identifies and
rewrites leaked benchmark samples while preserving their
complexity.

2.3. LLM as Judgment Agent

Recently, LLMs have become increasingly used as exam-
iners given their capabilities of analyzing large amounts of
data and providing unbiased assessments (Bai et al., 2023;
Fernandes et al., 2023). This growing trend has gained

interest for two reasons: (1) Enhanced generation of train-
ing/testing data (Li et al., 2024b; Liu et al., 2024) (2) Accu-
rate evaluation and comparison of LLM outputs such as in
PandaLM (Wang et al., 2024) and DyVal (Zhu et al., 2024b).
Additionally, as LLMs have been able to perform remarkbly
well on unseen tasks, they offer a faster, equally accurate
alternative to human evaluation, (Chiang & yi Lee, 2023).

3. Methods: DyCodeEval
3.1. Design Overview

There are two key challenges in designing a dynamic evalu-
ation schema for benchmarking code LLMs. (1) Generating
Semantically Diverse yet Complexity-Controlled Problems:
There is currently no systematic method for generating pro-
gramming problems that maintain a consistent complexity
level while ensuring semantic diversity. Existing approaches
often rely on manual effort, either through predefined rules
or domain experts, making them difficult to scale efficiently
and incapable of precisely controlling problem complexity.
(2) Ensuring Comprehensive Benchmarking: To effectively
evaluate code LLMs, the generated programming problems
must include fine-grained test cases and canonical solutions
to rigorously assess correctness.

We draw inspiration from metamorphic testing to generate
programming problems using LLMs as agents. Metamor-
phic testing, widely used in software engineering, defines
relationships to address the automatic oracle problem. In our
approach, a programming problem prompt consists of two
components: complexity-related algorithmic abstraction
and complexity-unrelated context description. Our key meta-
morphic relationship states that modifying the complexity-
unrelated context description preserves both the problem’s
canonical solutions and complexity, enabling controlled
problem generation. Additionally, since LLMs are trained
on a vast diverse corpus, we can utilize them as agents
to suggest relevant and meaningful complexity-unrelated
context descriptions, further enhancing problem diversity.

The design overview of DyCodeEval is shown in Fig. 2.
Given a seed programming problem from existing bench-
marks, DyCodeEval generates a semantically different yet

3

Dynamic Benchmarking of Code LLMs

Scenario Proposer Context Generator Prompt Rewriter Validator

Scenario Pool

New Scenario

Canonical
Solution

Random
Scenario

Bank
def close(threshold,
numbers):

.

…

Type
Inference

List[int] Float

Contexts

Threshold:
predefined risk…

Numbers: a list of
operations …

Bank

Contexts

Scenario

New Problem

Orig Problem Orig Problem New Problem

LLM Agent
as Verifier

Threshold: …

Numbers: …

Check if in given list
of numbers, are any
two numbers closer
to each other than
given threshold

Check if in given list
of numbers, are any
two numbers closer
to each other than
given threshold

Healthcare

In a student performance dataset,
determine if any two students have
performance scores that are closer to
each other than the specified threshold,
which could indicate similar academic
capabilities or learning patterns….

In a student
performance
dataset, determine if
any two students
have performance…

Bank

Education

Transportation

Figure 2. Design overview of DyCodeEval

complexity-equivalent problem using a metamorphic rela-
tionship. DyCodeEval comprises of four agents: (1) Sce-
nario Proposer, (2) Context Generator, (3) Prompt Rewriter,
and (4) Validator. The Scenario Proposer suggests real-
world domains (e.g., banking, healthcare, education) from
which DyCodeEval randomly selects one. The Context
Generator then analyzes input types in the canonical solution
and assigns a relevant context for each input variable based
on the selected scenario. The Prompt Rewriter reformulates
the problem to align with the input variable contexts and
chosen scenario. Finally, the Validator ensures the new prob-
lem remains consistent with the original. If inconsistencies
are detected, DyCodeEval will repeat the aforementioned
process until a valid variant is produced.

3.2. Detailed Design

Scenario Proposer Agent. The Scenario Proposer enhances
diversity and minimizes repetition in generated program-
ming problems, reducing potential data contamination. It
first selects scenarios from a predefined pool (e.g., banking,
healthcare, education, transportation, social networking)
and uses them as examples to prompt an LLM for new sce-
nario suggestions. The newly generated scenarios are then
added to the pool. By iteratively updating the pool and
querying the LLM with varied examples, DyCodeEval
continuously expands the scenario diversity until the sce-
nario pool reaches a pre-defined size, ensuring the generated
scenarios remain diverse and practical. The prompt used for
querying the LLM and the suggested scenario examples are
listed in Appendix C.

Context Generation Agent. After proposing a set of sce-
narios, the context generation agent randomly selects one
from the pool and assigns context information to each input
variable of the programming problem based on the chosen
scenario.

Algorithm 1 Type Inference Algorithm. Abstract (·)
Input: Value list V .
Output: Set of data types τ⃗ .

1: τ⃗ = { } // Initialization.
2: for each v in V do
3: τ = Type(v)
4: if τ ∈ Basic Types then
5: τ⃗ = τ⃗ .add(Type(v))
6: else
7: τ∗ = Abstract(ToList(v))
8: τ⃗ .add(τ [τ∗]) // Composite type.
9: end if

10: end for
11: return τ⃗

In languages like Python, input types are not explicitly de-
fined. To address this, the agent uses abstraction for type
inference. It analyzes ASSERT statements in test cases, col-
lects concrete input values from the canonical solution, and
abstracts the input type based on these values. Our type
inference algorithm, shown in Alg. 1, works as follows: for
each concrete value, it first checks if the type is a basic type
(e.g., int, float). If so, it updates the type set. Otherwise
the value is a composite type so it recursively iterates over
all the elements and updates the type set with types like
List[int] or Tuple[int | string]. Notice that
while our abstract-based type inference may not capture
all return value types, it is sound and guarantees that the
collected types will always appear in the canonical solution.

After collecting the input data types, the agent prompts the
LLM with the scenario and input type information, asking it
to assign meaningful context to each input variable based on
the given scenario. See Appendix C for prompt templates
of our context generation.

Prompt Rewriting Agent. With the scenario and context

4

Dynamic Benchmarking of Code LLMs

Seed Problem: You will be given a string of words separated by commas or
spaces. Your task is to split the string into words and return an array of the words

Generated Problem: As a content recommendation system developer, you
need to process user-generated social media posts to identify relevant keywords
for suggesting connections and events. Given a user's post containing words
separated by commas or spaces, create a function that breaks down the text into
individual words for analysis. The function should handle both comma-separated
and space-separated text formats while preserving each distinct word for the
recommendation algorithm to process.

Recommendation system
Input: S [string]

User’s Blog

Figure 3. A generated example from DyCodeEval

information for each input variable, the prompt rewriting
agent then rewrites the seed programming problem prompt
to be tailored to the scenario with meaningful context. Note
that we did not ask the LLM to generate the new prompt
from scratch. Instead, we provided the detailed scenario and
asked it to perform a rewriting task, which is simpler than a
generation task. With this approach, leveraging detailed con-
text and a more straightforward task, our agent can generate
semantically diverse programming problem prompts. See
Appendix C for prompt templates of our prompt rewriting.

Validation Agent. Although we provide the LLM with de-
tailed scenario and context information for rewriting, there
are cases where the rewriting agent unintentionally alters
the consistency. To address this, we design a validation
agent to assess whether the generated question maintains
the integrity of the original intent and informational con-
tent. The validation prompt is designed from two angles:
(1) it directs the LLM to compare the seed programming
problem prompt with the rephrased prompt, ensuring the
preservation of the core concept and factual accuracy, and
(2) it asks the LLM to check whether the seed canonical
solutions align with the generated programming problem
prompt. Specifically, we design two comparison prompts to
query the LLM and retain only those rewritten prompts for
which both comparison responses are “YES”.

To ensure the consistency of the generated programming
problems, we also include a human verification step. The
details of our validation prompt and the human verification
process are presented in Appendix C and Appendix D.

Fig. 3 illustrates an example of programming problems that
are semantically diverse yet complexity-equivalent, gener-
ated under the scenario of a recommendation system with
the context of a user’s blog. From this example, we observe
that our step-by-step guided approach significantly enhances
the semantic diversity of the generated problems, while also
reducing the risk of data contamination. This is achieved
by leveraging the vast combination space of scenarios and
contexts.

3.3. Theoretical Collision Analysis

DyCodeEval generates programming problems dynami-
cally with randomness, reducing the risk of potential data
contamination. To analyze this, we conduct a collision anal-
ysis. The randomness in DyCodeEval arises from both
the scenario proposal and context generation phases. We
assume the scenario proposer generates ||S|| scenarios, and
for each scenario, the context generation produces ||C|| con-
texts, while ignoring randomness in the rewriting phase. We
also assume that the random sampling process follows a uni-
form distribution. Based on this, we present the following
theorem.

Theorem 3.1. After running DyCodeEvalM + 1 times
on the same seed problem, then the probability that the M
samples after the first are all different from the first sampled
item satisfies: P ≥ 1− exp

(
− M

||S||×||C||−1

)
.

Theorem 3.2. After running DyCodeEvalM times on the
same seed problem, If M << ||S||×||C||, the probability of
at least one collision (i.e., two or more generated problems
being the same) after M generations satisfies the following
bound: P ≤ 1− exp

(
− M2−M

2||S||×||C||

)
.

Theorem 3.3. Consider the seed dataset of size D, After
running DyCodeEval M + 1 times on this dataset, If
M << ||S|| × ||C||, then the probability that the M gener-
ated datasets after the first one are not the same as the first

generated dataset satisfies: 1− e
− M

(||S||×||C||)D−1 ≤ P

The proof could be found in Appendix A.

4. Evaluation
4.1. Experimental Setup

Seed Dataset. We conduct our evaluation using two
datasets: HumanEval (Chen et al., 2021) and MBPP-
Sanitized (Austin et al., 2021). Both datasets are widely
utilized in existing research and serve as standard bench-
marks for evaluating code generation models. More details
about the dataset could be found in Appendix B.

Implementation Details. We use CLAUDE-3.5-SONNET as
our foundation model to generate the benchmarking dataset.
Specifically, we create 50 scenarios, and for each scenario,
we randomly generate 50 contexts. During dataset gen-
eration, we set the LLM temperature to 0.8, while in our
validation agent, we use a temperature of 0. For each code
LLM under benchmarking, we employ vLLM to launch the
model. For closed-source code LLMs, we query the com-
mercial API for evaluation.

5

Dynamic Benchmarking of Code LLMs

Figure 4. Results of benchmarking on contaminated models

4.2. Benchmarking Contaminated Model

Models. We conduct our study with three public-available
Code LLMs: LLAMA-3.2-1B, LLAMA-3.2-3B, and
DEEPSEEK-CODER-1.3B.

Model Contamination Process. For each model, we simu-
late data contamination by intentionally leaking a portion
of the benchmarking dataset during fine-tuning. We experi-
ment with leaked data percentages of 0%, 25%, 50%, 75%,
and 100%, producing four distinct contaminated models.
Each polluted model is then evaluated on the benchmarking
dataset using the Pass@1 metric. The formal definition
of Pass@1 is shown in (1), where n is the number of the
generated solution candidate, and c is the number of the
correct solutions that can pass all test cases.

Pass@K = EProblems

[
1−

(
n−c
k

)(
n
k

)]
(1)

Main Results. The study results are presented in Fig. 4,
where there are two rows and three columns. Each column
represents evaluation on a different LLM while the rows
show static (first) vs dynamic (second) benchmarking. In
each column, the left section displays the results for the
model fine-tuned on the HumanEval dataset, while the right
section shows the results for the model fine-tuned on the
MBPP dataset. The red bars represent the performance
of the fine-tuned model benchmarked on the HumanEval
dataset, and the blue bars represent its performance bench-
marked on the MBPP dataset.

From the results, we make the following observations: (1)

Data contamination creates a false sense of code reasoning
capability under static benchmarks. When the benchmark-
ing dataset is leaked and used for fine-tuning, the model
achieves a higher Pass@1 score on the corresponding
benchmark. However, this improvement does not accurately
reflect the model’s true reasoning ability, as its performance
declines on other benchmarks that were not included in
fine-tuning. (2) Our dynamic benchmarking mitigates the
impact of data contamination. Different from static bench-
marks, our approach prevents contaminated models from
achieving artificially high Pass@1 scores after fine-tuning.
This is due to the randomness in our method, which ensures
minimal or no overlap between different runs, reducing the
risk of direct data leakage. (3) Our dynamic benchmarking
dataset provides results comparable to manually curated,
non-contaminated datasets. In static benchmarking, as the
percentage of leaked data increases, the model’s Pass@1
score on the contaminated benchmark steadily improves.
However, its performance on other benchmarks remains rel-
atively stable, showing little variation across different con-
tamination levels. Interestingly, this stability also applies to
our method. If the base model is not contaminated on the
selected seed dataset, this suggests that our approach pro-
vides competitive benchmarking results similar to those of
human-curated datasets. (4) A notable anomaly is observed
in DEEPSEEK-CODER. When only 25% of the benchmark-
ing dataset is used for fine-tuning, the model’s Pass@1
score drops below that of the original, unmodified model.
We hypothesize that the model may already be overfitted to
the contaminated dataset, and further fine-tuning with lim-
ited data could destabilize this overfitting without providing
enough new information to help the model adapt.

6

Dynamic Benchmarking of Code LLMs

Figure 5. The in-the-wild benchmarking results

4.3. Benchmarking In-the-Wild Model

We then apply DyCodeEval to benchmark more in-
the-wild code LLMs, besides the models used in §4.2.
We consider the following code LLMs: LLAMA-3.1-
8B, CODELLAMA-7B, CODELLAMA-13B, DEEPSEEK-
V2-LITE, DEEPSEEK-CODER-V2-LITE-BASE, LLAMA-
3.1-8B-INSTRUCT, QWEN2.5-CODER-7B, QWEN2.5-7B-
INSTRUCT, QWEN2.5-7B, CLAUDE-3.5-HAIKU, CLAUDE-
3.5-SONNET,QWEN2.5-CODER-7B-INSTRUCT .

The results are presented in Fig. 5, with the left figure show-
ing the results on HumanEval and the right showing the
results on MBPP. In each figure, the x-axis represents the
Pass@1 scores on our generated dataset, and the y-axis
represents the Pass@1 scores on the seed dataset. The
blue region corresponds to the regression area of the in-the-
wild model, the red region represents the regression area
of the overfitted model on this dataset, and the orange area
indicates the overfitted model on the other dataset.

From these results, we observe that for both seed datasets,
the in-the-wild model’s Pass@1 scores maintain a linear
relationship, while the overfitted model appears as an outlier.
A notable finding from our in-the-wild evaluation is that the
model QWEN2.5-CODER-7B consistently falls outside the
95% confidence interval of the regression area, suggesting
it may be contaminated on both datasets.

4.4. Problem Diversity

To evaluate the diversity of the generated programming
problems, we conduct two experiments: one for external
diversity and one for internal diversity. External diversity
quantifies the dissimilarity between the generated and seed
problems, while internal diversity measures the diversity
within each problem-generation method across trials. We
use two metrics: BLEU-4 to measure syntactical diversity
and cosine similarity of the prompt’s semantic embedding

to measure semantic diversity. For semantic embedding,
we use the GPT-2 model to obtain the embedding of each
natural language prompt. Moreover, we also consider PPM
(Chen et al., 2024) and a series of robustness-based muta-
tions (Wang et al., 2023), such as token replacement, insert
blank lines, as our comparison baseline.

The diversity results are shown in Table 1, where the first
four columns represent internal diversity and the last four
columns represent external diversity. From the results,
we observe that DyCodeEval generates diverse program-
ming problems both syntactically and semantically. Ad-
ditionally, we find that all baseline methods exhibit high
BLEU-4 and semantic similarity scores, as they rely on rule-
based approaches to mutate the programming problems,
which do not introduce significant diversity. In contrast,
DyCodeEval leverages an LLM agent to suggest different
scenarios and contexts, significantly increasing diversity.

Figure 6. Stability results

7

Dynamic Benchmarking of Code LLMs

Table 1. Diversity results

Methods
Internal Diversity External Diversity

HumanEval MBPP HumanEval MBPP
BLEU-4 ↓ SemSim ↓ BLEU-4 ↓ SemSim ↓ BLEU-4 ↓ SemSim ↓ BLEU-4 ↓ SemSim ↓

Base 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Token Mutation 0.72 0.95 0.66 0.92 0.82 0.96 0.76 0.95
Char Mutation 0.81 0.97 0.78 0.94 0.84 0.97 0.78 0.92
Func Mutation 1.00 1.00 1.00 1.00 0.98 1.00 0.98 1.00
Insert Line 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CommSyntax 1.00 1.00 1.00 1.00 0.81 0.98 0.73 0.99
PPM 0.97 0.96 0.96 0.94 0.69 0.89 0.57 0.84

Ours 0.27 0.74 0.18 0.73 0.17 0.59 0.02 0.59

4.5. Benchmarking Stability

Note that DyCodeEval generates a unique benchmark-
ing dataset each time. To assess its stability, we evaluate
whether DyCodeEval can produce consistent benchmark-
ing results despite this randomness. Specifically, we run
DyCodeEval 10 times and measure the Pass@1 scores
across these 10 generated benchmark datasets.

The mean and standard deviation of the Pass@1 scores
are presented in Fig. 6. The results show that the variance
in benchmarking scores is minimal compared to the mean
values, indicating that DyCodeEval provides stable bench-
marking results across different random trials.

4.6. Impact of Foundation LLM

In this section, we evaluate the feasibility of using less
advanced LLMs to reduce dataset generation costs. Specif-
ically, we replace our foundation model, CLAUDE-3.5-
SONNET, with CLAUDE-3.5-HAIKU. We manually sample
and assess generated problems from each model, check-
ing their consistency rate. Our observations show that the
consistency rate drops from 95% to 83%, highlighting the
need for robust and capable LLMs to serve effectively as
foundation models.

5. Dynamic Evaluation Metrics
Leveraging the dynamic nature of our method, we propose
a new metric, DyPass, to address the limitations of the
current gold standard, Pass@K. Unlike Pass@K, which
generates n candidate solutions for a fixed problem prompt
and evaluates the correctness, our approach creates n se-
mantic prompt variants of a seed problem. These prompt
variants preserve the complexity of the original problem by
modifying only the description while maintaining the same
underlying algorithmic abstraction. Furthermore, n prompt
variants expand the input space beyond that of Pass@K,
making it more challenging to achieve full coverage. As
a result, DyPass provides a more rigorous assessment of
code LLMs’ reasoning abilities, particularly under potential

data contamination. Compared to Pass@K, which eval-
uates solutions within a fixed problem context, DyPass
introduces contextual variations during benchmarking. This
allows it to better distinguish whether a model is merely
memorizing the problem context or genuinely reasoning to
solve it.

Table 2. Comparison of Pass@K and DyPass@K on contami-
nated Models

Model
Pass@K DyPass@K

k=3 k=5 k=10 k=3 k=5 k=10

Llama-3.2-1B 0.22 0.27 0.34 0.17 0.21 0.26
Llama-3.2-1B (C) 0.82 0.83 0.85 0.13 0.15 0.17

Llama-3.2-3B 0.35 0.40 0.48 0.31 0.36 0.43
Llama-3.2-3B (C) 0.88 0.88 0.89 0.24 0.27 0.29

Table 3. Comparison of Pass@K and DyPass@K on in-the-wild
models

Model
Pass@K DyPass@K

k=3 k=5 k=10 k=3 k=5 k=10

CodeLlama-7b-hf 0.39 0.46 0.56 0.34 0.40 0.49
CodeLlama-13b-hf 0.48 0.57 0.68 0.37 0.45 0.53

Llama-3.2-1B 0.22 0.27 0.34 0.17 0.21 0.26
Llama-3.2-3B 0.35 0.40 0.48 0.31 0.36 0.43
Llama-3.1-8B 0.48 0.56 0.65 0.39 0.45 0.53
Llama-3.1-8B-Instruct 0.72 0.77 0.83 0.64 0.69 0.75

To demonstrate the advantages of DyPass, we compare
it against Pass@K on both contaminated and in-the-wild
models, with K = 3, 5, 10 for evaluation. The results are
presented in Table 2 and Table 3. From the results in Ta-
ble 2, we observe that when the model is trained on leaked
data, the static metric Pass@K fails to accurately reflect the
model’s reasoning capabilities, with all Pass@K scores ris-
ing to very high levels (e.g., from 0.82 to 0.89). In contrast,
our dynamic metric DyPass @K shows a slight decrease
rather than a significant increase, highlighting the sensitiv-
ity of DyPass to data contamination. When comparing
Pass@K and DyPass @K on models that were not specif-

8

Dynamic Benchmarking of Code LLMs

ically trained on the leaked dataset, both metrics show con-
sistency in benchmarking code LLMs. Based on these ob-
servations, we conclude that our dynamic metric, DyPass,
effectively reflects the reasoning capabilities of code LLMs,
even under data contamination. Moreover, DyPass @K
aligns with static benchmarking metrics when there is no
data contamination.

6. Conclusion
In this paper, we introduce DyCodeEval, a new bench-
marking suite that dynamically generates semantically
equivalent diverse problems as a way to combat data con-
tamination. We break this generation up into four distinct
steps to systematically develop a new programming prob-
lem with the same algorithmic complexity but different
context. Our experimental results show that while Pass@k
with current benchmarks have caused inflated model scores,
DyCodeEval-generated questions with DivPass has
proven to perform as a reliable evaluation tool. We believe
that these results show a promising path forward.

Our proposed work has several limitations: (1) Although
LLMs provide a fully automated way to generate diverse
programming problems for benchmarking, their computa-
tional cost is a significant concern. We found that a very
large LLM is required to generate programming problems
with a high consistency rate. Therefore, a future improve-
ment could focus on enhancing the efficiency of the prob-
lem generation phase. (2) While generating questions using
DyCodeEval, we observed instances where excessive infor-
mation was provided, potentially confusing the reader. This
highlights the opportunity for improving prompt generation
through further experimentation.

Acknowledgements
This work was supported in part by CCF 2313055, CCF
2107405, CAREER 2025082, and FAI: 2040961. Any opin-
ions, findings, conclusions, or recommendations expressed
herein are those of the authors.

Impact Statement
Assessing the overall capabilities of large language mod-
els (LLMs) is essential for ensuring their reliable and safe
deployment in society. However, data contamination can
inflate evaluation accuracy, obscuring a model’s true perfor-
mance. To address this, we propose a new benchmarking
method, DyCodeEval, which enables more accurate mea-
surement of LLM capabilities and provides deeper insights
into their behavior.

References
Austin, J., Odena, A., Nye, M. I., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Bai, Y., Ying, J., Cao, Y., Lv, X., He, Y., Wang, X., Yu, J.,
Zeng, K., Xiao, Y., Lyu, H., Zhang, J., Li, J., and Hou, L.
Benchmarking foundation models with language-model-
as-an-examiner, 2023. URL https://arxiv.org/
abs/2306.04181.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I.,
and Zaremba, W. Evaluating large language models
trained on code. CoRR, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Chen, S., Feng, X., Han, X., Liu, C., and Yang, W. Ppm:
Automated generation of diverse programming problems
for benchmarking code generation models. Proceedings
of the ACM on Software Engineering, 1(FSE):1194–1215,
2024.

Chen, S., Chen, Y., Li, Z., Jiang, Y., Wan, Z., He, Y., Ran,
D., Gu, T., Li, H., Xie, T., et al. Recent advances in

9

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2306.04181
https://arxiv.org/abs/2306.04181
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2107.03374

Dynamic Benchmarking of Code LLMs

large langauge model benchmarks against data contami-
nation: From static to dynamic evaluation. arXiv preprint
arXiv:2502.17521, 2025.

Chen, T. Y., Kuo, F.-C., Liu, H., Poon, P.-L., Towey, D., Tse,
T., and Zhou, Z. Q. Metamorphic testing: A review of
challenges and opportunities. ACM Computing Surveys
(CSUR), 51(1):1–27, 2018.

Chiang, C.-H. and yi Lee, H. Can large language models
be an alternative to human evaluations?, 2023. URL
https://arxiv.org/abs/2305.01937.

Di, P., Li, J., Yu, H., Jiang, W., Cai, W., Cao, Y., Chen,
C., Chen, D., Chen, H., Chen, L., et al. Codefuse-13b:
A pretrained multi-lingual code large language model.
In Proceedings of the 46th International Conference on
Software Engineering: Software Engineering in Practice,
pp. 418–429, 2024.

Ding, Y., Wang, Z., Ahmad, W., Ding, H., Tan, M., Jain,
N., Ramanathan, M. K., Nallapati, R., Bhatia, P., Roth,
D., et al. Crosscodeeval: A diverse and multilingual
benchmark for cross-file code completion. Advances
in Neural Information Processing Systems, 36:46701–
46723, 2023.

Dong, Y., Jiang, X., Liu, H., Jin, Z., Gu, B., Yang, M., and
Li, G. Generalization or memorization: Data contamina-
tion and trustworthy evaluation for large language models.
arXiv preprint arXiv:2402.15938, 2024.

Fernandes, P., Deutsch, D., Finkelstein, M., Riley, P., Mar-
tins, A. F. T., Neubig, G., Garg, A., Clark, J. H., Freitag,
M., and Firat, O. The devil is in the errors: Leveraging
large language models for fine-grained machine transla-
tion evaluation, 2023. URL https://arxiv.org/
abs/2308.07286.

Guan, B., Wu, X., Yuan, Y., and Li, S. Is your benchmark
(still) useful? dynamic benchmarking for code language
models. arXiv preprint arXiv:2503.06643, 2025.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K.,
Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y., et al.
Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

Jacovi, A., Caciularu, A., Goldman, O., and Goldberg, Y.
Stop uploading test data in plain text: Practical strategies
for mitigating data contamination by evaluation bench-
marks. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 5075–5084,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.

308. URL https://aclanthology.org/2023.
emnlp-main.308/.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code, 2024. URL
https://arxiv.org/abs/2403.07974.

Jiang, X., Dong, Y., Wang, L., Fang, Z., Shang, Q., Li, G.,
Jin, Z., and Jiao, W. Self-planning code generation with
large language models. ACM Transactions on Software
Engineering and Methodology, 33(7):1–30, 2024.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. R. Swe-bench: Can language
models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations,
2024.

Li, J., Li, G., Zhang, X., Zhao, Y., Dong, Y., Jin, Z., Li, B.,
Huang, F., and Li, Y. Evocodebench: An evolving code
generation benchmark with domain-specific evaluations.
Advances in Neural Information Processing Systems, 37:
57619–57641, 2024a.

Li, X., Lan, Y., and Yang, C. Treeeval: Benchmark-
free evaluation of large language models through tree
planning, 2024b. URL https://arxiv.org/abs/
2402.13125.

Liu, H., Zhang, Y., Luo, Y., and Yao, A. C.-C. Augment-
ing math word problems via iterative question compos-
ing, 2024. URL https://arxiv.org/abs/2401.
09003.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code
generated by chatGPT really correct? rigorous evaluation
of large language models for code generation. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=1qvx610Cu7.

Mathai, A., Huang, C., Maniatis, P., Nogikh, A., Ivančić, F.,
Yang, J., and Ray, B. Kgym: A platform and dataset to
benchmark large language models on linux kernel crash
resolution. Advances in Neural Information Processing
Systems, 37:78053–78078, 2024.

Peng, Q., Chai, Y., and Li, X. Humaneval-xl: A multilingual
code generation benchmark for cross-lingual natural lan-
guage generalization. arXiv preprint arXiv:2402.16694,
2024.

Rajore, T., Chandran, N., Sitaram, S., Gupta, D., Sharma,
R., Mittal, K., and Swaminathan, M. Truce: Private
benchmarking to prevent contamination and improve
comparative evaluation of llms, 2024. URL https:
//arxiv.org/abs/2403.00393.

10

https://arxiv.org/abs/2305.01937
https://arxiv.org/abs/2308.07286
https://arxiv.org/abs/2308.07286
https://aclanthology.org/2023.emnlp-main.308/
https://aclanthology.org/2023.emnlp-main.308/
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2402.13125
https://arxiv.org/abs/2402.13125
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2401.09003
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2403.00393
https://arxiv.org/abs/2403.00393

Dynamic Benchmarking of Code LLMs

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, S., Li, Z., Qian, H., Yang, C., Wang, Z., Shang,
M., Kumar, V., Tan, S., Ray, B., Bhatia, P., Nalla-
pati, R., Ramanathan, M. K., Roth, D., and Xiang,
B. Recode: Robustness evaluation of code genera-
tion models. In Rogers, A., Boyd-Graber, J. L., and
Okazaki, N. (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pp. 13818–13843. Associa-
tion for Computational Linguistics, 2023. doi: 10.18653/
V1/2023.ACL-LONG.773. URL https://doi.org/
10.18653/v1/2023.acl-long.773.

Wang, Y., Yu, Z., Zeng, Z., Yang, L., Wang, C., Chen, H.,
Jiang, C., Xie, R., Wang, J., Xie, X., Ye, W., Zhang,
S., and Zhang, Y. Pandalm: An automatic evaluation
benchmark for llm instruction tuning optimization, 2024.
URL https://arxiv.org/abs/2306.05087.

White, C., Dooley, S., Roberts, M., Pal, A., Feuer, B., Jain,
S., Shwartz-Ziv, R., Jain, N., Saifullah, K., Naidu, S.,
et al. Livebench: A challenging, contamination-free llm
benchmark. arXiv preprint arXiv:2406.19314, 2024.

Yu, H., Shen, B., Ran, D., Zhang, J., Zhang, Q., Ma, Y.,
Liang, G., Li, Y., Wang, Q., and Xie, T. Codereval:
A benchmark of pragmatic code generation with gen-
erative pre-trained models. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engi-
neering, pp. 1–12, 2024.

Zhu, K., Chen, J., Wang, J., Gong, N. Z., Yang, D., and Xie,
X. Dyval: Dynamic evaluation of large language models
for reasoning tasks, 2024a. URL https://arxiv.
org/abs/2309.17167.

Zhu, K., Wang, J., Zhao, Q., Xu, R., and Xie, X. Dynamic
evaluation of large language models by meta probing
agents, 2024b. URL https://arxiv.org/abs/
2402.14865.

Zhu, Q., Cheng, Q., Peng, R., Li, X., Peng, R.,
Liu, T., Qiu, X., and Huang, X. Inference-time
decontamination: Reusing leaked benchmarks for
large language model evaluation. In Al-Onaizan,
Y., Bansal, M., and Chen, Y.-N. (eds.), Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2024, pp. 9113–9129, Miami, Florida,

USA, November 2024c. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.
532. URL https://aclanthology.org/2024.
findings-emnlp.532/.

11

https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2023.acl-long.773
https://arxiv.org/abs/2306.05087
https://arxiv.org/abs/2309.17167
https://arxiv.org/abs/2309.17167
https://arxiv.org/abs/2402.14865
https://arxiv.org/abs/2402.14865
https://aclanthology.org/2024.findings-emnlp.532/
https://aclanthology.org/2024.findings-emnlp.532/

Dynamic Benchmarking of Code LLMs

A. Proof of Theorem
A.1. Proof of Theorem 3.1

The total number of possible distinct outcomes is ||S|| × ||C||, the size of the random space, let N = ||S|| × ||C|| Since each
of the M samples must not match X1, and they are drawn independently, the exact probability is:

P (X2 ̸= X1, . . . , XM+1 ̸= X1) =

(
N − 1

N

)M

.

We use the standard inequality for the logarithm:

ln(1− x) ≥ − x

1− x
, for 0 < x < 1.

Applying this to 1
N , we get:

ln

(
N − 1

N

)
= ln

(
1− 1

N

)
≥ − 1/N

1− 1/N
= − 1

N − 1
.

Exponentiating both sides:

N − 1

N
≥ e−

1
N−1 .

Raising both sides to the power M :

(
N − 1

N

)M

≥ e−
M

N−1 .

A.2. Proof of Theorem 3.2

Each sampled item is drawn independently and uniformly from the space of size N . We analyze the probability that all M
sampled items are distinct.

The first sample can be any of the N items, the second sample must avoid the first one, so there are N − 1 choices.
Continuing this way, the probability that all M items are distinct is:

P (no collisions) =
N

N
× N − 1

N
× N − 2

N
× · · · × N − (M − 1)

N
.

Rewriting in factorial form,

P (no collisions) =
N !

NM (N −M)!
.

According to our assumption M << ||S|| × ||C||, Using the Stirling’s approximation, then we have

N !

(N −M)!
≥ NM exp

(
−M(M − 1)

2N

)
,

we get

P (no collisions) ≥ exp

(
−M(M − 1)

2N

)
.

12

Dynamic Benchmarking of Code LLMs

The probability of at least one collision is the complement:

P (at least one collision) = 1− P (no collisions).

Using the bound we derived,

P (at least one collision) ≤ 1− exp

(
−M2 −M

2N

)
= 1− exp

(
− M2 −M

2||S|| × ||C||

)
A.3. Proof of Theorem 3.3

Each sample can be represented as a D-tuple of balls (b1, b2, ..., bD), where each bi is one of the N balls from bag i. The
total number of possible sample sets is:

T = ND

Since each draw is independent, each sample set is chosen uniformly from T , meaning the probability of selecting any
specific tuple is:

1

ND

Let X1 be the initial sample (first draw). For each subsequent draw Xi (where i = 2, . . . ,M + 1), the probability that
Xi = X1 (i.e., an exact match) is:

P (Xi = X1) =
1

ND

Then Theorem 3.3 could be proved through Theorem 3.1.

B. Dataset Description.
The HumanEval dataset, developed by OpenAI, is an open-source benchmark for evaluating the code generation capabilities
of pre-trained code language models (LLMs). It comprises 164 Python programming problems, each consisting of a prompt,
a canonical solution, and corresponding test inputs. Each prompt includes a natural language problem description, a function
definition, and input/output examples.

The MBPP-Sanitized dataset, proposed by Google, features 427 Python programming problems collected through crowd-
sourcing. Unlike HumanEval, it is a zero-shot dataset, meaning its prompts do not include input/output demonstrations. To
enhance its utility in experiments, we refined the prompt format by adding function headers and converting natural language
instructions into function docstrings.

C. Prompt Templates & Scenario Examples
In the following, we show the scenario examples and prompt templates used during the four steps of DyCodeEval process.

13

Dynamic Benchmarking of Code LLMs

C.1. Template for Scenario Proposer Agent

Prompt for Scenario Proposer Agent

Suggest real-world scenarios that provide meaningful context in the
following areas: {S1}, {S2}, {S3}, {S4}, {S5}, and any other practical
fields. Each scenario should be general but applicable, providing useful
insight for potential applications.

For clarity, return each scenario on a separate line without additional
explanation. Use the example below for reference.

Please put your suggested Real-world Scenarios in <scenario></scenario>
tags.

Scenario Examples:
<example>
{EXAMPLE}
< /example>

C.2. Example for Scenario Proposer Agent

Example for Scenario Proposer Agent

Suggest real-world scenarios that provide meaningful context in the
following areas: transportation, education, healthcare, banking, social
networking, and any other practical fields. Each scenario should be general
but applicable, providing useful insight for potential applications.

For clarity, return each scenario on a separate line without additional
explanation. Use the example below for reference.

Please put your suggested Real-world Scenarios in <scenario></scenario>
tags.

Scenario Examples:
<example>
Banking - Fraud Detection.
< /example>

14

Dynamic Benchmarking of Code LLMs

C.3. Prompt for Context Generator Agent

Prompt for Content Generator Agent

Given the natural language problem description, input types, and a real-world
scenario. For each variable in the problem, provide a meaningful context tailored
to the given scenario. The context should explain how each variable is involved in
or relates to the scenario, ensuring practical relevance.

Please ensure for to put your meaningful context in <context></context> tags.

Problem Description:
<problem description>
{PROBLEM DESCRIPTION}
</problem description>

Input Types:
<input types>
{INPUT VARIABLE TYPES}
</input types>

Real-world Scenario:
<scenario>
{SCENARIOS}
</scenario>

Instructions:
- For each variable in the input types, generate only one context that highlights its
role or significance within the problem and scenario.
- The context should help to clarify the variable’s meaning and importance, ensuring
that it fits into the given real-world scenario.
- Provide only the contexts for the variables (no additional reasoning steps).

Example:
Problem Description Example:
<problem description>
Determine if the average temperature in a city exceeds a certain threshold during a
week.
</problem description>

Input Types:
<input types>
temperatures: list of float
threshold: float
</input types>

Scenario:
<scenario>
Climate Analysis - Monitoring Urban Heat Trends
</scenario>

Generated Contexts:
<context>
temperatures: Daily recorded temperatures in a city, analyzed for urban heat
trends.
threshold: Critical temperature level indicating hazardous or abnormal heat.
</context>

15

Dynamic Benchmarking of Code LLMs

C.4. Example for Context Generator Agent

Example for Context Generator Agent

Given the natural language problem description, input types, and a real-world
scenario. For each variable in the problem, provide a meaningful context tailored
to the given scenario. The context should explain how each variable is involved in
or relates to the scenario, ensuring practical relevance.

Please ensure for to put your meaningful context in <context></context> tags.

Problem Description:
<problem description>
You’re given a list of deposit and withdrawal operations on a bank account that
starts with zero balance. Your task is to detect if at any point the balance of
account fallls below zero, and at that point function should return True. Otherwise
it should return False.
</problem description>

Input Types:
<input types>
operations: list of int
</input types>

Real-world Scenario:
Education - Adaptive Learning Assessment and Skill Gap Analysis
</scenario>

Instructions:
- For each variable in the input types, generate only one context that highlights its
role or significance within the problem and scenario.
- The context should help to clarify the variable’s meaning and importance, ensuring
that it fits into the given real-world scenario.
- Provide only the contexts for the variables (no additional reasoning steps).

Example:
Problem Description Example:
<problem description>
Determine if the average temperature in a city exceeds a certain threshold during a
week.
</problem description>

Input Types:
<input types>
temperatures: list of float
threshold: float
</input types>

Scenario:
<scenario>
Climate Analysis - Monitoring Urban Heat Trends
</scenario>

Generated Contexts:
<context>
temperatures: Daily recorded temperatures in a city, analyzed for urban heat
trends.
threshold: Critical temperature level indicating hazardous or abnormal heat.
</context>

16

Dynamic Benchmarking of Code LLMs

C.5. Prompt for Prompt Rewriter Agent

Prompt for Prompt Rewriter Agent

Given a seed programming problem description, a selected real-world
scenario, and contextualized input variables, rewrite the original problem
to make it relevant to the scenario. The rewritten problem should:
- Preserve the original problem’s complexity and constraints.
- Ensure the problem remains solvable with the same solution approach.
- Be clear, concise, and logically consistent within the new context.
- Just return the rewritten problem description without any additional
commentary or steps, and do not include any input output demons in your
problem description.
- Limit the new rewritten problem description to 1-3 sentences.
- Make sure your rewritten problem description is clear, concise and
contains no unnecessary information.

Please ensure to put your rewritten problem description in
<new problem></new problem> tags.

Problem Description:
{PROBLEM DESCRIPTION}

Real-World Scenario:
{SCENARIO}

Contextualized Input Variables:
{INPUT VARIABLES}

17

Dynamic Benchmarking of Code LLMs

C.6. Example for Prompt Rewriter Agent

Example for Prompt Rewriter Agent

Given a seed programming problem description, a selected real-world
scenario, and contextualized input variables, rewrite the original problem
to make it relevant to the scenario. The rewritten problem should:
- Preserve the original problem’s complexity and constraints.
- Ensure the problem remains solvable with the same solution approach.
- Be clear, concise, and logically consistent within the new context.
- Just return the rewritten problem description without any additional
commentary or steps, and do not include any input output demons in your
problem description.
- Limit the new rewritten problem description to 1-3 sentences.
- Make sure your rewritten problem description is clear, concise and
contains no unnecessary information.

Please ensure to put your rewritten problem description in
<new problem></new problem> tags.

Problem Description:
You’re given a list of deposit and withdrawal operations on a bank account
that starts with zero balance. Your task is to detect if at any point the
balance of account fallls below zero, and at that point function should
return True. Otherwise it should return False.

Real-World Scenario:
Social Networking - Advanced Content Recommendation and User Interest
Matching

Contextualized Input Variables:
A sequence of user interaction events (deposits/withdrawals) representing
content engagement metrics in a social networking platform, where each
operation tracks how users interact with recommended content, potentially
influencing their future content visibility and recommendation algorithm.

C.7. Prompt for Validation Agent 1

Prompt for Validation Agent 1

Assess whether the two given natural language instructions convey the same
meaning. Respond with ’Yes’ if they do, or ’No’ if they do not.

Please ensure your answer is either "Yes" or "No".

Instruction A:
{INSTRUCTION A}

Instruction B:
{INSTRUCTION B}

18

Dynamic Benchmarking of Code LLMs

C.8. Example for Validation Agent 1

Example for Validation Agent 1

Assess whether the two given natural language instructions convey the same
meaning. Respond with ’Yes’ if they do, or ’No’ if they do not.

Please ensure your answer is either "Yes" or "No".

Instruction A:
For a given list of integers, return a tuple consisting of a sum and a
product of all the integers in a list. Empty sum should be equal to 0 and
empty product should be equal to 1.

Instruction B:
In an early disease risk prediction model, develop a function that processes
a list of patient health metrics to calculate comprehensive risk assessment
parameters. The function should compute two key aggregate indicators: the
total sum of the patient’s health metrics and the cumulative product of
these metrics. For scenarios with no available health metrics, the sum
should default to 0 and the product should default to 1, ensuring the model
can handle incomplete patient data sets.

C.9. Prompt for Validation Agent 2

Prompt for Validation Agent 2

Does the following code solve the problem described in the Instruction?
Provide your answer as either ’Yes’ or ’No’ only.

Instruction:
{INSTRUCTION}

Code Solution:
{CODE SOLUTION}

19

Dynamic Benchmarking of Code LLMs

C.10. Example for Validation Agent 2

Example for Validation Agent 2

Does the following code solve the problem described in the Instruction?
Provide your answer as either ’Yes’ or ’No’ only.

Instruction:
In a bank’s loan risk assessment process, analyze a list of an applicant’s
key financial metrics to compute an aggregate financial risk score.
Calculate the total sum of these financial indicators and their cumulative
product to provide a comprehensive risk evaluation metric. For applicants
with no financial history, the sum should default to 0 and the product
should default to 1, ensuring a standardized risk assessment approach even
for new customers.

Code Solution:

from typing import List, Tuple

def sum_product(numbers: List[int]) -> Tuple[int, int]:
sum_value = 0
prod_value = 1
for n in numbers:

sum_value += n
prod_value *= n

return sum_value, prod_value

D. Human Verification
To add an additional layer of validation between the original and DyCodeEval-generated prompts, we perform a small-
scale manual verification. Given a benchmark dataset and the corresponding generated questions, we randomly sample
N = 30 problem pairs from each dataset (60 in total), where each pair consists of a benchmark problem and its generated
variant. Each pair is independently reviewed by two graduate-level students to assess whether the core algorithm and
complexity are preserved. In cases of disagreement, the reviewers discuss the discrepancies until consensus is reached.
Out of the 60 reviewed pairs, the annotators initially disagreed on three but were able to resolve all disagreements through
discussion, resulting in an overall agreement rate of 95%.

20

	Introduction
	Background & Related Work
	Benchmarking Code LLMs
	Data Contamination Free Benchmarking
	LLM as Judgment Agent

	Methods: DyCodeEval
	Design Overview
	Detailed Design
	Theoretical Collision Analysis

	Evaluation
	Experimental Setup
	Benchmarking Contaminated Model
	Benchmarking In-the-Wild Model
	Problem Diversity
	Benchmarking Stability
	Impact of Foundation LLM

	Dynamic Evaluation Metrics
	Conclusion
	Proof of Theorem
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Dataset Description.
	Prompt Templates & Scenario Examples
	Template for Scenario Proposer Agent
	Example for Scenario Proposer Agent
	Prompt for Context Generator Agent
	Example for Context Generator Agent
	Prompt for Prompt Rewriter Agent
	Example for Prompt Rewriter Agent
	Prompt for Validation Agent 1
	Example for Validation Agent 1
	Prompt for Validation Agent 2
	Example for Validation Agent 2

	Human Verification

