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Abstract

Most event extraction methods have tradition-001
ally relied on an annotated set of event types.002
However, creating event ontologies and an-003
notating supervised training data are expen-004
sive and time-consuming. Previous work has005
proposed semi-supervised approaches which006
leverage seen (annotated) types to learn how to007
automatically discover new event types. State-008
of-the-art methods, both semi-supervised or009
fully unsupervised, use a form of reconstruc-010
tion loss on specific tokens in a context. In011
contrast, we present a novel approach to semi-012
supervised new event type induction using a013
masked contrastive loss which learns similar-014
ities between event mentions by enforcing an015
attention mechanism over the data minibatch.016
We further disentangle the discovered clus-017
ters by approximating the underlying mani-018
folds in the data, which allows us to increase019
normalized mutual information and Fowlkes-020
Mallows scores by over 20% absolute. Build-021
ing on these clustering results, we extend our022
approach to two new tasks: predicting the type023
name of the discovered clusters and linking024
them to FrameNet frames.1025

1 Introduction026

Discovering new event types is an important step027

for adapting information extraction (IE) methods028

to unseen domains. Existing work (Ji and Grish-029

man, 2008; McClosky et al., 2011; Li et al., 2013;030

Chen et al., 2015; Du and Cardie, 2020; Li et al.,031

2021a) traditionally uses a predefined list of event032

types and their respective annotations to learn an033

event extraction model. However, these annota-034

tions are both expensive and time-consuming to035

create. This problem is amplified when considering036

specialization-intensive domains such as scientific037

literature, which requires years of specialized ex-038

perience to understand even a specific niche. For039

1The programs, data, and resources will be made publicly
available for research purposes.

example, there are a wide range of otherwise ob- 040

scure events in biomedical literature (Krallinger 041

et al., 2017), and better IE techniques can empower 042

life-changing breakthroughs in these domains. To 043

adapt IE to these specialized domains, it is critical 044

to discover new event types automatically. 045

There are two primary approaches in event type 046

induction. The first is completely unsupervised 047

induction. It includes recent neural techniques 048

(Huang et al., 2016; Shen et al., 2021), as well as 049

ad-hoc clustering techniques (Sekine, 2006; Cham- 050

bers and Jurafsky, 2011) and probabalistic gen- 051

erative methods (Cheung et al., 2013; Chambers, 052

2013; Nguyen et al., 2015). The second approach, 053

semi-supervised event type induction, was recently 054

introduced by Huang and Ji (2020). It proposes 055

leveraging annotations for existing types to learn to 056

discover new types; this enables taking advantage 057

of existing resources. In this work, we pursue the 058

second approach. 059

Current state-of-the-art work in event type in- 060

duction (Huang and Ji, 2020; Shen et al., 2021) 061

uses reconstruction-based losses to find clusters of 062

new types. Motivated by recent success in learning 063

representations with contrastive loss (Chen et al., 064

2020a; Radford et al., 2021), we propose an alterna- 065

tive approach using batch attention and contrastive 066

loss, which achieves state-of-the-art results. Essen- 067

tially, we consider the attention weight between 068

two event mentions as a learned similarity, and we 069

ensure that the attention mechanism learns to align 070

similar events using a semi-supervised contrastive 071

loss. By doing this, we are able to leverage the 072

large variety of semantic information in pretrained 073

language models for clustering unseen types by us- 074

ing a trained attention head. Unlike (Huang and 075

Ji, 2020), we are able to separate clustering from 076

learning, allowing specific task-suited clustering 077

algorithms to be selected. 078

Batch attention is an attention mechanism taken 079

over a minibatch of samples rather than a sequence. 080
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Previous uses of batch attention have been limited.081

Primarily, it has been used for image classification082

(Cheng et al., 2021) and satellite imagery (Su et al.,083

2019). In this work, we apply batch attention to084

natural language instead, which we use for cluster-085

ing, and we propose the novel idea of enforcing the086

attention mechanism using contrastive loss.087

To enable our discovered event types to be used088

in larger IE systems, it is important to extract in-089

formation regarding the clusters. Previous work090

has looked to describe clusters—for a given clus-091

ter, Huang et al. (2016) uses the nearest trigger092

to the cluster centroid as its name. However, this093

approach is nebulous and not easily measurable. In-094

stead, we introduce two new information retrieval-095

styled tasks for type name prediction and FrameNet096

(Baker et al., 1998) frame linking. Type prediction097

predicts a name for each cluster and is a relatively098

easy task. FrameNet linking builds on this by link-099

ing event types to relevant frames, and is signif-100

icantly more useful for downstream applications.101

Our attention-based approach is especially useful102

here, since it uses the attention mechanism to pro-103

duce “clustered” features which can have auxiliary104

task-specific losses applied.105

The major novel contributions of this paper are:106

• We propose a novel framework for new event107

type induction which uses contrastive loss to108

enforce an attention mechanism over the batch.109

This framework is potentially applicable for110

semi-supervised clustering and classification111

problems in other settings where a pretrained112

model exists (something which is becoming113

increasingly common).114

• We show that the base pretrained model se-115

lected for event type induction plays a key116

role in the types which are discovered, since117

even un-finetuned models rival Huang and Ji118

(2020).119

• We use the “clustered” features produced by120

our model to extend new event type induction121

to two novel downstream tasks: type name122

prediction and FrameNet linking. We show123

our model with auxiliary losses can improve124

performance on these tasks.125

2 Task Descriptions126

2.1 Semi-supervised Event Type Induction127

We tackle the problem of semi-supervised event128

type induction, first described by Huang and Ji129

(2020). The task is defined as follows: Assume 130

the top 10 most popular event types from the ACE 131

2005 dataset as defined in (Huang et al., 2018) are 132

known. Given all ACE annotated event mentions, 133

automatically discover the other 23 unseen ACE 134

types. Essentially, this is a semi-supervised cluster- 135

ing task on event mentions. 136

2.2 Downstream Clustering Tasks 137

Beyond clustering, we also introduce two new 138

downstream tasks on this problem: type predic- 139

tion and FrameNet (Baker et al., 1998) linking. We 140

structure both of these tasks as information retrieval 141

problems for evaluation. Essentially, given a clus- 142

ter, one should be able to predict its event type 143

name and to what frame it should be linked. For 144

each cluster, we calculate the most frequent type 145

and consider it to be the ground truth for the cluster. 146

2.2.1 Type Prediction 147

For type prediction, the goal is to retrieve the 148

“name” of the correct type for a cluster. Thus, we 149

measure Hits@n and mean reciprical rank (MRR), 150

where the corpus consists of the 23 new unseen 151

type names. In practice, we embed the names us- 152

ing our language model and use cosine similarity 153

to the cluster centroid to rank them. 154

2.2.2 FrameNet Linking 155

FrameNet is the largest event ontology that is pub- 156

licly available. However, there is not enough an- 157

notated training data to train supervised models 158

directly on it. To alleviate this issue, we propose 159

a task linking our newly discovered event types to 160

FrameNet frames. 161

For the FrameNet linking, we consider a setup 162

similar to name prediction, where we link clusters 163

to the 1,221 frames in FrameNet 1.7 (Ruppenhofer 164

et al., 2016). However, instead of using the type 165

names, we follow (Huang et al., 2018) and manu- 166

ally map the ACE types to one or more frames. The 167

table can be found in Appendix C. This gives us a 168

mapping into the FrameNet hierarchy. All children 169

of the mapped frames are also considered valid tar- 170

gets. Given an ACE type, we can now link to a set 171

of valid frames. We consider the lowest rank of the 172

valid frames to be the rank of a cluster. In prac- 173

tice, we take the corpus of frame definitions and 174

embed them using our language model. We then 175

rank them using cosine similarity by comparing to 176

the given cluster centroid. Similarly, this task is 177

measured with Hits@n and MRR. 178
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one dimensionally
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• Everyone wanted to call

• They talked by videophone this 

morning
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Figure 1: Architecture of the proposed approach. Best viewed in color. LN is layer normalization, R is ReLU, and
D is dropout. σ is softmax for the attention mechanism and sigmoid for the contrastive loss. F̂i is the clustered
features of mention i in the batch. ‘?’ are unseen event types.

3 Methods179

3.1 Overall Architecture180

Overall, our method, shown in Figure 1, consists181

of a language model, such as BERT (Devlin et al.,182

2019), which produces contextualized representa-183

tions, followed by a “clusterer”. Unlike previous184

work which used specific token embeddings such185

as triggers (Huang and Ji, 2020), we use the sen-186

tence where an event occurs as our input. The187

language model produces an event representation,188

which is then input into the “clusterer” layer. The189

clusterer layer then produces “clustered” features190

using the attentions (see Section 3.3).191

3.2 Back-translation192

Contrastive loss has recently been applied for deep193

clustering (Li et al., 2021b; Zhong et al., 2020) and194

for representation learning (Chen et al., 2020a; Gao195

et al., 2021; Zhang et al., 2021a; Liu and Liu, 2021).196

However, this requires data augmentation to create197

positive example pairs. For text, some augmenta-198

tions use back-translation (Cao and Wang, 2021;199

Zhang et al., 2021b). Taking inspiration from these200

clustering and representation learning techniques,201

we employ back-translation as data augmentation202

to create more positive pairs, improving the learn-203

ing of attention weights between event mentions.204

3.3 Batch Attention “Clusterer” Mechanism205

To learn similarities between unseen event men-206

tions, we propose learning an attention mechanism207

over the stochastic gradient descent minibatch. We208

enforce this attention mechanism using a masked209

contrastive loss (described in Section 3.4). This210

allows the attention mechanism’s behavior to be211

learned from the seen classes.212

We follow (Vaswani et al., 2017) in implement- 213

ing a scaled dot product attention, although over 214

the batch instead. Since our “clusterer” needs to 215

learn similarities for clustering and then be used for 216

cluster features, we use nonlinear transformations 217

for the query and key vectors instead of the linear 218

transformations in (Vaswani et al., 2017). This non- 219

linear transformation for Q and K is implemented 220

as a two hidden layer neural network, which is 221

shown in Figure 1. 222

Using this attention mechanism, we produce 223

“clustered features”, which are a convex combina- 224

tion of the different samples from the batch. This 225

allows us to apply an auxiliary loss to the clus- 226

tered features. We consider this as being analogous 227

to learning on cluster centroids. Specific auxiliary 228

losses can be applied for specific downstream tasks. 229

We note that this approach can also be inter- 230

preted as a type of feature smoothing, an inner 231

product graph generator, and metric learning. 232

3.4 Masked Semi-supervised Contrastive 233

Loss 234

Recent work, such as CLIP (Radford et al., 2021) 235

and Text2Mol (Edwards et al., 2021), has found 236

great success using contrastive losses between pairs 237

of representations Q and K, each n× d matrices 238

where n is the number of samples of d dimensions. 239

They obtain the loss L by comparing the product 240

of these matrices (QKT ) to a label matrix Y ∈ 241

{0, 1}n×n (which in their case is Y = In), using 242

cross entropy loss CE. 243

L(Q,K) = CE(QKT , In) + CE(KQT , In)

We use a modification of these existing con- 244

trastive losses to enforce our batch attention mecha- 245

nism. We calculate the label matrix as follows. An 246
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example is shown in Appendix B: Figure 4. Given247

a pair of samples (event mentions) xi and xj , we248

consider the pair to be a positive if they are from249

the same seen event type. We consider the pair to250

be negative if they are from different seen event251

types or if one is seen and one unseen. In practice,252

the labels can be computed using one-hot vectors253

of the c seen types (the unseen types are zero-hot254

vectors). These vectors are stacked into a n × c255

matrix O. The label matrix is computed256

Y = OOT ∨ In
where ∨ is the elementwise logical-or operation.257

Following (Edwards et al., 2021), we use binary258

cross-entropy as the loss between the labels Y259

and the scaled attention dot products QKT
√
d

from260

(Vaswani et al., 2017). This gives the following261

semi-supervised loss:262

Lss(Q,K) = CE(
QKT

√
d
, Y )

This loss, however, values negative samples much263

more than positive samples (due to the imbalance).264

Noticing that once vectors of a negative pair are265

orthogonal they don’t need to be further separated,266

we introduce a margin m. Essentially, we mask out267

pairs whose dot product is “too negative” (in addi-268

tion to unknown relations between unseen types).269

This is because the loss would rather optimize the270

already well-separated negatives instead of the rel-271

atively fewer positives. Let pi,j ∈ {0, 1} be the272

label of a pair and ui,j ∈ {0, 1} indicate that both273

i and j are unseen. Our mask, M , is calculated274

Mi,j =

([
pi,j ∧

(
σ(
QKT

√
d

)i,j < m

)]
∨ ui,j

)
where ∧ is elementwise logical-and, σ is the275

sigmoid function, and z̄ denotes logical negation276

of z. This is similarly motivated to the margins277

used in knowledge graph embedding losses, such278

as TransE (Bordes et al., 2013). Thus, our loss is:279

Lm(Q,K) = M · Lss(Q,K)

where in this case we treat Lss(Q,K) as an unre-280

duced loss (so it is a matrix), and · is elementwise281

multiplication.282

We apply this loss to the query (Q) and key (K)283

matrices in the clusterer’s batch attention mecha-284

nism. We also include the augmented data (Q′ and285

K ′), giving us a final loss:286

Lc(Q,K,Q
′,K ′) =

∑
Q̂,K̂∈{Q,Q′}×{K,K′}

Lm(Q̂, K̂)

3.5 Auxiliary Loss 287

For our downstream tasks, we employ a regression- 288

based auxiliary loss. For each seen instance xi, we 289

maximize the cosine similarity between the clus- 290

tered features F̂i and the pretrained language model 291

embedding Bti of the ground truth type ti (e.g. the 292

name ‘attack’). Thus, we get the loss: 293

La(F̂i, Bti , ti) = 1− cos(F̂i, Bti)1seen(ti)

where 1seen(ti) indicates whether ti is a seen type. 294

3.6 Stopping Criterion 295

For this task, it is not reasonable to use a valida- 296

tion set for stopping. This is because the loss de- 297

pends only on seen types and their relationships to 298

unseen types. Since the unseen classes are unla- 299

beled and the losses between pairs of unseen are 300

unknown, the model can overfit to the seen data, 301

pushing together clusters of unseen types. We par- 302

tially address this issue by implementing a margin 303

on negative values, which prevents the model from 304

forcing together unseen clusters as strongly to sep- 305

arate them from seen type events. To deal with 306

this issue, we employ unsupervised clustering met- 307

rics to decide when to stop training. In particular, 308

we use cosine distance-based silhouette scores to 309

measure the quality of clustering. This increases 310

the required compute up to 2x (in practice roughly 311

1.5x because backpropagation isn’t required), but 312

training is already relatively quick, with 10 or less 313

epochs being sufficient. We note that this approach 314

can have some variance. To address this issue, 315

we employ a sliding window running average ap- 316

proximation to create a smooth curve of the initial 317

increase and then decrease of the silhouette score. 318

We consider a hybrid approach—we select the win- 319

dow with the highest silhouette score, and then we 320

select the epoch with the highest silhouette score 321

in that window as our stopping point, as shown in 322

Appendix F. 323

3.7 Clustering 324

Any algorithm which can compute clusters from a 325

precomputed distance function can be applied to 326

the learned similarities between event mentions. In 327

practice, we find agglomerative clustering using 328

mean linkage to be most suited for this. Addition- 329

ally, we find that the finetuning of the language 330

model by our loss modifies its representations to 331

better form clusters. Thus, this representation can 332

be used in many clustering algorithms as well. 333

4



3.7.1 Manifold Approximation334

Inspired by recent work (Ros et al., 2021) which335

uses manifold approximation to interpret large lan-336

guage model-based sentence representations for337

information retrieval, we incorporate manifold ap-338

proximation into our clustering approach. To do339

so, we follow the UMAP (McInnes et al., 2018)340

algorithm to create approximate weights based on341

estimating neighborhood densities within the data.342

We calculate these weights using cosine distance343

as an input, as it has traditionally been effective for344

language modeling (Manning et al., 2008; Reimers345

and Gurevych, 2019). UMAP attempts to estimate346

the density by comparing the distance to the k-347

nearest neighbors. This is used to calculate weights348

between each pair of data points. Details are given349

in Appendix H. Following this, we use agglomera-350

tive clustering on the UMAP weights as before.351

In our approach, we want to better understand352

the global clustering landscape, so we use a high353

value of k. In practice, to avoid hyperparameter354

selection, we set k equal to the size of the data.355

4 Experimental Results356

Generally, we used default hyperparameters. We357

split the learning rates into BERT and non-BERT358

parameters following (Edwards et al., 2021) with359

2e-5 for BERT as in (Devlin et al., 2019) and 1e-4360

for other parameters as in (Vaswani et al., 2017).361

For the margin parameter, we examined silhouette362

scores to select 0.5.363

For back-translation, we used four languages,364

German, French, Spanish, and Chinese, and ran-365

domly sampled which language to use for each data366

point every epoch. We obtained back-translations367

using the MarianMT translation models (Junczys-368

Dowmunt et al., 2018).369

For our main experiments, we only use the con-370

trastive loss. We take the average of 5 runs to show371

that our method consistently outperforms (Huang372

and Ji, 2020). We also calculate clusters using an373

ensemble of the 5 runs which shows slightly in-374

creased performance, which is an expected result375

in deep neural networks (Allen-Zhu and Li, 2020).376

Huang and Ji (2020) evaluate these clusters using377

Geometric NMI, Fowlkes Mallows (Fowlkes and378

Mallows, 1983), Completeness, Homogeneity, and379

V-Measure (Rosenberg and Hirschberg, 2007). We380

additionally consider adjusted Rand index (ARI)381

(Hubert and Arabie, 1985). In the downstream382

tasks, given a clustering we also report the average383

cluster purity and type representation. Given a clus- 384

ter i of size ni with most frequent type numbering 385

nfi , purity pi = ni
nfi

(Manning et al., 2008). Note 386

that this average cluster purity is slightly different 387

than traditional purity; it weights small clusters 388

more which is desirable in our case (like macro vs. 389

micro F1 score). Type representation is the number 390

of unique frequent subtypes, nt, divided by total 391

types, in this case 23. 392

4.1 Language Model 393

We select Sentence BERT (SBERT) (Reimers and 394

Gurevych, 2019) as a language model because its 395

pretraining tasks are better suited for clustering 396

than BERT. This is shown in Table 1, since the 397

clustering from SBERT embeddings can even out- 398

perform (Huang and Ji, 2020) without any semi- 399

supervision. We use a small version of the model2 400

from HuggingFace (Wolf et al., 2020), which al- 401

lows us to use a larger minibatch size of 10. Using 402

larger minibatch sizes is desirable for contrastive 403

loss since the number of negatives scales quadrat- 404

ically with the size. The performance of mini 405

SBERT is notable, as Huang and Ji (2020) used 406

BERT-large, a considerably larger model. 407

4.2 Clustering Algorithms 408

For clustering, we consider two algorithms which 409

work on precomputed metrics. First, we use ag- 410

glomerative clustering with average linkage, as it 411

tends to be less sensitive to outliers and noisy data 412

(Han et al., 2011). Noise is present in the dataset, 413

often in the form of transcripts (see Section 4.4). 414

We report results following existing clustering 415

literature by using the true number of classes as 416

the cluster number (Huang et al., 2020; Li et al., 417

2021b). In practice it is generally difficult to select 418

the correct number of clusters to use. Due to this, 419

using extra clusters is typically done by previous 420

work (Huang and Ji, 2020; Shen et al., 2021). How- 421

ever, this can inflate the NMI score (Nguyen et al., 422

2009) and benefit qualitative evaluation because 423

of the unbalanced classes in the dataset. As an ex- 424

ample, given only 23 clusters (the ground truth), 425

a large class such as ‘Injure’ splits into multiple 426

smaller clusters, which causes rare event types to 427

be merged. Results show that 19 / 23 types are rep- 428

resented by a cluster in the 50 cluster case versus 429

only 16 / 23 in the 23 cluster case. This makes 430

results appear better for more clusters. Silhouette 431

2paraphrase-MiniLM-L12-v2
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Method Clusters Geometric NMI Fowlkes Mallows Completeness Homogeneity V-Measure ARI
One Cluster 1 0.00 25.58 100.00 0.00 0.00 0.00

SS-VQ-VAE w/o VAE (Huang and Ji, 2020) 500 33.45 25.54 42.76 26.17 32.47 -
SS-VQ-VAE (Huang and Ji, 2020) 500 40.88 31.46 53.57 31.19 39.43 -

SBERT+Agglo 23 50.71 34.35 57.05 45.07 50.36 24.02
SBERT+Manifold+Agglo 23 48.75 36.02 51.32 46.30 48.68 30.21

Ours: Cosine+Agglo 23 46.40 34.60 49.82 43.24 46.27 26.69
Ours: DotProduct+Agglo 23 50.17 37.48 53.50 47.06 50.06 30.13
Ours: Manifold+Agglo 23 54.83 42.77 55.00 54.67 54.82 38.74

Ours: FT-SBERT+Manifold 23 60.28 50.63 60.19 60.37 60.28 47.24
Ours: E-DotProduct+Agglo 23 56.50 43.26 59.62 53.54 56.41 37.02
Ours: E-Manifold+Agglo 23 59.00 46.19 58.36 59.66 59.00 42.56

Ours: E-FT-SBERT+Manifold 23 63.56 52.10 63.11 64.01 63.56 48.85
Ours: Cosine+Affinity 49-68 56.87 35.64 49.58 65.26 56.33 30.02

Ours: E-Cosine+Affinity 63 60.00 38.41 51.32 70.15 59.28 31.78

Table 1: New event type induction results (%)3. E stands for ensemble and FT for finetuned. SBERT indicates the
SBERT representations were used rather than our learned attentions. Values are the average of 5 runs.

scores are higher for 23 clusters, however.432

Unlike existing work (Huang and Ji, 2020), the433

number of clusters is unimportant for our learning434

process and can be selected afterwords, such as435

by selecting a high number as in (Huang and Ji,436

2020; Shen et al., 2021) or automatically with affin-437

ity propagation (Frey and Dueck, 2007). Affinity438

propagation selects exemplars to automatically de-439

termine the number of clusters. Our approach is440

especially useful here, since affinity propagation441

does not complete when applied to default SBERT442

representations but does when using our contrastive443

loss-enforced attentions.444

4.3 Results445

We compare our results with Huang and Ji (2020),446

who first introduced this task, in Table 1. We find447

that just our choice of language model outperforms448

the baseline. Also, using dot products is more ef-449

fective for our learned attention metric than cosine450

distance, since dot product without normalization,451

as in our attention mechanism, indicates confidence452

of clustering a pair of samples together.453

4.3.1 Manifold Approximation454

We find manifold approximation to be very ef-455

fective in our experiments. Intuitively, we under-456

stand this manifold approximation as untangling457

the cluster manifolds from each other in the high-458

dimensional representation space. Interestingly,459

the results using the finetuned SBERT representa-460

tions perform better than the results on the learned461

similarities. We find this to be quite interesting,462

especially because the representations change an463

3(Huang and Ji, 2020) appears to have used the former
scikit-learn default of geometric NMI, which is why their
v-score doesn’t equal arithmetic NMI.

Cluster Strength Clusters
Very Strong

(> 80% Purity)
Injure, Sue, Phone-Write,

Declare-Bankruptcy, Demonstrate, Trial-Hearing

Strong
(60-80% Purity)

Be-Born, Start-Position,
Charge-Indict, Marry

Ok
(40-60% Purity) Release-Parole, Appeal, Injure

Mixed
(20-40% Purity)

Convict, Fine, Trial-Hearing,
Start-Org, Start-Position, Charge-Indict

Small Clusters
(< 2 samples)

Trial-Hearing, Nominate,
Start-Position, Phone-Write

Table 2: Clusters sorted into purity classes.

average of 0.6 cosine distance from their start- 464

ing points, as shown in Appendix A. Our method 465

causes SBERT to inherently learn representations 466

more amenable for clustering. 467

While manifold approximation works well for 468

clustering here, we note that using UMAP for clus- 469

tering is considered controversial.4 While it works 470

well in many cases, there are potential issues with 471

artifacts or false tearing of clusters. We leave anal- 472

ysis of the interaction between high-dimensional 473

semantic spaces obtained from language models 474

and manifold approximation to future work. 475

4.4 Qualitative Cluster Analysis 476

We analyze the clusters produced by our best re- 477

sult, the ensemble. We classify the clusters ac- 478

cording to purity in Table 2. We show examples 479

from numbered clusters in Figure 2. Certain types 480

of clusters, such as Injure 1 and Demonstrate 481

4 , form very strong clusters. We believe this 482

is likely related to their size and lack of overlap 483

with other types. There are two common sources 484

of error: the first is semantic overlap. Start-org, 485

merge-org, and end-org tend to overlap 5 . Marry 486

4https://umap-learn.readthedocs.io/en/latest/clustering.html
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• Injure: If those weren't gunshot wounds to 

cause the broken bones, do they know what 

caused the fractures 

• Injure:  More than 40 were injured

• Injure:  There was no information on the 

identity of the injured person

• Injure: Sergeant Chuck Hagel was 

seriously wounded twice in Vietnam

• Declare-Bankruptcy: You need to speak 

to a bankruptcy attorney pronto; this is a 

bankruptcy matter, not a tax matter

• Declare-Bankruptcy:  despite operating 

under bankruptcy laws, united posted the 

best on time performance 

• Declare-Bankruptcy:  That means that he 

received the shares while he was still in 

bankruptcy, which means that the shares 

were potentially assets that the trustee 

could use to pay off creditors

• Start-Org: Kiichiro Toyoda founded the 

automaker in 1937, transforming the loom 

manufacturer started by his father into an 

automaker

• Merge-Org: I believe any neutral management 

consultant worth his or her salt would 

recommend a merger of the two organizations 

• End-Org: It's a dying organization, and this will 

be just the jolt it needs for another couple 

decades of somnambulant staggering before 

being ultimately replaced by far more efficient 

companies

• Marry: My wife and I were guests at a wedding 

on the Carnival Legend on New Years Eve 2003

• Marry and Divorce: Giuliani, 58, proposed to 

Nathan, a former nurse, during a November 

business trip to Paris - five months after he 

finalized his divorce from Donna Hanover after 

20 years of marriage 

• Merge-org: So Oracle and Peoplesoft , who 

spent the last 18 months insulting one another in 

every imaginable way, are finally tying the knot

• Marry: Either its bad or good

• End-Org: i felt t7ire was something else too, 

much history behind silver cross to end is now 

• Trial-Hearing: Yeah, we're a pretty small town, 

so our newspaper covers it a lot

• Trial-Hearing: Yeah, because I was really -- I 

wasn't really following it that much because I was

• Start-Position: then when they're ready to breed 

they go to the wb

• Charge-Indict: 56-year-old forry drake has 

been charged with interstate transport of a minor

• Charge-Indict: Ocalan, being tried in absentia, 

was indicted for entering the country illegally, a 

• Convict and Charge-Indict: convicted 

oklahoma city bombing conspirator terry nichols

will stand trial again on state murder charges

• Appeal: in the african nation of nigeria, an 

islamic court delayed the appeal of a woman 

condemned to death by stoning

Figure 2: Cluster Examples: Injure, Charge-Indict, Marry, Bankruptcy, Start-Org, and Bad Data, respectively.

and divorce also slightly overlap 3 —in the 23487

cluster case they merge into one cluster, but in488

the 50 cluster case they are separate. Most types489

of courtroom related events—Charge-Indict, Trial-490

Hearing, Convict, Release-Parole, Appeal, Execute,491

Acquit, Extradite—have some degree of overlap492

2 . Second, the other main source of errors is “du-493

plicates”. This occurs in our method because two494

or more events can occur in the same event mention495

2 , 3 . Since our method does not account for496

triggers, it cannot distinguish between duplicate497

mentions with multiple triggers. Future work can498

address this issue by combining our method with499

an existing trigger-based method such as (Huang500

and Ji, 2020). We also find that our method clus-501

ters “junk” data together 6 , which are usually502

from transcripts. Errors occasionally occur from503

metaphorical language, such as when companies504

are “married” 3 . We show more detailed exam-505

ples of these observations in Appendix E.506

4.5 Downstream Tasks507

For the downstream tasks, we use different clus-508

terings and try to discover information about the509

clusters. As a baseline, we compare against default510

(not finetuned) SBERT clustering and ground truth511

(perfect) clusters. We compare these to our ensem-512

ble clustering. For type prediction, we use default513

SBERT embeddings to compute cluster centroids514

and then compare to the SBERT representation of515

the type name (e.g. ‘injure’). For FrameNet link-516

ing, we use the frame definition instead of the name517

(e.g. “The words [...] describe situations in which518

an Agent or a Cause injures a Victim [...]”). We519

also use an auxiliary loss, La, which we apply to 520

a 1-layer neural network on the clustered features 521

F̂ . This extra layer is employed to allow multiple 522

auxilliary losses: we leave those experiments for 523

future work. We compare using these finetuned rep- 524

resentations in addition to default SBERT. Results 525

are shown in Tables 3 and 4. 526

We find that our ensemble clustering outper- 527

forms the default SBERT clustering, and that we 528

are able to recover the event type 60% of the time. 529

For the ground truth clusters, our finetuning with 530

an auxiliary loss improves MRR and Hits@1 over 531

the default SBERT representations. Frame linking 532

is much more difficult, since there are 1,221 frames, 533

but we are able to recover the correct frame for 30% 534

of clusters, while default SBERT only achieves 4%. 535

Notably, the auxiliary loss clustering (FT-23) even 536

outperforms our ensemble clustering, demonstrat- 537

ing the flexibility of our model architecture. Using 538

perfect clustering, our finetuned model achieves 539

nearly 50% Hits@1, doubling the performance of 540

the default SBERT model. 541

5 Related Work 542

Although event extraction has long been studied 543

(Grishman, 1997; Ji and Grishman, 2008; Mc- 544

Closky et al., 2011; Li et al., 2013; Chen et al., 545

2015; Du and Cardie, 2020; Li et al., 2021a), re- 546

cent focus has turned towards discovering events 547

without annotations. It includes recent neural 548

techniques (Huang et al., 2016; Liu et al., 2019; 549

Shen et al., 2021), as well as ad-hoc clustering 550

techniques (Sekine, 2006; Chambers and Jurafsky, 551

2011; Yuan et al., 2018) and probabalistic genera- 552
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Method Mean Rank Hits@1 Hits@3 Hits@5 Hits@10 Hits@15 MRR Average Purity Type Representation
Default-23 5.17 34.8% 47.8% 60.9% 82.6% 100% 0.477 25% 47.8%

FT-23 4.43 56.5% 65.2% 78.2% 82.6% 91.3% 0.660 58.9% 65.2%
E-Default-23 3.65 60.9% 69.6% 69.6% 95.7% 100% 0.679 68.6% 69.6%

E-FT-23 5.13 56.5% 65.2% 69.6% 87.0% 87.0% 0.650 68.6% 69.6%
E-Default-50 4.40 56.0% 60.0% 68.0% 90.0% 96.0% 0.630 69.3% 82.6%

Perfect-Default-23 2.30 69.6% 73.9% 82.6% 95.7% 100% 0.758 100% 100%
Perfect-FT-23 2.83 73.9% 82.6% 91.3% 91.3% 95.7% 0.800 100% 100%

Table 3: Results for cluster to name prediction task. Default indicates SBERT representations are used to compute
cluster centroids. FT indicates finetuned SBERT using our contrastive auxiliary loss instead. x is the number of
clusters in the clustering. E indicates that the ensemble clustering is used instead. Perfect indicates the ground
truth clustering. Type representation shows the percent of unseen types representing the majority of a cluster.

Method Mean Rank Hits@1 Hits@5 Hits@10 Hits@50 Hits@100 MRR Average Purity Type Representation
Default-23 95.9 4.3% 21.7% 26.1% 30.4% 34.8% 0.128 25% 47.8%

FT-23 156.9 30.4% 30.4% 34.8% 43.5% 47.8% 0.336 57.4% 65.2%
E-Default-23 72.7 17.4% 30.4% 39.1% 47.8% 65.2% 0.264 68.6% 69.6%

E-FT-23 115.7 21.7% 34.8% 34.8% 43.5% 52.2% 0.308 68.6% 69.6%
Perfect-Default-23 15.9 26.1% 39.1% 52.2% 65.2% 73.9% 0.374 100% 100%

Perfect-FT-23 42.7 47.8% 56.5% 60.9% 69.6% 69.6% 0.539 100% 100%

Table 4: Results for cluster to frame linking task. See Table 3 for notation.

tive methods (Cheung et al., 2013; Chambers, 2013;553

Nguyen et al., 2015). Semi-supervised event type554

induction was recently introduced by Huang and555

Ji (2020). Zero-shot event extraction frameworks,556

such as (Huang et al., 2018), can be used to perform557

event extraction on the newly discovered types.558

Several new unsupervised deep clustering ap-559

proaches use contrastive loss for clustering im-560

ages (Li et al., 2021b; Zhong et al., 2020) and561

text (Zhang et al., 2021b). These methods require562

data augmentation to create positive example pairs.563

Contrastive loss has also been applied to learn rep-564

resentations. SimCLR (Chen et al., 2020a,b) uses565

image augmentations for unsupervised representa-566

tion learning. Follow-up work has applied this loss567

to natural language (Gao et al., 2021; Zhang et al.,568

2021a; Liu and Liu, 2021), with some augmenta-569

tions being back-translated text (Cao and Wang,570

2021). Gunel et al. (2021) use fully supervised571

contrastive loss to finetune language models.572

Batch attention has been investigated a little in573

the literature, such as for satellite imagery predic-574

tion (Su et al., 2019) or image classification (Cheng575

et al., 2021); however, it has not been used to learn576

clustered features. Seidenschwarz et al. (2021)577

recently proposed a related idea for a message-578

passing network weighted by attention for cluster-579

ing images, which is probably the most related idea580

to ours. We instead directly consider (contrastive581

loss-enforced) attention weights for clustering.582

Semi-supervised clustering is a relatively under-583

studied problem compared to semi-supervised clas-584

sification (Van Engelen and Hoos, 2020). Bair 585

(2013) summarizes several methods, most of which 586

are based on k-means. 587

6 Conclusion and Future Work 588

In this work, we present an exciting new approach 589

for event type induction, where we use contrastive 590

loss to control the learning of a batch attention 591

mechanism for both finding and learning about new 592

cluster types. We also consider manifold approx- 593

imation for clustering, and we introduce two new 594

downstream tasks: name prediction and FrameNet 595

linking. This new approach opens several interest- 596

ing problems for future work. First, this method 597

can potentially be incorporated with reconstruc- 598

tion loss-based approaches, which might improve 599

results or obviate the early stopping criterion. Al- 600

ternatively, the stopping criterion can be integrated 601

into a loss function for better stopping control. It is 602

notable that this would enable a two-step process of 603

learning clusters and then performing knowledge 604

distillation using those clusters (or an ensemble) 605

while also learning other desired losses. Future 606

work can investigate the interaction of manifold 607

approximation with large language models and in- 608

tegrate it directly into the clusterer subnetwork. Fi- 609

nally, the FrameNet linking task can be extended to 610

Wikidata Q-Node linking, which contains millions 611

of nodes. Our approach may also be applicable 612

in other modalities with strong pretrained models, 613

such as for semi-supervised image clustering. 614
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A How much do SBERT representations947

change?948

Figure 3: Change in SBERT representations from orig-
inal representation of inputs. This shows that the repre-
sentations change significantly from their starting point
during finetuning. Shaded area is one standard devia-
tion.

B Label Matrix Example949

Figure 4: Best viewed in color. Visualization of the la-
bel matrix Y used in the loss. Blue is positive, white
is negative, and red is masked. Note that the mask for
the negatives less than the margin is not shown. The
event types and corresponding “seen” boolean vector
are also shown, and are used to construct the label ma-
trix. Q and K are corresponding queries and keys to
the labels, while Q′ and K ′ are augmented data.

C Manual ACE05 to FrameNet Linking 950

ACE Type Frame
Appeal Appeal

Be-Born Birth_scenario
Charge-Indict Notification_of_charges

Convict Verdict
Declare-Bankruptcy Wealthiness

Demonstrate Protest
Divorce Personal_relationship
End-Org Organization | Process_end
Extradite Extradition

Fine Fining
Injure Cause_harm | Experience_bodily_harm
Marry Forming_relationships

Nominate Appointing
Phone-Write Contacting

Release-Parole Releasing_from_custody
Start-Org Organization | Process_start

Start-Position Being_employed | Process_start
Sue Judgment_communication

Trial-Hearing Trial
Pardon Pardon

Merge-Org Organization | Amalgamation
Acquit Verdict
Execute Execution
Attack Attack

Transport Transportation_status
Die Death

Meet Make_acquaintance | Meet_with | Come_together
Arrest-Jail Arrest | Prison | Imprisonment | Being_incarcerated
Sentence Sentencing

Transfer-Money Commerce_money-transfer
Elect Change_of_leadership | Choosing

Transfer-Ownership Commerce_goods-transfer
End-Position Being_employed | Process_end

Table 5: Mapping from ACE types to FrameNet frames.
Some ACE types required multiple frames to be cor-
rectly mapped, which is indicated by “ | ”.

D Visualization 951

We visualize unseen event mentions using UMAP 952

(McInnes et al., 2018) given a precomputed dis- 953

tance matrix of the cosine distance between Q and 954

K. Following (Huang and Ji, 2020), we show the 955

results on six unseen types in Figure 6. Sentence 956

and convict overlap significantly, which makes in- 957

tuitive sense as they are semantically very similar. 958

Unlike (Huang and Ji, 2020), trial-hearing forms 959

its own cluster. 960

5Note that there is a mistake in (Huang and Ji, 2020), since
“sentence” is a seen type in (Huang et al., 2018)
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Figure 5: Visualization of all unseen types as seen by manifold approximation. Note that dimensionality reduction
to 2D renders it difficult to understand with this high number of clusters, but the overall semantics of the space are
interesting.

Figure 6: Visualization following (Huang and Ji, 2020) for one of the runs.5Note that our clusters have much less
errors.
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E Cluster Examples961

We show extensive examples of our noted observa-962

tions in Tables 6 and 7. Namely, start-org, merge-963

org, and end-org tend to overlap. Marry and divorce964

slightly overlap in the 23 cluster case. Most types965

of courtroom related events—Charge-Indict, Trial-966

Hearing, Convict, Release-Parole, Appeal, Execute,967

Acquit, Extradite—have some degree of overlap.968

There are “duplicates” when two or more events969

can occur in the same event mention. We also note970

the cluster of “junk” data, where the label isn’t971

obvious from the event mention.972
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Cluster Type Purity Cluster Member Example Types and Inputs

Injure 98.3%

• Injure: According to other reports reaching here, five Syrian bus passen-
gers were killed and 10 others were injured on Sunday morning when a
US missile hit the bus they were traveling in near the Iraqi border

• Injure: More than 40 were injured

• Injure: There was no information on the identity of the injured person

Declare-Bankruptcy 95.0%

• Declare-Bankruptcy: You need to speak to a bankruptcy attorney pronto;
this is a bankruptcy matter, not a tax matter

• Declare-Bankruptcy: despite operating under bankruptcy laws, united
posted the best on time performance

• Declare-Bankruptcy: That means that he received the shares while he
was still in bankruptcy, which means that the shares were potentially assets
that the trustee could use to pay off creditors

Demonstrate 95.0%

• Demonstrate: The protest follows a string of others involving tens of
thousands of peace activists across Japan since January

• Demonstrate: No, I don’t demonstrate against anybody during a war

• Demonstrate: Several thousand demonstrators also gathered outside the
White House in Washington, accompanied by a major security presence

Charge-Indict 64.4%

• Charge-Indict: 56-year-old forry drake has been charged with interstate
transport of a minor

• Charge-Indict: Ocalan, being tried in absentia, was indicted for entering
the country illegally, a misdemeanor

• Convict and Charge-Indict: convicted oklahoma city bombing conspira-
tor terry nichols will stand trial again on state murder charges

• Appeal: in the african nation of nigeria, an islamic court delayed the
appeal of a woman condemned to death by stoning

Start-Position 64.4%

• Start-Position: Many Iraqis boycotted the meeting in opposition to U.S.
plans to install Garner atop an interim administration

• Start-Position: The meeting was Shalom’s first encounter with an Arab
counterpart since he took office as Israel’s foreign minister on February 27

• Start-Org: Meeting in the biblical birthplace of the prophet Abraham,
delegates from Iraq’s many factions discussed the role of religion in the
future government and ways to rebuild the country

Table 6: Examples of discovered clusters. Charge-Indict shows an example of a duplicate—an input with multiple
event types. It also shows how courtroom related events can overlap. For Start-Position, there are some errors
related to the Middle East, which occurs frequently in the Start-Position mentions.
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Cluster Type Purity Cluster Member Example Types and Inputs

Marry 70.2%

• Marry: My wife and I were guests at a wedding on the Carnival Legend
on New Years Eve 2003

• Marry and Divorce: Giuliani, 58, proposed to Nathan, a former nurse,
during a November business trip to Paris - five months after he finalized
his divorce from Donna Hanover after 20 years of marriage

• Phone-Write: All the guests were folks who had met the bride and groom
(an attractive young couple who were sailing alone) virtually on cruisecritic

Start-Org 34.7%

• Start-Org: Kiichiro Toyoda founded the automaker in 1937, transforming
the loom manufacturer started by his father into an automaker

• Merge-Org: I believe any neutral management consultant worth his or
her salt would recommend a merger of the two organizations

• End-Org: It’s a dying organization, and this will be just the jolt it needs
for another couple decades of somnambulant staggering before being
ultimately replaced by far more efficient companies

Bad Data -

• Marry: Either its bad or good

• End-Org: i felt t7ire was something else too, much history behind silver
cross to end is now

• Trial-Hearing: Yeah, we’re a pretty small town, so our newspaper covers
it a lot

Phone-Write 86.2%

• Phone-Write: Let’s see, my first call I got was from Russia

• Phone-Write: I’m chewing gum and talking on the phone while writing
this note

• Phone-Write: He wants to call his mom in Houston

Sue 92.5%

• Sue: Buyers and sellers also would have to agree not to pursue further
cases in foreign courts

• Sue: The cost of class actions is factored into the cost of everything you
buy

• Sue: The average number of suits against a neurosurgeon is five in South
Florida

Table 7: More examples of discovered clusters. Start-Org shows the semantic overlap between the organization-
related clusters. Bad Data shows a cluster which mostly contains unclear input.
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F Early Stopping Example973

Figure 7: Bold lines are sliding window averages of
size 5 over silhouette scores. Dotted lines are un-
smoothed scores. Legend shows number of clusters.
Note that the silhouette scores initially increase and
then decay as overfitting occurs, resulting in the need
for early stopping. Here, for 23 clusters, epoch 8 has
the highest average score. The blue region shows the
window around it, and epoch 9 (the black dot) is se-
lected for stopping.

G Evaluation Metrics974

For the information retrieval metrics, given a list of975

rankings R,976

MeanRank =
1

n

n∑
i=1

Ri

MRR =
1

n

n∑
i=1

1

Ri

Hits@m =
1

n

n∑
i=1

1Ri≤m

G.1 Clustering Evaluation Metrics977

Assume there are two clusterings: a set of (ground978

truth) classes C and a set of (predicted) clusters K.979

Each haveN samples. Denote TP as true positives,980

the number of data point pairs that are in the same981

cluster in C and K. FP is the false positives, the982

number of data point pairs that belong in the same983

cluster inC but are not inK. FN is false negatives,984

the number of data point pairs that are in the same985

cluster K but not in the same ground truth cluster986

in C. TN is the number of data point pairs that are987

in different clusters in both C and K.988

• Geometric NMI is the normalized mutual in- 989

formation between two cluster assignments. 990

It is defined: 991

NMI =
I(C,K)

mean(H(C), H(K))

where I is the mutual information and H is 992

entropy. In this case, mean is the geometric 993

mean. 994

mean(x1, ..., xn) =

(
n∏

i=1

xn

) 1
n

We note that arithmetic NMI using the arith- 995

metic mean is often reported, but that it is 996

equivalent to V-Measure. 997

• Fowlkes Mallows (Fowlkes and Mallows, 998

1983) is used to evaluate the similarity be- 999

tween a clustering and the ground truth. It is 1000

the geometric mean of pairwise precision and 1001

recall. 1002

FM =
TP√

(TP + FP )(TP + FN)

• Completeness (Rosenberg and Hirschberg, 1003

2007) Completeness measures whether all of 1004

the data points assigned to a single class are 1005

assigned to a single cluster. It is defined: 1006

c =

{
1 if H(K,C) = 0

1− H(K|C)
H(K) else

1007

• Homogeneity (Rosenberg and Hirschberg, 1008

2007) measures whether data points in a clus- 1009

ter are all assigned the the same class. It is 1010

symmetric to completeness: 1011

h =

{
1 if H(C,K) = 0

1− H(C|K)
H(C) else

1012

• V-Measure (Rosenberg and Hirschberg, 1013

2007) (standing for validity) is the harmonic 1014

mean between homogeneity and complete- 1015

ness: 1016

v =
(1 + β)hc

βh+ c

In practice, β = 1 is used to weight h and c 1017

equally. 1018
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• Adjusted Rand Index (Hubert and Arabie,1019

1985) is a version of the Rand index, a mea-1020

sure of cluster similarity, which is adjusted for1021

chance.1022

ARI =
RI − E [RI]

maxRI − E [RI]

where the Rand index, RI , is1023

RI =
TP + TN(

n
2

)
and E [RI] is expected value of random clus-1024

terings.1025

H UMAP Weights1026

UMAP (McInnes et al., 2018) attempts to estimate1027

the density by comparing the distance to the k-1028

nearest neighbors as follows:1029

ρi = min{d(xi, xij )|1 ≤ j ≤ k, d(xi, xij ) > 0}

k∑
j=1

exp(
−max(0, d(xi, xij )− ρi)

σi
) = log2(k)

Here, d(xi, xij ) is the distance between xi and1030

xij . ρi is the minimum distance to xi’s closest1031

neighbor. σi, which smooths and normalizes the1032

distances to the nearest neighbors, is calculated1033

for each data point. Next, UMAP calculates the1034

following weights between data points:1035

w((xi, xj)) = exp(
−max(0, d(xi, xij )− ρi)

σi
)

We use 1− w((xi, xj)) for agglomerative clus-1036

tering.1037

I Reproducibility1038

The SBERT model we used, along with the size1039

of the Q and K layers use a dimension of size1040

384. Our total model has 34,839,937 parameters,1041

of which 1,479,937 do not belong to SBERT. Input1042

uses the ‘ldc_scope’ part of the ACE event men-1043

tion. Our model takes roughly 2 hours to train1044

on one V100 GPU, including the early stopping1045

calculations which are done with the model set to1046

‘evaluation’ mode. We used batch size 10, which1047

is the most that would fit in memory. For learn-1048

ing rates, we considered the suggestions in (Devlin1049

et al., 2019).1050
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