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Abstract
We introduce PDE-Transformer, an improved
transformer-based architecture for surrogate mod-
eling of physics simulations on regular grids. We
combine recent architectural improvements of dif-
fusion transformers with adjustments specific for
large-scale simulations to yield a more scalable
and versatile general-purpose transformer archi-
tecture, which can be used as the backbone for
building large-scale foundation models in physi-
cal sciences. We demonstrate that our proposed
architecture outperforms state-of-the-art trans-
former architectures for computer vision on a
large dataset of 16 different types of PDEs. We
propose to embed different physical channels in-
dividually as spatio-temporal tokens, which inter-
act via channel-wise self-attention. This helps to
maintain a consistent information density of to-
kens when learning multiple types of PDEs simul-
taneously. We demonstrate that our pre-trained
models achieve improved performance on several
challenging downstream tasks compared to train-
ing from scratch and also beat other foundation
model architectures for physics simulations. Our
source code is available at https://github.
com/tum-pbs/pde-transformer.

1. Introduction
Large multi-purpose networks that are trained on diverse,
high-quality datasets have shown great achievements when
adapted to specific downstream tasks. These so-called foun-
dation models have received widespread recognition in
fields such as computer vision (Yuan et al., 2021; Awais
et al., 2025), decision making (Yang et al., 2023b), and
time series prediction (Liang et al., 2024). Naturally, these
models are likewise extremely interesting for the scientific
machine learning community (Bodnar et al., 2024; Herde
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et al., 2024; Zhang et al., 2024a), where they can be used in
a variety of downstream tasks such as surrogate modeling
(Kim et al., 2019; Sun et al., 2020) or inverse problems
involving physics simulations (Ren et al., 2020; Holzschuh
et al., 2023). They are especially promising in areas where
only low amounts of training data are available.

The adoption of machine learning for physics simulations
faces several characteristic challenges. The underlying
physics often exhibit an inherent multi-scale nature (Smith,
1985). The representation of data is tied to the numerical
methods used for simulations, ranging from regular grids to
meshes to particle-based representations (Anderson et al.,
2020). While numerical simulations produce vast amounts
of data, they oftentimes cannot readily be used as input
to machine learning models as further preprocessing is re-
quired. Additionally, machine learning models in this area
directly compete with traditional numerical methods. As
such, they need to either outperform such solvers in terms
of accuracy or speed while exhibiting high reliability. Alter-
natively, they need to provide solutions that solvers cannot
easily obtain, for example, uncertainty estimates (Geneva &
Zabaras, 2019; Jacobsen et al., 2025; Liu & Thuerey, 2024;
Kohl et al., 2024) or working with partial inputs (Wu et al.,
2024a).

We address these problems by introducing a multi-purpose
transformer architecture PDE-Transformer that is carefully
tailored to scientific machine learning: the same architecture
can be used to generalize between different types of PDEs,
different resolutions, domain extents, boundary conditions,
and it includes deep conditioning mechanisms for PDE-
and task-specific information. Our model works on regular
grids in two dimensions, and can be trained in a supervised
manner as an efficient surrogate model, or as a diffusion
model for downstream tasks where solutions have wider
posterior distributions. Specifically, our contributions are:

• We augment existing SOTA diffusion transformer ar-
chitectures to tailor them to PDE and physics simula-
tions, among others, by token down- and upsampling
for efficient multi-scale modeling and shifted window
attention for improved scaling to high-resolution data.

• We modify the attention operation to decouple token
interactions between the spatio-temporal axes and the
physical channel axis. This improves accuracy and
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Figure 1. PDE-Transformer is a transformer model tailored to scientific data, the images above show its autoregressive predictions after
20 time steps on a large dataset comprising 16 different PDE dynamics, given initial conditions only. Additional simulation parameters
(viscosity, domain extent, etc.) are unknown to the model and need to be inferred from the observed data. PDE-Transformer is especially
well suited to be pretrained for out-of-distribution downstream tasks.

allows for better generalization to different PDEs.

• We perform a detailed ablation study on accuracy-
compute tradeoffs when scaling and modifying PDE-
Transformer.

• We demonstrate that PDE-Transformer generalizes
well to challenging downstream tasks when pre-trained
on a set of generic PDEs.

2. Related Work
Transformers Transformers have become one of the dom-
inant deep learning architectures. While first established
for sequence-to-sequence models in natural language pro-
cessing (Vaswani et al., 2017), transformers have been suc-
cessfully applied to computer vision by splitting images
into patches, which are embedded jointly with their position
as tokens (Dosovitskiy et al., 2021, ViT). ViTs have been
shown to scale better in vision tasks than classical convo-
lutional neural networks and benefit from high accelerator
utilization (Maurı́cio et al., 2023; Takahashi et al., 2024;
Rodrigo et al., 2024). Large transformer-based architectures
have led to foundation models such as GPT (Radford et al.,
2018; 2019; Brown et al., 2020) and BERT (Devlin et al.,
2019).

Diffusion Transformers While early applications of
transformers in computer vision focus on visual recognition
tasks, the success of latent diffusion models has also led
to the adoption of transformer-based diffusion models, the
diffusion transformer (Peebles & Xie, 2023, DiT). Instead
of modeling the data space directly, latent diffusion models
(Ho et al., 2020; Rombach et al., 2022) use a variational
autoencoder to embed the data and operate in the resulting
latent space. Additionally, diffusion transformers have very
powerful conditioning mechanisms based on adaptive layer
normalization (Perez et al., 2018) in which class labels or

text encodings can be used as an additional input.

Diffusion transformers use a significantly lower patch size
than many previous transformer models for computer vision
tasks. While diffusion models show an increasing perfor-
mance with lower patch sizes, they can only be used for
high-dimensional data by working in the latent space. This
is caused by the quadratic scaling of the required compute
with the number of tokens, due to the global self-attention
mechanisms of the diffusion transformer architecture, mak-
ing training and inference computationally expensive. In
this paper, we focus on modeling the raw data directly with-
out including any pre-trained autoencoders.

Attention mechanisms The global self-attention opera-
tion of transformers is the main computational bottleneck
of the transformer architecture. There have been two main
directions addressing this. Windowed attention limits the
computation of self-attention to non-overlapping local win-
dows (Liu et al., 2021a). For different layers, this window
is shifted to prevent discontinuities at the window borders.
Simiarly, in axial attention (Ho et al., 2019), tokens only
interact with each other along a specific axis, i.e. when they
belong to the same image row or column. When combined
with down- and upsampling in a hierarchical architecture,
the resulting models show the same or improved perfor-
mance while operating at a lower compute cost. The cost of
attention can also be lowered by algorithmic modifications
to the attention mechanisms, which make the attention scale
linearly (Wang et al., 2020; Cao, 2021). However, these
models often report subpar performance compared to the
quadratic self-attention. For physics simulations, the impor-
tance of transformers and attention mechanism has likewise
been recognized. Galerkin transformers (Cao, 2021) uti-
lize a linearized attention variant that removes the softmax
normalization and can be related to a learnable layer-wise
Petrov-Galerkin projection. Multiple Physics Pertaining
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Figure 2. Architecture overview of PDE-Transformer. The multi-scale architecture combines up- and downsampling of tokens with skip
connections between transformer stages of the same resolution. The attention operation is restricted to a local window of tokens. The
window is shifted between two adjacent transformer blocks. Conditionings are embedded and used to scale and shift the intermediate
token representations. The mixed channel (MC) version embeds different physical channels within the same token. The separate channel
(SC) version embeds different physical channels independently. Tokens of different physical channels only interact via axial self-attention
over the channel dimension. The types of channel (velocity, density, etc.) are part of the conditioning, which is distinct for each channel.

(McCabe et al., 2023, MPP) uses a custom transformer
backbone based on an axial ViT, where axial attention is
computed along the temporal and spatial dimensions.

Learning for PDEs While physical residuals pose diffi-
cult learning tasks (Raissi et al., 2019; Bruna et al., 2024),
neural networks can also be combined with existing PDE
solvers via learned corrections (Um et al., 2020; Dresdner
et al., 2023; Thuerey et al., 2021), learned closures (Du-
raisamy et al., 2019; Sirignano & MacArt, 2023), or learned
algorithmic components (Bar & Sochen, 2019; Kochkov
et al., 2021), such as computation stencils (Bar-Sinai et al.,
2019). Significant interest has been sparked in building
neural operators (Lu et al., 2021; Kovachki et al., 2023),
which map between function spaces. The attention mecha-
nisms can be generalized to arbitrary meshes by including
the distance between nodes as weighting, converging to an
integral kernel operator as the resolution increases (Li et al.,
2023a;c). As a result, transformers and attention can be
broadly generalized, allowing them to work on arbitrary
input and output points (Wu et al., 2024a). While enjoy-
ing beneficial theoretical properties, the added flexibility
makes it difficult to scale to high resolutions and many
points. Scalable operator transformer (Herde et al., 2024,
scOT) is a hierarchical vision transformer with shifted win-
dows for the attention computation. In contrast to scOT,
PDE-Transformer is designed from the ground up as an
improved diffusion transformer for PDEs, and significantly
outperforms the former.

Pre-training Networks can be pre-trained using different
strategies: autoregressive prediction (Radford et al., 2018),
masked reconstruction (Devlin et al., 2019; He et al., 2022)
and contrastive learning (Chen et al., 2020). For PDEs, pre-
training via autoregressive next-step prediction can include
additional simulation parameters (Gupta & Brandstetter,
2023; Takamoto et al., 2023; Subramanian et al., 2023) or
can be based on previous snapshots only (Herde et al., 2024).
Pre-training has also been explored for PDEs in the context
of neural operators (Li et al., 2021; Goswami et al., 2022;
Wang et al., 2022), and domain transfers (Xu et al., 2023).
Recently, models have also been pre-trained on multiple
PDE dynamics at the same time (Subramanian et al., 2023;
Yang et al., 2023a; McCabe et al., 2023).

3. PDE-Transformer
Notation We denote a spatiotemporal system by S. This
system encompasses n physical quantities u(x, t) : ΩS ×
[0, T ] → Rn over a spatial domain ΩS ⊂ R2. We assume
the data is discretized in time and space, i.e. the system is
described by a sequence [uS

0 ,u
S
∆t, ...,u

S
T ], where each snap-

shot uS
t is sampled on the points determined by the spatial

discretization. We denote all additional information about S
such as the type of PDE or simulation hyperparameters by
the vector c. The network, denoted MΘ, is parameterized
by weights θ.

Autoregressive Prediction For autoregressive prediction
tasks, the goal is to predict the snapshot uS

t given a sequence
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of Tp preceding snapshots uS
t−Tp∆t, ...,u

S
t−∆t. Throughout

the paper, we abbreviate uin = [uS
t−Tp∆t, ...,u

S
t−∆t] and

uout = [uS
t ] for autoregressive prediction. The definitions

of uin and uout can be easily adapted to represent different
tasks, e.g., uin = ∅ and uout = [uS

t ] for an unconditional
generative model, or uin = [uS

t−∆t,u
S
t+∆t] and uout =

[uS
t ] for temporal interpolation.

3.1. Design Space

We augment the diffusion transformer backbone (Peebles &
Xie, 2023, DiT) to obtain PDE-Transformer. Its architecture
is summarized in Figure 2. We describe the DiT architecture
and our modifications step by step in the following.

Patching DiT operates in a latent space with fixed di-
mension, whereas PDE-Transformer operates on the raw
data. For data consisting of a single physical channel, given
patch size p, an input of size T × H × W is partitioned
into H/p ·W/p patches of size T × p× p. These patches
are embedded into tokens representing a spatio-temporal
subdomain via a linear layer that maps each patch to a
d-dimensional vector. The patch size is a critical hyperpa-
rameter, as it directly controls the granularity of the token
representation. By halving the patch size, the number of
tokens quadruples, significantly increasing the required com-
pute. We define an additional quantity, which we call the
expansion rate E(p) := d/(p2T ) that specifies the rate at
which the input data expands. Low expansion rates are bet-
ter for scalability, as they coincide with fewer tokens. On
the other hand, there is a clear correlation between patch
size and the performance of the trained model, where lower
patch sizes achieve better results. We explore this trade-off
between accuracy and compute costs for physics simulations
in Section 4.

Multi-scale architecture While U-shaped architectures
like the classic UNet (Ronneberger et al., 2015b) have
shown remarkable success, token down- and upsampling
have not been used by DiTs in favor of a more streamlined
architecture by the original authors (Peebles & Xie, 2023).
The hierarchical structure of U-shaped architectures resem-
bles the multi-scale nature of features in nature and adds
a strong inductive bias. Several works (Bao et al., 2023;
Hoogeboom et al., 2023; Tian et al., 2024) have combined
U-shaped architectures with a transformer backbone archi-
tecture. We introduce down- and upsample tokens at the end
of each transformer stage via PixelShuffle and PixelUnshuf-
fle layers. In contrast to Bao et al. (2023) and Hoogeboom
et al. (2023), we rely on adaptive layer normalization for
conditioning. Tian et al. (2024) also feature a U-shaped
design, but it is combined with token downsampling on the
query-key-value tuple of the self-attention operation. We
found that this slightly improves performance but comes
at the cost of increased training and inference time, due to

suboptimal accelerator utilization. Thus, we did not down-
sample tokens within the self-attention operation for PDE
data in our implementation.

Shifted Windows To prevent the quadratic blowup of
the global self-attention in DiTs, we adopt the shifted win-
dow multi-head self-attention (MHSA) operation used by
SwinTransformers (Liu et al., 2021b), which limits the self-
attention between tokens to a local window. A window with
window size w encompasses w × w spatio-temporal tokens
at each block. To prevent discontinuities at the window bor-
ders between two adjacent layers, the windows are shifted
by w/2 tokens. We evaluate the impact of the window size
on the accuracy-compute tradeoff in Section 4. In contrast
to DiTs, no absolute positions are added to the token em-
beddings. We use log-spaced relative positions of tokens
within each window combined with a feed-forward neural
network when computing attention scores (Liu et al., 2022).
This improves translation-invariance for learning PDEs and
increases generalization across different window resolutions.

Mixed and separate channel representations PDEs can
involve multiple physical quantities and hence require differ-
ent numbers of physical channels, a fundamental difference
to the fixed channel count of DiT architectures. The dynam-
ics and scales of the physical channels can be fundamentally
different. A naive strategy for this situation is to define a
maximum number of channels Cmax as an additional di-
mension of the input. Therefore, the embedding layer will
map the spatio-temporal patch T × Cmax × p × p to the
d-dimensional token embedding. If the data has fewer than
Cmax channels, they are padded with zeros. This is the
mixed channel (MC) variant of PDE-Transformer. Effec-
tively, this reduces the expansion rate E(p) by the factor
1/Cmax and mixes channels with different physical mean-
ing. This leads to an overly compressed token representa-
tion, which can deteriorate performance and lead to poor
generalization capabilities. Instead, we propose to scale the
compute with the number of channels and keep the expan-
sion rate of each token the same independent of the number
of channels. We achieve this by embedding each channel
independently and by implementing interactions between
tokens of different channels via an additional channel-wise
axial MHSA operation in each block. The windowed self-
attention is not computed between tokens of different chan-
nels. This variant is called separate channel (SC) below,
and we evaluate both variants in detail for the pre-training
dataset and when finetuning in Section 4.

Conditioning mechanism Similar to DiTs, we use
adaLN-Zero blocks (Goyal et al., 2017; Perez et al., 2018;
Dhariwal & Nichol, 2021). The embedding vectors of all
conditionings are added and vectors for scale and shift op-
erations are regressed using a feed-forward network. In
addition, the scale and shift vectors are initialized such that
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each residual block is equal to the identity function, which
accelerates training. DiTs use the class label and diffusion
time as conditioning. When training PDE-Transformer as a
diffusion model, we also include the diffusion time as condi-
tioning. The class label corresponds to the PDE type in our
setup. Moreover, for each physical channel in the SC ver-
sion, we use a label embedding for the type of channel (e.g.
density, vorticity). All labels use dropout with probability
10%, therefore our model can be used in both a conditional
and unconditional setting. Extending this conditioning to
additional simulation parameters is straightforward.

Boundary conditions We explicitly consider periodic and
non-periodic boundary conditions for the simulation do-
mains. When shifting the attention windows, the tokens
are rolled along the x- and y-axis as if they were aligned
on a spatial grid matching their position. This mimics pe-
riodic boundary conditions for both axes. If periodicity is
not required, it can be explicitly disabled in the architecture
by masking token interactions in the computation of the
attention scores.

Algorithmic improvements We normalize Q and K of
the self-attention operation using RMSNorm (Zhang & Sen-
nrich, 2019) to avoid instabilities due to an uncontrolled
growth of the attention entropy (Dehghani et al., 2023). In
addition, we find that the training configuration of diffusion
transformers from Peebles & Xie (2023) leads to training
instabilities and suffers from spikes in the training loss for
our datasets. Thus, we alter the learning rate from 1.0 ·10−4

to 4.0 · 10−5 and employ the AdamW optimizer using a
small amount of weight decay with a factor of 10−15 for
bf16-mixed precision training as recommended by Esser
et al. (2024). Moreover, we find that gradient clipping based
on the exponential moving average (EMA) of gradients pre-
vents any remaining spikes in the loss curve and ensures
stable training. Further details of the training approach can
be found in Appendix A.

3.2. Supervised and Diffusion Training

Supervised PDE-Transformer can be trained both in a
supervised manner and as a diffusion model. For tasks
with a deterministic solution, for example when training a
surrogate for a deterministic solver, supervised training of
PDE-Transformer with the MSE can be used, which allows
for a fast inference in one step. In this case, the network is
directly trained with the MSE loss

LS = E
[
||MΘ(uin, c)− uout||22

]
. (1)

Diffusion training If the solution is not deterministic,
then diffusion training is preferable, as it enables sampling
from the full posterior distribution, instead of learning an av-
eraged solution. We adopt the flow matching (Lipman et al.,
2023; Liu et al., 2023) formulation of diffusion models (Ho

et al., 2020) for training. Given the input uin and condition-
ing c, samples x0 from a noise distribution p0 = N (0, I)
are mapped to samples x1 from the posterior p1 via the or-
dinary differential equation (ODE) dxt = v(xt, t) dt. The
network MΘ learns the velocity v by regressing a vector
field that generates a probability path between p0 and p1.
Samples along the probability path are generated via the
forward process

xt = t uout + [1− (1− σmin)t] ϵ (2)

for t ∈ [0, 1] with ϵ ∼ N (0, I) and a hyperparameter
σmin = 10−4. We denote ct = [c, t] and ut

in = [uin,xt].
The velocity v can be regressed by training with the loss

LFM = E
[
||MΘ(u

t
in, c

t)− uout + (1− σmin)ϵ||22
]

(3)

Once trained, samples from the posterior can be generated
conditioned on uin and c by sampling x0 ∼ N (0, I) and
solving the ODE dxt = M(ut

in, c
t) dt from t = 0 until

t = 1. We use the explicit Euler method and experiment
with choosing a good step size ∆t for PDEs in Section 4.

4. Experiments
We evaluate the performance of PDE-Transformer for au-
toregressive prediction with Tp = 1 preceding snapshots.
Our experiments are divided into two parts: first we compare
PDE-Transformer to other SOTA transformer architectures
on a large pre-training set of different PDEs, focusing on
accuracy, training time and required compute. We moti-
vate our design choices for PDE-Transformer in an abla-
tion study. Second, we finetune the pre-trained network
on three different challenging downstream tasks involving
new boundary conditions, different resolutions, physical
channels and domain sizes, showcasing its generalization
capabilities to out-of-distribution data. Our models use three
different configurations S, B and L that have different token
embedding dimensions d (96, 192 and 384 respectively).
We use the name PDE-S to refer to PDE-Transformer with
configuration S. Unless otherwise noted p and w are set to
their default values p = 4 and w = 8 and the mixed channel
(MC) version is used.

4.1. Pre-training dataset

Training We train our models on a large set of 16 linear
and non-linear PDEs, including Kolmogorov flow, Burgers’
equation, different variants of the Gray Scott equation and
many more. The datasets are based on APEBench (Koehler
et al., 2024), and described in detail in Appendix C. For each
type of PDE, we consider 600 trajectories of 30 simulation
steps each, which are randomly split into a fixed training,
validation and test set. The data is generated with a spectral
solver at resolution 2048×2048 and downsampled to 256×
256 with PDEs having either 1 or 2 physical channels. We
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Figure 3. Scaling the domain size for patch size p = 4. An input
resolution of 256 × 256 corresponds to 64 × 64 tokens. The
area of a each point corresponds to the required GPU memory for
inference (batch size 1).

apply gradient accumulation when training larger models to
keep the batch size unchanged. For evaluation, we use an
EMA of the models weights with a decay of 0.999.

Evaluation metrics For the evaluation, we use the nor-
malized RMSE, defined as

nRMSE =
1

M

M∑
i=1

√
MSE(ûout,uout)

MSE(0,uout)
, (4)

where ûout is the network prediction and M corresponds
to the number of trajectories in the test dataset. We can
autoregressively generate the entire trajectory for system S
and define the nRMSE at time t comparing the predicted
state ûS

t at time t with the reference uS
t . We average over

all systems in the test datasets for each timestep.

Windowed attention and multi-scale architecture We
train several distinct and representative transformer mod-
els: DiT (Peebles & Xie, 2023) with no token down- or
upsampling, UDiT (Tian et al., 2024) featuring a U-shape
architecture, scOT (Herde et al., 2024), a neural operator
transformer that includes a hierarchical architecture and
shifted window attention, FactFormer (Li et al., 2023b) a
transformer model based on axial factorized kernel inte-
grals, a modern UNet (Ronneberger et al., 2015a; Ho et al.,
2020), and our proposed PDE-Transformer. When appli-
cable, all models are trained with the S configuration of
their architecture. We evaluate the trained models using
the nRMSE and report values for the first step and after 10
steps of autoregressive prediction, see Table 1. We use a
patch size of p = 4, resulting in 64 × 64 spatiotemporal
tokens. UDiT-S and PDE-S achieve the best scores. Addi-
tional important differences between the two are visible in
terms of required training time: first, PDE-S can be trained
much faster (7h 42m). DiT-S has a much lower training
time (13h 4m) compared to UDiT-S (18h 30m), even though
the number of GFlops is higher. We believe this is caused
by a better accelerator utilization of the DiT architecture

on modern GPU hardware in comparison to UDiT. When
training DiT-S, spikes in the loss curve occur that the model
does not recover from. This happens repeatedly as the loss
decreases, irrespective of learning rate and gradient clipping
strategies. This behavior indicates stability issues of the
DiT architecture for the characteristics of PDE datasets. For
evaluating DiT-S, we therefore use the checkpoint with the
lowest validation loss.

Table 1. Training S configurations for 100 epochs on 4x H100
GPUs.

Model nRMSE1 nRMSE10 Time (h) Params

DiT-S 0.066 0.78 13h 4m 39.8M
UDiT-S 0.042 0.39 18h 30m 58.9M
scOT-S 0.051 0.59 21h 11m 39.8M
FactFormer 0.069 0.65 12h 25m 3.8M
UNet1 0.075 0.68 48h 00m 35.7M

PDE-S 0.044 0.36 7h 42m 33.2M

Efficient scaling of domain size and model parameters
We compare the compute for inference (GFlops) and GPU
memory requirements (GB) of PDE-S, UDiT-S and DiT-S
for different input sizes assuming a patch size of p = 4. DiT-
S is computationally very expensive for larger domains due
to the global self-attention. UDiT-S scales better in general;
however, GPU memory requirements scale badly due to
convolutional layers within the attention operator for token
up- and downsampling. PDE-S uses as few convolutional
layers as possible for up- and downsampling within the
U-shaped architecture, and achieves the best scaling for
GFlops and GPU memory. We train the PDE-Transformer
with configurations S, B and L. The overall architecture is
kept identical, but we increase the dimension of the token
embeddings d with each configuration, see Table 2. Larger
token embeddings lead to an improved performance. While
the number of GFlops for inference increases by a factor
of ca. 4x when doubling the token dimension, the total
training time increases at a lower pace. This is due to an
efficient accelerator utilization of matrix-multiplication in
the self-attention operator on modern GPUs. The supervised
and flow matching losses during training for the different
configurations are shown in Figure 7 in the appendix.

Axial attention for different physical channels We com-
pare the mixed channel (MC) and separate channel (SC)
versions of PDE-Transformer for all three configurations in
Figure 4 (bottom). Most importantly, the flexibility of the
proposed SC embeddings does not lead to any deterioration
of inference accuracy. However, the compute of the SC

1We train the UNet for 40 epochs, reaching a maximum com-
pute budget of 2 days.
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Figure 4. nRMSE evaluation of supervised training vs. training
with flow matching and sampling from the posterior (top). Com-
parison of mixed channels (MC) vs. separate channel (SC) with
axial attention over channel dimension (bottom).

variant increases, since the number of tokens scales linearly
with the number of channels. Due to the fundamentally
improved flexibility of the SC version we will focus on it in
the following, showing its improved versatility and general-
ization capabilities in the downstream tasks of Section 4.2.

Supervision versus probabilistic learning We evaluate
supervised training against training PDE-Transformer as
a diffusion model via flow matching. While the diffusion
PDE-Transformer samples from the posterior distribution,
supervised training is incentivized to predict the mean of
this posterior. Depending on the PDE, there are better suited
evaluation metrics when considering a distribution of possi-
ble solutions, however our datasets comprises many differ-
ent types of PDEs. Therefore, we only compare using the
nRMSE, as shown at the top of Figure 4. As expected, the

Table 2. Scaling the token embedding dimension d. nRMSE1

shows the results for the supervised training. The training time for
100 epochs is reported on 4x H100 GPUs.

Config d nRMSE1 Time (h) GFlops

S 96 0.045 7h 42m 19.62

B 192 0.038 10h 40m 76.55

L 384 0.035 20h 8m 302.34

supervised training consistently outperforms samples from
the diffusion version, since we consider only a single gener-
ated sample for each trajectory in the test set. Even though
the diffusion version has a slightly lower accuracy in this
evaluation, it is close to the supervised baseline. However,
the ability to sample from the posterior, even at the cost
of more network evaluations, is extremely useful in many
downstream tasks and practical engineering applications.
We also experiment with the step size ∆t for sampling, see
Figure 8 in Appendix B and find that performance keeps
improving with more steps.
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Figure 5. Impact of varying the window size w (left) and patch size
p (right) on performance and required compute (GFlops). On the
left, the patch size is kept at p = 4 and the self-attention window
is increased. On the right, the patch size p and window size w are
chosen such that the product of p and w is constant (p · w = 32).
Windows cover the same spatial domain.

Influence of patch and window size We evaluate differ-
ent patch and window sizes for PDE-Transformer. For this
experiment, we focus on the S configuration with super-
vised training. We first test the effects of different window
sizes w while keeping the patch size p fixed at p = 4. This
means that the receptive field increases in the windowed
self-attention, making interactions less local. While there
is a decrease in training loss for larger window sizes, these
lead to larger compute costs, as shown in Figure 5 on the left.
At the same time, the nRMSE evaluation on the test set does
not improve noticeably, indicating overfitting. We conclude
that small window sizes are sufficient for the representative
PDE behavior in our dataset. In the second experiment, we
adjust window size and patch size at the same time. We keep
the receptive field constant, i.e. when changing the patch
size, we also modify the window size such that p · w = 32
is constant, as shown in Figure 5 on the right. Smaller patch
sizes lead to improved results, however they also signifi-
cantly increase the required compute. There is a sweet spot
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for the accuracy-compute tradeoff at p = 4 and w = 8.

4.2. Downstream tasks

In this section, we evaluate the performance of our models
on three challenging downstream tasks taken from the Well
repository (Ohana et al., 2024): active matter, Rayleigh-
Bénard convection (RBC), and shear flow. These tasks con-
tain substantially more complex dynamics than any datasets
seen during the pre-training phase, involving varied bound-
ary conditions (periodic and non-periodic) and geometries
(square and non-square domains). Detailed descriptions
of these learning tasks are provided in Appendix E.1. In
Section B.4 of the appendix, we also present a preliminary
evaluation of the performance of our method in conjunction
with low-rank adaption (Hu et al., 2022, LoRA).

For the downstream tasks, we compare PDE-Transformer to
a range of SOTA models for PDE prediction: scOT-s (Herde
et al., 2024), a Galerkin Transformer (Cao, 2021), OFormer
(Li et al., 2023a), and a Fourier Neural Operator (Kossaifi
et al., 2024, FNO). All baseline models are trained from
scratch. For PDE-Transformer, we train two configuration
S models: one initialized from scratch and the other from
pre-trained weights. All models have a similar number of
trainable parameters, except for OFormer, whose memory
consumption increases significantly with model size. It is
important to note that the scOT model and Galerkin Trans-
former are limited to square simulation domains, making
them unsuitable for the RBC and shear flow tasks. Further
details on each model can be found in Appendix A.3.

Figure 6 shows the results of this comparison. PDE-S with
pre-training consistently yields more accurate predictions
than the other baselines across the full range of difficult Well
tasks. It provides an average improvement of 42% in terms
of nRMSE, compared the second best model (FNO), demon-
strating that PDE-Transformer consistently outperforms the
range of baseline models. Notably, although pre-training
was conducted with idealized data from a spectral solver, it
improves the performance for all three downstream tasks
featuring highly complex dynamics. In addition, while be-
ing pre-trained on periodic, square domains, the pre-training
contributes to an improved performance on tasks with non-
periodic boundary conditions (RBC) and non-square do-
mains (RBC and shear flow). Detailed numerical values of
the error during rollouts can be found in Appendix B.2.

Additionally, note that the Poseidon model (Herde et al.,
2024) provides pre-trained weights for the scOT model at
configuration B. To enable a fair comparison, we evalu-
ate the performance of our pre-trained PDE-B alongside
the pre-trained scOT-B, as both models are of similar size.
The PDE-B model demonstrates significant improvements
in terms of accuracy, with an accumulated nRMSE reduc-
tion of 75% compared to Poseidon’s scOT-B model, which
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Figure 6. Average rollout nRMSE of different models on down-
stream tasks.

Table 3. Comparison of the PDE-Transformers with separate chan-
nel (SC) and mixed channel (MC) representations. The values are
obtained by averaging the nRMSE of the first 20 rollout steps.

Scratch pre-trained Improvement

Active SC 0.494 0.455 7.89%
Matter MC 0.493 0.479 2.84%

RBC SC 0.155 0.104 32.90%
MC 0.147 0.130 11.56%

Shear SC 0.199 0.125 37.19%
Flow MC 0.178 0.163 8.43%

becomes unstable for long-term rollouts. Figure 9 in the
appendix presents the average rollout nRMSE of the model
predictions. Overall, these results highlight the benefits of
the proposed architecture and pre-training approach.

In Table 3 we revisit the performance of the PDE-S using
separate channel (SC) and mixed channel (MC) represen-
tations with the downstream tasks. While the performance
of models without pre-training is similar, the SC version
provides a greater performance boost on downstream tasks
when pre-trained weights are used. Across the three chal-
lenging tasks, performance improvements with SC are 2.7×
to 4.4× higher than the MC counterparts. This observation
further highlights that the proposed channel-independent
representation enables the network to retain more knowl-
edge from pre-training without requiring extensive training
or fine-tuning of the PDE-specific layers.

5. Limitations
PDE-Transformers is currently limited to 2D regular grids.
Additionally, we focused on autoregressive prediction tasks.
Testing and extending PDE-Transformer for tasks with noisy
and only partially observed data, data assimilation, or in-
verse problems remains an open task for future work. There
are several directions for extending PDE-Transformer to
unstructured grids. First, PDE-Transformer can be coupled
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with Graph Neural Operator (Li et al., 2020, GNO) layers as
the encoder and decoder, replacing the patchification, which
map between the given geometry and a latent regular grid.
Alternatively, it is also possible to generalize the notion of
attention window to be defined on local neighbourhoods of
graphs. Correspondingly, token up- and downsampling need
to be replaced by respective graph pooling and upsampling
operations.

6. Conclusion
We have introduced PDE-Transformer, a multi-purpose
transformer model that addresses key challenges in physics-
based simulations. Its multi-scale architecture modifies the
diffusion transformer backbone and limits token interactions
to a local window without sacrificing performance on learn-
ing PDE dynamics. PDE-Transformer outperforms state-of-
the-art transformer architectures in terms of the accuracy-
compute trade-off, demonstrating superior scaling for high-
resolution data. By decoupling token embeddings for dis-
tinct physical channels, we further enhance performance,
especially during fine-tuning on complex downstream tasks.
Its focus on scalability makes PDE-Transformer an excellent
backbone for foundation models for high-resolution simula-
tion data. In the future, we aim to extend PDE-Transformer
from 2D to 3D simulations.
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A. Training configurations
A.1. Training Hyperparameters

Table 4 summarizes the key hyperparameters used during training. We employ the Distributed Data Parallel (DDP) strategy,
as supported by PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019), to train models across multiple GPUs.
To manage memory consumption effectively and maintain a consistent effective batch size across different hardware setups,
we incorporate the gradient accumulation technique. Additionally, mixed-precision training is enabled for most models,
except for the FNO and OFormer models in the downstream tasks. The exclusion is due to the inherent incompatibility of
fast Fourier transformations within these architectures with the mixed-precision setup.

Table 4. Major hyperparameters for training.

pre-training Downstream tasks

Effective batch size 256 256

Learning rate 4.00e-05 1.00e-04 (Active matter & RBC)
4.00e-05 (Shear flow)

Optimizer AdamW AdamW
Epochs 100 2000

A.2. EMA Gradient Clipping

In this study, we employ an exponential moving average (EMA) of the gradient norm to stabilize training. We compute
EMA values for the gradient norm using two different coefficients, as outlined in Algorithm 1. The EMA with a larger
coefficient places greater emphasis on historical values and serves as the clipping threshold. Meanwhile, the EMA with a
smaller coefficient acts as the target value for gradient clipping. Notably, the clipping coefficient κ must be set greater than 1
to ensure that g1 effectively tracks changes in the gradient norm. Compared to traditional gradient clipping, which applies a
fixed threshold and clipping value, EMA gradient clipping offers a more flexible approach by dynamically adjusting the
threshold and clipping value. This adaptability is particularly advantageous, as gradient norms vary significantly across
different model sizes and training stages.

Algorithm 1 EMA Gradinet Clip
Input: first EMA coefficient β1, second EMA coefficient β2, Clip threshold coefficient α, Clip value coefficient κ.
Initialize β1 = 0.99, β2 = 0.999, α = 2, κ = 1.1, i = 0, g1 = 0, g2 = 0.
repeat

Get gradient g from training step
if i! = 0 and |g| > α g2

1−βi
2

then
g = κg g1

1−βi
1

end if
g1 = β1g1 + (1− β1)|g|
g2 = β1g2 + (1− β1)|g|
i = i+ 1

until training is finished

A.3. Model Details

Table. 5 summarizes the sizes of the network in different models. The size definition of scOT models follows the
definition in the Poseidon foundation model (Herde et al., 2024). Meanwhile, we rescale the size of FNO by set-
ting the n modes height=16, n modes width=16, and hidden channels=192 in the official implementation
(Kossaifi et al., 2024). For the Galerkin Transformer, we also change the n hidden=96, num encoder layers=5,
dim feedforward=128, and freq dim=432 in the official implementation (Cao, 2021) to extend the network size.We
noticed that the OFormer requires much more memory during the training compared with other models. We have to modify
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Table 5. Size of the network of different models

Models Number of trainable parameters

PDE-Transformer-S 46.57M
scOT-S 39.90M
FNO 42.72M

Galerkin Transformer 38.82M
OFormer 0.12M

PDE-Transformer-B pre-trained 178.97M
scOT-B pre-trained 152.70M

Table 6. Architecture hyperparameters of PDE-Transformer

Name of hyperparameter Value

window size 8
depth [2, 4, 4, 6, 4, 4, 2]

num heads 16
mlp ratio 4.0

class dropout prob 0.1
qkv bias True

activation GELU

the in emb dim=24 and out seq emb dim=48 of the original implementation (Li et al., 2023a) to make it have similar
memory consumption as other models, although the network size is in different magnitude.

We list hyperparameter for the architecture of PDE-Transformer in Table 6.

B. Details and Additional Results
B.1. Training Methodology

Details of the convergence of the training loss for different configurations of PDE Transformer can be found in Figure 7.
The plots show that B and L configurations yield consistently lower training losses for both supervised and diffusion based
training methodologies. Additionally, the left plot shows the stable behavior of the diffusion training with reduced loss
fluctuations across epochs.
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Figure 7. Training loss of supervised (left) and diffusion training (right) for configurations S, B and L.

Figure 8 shows the nRMSE over rollout steps for the PDE Transformer L configuration when using flow matching. After
using more than ca. 20 flow integration steps the nRMSE values begin to stabilize at a lower level in terms of mean errors.
Increasing the number of steps gives persistent improvements.
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Figure 8. We evaluate the nRMSE against the number of inference steps for PDE-Transformer with configuration L. We use the explicit
Euler method to solve the ODE for sampling.

B.2. Downstream Tasks

Details of the comparison with the pre-trained Poseidon model scOT-B over time are shown in Figure 9. Both scOT-B
and PDE-Transformer B have a similar size, show comparable performance during the very first frames of the trajectory.
However, the prediction error of scOT-B accumulates rapidly over time, while our PDE-B produces stable trajectories with
persistently low errors despite the challenging task. This is reflected in the snapshot for a case at t = 8 shown on the left of
Figure 9. While scOT-B has diverged to a state dominated by oscillations, the PDE-B solution stays close to the reference
solution.
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Figure 9. Average trajectory nRMSE of PDE-Transfomer and scOT with pre-trained weights on active matter tasks. A representative
frame at f = 8 is shown left.

B.3. Numerical Values

Table 7 shows the exact numerical values of the nRMSE value in Figure 6. In addition, Figure 10 illustrates the nRMSE
changes during the rollout for each downstream task. It highlights that the pre-trained PDE-Transformer consistently
outperforms baselines over the course of the full rollout.

B.4. Fine-tuning with LoRA

Low-Rank Adaptation (LoRA) (Hu et al., 2022) has recently emerged as a popular technique for addressing the computational
challenges associated with fine-tuning foundation models (Zhang et al., 2024b; Wu et al., 2024b; Yang et al., 2024). Like
many other parameter-efficient fine-tuning (PEFT) methodologies, LoRA significantly reduces the number of trainable
parameters during fine-tuning, achieving this with minimal performance degradation. Building on its early success in
fine-tuning large language models (Hu et al., 2022; Mao et al., 2025) and diffusion-based image models (Luo et al., 2023;
Smith et al., 2024), LoRA has gained considerable traction in other domains. These include computer vision (Aleem et al.,
2024; Lin et al., 2024), continual learning (Wistuba et al., 2023; Wei et al., 2025), and time-series prediction (Gupta et al.,
2024b;a). Within the scientific deep-learning community, LoRA has also been applied to protein and materials engineering

Table 7. Average rollout nRMSE of different models on downstream tasks

Active Matter RBC Shear flow

FNO 0.509 0.269 0.274
OFormer 0.752 0.520 0.780
scOT-s 0.546 / /

Galerkin 0.638 / /

Ours-s 0.494 0.155 0.199
Ours-s-p 0.455 0.104 0.125
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Figure 10. Average rollout nRMSE of different models on downstream tasks

(Buehler & Buehler, 2024; Zeng et al., 2024). Despite these advancements, the application of LoRA in foundation models
for partial differential equations (PDEs) remains relatively unexplored.

Given the input of network x and the original pre-trined weight W0 ∈ Rd×k, LoRA introduces a low-rank matrix ∆W to
calculate the network output y:

y = W0x+∆Wx = W0x+
α

r
BAx. (5)

Here, B ∈ Rd×r, A ∈ Rr×k, r is the rank, and α (α = r in the current study) is the coefficient used to rescale the low-rank
matrix. By setting r < dk/(d+ k) and freezing the pre-trained weight during the fine-tuning, the trainable parameter during
fine-tuning can be significantly reduced.

In the current study, we enable LoRA for the weights of linear layers and convolutional layers in the network and keep other
parameters, e.g., biases, unchanged with their full parameters. Fig. 11 illustrates how the size of the network changes with
different numbers of ranks. The size of PDE-Transformer-S, -B, and -L all grow linearly with more ranks.

We evaluate the performance of LoRA on the downstream tasks by training a B-size PDE-Transformer with r = 96, which
satisfies the theoretical minimum rank required for transformer-based models (Zeng & Lee, 2024). The final fine-tuned
network consists of 42.06M trainable parameters, a size comparable to the S-size model. Figure 12 presents the average
rollout performance of LoRA fine-tuning on the B-size model. In the active matter case, the LoRA-B model outperforms the
LoRA-S model without pre-training, demonstrating advantages similar to those of the pre-trained S model. However, for the
RBC task, the LoRA-B model performs comparably to the non-pre-trained model but falls short of the pre-trained model.
These results indicate that while the LoRA fine-tuned model achieves performance similar to that of a model of the same
size trained from scratch, it can not always reach the level of a fully pre-trained model with a similar size.
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Figure 11. The number of trainable parameters of different sizes of PDE-Transformer w.r.t different LoRA ranks.
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Figure 12. Performance of the LoRA finetuning on downstream tasks
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C. Pre-training Datasets
The sources for our datasets are chosen to ensure a wide range of different PDEs, at high spatial resolutions, and with
varying physical quantities across the simulations in each dataset. To simulate linear, reaction-diffusion, and nonlinear PDEs,
we employ the Exponax solver (Koehler et al., 2024). It implements a range of Exponential Time Differencing Runge-Kutta
(ETDRK) methods for numerically solving different PDEs in an efficient and unified manner. Our choice against using the
authors benchmark APEBench directly was intentional, to ensure that the datasets are higher in resolution and more diverse
in terms of physical behavior across simulations rather than only changing initial conditions. The ETDRK methods operate
in Fourier space and as such do not allow for non-periodic domains or complex boundaries. We always use the physical
solver interface across data sets, rather than the non-dimensionalized difficult-based interface, to provide a simpler, unified
way of handling physical quantities for the task embedding.

Table 8. Overview of datasets simulated with Exponax (top, Koehler et al., 2024) featuring linear PDEs, reaction-diffusion PDEs, and
nonlinear PDEs. The dimensionality of each dataset is described via the number of simulations s, time steps t, fields (or channels) f , and
spatial dimensions x and y. In addition to varying the specified quantities, the initial conditions of each simulation in s are different.

Dataset s t f x y Varied Quantities across s Test Set

diff 60 30 1 2048 2048 viscosity (x, y) s ∈ [50, 60[

fisher 60 30 1 2048 2048 diffusivity, reactivity s ∈ [50, 60[
sh 60 30 1 2048 2048 reactivity, critical number s ∈ [50, 60[
gs-alpha 10 30 2 2048 2048 initial conditions only separate: s = 3, t = 100
gs-beta 10 30 2 2048 2048 initial conditions only separate: s = 3, t = 100
gs-gamma 10 30 2 2048 2048 initial conditions only separate: s = 3, t = 100
gs-delta 10 30 2 2048 2048 initial conditions only s ∈ [8, 10[
gs-epsilon 10 30 2 2048 2048 initial conditions only separate: s = 3, t = 100
gs-theta 10 30 2 2048 2048 initial conditions only s ∈ [8, 10[
gs-iota 10 30 2 2048 2048 initial conditions only s ∈ [8, 10[
gs-kappa 10 30 2 2048 2048 initial conditions only s ∈ [8, 10[

burgers 60 30 2 2048 2048 viscosity s ∈ [50, 60[
kdv 60 30 2 2048 2048 domain extent, viscosity s ∈ [50, 60[
ks 60 30 1 2048 2048 domain extent separate: s = 5, t = 200
decay-turb 60 30 1 2048 2048 viscosity separate: s = 5, t = 200
kolm-flow 60 30 1 2048 2048 viscosity separate: s = 5, t = 200

C.1. Linear PDEs

The Exponax solver framework features a wide range of Exponential Time Differencing Runge-Kutta (ETDRK) methods
to efficiently simulate different PDEs (Koehler et al., 2024). The chosen linear PDEs are comparatively simple and have
analytical solutions, but are nevertheless an important building block for more complex PDEs. Here, each linear PDE can
be interpreted as a scalar quantity like density that is affected by different physical processes. Unless specified otherwise,
sampling from intervals is always performed uniformly random below. Figure 13 shows example visualizations of every
dataset described below.

In addition to varying physical parameters across the dataset, each simulation features randomized initial conditions. By
default, the initial conditions are constructed in the following way: One of three initialization types with different spectral
energy distributions implemented by Exponax is chosen uniformly random: First, the random truncated Fourier series
initializer layers multiple Fourier series additively up to a cutoff at a certain frequency level. The cutoff threshold is chosen
as a uniformly random integer from [2, 11[. Second, the Gaussian random field initializer creates a power-law spectrum in
Fourier space, i.e., the energy decays polynomially with the wavenumber. The power-law exponent is chosen uniformly
random from the interval [2.3, 3.6[. Third, the diffused noise initializer creates a tensor of values with white normally
distributed noise, that is diffused afterwards. The resulting spectrum decays exponentially quadratic with an intensity rate
chosen uniformly random from the interval [0.00005, 0.01[. For all initializers, the resulting values of the initial conditions
are normalized to have a maximum absolute value of one after generation. For vector quantities, the randomly selected
initializer is sampled independently for each vector component.
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Diffusion (diff) features the spatial dissipation of density field due to diffusion. The diffusivity also known as viscosity
depends on the coordinate axis direction in our setup. This process is visually similar to blurring the density field over
time, as high frequency information is damped. While simple at first glance, diffusion processes occur across domains, for
instance in physics, biology, economics, and statistics.

• Dimensionality: s = 60, t = 30, f = 1, x = 2048, y = 2048

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise

• Boundary Conditions: periodic

• Time Step of Stored Data: 0.01

• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: density

• Varied Parameters: viscosity ∈ [0.005, 0.05[ independently for x, y

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [500, 600[
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Figure 13. Random example simulations from diff.

C.2. Reaction-Diffusion PDEs

The Exponax solver (Koehler et al., 2024) was also used to simulate different reaction-diffusion PDEs. Such PDEs are most
commonly encountered for local chemical reactions, but can also occur in domains such as biology, physics, or geology.
They can be used to model traveling waves and pattern formation, and typically describe concentrations of one or more
substances.

Fisher-KPP (fisher) contains simulations of a reaction-diffusion system according to the Fisher-KPP equation. It
describes how the concentration of a substance changes over time and space due to a reaction process controlled by a
reactivity parameter, while also considering the spatial spread of the substance due to diffusion according to a diffusivity
parameter. The equation can be applied in the context of wave propagation and population dynamics, as well as ecology or
plasma physics. Figure 14 shows example visualizations from fisher.

• Dimensionality: s = 60, t = 30, f = 1, x = 2048, y = 2048

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise (with clamping to [0, 1])

• Boundary Conditions: periodic

• Time Step of Stored Data: 0.005

• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: concentration

• Varied Parameters: diffusivity ∈ [0.00005, 0.01[ and reactivity ∈ [5, 15[

• Validation Set: random 15% split of all sequences from s ∈ [0, 500[

• Test Set: all sequences from s ∈ [500, 600[
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Figure 14. Random example simulations from fisher and sh (from top to bottom).

Swift-Hohenberg (sh) features simulations of the Swift-Hohenberg equation, which describes certain pattern formation
processes. It can be applied to describe the morphology of wrinkles in curved elastic bilayer materials, for example, the
formation of human fingerprints, where stresses between layers of skin lead to characteristic wrinkles. Figure 14 shows
example visualizations from sh.

• Dimensionality: s = 600, t = 30, f = 1, x = 2048, y = 2048

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise

• Boundary Conditions: periodic

• Time Step of Stored Data: 0.5 (with 5 substeps for the simulation)

• Spatial Domain Size of Simulation: [0, 20π]× [0, 20π]

• Fields: concentration

• Varied Parameters: reactivity ∈ [0.4, 1[ and critical number ∈ [0.8, 1.2[

• Validation Set: random 15% split of all sequences from s ∈ [0, 500[

• Test Set: all sequences from s ∈ [500, 600[

Gray-Scott (gs) describes a system in which two chemical substances react and diffuse over time. A substance sa with
concentration ca is consumed by the reaction and is replenished according to a feed rate, while the product of the reaction
sb with concentration cb is removed from the domain according to a kill rate. Depending on the configuration of both
rates, simulations result in highly different steady or unsteady behavior with different patterns. Thus, we create various
subsets: four with temporally steady configurations, which result in a state that does not substantially change anymore
(gs-delta, gs-theta, gs-iota, and gs-kappa), and four temporally unsteady configurations, which continuously
evolve over time (gs-alpha, gs-beta, gs-gamma, and gs-epsilon). For the unsteady case, separate test sets with
longer temporal rollouts are created. Figure 15 shows example visualizations from the steady configurations, and Figures 16
and 17 from the unsteady configurations and corresponding test sets. For further details, we refer the reader to Pearson
(1993).

For all simulations, the diffusivity of the substances is fixed to da = 0.00002 and db = 0.00001. Furthermore, we use a
random Gaussian blob initializer for these datasets: It creates four Gaussian blobs of random position and variance in the
center 60% (20% for gs-kappa) of the domain, where the initialization of ca is the complement of cb, i.e. ca = 1− cb.

Steady Configurations (gs-delta, gs-theta, gs-iota, and gs-kappa):
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• Dimensionality: s = 10, t = 30, f = 2, x = 2048, y = 2048 (per configuration)

• Initial Conditions: random Gaussian blobs

• Boundary Conditions: periodic

• Time Step of Simulation: 1.0 (all configurations)

• Time Step of Stored Data:

– gs-delta: 130.0
– gs-theta: 200.0
– gs-iota: 240.0
– gs-kappa: 300.0

• Number of Warmup Steps (discarded, in time step of data storage):

– gs-delta: 0
– gs-theta: 0
– gs-iota: 0
– gs-kappa: 15

• Spatial Domain Size of Simulation: [0, 2.5]× [0, 2.5]

• Fields: concentration ca, concentration cb

• Varied Parameters: feed rate and kill rate determined by configuration (i.e., initial conditions only within configuration)

– gs-delta: feed rate: 0.028, kill rate: 0.056
– gs-theta: feed rate: 0.040, kill rate: 0.060
– gs-iota: feed rate: 0.050, kill rate: 0.0605
– gs-kappa: feed rate: 0.052, kill rate: 0.063

• Validation Set: random 15% split of all sequences from s ∈ [0, 80[

• Test Set: all sequences from s ∈ [80, 100[

Unsteady Configurations (gs-alpha, gs-beta, gs-gamma, and gs-epsilon):

• Dimensionality: s = 10, t = 30, f = 2, x = 2048, y = 2048 (per configuration)

• Initial Conditions: random Gaussian blobs

• Boundary Conditions: periodic

• Time Step of Simulation: 1.0 (all configurations)

• Time Step of Stored Data:

– gs-alpha: 30.0
– gs-beta: 30.0
– gs-gamma: 75.0
– gs-epsilon: 15.0

• Number of Warmup Steps (discarded, in time step of data storage):

– gs-alpha: 75
– gs-beta: 50
– gs-gamma: 70
– gs-epsilon: 300

• Spatial Domain Size of Simulation: [0, 2.5]× [0, 2.5]

• Fields: concentration ca, concentration cb

• Varied Parameters: feed rate and kill rate determined by configuration (i.e., initial conditions only within configuration)

– gs-alpha: feed rate: 0.008, kill rate: 0.046
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– gs-beta: feed rate: 0.020, kill rate: 0.046
– gs-gamma: feed rate: 0.024, kill rate: 0.056
– gs-epsilon: feed rate: 0.020, kill rate: 0.056

• Validation Set: random 15% split of all sequences from s ∈ [0, 100[

• Test Set: separate simulations with s = 30, t = 100, f = 2, x = 2048, y = 2048 (per configuration)
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Figure 15. Random example simulations from steady configurations of the Gray-Scott model of a reaction-diffusion system: gs-delta,
gs-theta, gs-iota, and gs-kappa.

C.3. Nonlinear PDEs

Nonlinear PDEs are generally difficult to study, as even the question of the existence of analytical solutions is already a
hard problem. Furthermore, most general techniques do not work across cases, and single nonlinear PDEs are commonly
tackled as individual problems. The Exponax solver (Koehler et al., 2024) provides tools to approach some nonlinear PDEs,
however, we also consider other data sources below.

Burgers (burgers) features simulations of Burgers’ equation, which is similar to an advection-diffusion problem. Rather
than the transport of a scalar density, it describes how a flow field itself changes due advection and diffusion. This can lead
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Figure 16. Random example simulations from unsteady configurations of the Gray-Scott model of a reaction-diffusion system:gs-alpha,
gs-beta, gs-gamma, and gs-epsilon.

to the development of sharp discontinuities or shock waves, making it difficult to simulate accurately. Burgers’ equation also
has applications in nonlinear acoustics and traffic flow. Figure 18 shows example visualizations from burgers.

• Dimensionality: s = 600, t = 30, f = 2, x = 2048, y = 2048

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise

• Boundary Conditions: periodic

• Time Step of Stored Data: 0.01 (with 50 substeps for the simulation)

• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: velocity (x, y)

• Varied Parameters: viscosity ∈ [0.00005, 0.0003[

• Validation Set: random 15% split of all sequences from s ∈ [0, 500[

• Test Set: all sequences from s ∈ [500, 600[
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Figure 17. Random example simulations from test sets with longer rollout from gs-alpha, gs-beta, gs-gamma, and gs-epsilon.

Korteweg-de-Vries (kdv) contains simulations of the Korteweg-de-Vries equation on a periodic domain, which serves as
a model of waves on shallow water. It is challenging as energy is transported to high spatial frequencies, leading to individual
moving solition waves with unchanged shape and propagation speed. Across simulations, the convection coefficient with a
value of -6, and the dispersivity coefficient with a value of 1 remain constant. Figure 18 shows example visualizations from
kdv.

• Dimensionality: s = 600, t = 30, f = 2, x = 2048, y = 2048

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise

• Boundary Conditions: periodic

• Time Step of Stored Data: 0.05 (with 10 substeps for the simulation)

• Spatial Domain Size of Simulation: varied per simulation

• Fields: velocity (x, y)

• Varied Parameters: domain extent ∈ [30, 120[ identically for x, y, i.e. a square domain, and viscosity ∈ [0.00005, 0.001[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [500, 600[
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Kuramoto-Sivashinsky (ks) features simulations of the Kuramoto-Sivashinsky equations on a periodic domain, which
models thermo-diffusive flame instabilities in combustion. It also has applications in reaction-diffusion systems. The
equation is well-known for its chaotic behavior, where temporal trajectories with slightly different initial conditions can
substantially diverge over time. The initial transient phase of the simulations is discarded. For the ks dataset, a test set
with longer rollout is used to investigate how well models can deal with this chaotic behavior. Figure 18 shows example
visualizations from ks.

• Dimensionality: s = 600, t = 30, f = 1, x = 2048, y = 2048

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise

• Boundary Conditions: periodic

• Time Step of Stored Data: 0.5 (with 5 substeps for the simulation)

• Number of Warmup Steps (discarded, in time step of data storage): 200

• Spatial Domain Size of Simulation: varied per simulation

• Fields: density

• Varied Parameters: domain extent ∈ [10, 130[ identically for x, y, i.e. a square domain

• Validation Set: random 15% split of all sequences from s ∈ [0, 600[

• Test Set: separate simulations with s = 50, t = 200, f = 1, x = 2048, y = 2048

Decaying Turbulence (decay-turb) contains simulations of the Navier-Stokes equations in a streamfunction-vorticity
formulation on a periodic domain. The simulations exhibit swirling turbulent vortices that decay over time. For this dataset,
a test set with longer rollout is used, where the decay over time is even more pronounced. Figure 19 shows example
visualizations from decay-turb.

• Dimensionality: s = 600, t = 30, f = 1, x = 2048, y = 2048

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise

• Boundary Conditions: periodic

• Time Step of Stored Data: 3.0 (with 500 substeps for the simulation)

• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: vorticity

• Varied Parameters: viscosity ∈ [0.00005, 0.0001[

• Validation Set: random 15% split of all sequences from s ∈ [0, 600[

• Test Set: separate simulations with s = 50, t = 200, f = 1, x = 2048, y = 2048

Kolmogorov Flow (kolm-flow) features simulations of the Navier-Stokes equations in a streamfunction-vorticity
formulation on a periodic domain. In contrast to the decaying turbulence above, an additional forcing term ensures that
new energy is introduced into the system that sustains the vortices indefinitely, leading to spatiotemporal chaotic behavior.
The transient phase of the simulations where the initialization transforms to a stripe pattern and into vortices afterwards is
discarded. For this dataset, a test set with longer rollout is used to test how well models can deal with the chaotic behavior
of the flow. Figure 19 shows example visualizations from kolm-flow.

• Dimensionality: s = 600, t = 30, f = 1, x = 2048, y = 2048

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise

• Boundary Conditions: periodic

• Time Step of Stored Data: 0.3 (with 1500 substeps for the simulation)

• Number of Warmup Steps (discarded, in time step of data storage): 50
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Figure 18. Random example simulations from burgers, kdv, ks, and the test set of ks with longer rollout.

• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: vorticity

• Varied Parameters: viscosity ∈ [0.0001, 0.001[

• Validation Set: random 15% split of all sequences from s ∈ [0, 600[

• Test Set: separate simulations with s = 50, t = 200, f = 1, x = 2048, y = 2048
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Figure 19. Random example simulations from decay-turb, and kolm-flow, with examples from each corresponding test set with
longer rollout.
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D. Autoregressive Predictions
We show results for all datasets in Table 9 in Table 10 for the nRMSE with rollouts of 1 step and 20 steps respectively.
Autoregressive predictions of trajectories on the test datasets from t = 0 until t = 27 are visualized below, see Figures 20
to 23, for PDE-L trained with the MSE loss and mixed channels (MC).

Table 9. nRMSE1 after 1 step for the pre-training datasets.
Method PDE Dataset

diff burgers kdv ks fisher gs-alpha gs-beta gs-gamma gs-delta gs-epsilon gs-theta gs-iota gs-kappa sh decay-turb kolm-flow

DiT-S 0.0528 0.0262 0.0553 0.0609 0.0310 0.0388 0.0405 0.0942 0.0475 0.0284 0.0402 0.0365 0.0556 0.0856 0.2570 0.1209
UDiT-S 0.0370 0.0191 0.0435 0.0178 0.0242 0.0224 0.0300 0.0302 0.0149 0.0161 0.0125 0.0150 0.0193 0.0519 0.2487 0.0715
scOT-S 0.0674 0.0358 0.0536 0.0240 0.0230 0.0254 0.0400 0.0449 0.0271 0.0232 0.0212 0.0215 0.0311 0.0589 0.2114 0.0987
FactFormer 0.1440 0.0455 0.0823 0.0407 0.0231 0.0256 0.0347 0.0547 0.0343 0.0172 0.0255 0.0244 0.0410 0.0816 0.2248 0.1441
UNet 0.0559 0.0392 0.0606 0.0469 0.0335 0.0441 0.0575 0.0845 0.0413 0.0416 0.0308 0.0355 0.0429 0.0829 0.2885 0.2385
PDE-S 0.0370 0.0215 0.0480 0.0216 0.0247 0.0248 0.0295 0.0316 0.0172 0.0175 0.0129 0.0141 0.0231 0.0651 0.2361 0.0873
PDE-B 0.0348 0.0162 0.0456 0.0145 0.0230 0.0270 0.0298 0.0256 0.0141 0.0140 0.0092 0.0095 0.0165 0.0640 0.2206 0.0578
PDE-L 0.0349 0.0135 0.0455 0.0111 0.0235 0.0196 0.0260 0.0184 0.0113 0.0076 0.0063 0.0064 0.0134 0.0647 0.2113 0.0447

Table 10. nRMSE20 after 20 steps for the pre-training datasets.
Method PDE Dataset

diff burgers kdv ks fisher gs-alpha gs-beta gs-gamma gs-delta gs-epsilon gs-theta gs-iota gs-kappa sh decay-turb kolm-flow

DiT-S 0.2677 0.8003 0.4915 1.6441 0.7041 1.4206 1.1469 1.0784 1.5140 1.2283 1.5285 1.2335 1.2387 0.9253 0.8148 1.2348
UDiT-S 0.2035 0.1982 0.3157 0.9865 0.6144 0.6983 0.7592 0.7958 1.0605 0.3591 1.0323 0.9341 0.7869 0.6882 1.0018 0.8575
scOT-S 0.8773 0.3948 0.4351 1.1377 0.7017 0.8794 0.9355 0.9100 1.1182 0.4704 1.0945 1.0103 1.0584 0.6872 1.0455 0.9866
FactFormer 1.9913 0.6704 0.8224 1.3988 0.6370 0.8579 0.8107 0.9878 1.1288 0.5425 1.0834 1.0160 1.2319 0.8426 1.2972 1.1670
UNet 0.5263 0.7142 0.5829 1.3061 0.7327 1.0608 1.1585 0.9748 1.0159 0.7716 0.9879 0.9197 0.9803 0.8322 0.9746 1.2597
PDE-S 0.2095 0.1879 0.3383 0.9741 0.5689 0.6696 0.6643 0.7887 1.0686 0.3196 1.0247 0.7601 0.7272 0.6757 0.9141 0.9370
PDE-B 0.2090 0.1142 0.3204 0.8599 0.6131 0.6186 0.6110 0.7558 1.0253 0.3636 0.9902 0.6432 0.6435 0.6354 0.7333 0.8005
PDE-L 0.2104 0.0921 0.3004 0.7357 0.5731 0.5554 0.5924 0.7083 0.9916 0.1997 0.9382 0.5333 0.5572 0.6112 0.7011 0.7102
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Figure 20. Visualizations of model’s prediction on diff, fisher and sh.
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Figure 21. Visualizations of model’s prediction on gs-alpha, gs-beta, gs-gamma and gs-epsilon.
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Figure 22. Visualizations of model’s prediction on gs-gamma, gs-iota, gs-kappa and gs-theta.
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Figure 23. Visualizations of model’s prediction on burgers, kdv, ks, decay-turb and kolm-flow.
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E. Downstream tasks
E.1. Dataset

We introduce three challenging PDE prediction missions, which are active matter, Rayleigh-Bénard convection, and shear
flow, as the downstream tasks. Fig. 24 shows the visual examples of these three tasks. All the simulations are from the Well
dataset (Ohana et al., 2024). For each provided dataset, a predefined data split in training, validation, and test set already
exists in the Well dataset. We randomly select 42, 8, and 10 trajectories from the corresponding split data for training,
validation, and testing, respectively. Each trajectory is also truncated randomly to 30 frames. Details for each dataset are
discussed as follows:

Active Matter features simulations of rod-like biological active particles immersed in a Stokes flow. The active particles
transfer chemical energy into mechanical work, leading to stresses that are communicated across the system. Furthermore,
particle coordination causes complex behavior inside the flow. The following overview summarizes key characteristics of
the dataset (for further details see Maddu et al., 2024):

• Boundary Conditions: periodic

• Time Step of Stored Data: 0.25

• Spatial Domain Size of Simulation: [0, 10]× [0, 10]

• Spatial Resolution: x = 256, y = 256.

• Fields: concentration, velocity (x, y). The orientation (xx, xy, yx, yy) and strain (xx, xy, yx, yy) fields in the original
Well dataset are dropped in the current test.

Rayleigh-Bénard Convection contains simulations of Rayleigh-Bénard convection on a horizontally periodic domain.
It combines fluid dynamics and thermodynamics, by simulating convection cells forming due to temperature differences
between an upper and lower plate. The combination of buoyancy, conduction, and viscosity leads to complex fluid behavior
with boundary layers and vortices. The following overview summarizes key characteristics of the dataset (for further details
see Burns et al., 2020):

• Boundary Conditions: periodic (x), wall (y)

• Time Step of Stored Data: 0.25

• Spatial Domain Size of Simulation: [0, 4]× [0, 1]

• Spatial Resolution: x = 512, y = 128.

• Fields: buoyancy, pressure, velocity (x, y)

Shear Flow features simulations of the periodic incompressible Navier-Stokes equations in a shear flow configuration,
where two fluid layers are sliding past each other at different velocities. Predicting the resulting vortices across different
Reynolds and Schmidt numbers has important automotive, biomedical, and aerodynamics applications. The following
overview summarizes key characteristics of the dataset (for further details see Burns et al., 2020):

• Boundary Conditions: periodic

• Time Step of Stored Data: 0.1

• Spatial Domain Size of Simulation: [0, 1]× [0, 2]

• Spatial Resolution: x = 512, y = 256.

• Fields: density, pressure, velocity (x, y)

E.2. Autoregressive Predictions

We show autoregressive predictions with the pretrained PDE-S and separate channels on the training set for each dataset in
Figures 25 to 27.
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Figure 24. Random example simulations from active matter, Rayleigh-Bénard convection, and shear flow.
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Figure 25. Active Matter. Autoregressive prediction with pretrained PDE-S (SC).
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Figure 26. Rayleigh-Bénard Convection. Autoregressive prediction with pretrained PDE-S (SC).
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Figure 27. Shear Flow. Autoregressive prediction with pretrained PDE-S (SC).
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