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Abstract

In this paper, we examine a key limitation in query-based
detectors for temporal action detection (TAD), which arises
from their direct adaptation of originally designed archi-
tectures for object detection. Despite the effectiveness
of the existing models, they struggle to fully address the
unique challenges of TAD, such as the redundancy in multi-
scale features and the limited ability to capture sufficient
temporal context. To address these issues, we propose
a multi-dilated gated encoder and central-adjacent region
integrated decoder for temporal action detection trans-
former (DiGIT). Our approach replaces the existing en-
coder that consists of multi-scale deformable attention and
feedforward network with our multi-dilated gated encoder.
Our proposed encoder reduces the redundant information
caused by multi-level features while maintaining the ability
to capture fine-grained and long-range temporal informa-
tion. Furthermore, we introduce a central-adjacent region
integrated decoder that leverages a more comprehensive
sampling strategy for deformable cross-attention to capture
the essential information. Extensive experiments demon-
strate that DiGIT achieves state-of-the-art performance on
THUMOS14, ActivityNet v1.3, and HACS-Segment. Code
is available at: https://github.com/Dotori-HJ/DiGIT
1. Introduction
Temporal action detection (TAD) is crucial for video un-
derstanding and supports a wide range of real-world ap-
plications, including video surveillance, summarization,
and retrieval. TAD aims to detect action instances within
untrimmed videos by identifying action classes along with
their start and end times. The most existing TAD meth-
ods [14, 26, 34, 45] are a snippet-based approach, which uti-
lizes pre-extracted features to address long durations. This
approach does not require the computational cost for the
backbone network at the detection stage, enabling the de-
tector to address a comprehensive length of features at once.
The existing methods can be divided into three approaches:
anchor-based [2, 20, 21, 28, 41, 47], anchor-free [5, 7, 19,
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Figure 1. Convergence curves with InternVideo2 [39] features
on THUMOS14 [13]. Our method boosts the previous query-
based detectors like TE-TAD [14] and TadTR [26].

32, 34, 42, 45], and query-based [14, 26, 33, 35, 51].
Query-based detectors, inspired by DETR [3], have at-

tracted interest because of their potential to eliminate re-
liance on hand-crafted components, such as the sliding
window and non-maximum suppression (NMS). This ca-
pability derives from their adoption of a set-prediction
mechanism, which enables an end-to-end detection process
through a one-to-one matching paradigm. Among them,
TE-TAD [14] enables a full end-to-end detection process
by reformulating the coordinate representation based on
recent DETR-based network architectures, such as multi-
scale deformable attention [50]. However, despite these ad-
vancements, query-based detectors still rely on originally
designed architectures for object detection, which is not
fully suited to addressing the unique challenges of TAD.
We identify two limitations within the encoder and decoder
structures of existing query-based TAD models. (1) In the
encoder, simply utilizing single-scale [26, 51] feature or
multi-scale [14] features fails to extract the meaningful fea-
tures needed to capture the diverse temporal scale informa-
tion and distinct feature representations. (2) In the decoder,
the deformable cross-attention mechanism focuses on the
central regions of reference points, overlooking surrounding
areas essential for accurately detecting the action instances.

In the encoder, existing query-based detectors employ ei-
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ther single-scale [26, 51] or multi-scale [14] features, but
both approaches have inherent limitations. The single-scale
approach [26, 51] processes feature at a single resolution
throughout the encoder and decoder, intuitively restricting
the model to capture varying durations. The multi-scale
approach [14] combines features across multiple resolu-
tions, enhancing the ability of the model to detect different
lengths of actions by aggregating broader contextual infor-
mation. However, despite the advantage of the multi-scale
approach, it struggles to capture distinct feature representa-
tions at each level, resulting in highly correlated features
across scales. Fig. 2 illustrates this issue by comparing
layer-wise CKA [29] similarities on the pre-encoder and
post-encoder features between an object detection model
(DINO [46]) and a TAD model (TE-TAD [14]). As shown
in Fig. 2 on the left, the pre-encoder features of TE-TAD
show high similarity among high-level features (3-6) com-
pared to DINO. This is due to the repeated use of single
convolutional projections, where the final-layer feature is
downsampled to produce multi-scale features. These highly
similar pre-encoder features of TE-TAD cause the multi-
scale deformable attention to propagate redundant informa-
tion across levels during encoding. Consequently, as shown
in Fig. 2(b) on the right, the post-encoder features show
high similarity across levels compared to DINO. This result
suggests that utilizing multi-scale features from the initial
stage leads to excessive redundancy.

In the decoder, deformable cross-attention relies on sam-
pling points near the center of reference points, typically de-
termined by multiplying the reference width by 0.5. How-
ever, this center-focused approach restricts the model from
capturing the contextual information from the surrounding
region, which is crucial for classifying action instances and
determining their start and end boundaries. Fig. 3 shows
the challenges of center-focused sampling through the ex-
ample of actions like LongJump and HighJump, where both
involve a similar running motion. When the model fo-
cuses only on the central motion (red box), identifying these
two actions is challenging because the surrounding context
(gray frames), such as the final landing motion, provides
essential cues for identifying them. Furthermore, relying
solely on the running motion makes it challenging to deter-
mine accurate start and end boundaries. These observations
suggest that the center-focused sampling strategy is insuffi-
cient for capturing the full context of action instances.

In this paper, we propose a multi-dilated gated encoder
and a central-adjacent region integrated decoder for tem-
poral action detection transformer (DiGIT). First, we in-
troduce a multi-dilated gated encoder (MDGE), which re-
places the previous multi-scale deformable attention and
feedforward network in the encoder. MDGE utilizes multi-
dilated convolutions to capture diverse feature represen-
tations across multiple receptive fields, reducing redun-
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(a) DINO-5scale [46] with ResNet-50 [12] on COCO [22]
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0.531 0.715 0.947 1.000 0.967 0.931

0.575 0.741 0.935 0.967 1.000 0.971

0.548 0.711 0.910 0.931 0.971 1.000

1 2 3 4 5 6

1
2

3
4

5
6

1.000 0.974 0.974 0.969 0.954 0.900

0.974 1.000 0.999 0.992 0.976 0.932

0.974 0.999 1.000 0.996 0.982 0.938

0.969 0.992 0.996 1.000 0.992 0.948

0.954 0.976 0.982 0.992 1.000 0.963

0.900 0.932 0.938 0.948 0.963 1.000

(b) TE-TAD [14] with InternVideo2 [39] on THUMOS14 [13]

Figure 2. Layer-wise CKA similarity comparison between ob-
ject detection and TAD. The left and right sides are extracted
from pre-encoder and post-encoder features, respectively. The 1–5
or 1–6 labels on each axis correspond to the number of multi-scale
feature levels used in the respective models.

(a) LongJump

(b) HighJump
Figure 3. Challenges of center-focused sampling in action dis-
tinction. Each sequence shows seven evenly sampled frames
across the action duration, using examples from THUMOS14 [13].

dant information in multi-scale features while preserving
the benefits of utilizing multi-scale information. Addition-
ally, we present a central-adjacent region integrated de-
coder (CAID), which combines both central- and adjacent-
region sampling based on the deformable cross-attention
mechanism. By incorporating these two types of infor-
mation, CAID enables the detector to capture a complete
contextual view for each detection query. Extensive experi-
ments demonstrate that DiGIT achieves state-of-the-art per-
formance on popular benchmarks, and our method is adapt-
able to existing query-based detection frameworks.
Our contributions are summarized as three-fold:
• We propose DiGIT that combines multi-dilated gated en-

coder and central-adjacent region integrated decoder to
address the unique challenges of TAD.

• As shown in Fig. 1, our method consistently achieves
faster convergence and improves performance when ap-
plied to existing query-based detectors.

• Our experiments demonstrate that our DiGIT achieves
state-of-the-art performance on THUMOS14, Activi-
tyNet v1.3, and HACS-Segment.
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2. Related Work
Action Recognition Action recognition is a fundamental
task in video analysis. It involves classifying video se-
quences into specific action categories. I3D [4] extends
the inception network by incorporating 3D convolutions,
while R(2+1)D [36] improves efficiency by decomposing
3D convolutions into separate 2D spatial and 1D temporal
operations. TSP [1] introduces temporal channel shifting to
model temporal dynamics effectively without adding com-
putational overhead. VideoMAEv2 [38] leverages masked
reconstruction pretraining method based on transformer ar-
chitecture for robust video representation learning. Intern-
Video2 [39] leverages both large-scale training data and a
highly scalable model, further enhancing video representa-
tion learning. These models are utilized in various down-
stream tasks like TAD as a feature extraction method.
Anchor-free Detector Anchor-free detectors [5, 7, 17, 19,
32, 34, 42, 45] provide flexibility in localizing action in-
stances by utilizing an asymmetric modeling approach. Ac-
tionFormer [45] improves TAD performance by leveraging
a transformer-based architecture to capture long-range de-
pendencies in video data. TriDet [34] utilizes the trident
prediction scheme and its proposed architecture. Action-
Mamba [5] improves the ActionFormer detector by utiliz-
ing Mamba [11] architecture at the temporal feature extrac-
tion. However, despite these advancements, anchor-free de-
tectors still require hand-crafted components such as NMS
to remove redundant proposals.
Query-based Detector Query-based detectors, drawing in-
spiration from DETR [3], employ a set-prediction mecha-
nism that minimizes dependence on hand-crafted compo-
nents, eliminating the necessity for NMS. RTD-Net [35]
and ReAct [33] utilize query-based detection approaches;
however, they do not fully address one-to-one matching in
their architectures. TadTR [26] introduces cross-window
fusion, applying NMS only to overlapping areas in slid-
ing windows, which partially reduces dependency on hand-
crafted components. DualDETR [51] divides the decoder
into separate branches for instance-level and boundary-level
decoding, whereas our CAID does not address split branch
but unifies comprehensive range information within a sin-
gle decoder. Both TadTR and DualDETR still rely on slid-
ing windows, which require NMS to handle redundant ar-
eas, thereby limiting their applicability as a fully end-to-
end detector. In contrast, TE-TAD [14] achieves a fully
end-to-end approach for TAD by reformulating coordinate
representation, removing the need for hand-crafted compo-
nents like NMS and sliding windows. Building on TE-TAD,
we propose DiGIT, which introduces MDGE, a multi-scale
adapter, and CAID for the decoder. Although our DiGIT is
primarily based on TE-TAD, our method is designed to be
adaptable across various query-based detectors by replacing
the encoder with MDGE and decoder with CAID.

3. Method
3.1. Preliminary
Let X ∈ RT0×C represents the video feature sequence ex-
tracted by the backbone network, where T0 denotes the tem-
poral length of the sequence, and C corresponds to the fea-
ture dimension. Each element of the sequence, denoted as
X = {xt}T0

t=1, is associated with a snippet at timestep t,
with each snippet covering a few consecutive frames. These
snippets are processed using a pre-trained backbone net-
work such as I3D [4] or InternVideo2 [39]. Each video
contains multiple action instances, each defined by start and
end timestamps s and e, as well as its action class c. For-
mally, the set of action instances in a video is expressed as
A = {(sn, en, cn)}Nn=1, where N denotes the total number
of action instances, and sn, en, and cn represent the start
time, end time, and action class of the n-th instance, re-
spectively. The primary objective of TAD is to predict the
set of action instances A for a given video.

The query-based detectors [14, 26, 51] employ Nq

queries to detect action instances. The set of queries is rep-
resented as Q(0) = {F (0)

q , (c
(0)
q , d

(0)
q )}Nq

q=1, where F
(0)
q is

the initial embedding of the q-th query, c(0)q and d
(0)
q de-

note the initial center and width reference point of the q-th
query, respectively. These queries interact with the encoded
features through deformable cross-attention layers in the de-
coder, where they are iteratively refined across each layer l:

Q(l) = Decoder(l)(Q(l−1)) l = 1, . . . , LD, (1)

where LD denotes the number of decoder layer. The final
refined queries Q(LD) are then used for final predictions Â
obtained through the classification and regression heads.

3.2. DiGIT
In this part, we describe our method mainly based on TE-
TAD, but our DiGIT can be applied to various query-based
detectors by simply replacing the previous encoder and de-
coder architecture. The overall architecture of DiGIT is
illustrated in Fig. 4. Our method mainly addresses three
parts: (1) the multi-dilated gated encoder (MDGE), (2) the
multi-scale adapter, which converts the single-scale feature
into multi-scale features, providing diverse scale informa-
tion for query selection and decoder, and (3) the central-
adjacent region integrated decoder (CAID).
Embedding We project input features X using a single con-
volutional neural network to align them with the dimension
of the transformer architecture.

Z(0) = LayerNorm(Conv(X)), (2)

where Z(0) ∈ RD×T0 represented the embedded features
of the detector. Here, D denotes the width of the encoder
and decoder. In contrast to TE-TAD, we do not address the
multi-scale features at the initial and encoding stages.
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Figure 4. Overview of DiGIT. Our model processes video features through MDGE to capture distinct feature representations utilizing
various receptive fields. Subsequently, CAID captures both central and adjacent region information, enhancing action boundary regression
and classification. For simplicity, residual connection and layer normalization are omitted.

Multi-Dilated Gated Encoder (MDGE) As discussed in
Sec. 1, both single-scale and multi-scale approaches have
inherent limitations. Single-scale methods struggle to cap-
ture long temporal dependencies. Conversely, multi-scale
methods can capture a broader range of temporal scales but
cause highly correlated features across each scale.

To address the limitations of both approaches, we
introduce MDGE that replaces the previous multi-scale
deformable encoder structure. Inspired by a previous
work [6], MDGE applies multi-dilated convolutions to cap-
ture diverse receptive fields within a single encoder. This
approach enables the model to extract short-term and long-
term temporal features without relying on a multi-scale
structure. Furthermore, inspired by gating mechanism [44],
MDGE selectively filters out redundant information, retain-
ing only the most relevant features across the different re-
ceptive fields. In the following, we describe the detailed
structure of MDGE, which is composed of LE multi-dilated
gated convolution layers.

At each encoder layer l, the input features Z(l−1) from
the previous layer are first projected into two paths:

Z(l)
conv = Linear(Z(l−1)), Z

(l)
gate = Linear(Z(l−1)), (3)

where Z
(l)
conv ∈ RDh×T0 and Z

(l)
gate ∈ RDh×T0 . Here, Dh

represents the hidden dimension of the feedforward network
within the transformer architecture. Instead of utilizing the
feedforward network in the encoder, we expand the feature
dimension before applying the dilated convolution. This ap-
proach retains a similar parameter to a single transformer
layer that consists of an attention layer and a feedforward
network. Each transformed features, Z(l)

conv and Z
(l)
gate, are

then processed in separate paths independently for multi-
dilated convolution and gating mechanism, respectively.

The transformed features for multi-dilated convolution
Z

(l)
conv are split along the channel dimension into Nd equal

subsets, denoted as Z(l,i)
conv ∈ R(Dh/Nd)×T0 , where Nd is the

number of parallel dilated convolutions. Each subset is pro-
cessed by a dilated convolution with a different dilation rate,
increasing from 1 up to Nd. The output features for each
subset are expressed as follows:

Z
(l,i)
dilated = DilatedConv(l,di)(Z

(l,i)
conv ) i = 1, . . . , Nd, (4)

where di is the dilation rate for the i-th convolution, set as
di = i. The increasing dilation rates provide varying recep-
tive field sizes, allowing the model to capture both short-
and long-term temporal features simultaneously. Our en-
coder has two main hyperparameters: the number of dilated
convolutions Nd and the kernel size.

Subsequently, the outputs of the dilated convolutions
Z

(l,i)
dilated are concatenated along the channel dimension:

Z
(l)
concat = Concat(Z(l,1)

dilated, . . . , Z
(l,Nd)
dilated ). (5)

Following this concatenation, we apply a gating mecha-
nism to selectively retain relevant features:

Z(l) = Z
(l)
concat ⊙ σ(Z

(l)
gate), (6)

where σ is an activation function and ⊙ denotes element-
wise multiplication. Specifically, we use the SiLU activa-
tion function for the gate activation.

Consequently, the encoding process across LE layers of
MDGE can be summarized as follows:

Z(l) = MDGE(l)(Z(l−1)) l = 1, . . . , LE . (7)

Our MDGE design enables the encoder to capture di-
verse temporal relations by leveraging dilated convolutions
and a gating mechanism without requiring explicit multi-
scale features at each layer.
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Multi-Scale Adapter & Query Selection TE-TAD [14]
employs a two-stage approach with multi-scale features
for query selection. To take advantage of the two-stage
approach and utilize multi-scale features for query selec-
tion, we introduce a multi-scale adapter that converts the
single-scale feature to multi-scale features. Our multi-scale
adapter utilizes the encoder output feature Z(LE) to gener-
ate multi-scale representations. Specifically, Z(LE) is pro-
gressively downsampled to produce a set of features at mul-
tiple levels, with each subsequent level reduced to half the
temporal length of the previous one. We denote the L levels
of multi-scale features as follows:

F (l) = DownSample(Z(LE)) + E(l) l = 1, . . . , L, (8)

where each F (l) ∈ RTl×D represents the resized feature at
level l, with Tl being half the length of the previous level. To
enable the decoder to distinguish between these multi-scale
levels, we add a level-specific embedding E(l) ∈ R1×D,
applied consistently across all time steps. These multi-scale
features are then utilized for the query selection process.
Unlike the adaptive query selection (AQS) in TE-TAD [14]
that enforces a strict uniform sampling of queries across the
video, we apply a top-k selection approach based on binary
classification scores from the encoder.

Subsequently, we utilize the top-k indices to retrieve
both the query embeddings and the corresponding refer-
ence points (cq, dq) based on a time-aligned query gener-
ation method [14] that assigns temporal center points cq
and widths dq , aligning them with their respective positions
in the video. Additionally, the query embedding for each
selected query is obtained by linearly projecting the corre-
sponding top-k multi-scale features. The input embedding
of a decoder is denoted as follows:

F (0)
q = LayerNorm(Linear(Ftopk)), (9)

where Ftopk denotes the top-k selected features.
Central-Adjacent Region Integrated Decoder (CAID)
The previous query-based methods [14, 26] apply tem-
poral deformable cross-attention that applies the center-
focused sampling strategy. As discussed in Sec. 1, the
center-focused sampling does not provide sufficient infor-
mation for detecting the action instances. To address this
issue, we introduce CAID, which combines central- and
adjacent-region cross-attention. In standard deformable
cross-attention, features are sampled around each reference
point, defined by its center cq and duration dq . The sam-
pling offset ∆pmqk for each head m and sampling point k
is computed as:

∆pmqk = Linear(Fq) = WFq + b, (10)

where W and b are learnable parameters for obtaining the
sampling offset by linear projection. Generally, W is ini-
tialized to zero and b within the range [−1, 1]. Using the

computed offset ∆pmqk, sampling points pmqk are deter-
mined based on the reference points as:

pmqk = cq + 0.5wq∆pmqk, (11)

where the factor 0.5wq ensures the sampling points are ini-
tially positioned close to the center of each reference point.
In our approach, we do not change how to obtain the sam-
pling points when addressing central- and adjacent-region
sampling. We change the initialization method for the bias
value b, which determines the initial sampling points.

As shown in Fig. 4, our CAID contains two cross-
attention layers sequentially: central-region cross-attention
and adjacent-region cross-attention. For central-region
cross-attention, the initial bias of sampling offsets b are ini-
tialized uniformly within the range [−1, 1], which is iden-
tical to the previous methods [14, 18, 24, 26, 46, 50]. As
Eq. (11), this initialization constrains the initial bias for
sampling points b within [−0.5, 0.5], focusing on the cen-
tral region of the reference points. For adjacent-region
cross-attention, the bias of sampling offsets b are adjusted to
capture surrounded points of central-region cross-attention.
Specifically, half of the sampling offsets are initialized
within the range [−1.5,−0.5] to focus on the left, while
the other half are initialized within the range [0.5, 1.5]
to focus on the right. This adjustment, combined with
Eq. (11), constraints in the initial sampling points pmqk

within [−0.75,−0.25] and [0.25, 0.75]. Overall, we sequen-
tially apply self-attention, central-region cross-attention,
adjacent-region cross-attention, and feedforward network
across all LD layers, as shown in Fig. 4.

3.3. Training and Inference
Training Following the previous works [14, 26], we use the
bipartite matching loss [3]. The total loss Ltotal is defined
as follows:

Ltotal(A, Â) =

Nq∑
i=1

Lmatch(Ai, Âπ(i)), (12)

where Lmatch denotes the bipartite matching loss, which
considers both classification and regression loss between
ground truth Ai and predicted action instances Âπ(i) from
the last layer of the decoder. The permutation indices π(i)
are obtained through bipartite matching [16]. This cost
function Lmatch is a composite of the classification, and
regression loss. We use focal loss [23] for the classifica-
tion loss to effectively manage class imbalance. For the
regression loss, our method incorporates GIoU [31] and a
log-ratio distance loss [14].
Inference Following the previous work [14] that removes
the need for post-processing steps, the predictions of DiGIT
from the final layer of the decoder Â are directly used. For
a fair comparison, we report both raw prediction results and
NMS applied results.
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Training
Type

Head
Type Method Feature

THUMOS14 ActivityNet v1.3

0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

Full -

AFSD [19] I3D [4] 67.3 62.4 55.5 43.7 31.1 52.0 52.4 35.3 6.5 34.4
TALLFormer [7] Swin-B [27] 76.0 - 63.2 - 34.5 59.2 54.1 36.2 7.9 35.6

ViT-TAD [43] ViT-B [8] 85.1 80.9 74.2 61.8 45.4 69.5 55.8 38.5 8.8 37.4
AdaTAD [25] VideoMAEv2-g [38] 89.7 86.7 80.9 71.0 56.1 76.9 61.7 43.4 10.9 41.9

Head
only

Anchor
-free

TriDet [34] I3D [4] / R(2+1)D [36] 83.6 80.1 72.9 62.4 47.4 69.3 54.7 38.0 8.4 36.8
DyFADet [42] I3D [4] / R(2+1)D [36] 84.0 80.1 72.7 61.1 47.9 69.2 58.1 39.6 8.4 38.5

ActionFormer [45] I3D [4] / R(2+1)D [36] 82.1 77.8 71.0 59.4 43.9 66.8 54.7 37.8 8.4 36.6
ActionFormer [45] InternVideo2 [39] 82.3 81.9 75.1 65.8 50.3 71.9 61.5 44.6 12.7 41.2
ActionMamba [5] InternVideo2 [39] 86.9 83.1 76.9 65.9 50.8 72.7 62.4 43.5 10.2 42.0

Query
-based

RTD-Net [35] I3D [4] / TSN [37] 68.3 62.3 51.9 38.8 23.7 49.0 47.2 30.7 8.6 30.8
ReAct [33] I3D [4] / TSN [37] 69.2 65.0 57.1 47.8 35.6 55.0 49.6 33.0 8.6 32.6

Self-DETR [15] I3D [4] 74.6 69.5 60.0 47.6 31.8 56.7 52.3 33.7 8.4 33.8
TadTR [26] I3D [4] / R(2+1)D [36] 74.8 69.1 60.1 46.6 32.8 56.7 53.6 37.5 10.6 36.8

DualDETR [51] I3D [4] 82.9 78.0 70.4 58.5 44.4 66.8 52.6 35.0 7.8 34.3
TE-TAD [14] I3D [4] / R(2+1)D [36] 83.3 78.4 71.3 60.7 45.6 67.9 54.2 38.1 10.6 37.1

DiGIT† I3D [4] / R(2+1)D [36] 81.6 77.7 70.3 60.5 48.4 67.7 54.3 38.4 10.6 37.2
DiGIT I3D [4] / R(2+1)D [36] 83.6 79.6 71.9 61.5 48.6 69.0 54.4 38.2 10.7 37.3

TadTR [26] InternVideo2 [39] 84.8 79.3 70.4 58.2 43.8 67.3 57.1 38.8 11.0 38.2
TadTR [26] + Ours InternVideo2 [39] 86.1 81.8 73.7 61.7 46.3 69.9 60.2 41.0 11.2 40.5

TE-TAD [14] InternVideo2 [39] 84.3 81.1 73.7 62.6 49.5 70.3 61.3 41.8 10.9 41.1
DiGIT† InternVideo2 [39] 85.7 82.3 75.6 65.6 51.4 72.1 58.9 43.4 11.4 41.3
DiGIT InternVideo2 [39] 87.6 84.2 77.6 67.3 52.5 73.8 62.0 43.1 11.3 42.0

Table 1. Performance comparison with state-of-the-art methods on THUMOS14 and ActivityNet v1.3. In cases marked with †, our
method does not utilize NMS. For TadTR + Ours, we additionally apply our MDGE and CAID on TadTR.

4. Experiments
4.1. Setup
Datasets We conduct experiments on three datasets:
THUMOS14 [13], ActivityNet v1.3 [9], and HACS-
Segment [48]. THUMOS14 consists of 20 action classes
with 200 validation and 213 test videos, containing 3,007
and 3,358 action instances, respectively. ActivityNet v1.3
is a large-scale dataset with 200 action classes, including
10,024 videos for training and 4,926 videos for validation.
HACS-Segment is another large-scale TAD dataset with ex-
tensive annotations, covering 200 activity classes similar to
ActivityNet v1.3. It provides 37,613 videos for training and
5,981 videos for validation. These datasets provide a rig-
orous evaluation environment for our method, containing
diverse actions and scenes.
Evaluation Metric We follow the standard evaluation pro-
tocol for all datasets, utilizing mAP at different intersections
over union (IoU) thresholds to evaluate TAD performance.
The IoU thresholds for THUMOS14 are set at [0.3:0.7:0.1],
while for ActivityNet v1.3 and HACS-Segment, the results
are reported at IoU threshold [0.5, 0.75, 0.95] with the av-
erage mAP computed at [0.5:0.95:0.05].
Implementation Details We describe the implementation
details for each dataset in the Supplementary Sec. ??.

4.2. Main Results
THUMOS14 Table 1 contains a comparison with the state-
of-the-art methods on THUMOS14. Our DiGIT shows con-
sistent improvements over TadTR [26] and TE-TAD [14] on

both I3D [4] and InternVideo2 [39] features. Even without
applying NMS, our method outperforms the existing query-
based detectors. Furthermore, our model outperforms the
existing snippet-based head-only training methods, and our
DiGIT shows a comparable performance even compared to
the full training method.
ActivityNet v1.3 Following the conventional approach [14,
26, 34, 45], the external classification score is used to evalu-
ate ActivityNet v1.3. The pre-extracted classification scores
are combined with class-agnostic predictions from a bi-
nary detector to obtain class labels. For R(2+1)D [36]
and InternVideo2 [39] features, classification results from
CUHK [40] and InternVideo2 [39] are incorporated to ob-
tain class scores, respectively. As demonstrated in Ta-
ble 1, DiGIT achieves consistent improvements over TadTR
and TE-TAD on ActivityNet v1.3. Furthermore, DiGIT
demonstrates competitive performance compared to other
types of state-of-the-art methods, demonstrating effective-
ness across various datasets and feature extractors.
HACS-Segment Table 2 presents a comparison of our
model with state-of-the-art methods on HACS-Segment.
Our model achieves significant improvements over previous
methods, establishing a new state-of-the-art performance,
including mAP at higher IoU thresholds of 0.75 and 0.95.
The stronger performance at the 0.95 IoU threshold in-
dicates that DiGIT excels in precise action localization.
Moreover, the superior performance of DiGIT on this larger
dataset, compared to THUMOS14 and ActivityNet v1.3,
demonstrates its scalability and robustness across varying
data sizes and complexities.
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Head
Type Method Feature

mAP

0.5 0.75 0.95 Avg.

Anchor
-based

SSN [49] I3D [4] 28.8 18.8 5.3 19.0
G-TAD [41] I3D [4] 41.1 27.6 8.3 27.5
BMN [21] SlowFast [10] 52.5 36.4 10.4 35.8

TCANet [30] SlowFast [10] 54.1 37.2 11.3 36.8

Anchor
-free

TALLFormer [7] Swin-B [27] 55.0 36.1 11.8 36.5
TriDet [34] I3D [4] 54.5 36.8 11.5 36.8
TriDet [34] SlowFast [10] 56.7 39.3 11.7 38.6
TriDet [34] VideoMAEv2-g [38] 62.4 44.1 13.1 43.1

DyFADet [42] SlowFast [10] 57.8 39.8 11.8 39.2
DyFADet [42] VideoMAEv2-g [38] 64.0 44.8 14.1 44.3

ActionFormer [45] InternVideo2 [39] 62.6 44.6 12.7 43.3
ActionMamba [5] InternVideo2 [39] 64.0 45.7 13.3 44.6

Query
-based

TadTR [26] I3D [4] 47.1 32.1 10.9 32.1
TadTR [26] InternVideo2 [39] 54.2 38.8 12.8 37.8

TadTR [26] + Ours InternVideo2 [39] 55.0 40.0 13.8 39.0
TE-TAD [14] InternVideo2 [39] 60.4 45.6 16.5 44.1

DiGIT† InternVideo2 [39] 61.1 47.5 17.8 45.5
DiGIT InternVideo2 [39] 62.4 47.9 17.6 45.9

Table 2. Performance comparison with state-of-the-art meth-
ods on HACS-Segment. In cases marked with †, our method does
not utilize NMS. For TadTR + Ours, we additionally apply our
MDGE and CAID on TadTR.
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Figure 5. Ablation study on MDGE with InternVideo2 features
on THUMOS14. The heatmap shows mAP values for different
combinations of kernel size and number of dilated convolutions.

4.3. Further Analysis

Ablation Study on MDGE Fig. 5 shows an ablation study
on hyperparameters of MDGE, specifically the impact of
kernel size and the number of dilated convolution layers
Nd on mAP performance. Excluding the configuration with
a single dilated convolution that consistently yields lower
mAP values, configurations with multiple dilated layers
demonstrate improved performance. These results indicate
that addressing diverse scale information is crucial for the
encoder by utilizing our multi-dilated convolution that en-
ables the model to capture diverse temporal relations. Fur-
thermore, compared to the TE-TAD [14] baseline of 70.4
in Table 4, our MDGE consistently improves performance
regardless of hyperparameter variations, demonstrating ro-
bustness across different configurations.
Ablation Study on CAID Table 3 demonstrates the effects
of integrating the proposed adjacent-region cross-attention
(ACA) into the decoder operation sequence. We evalu-
ate several configurations, including variations of central-
region cross-attention (CCA) with expanded initialization
ranges (1.5× and 2.0×). CCA (1.5×) and CCA (2.0×)
(Rows #2 and #3) show that simply increasing the initial-

Decoder Sequece mAP@AVG

#1 SA → CCA → FFN 72.5
#2 SA → CCA (1.5×) → FFN 72.6
#3 SA → CCA (2.0×) → FFN 71.8

#4 SA → ACA → FFN 69.2

#5 SA → CCA → CCA → FFN 72.7
#6 SA → CCA → ACA → FFN 73.8
#7 SA → ACA → CCA → FFN 73.2

Table 3. Analysis of decoder operation sequences using Intern-
Video2 features on THUMOS14. SA refers to the self-attention
layer. CCA denotes central-region cross-attention (as used in pre-
vious works such as [14, 26]). CCA (1.5× and 2.0×) indicates
an expansion of the initial sampling range of central-region cross-
attention by 1.5 and 2.0 times, respectively, to cover a broader area
around the reference points. ACA refers to adjacent-region cross-
attention, and FFN represents the feedforward network.

Baseline Enc. Dec. MDGE CAID
mAP

0.3 0.5 0.7 Avg.

TadTR [26] S S

84.8 70.4 43.8 67.3
✓ 84.9 71.9 44.7 68.4

✓ 84.4 70.8 45.4 67.9
✓ ✓ 86.1 73.7 46.3 69.9

TE-TAD [14]

M M 84.3 73.7 49.5 70.3
✓ 85.2 74.6 49.9 70.8

S M

85.4 73.8 49.1 70.4
✓ 87.0 75.8 51.9 72.5

✓ 85.5 74.6 51.0 71.4
✓ ✓ 87.6 77.6 52.5 73.8

Table 4. Ablation study on the contributions of each compo-
nent using InternVideo2 features on THUMOS14. The first row
for TadTR [26] and TE-TAD [14] represents the baseline perfor-
mance. Enc. and Dec. refer to how scale information is handled
in the encoder and decoder. S: single-scale. M: multi-scale.

ization range of CCA to cover a broader area, similar range
to CAID, does not show the improved performance com-
pared to the original setting (Row #1). This indicates that
simply expanding the initialization range does not bene-
fit the detector. Moreover, when using ACA alone (Row
#4), we observe a significant decrease in performance, un-
derscoring the importance of balancing adjacent-region in-
formation with central-region information. Configurations
that use two successive CCA layers (Row #5) show only
marginal improvements, suggesting that additional central-
region cross-attention alone does not significantly enhance
performance. The highest mAP score is achieved by the se-
quence of SA → CCA → ACA → FFN, which combines
central-region cross-attention and adjacent-region cross-
attention, which is our CAID (Row #6).
Component Contribution Analysis Table 4 provides an
analysis of the performance contributions from each pro-
posed component, evaluated using InternVideo2 [39] fea-
tures on THUMOS14 [13]. The first row for each method
shows the baseline performance without our proposed en-
hancements, allowing for a direct comparison with subse-
quent configurations. Notably, converting multi-scale en-
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Baseline AQS [14]
mAP

0.3 0.5 0.7 Avg.

TE-TAD [14] ✓ 85.6 73.7 47.6 70.3
82.5 71.8 48.4 68.7

DiGIT ✓ 85.8 76.4 51.5 72.2
87.6 77.6 52.5 73.8

Table 5. Ablation study on the query selection method using
InternVideo2 features on THUMOS14.
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Figure 6. Comparison of training and testing loss for the en-
coder classification matching loss using InternVideo2 features
on THUMOS14. Our method significantly accelerates the con-
vergence of the encoder.

coding to single-scale encoding alone in TE-TAD [14] re-
sults in minimal performance change (70.3 → 70.4). This
result aligns with our motivation, as shown in Fig. 2,
which is that the previous multi-scale features contain re-
dundant information. Furthermore, both MDGE and CAID
show consistent improvements in both TadTR and TE-TAD,
demonstrating the robustness and effectiveness of our ap-
proach across different baseline architectures.
Effect of MDGE In TE-TAD [14], adaptive query selection
(AQS) is employed to sample initial queries across the en-
tire video sequence uniformly. This process enforces a strict
uniform selection of queries to prevent queries from being
overly concentrated in certain areas, as might happen with
a simple top-k selection. However, our observations sug-
gest that this strict uniform condition is unnecessary when
using a well-trained encoder, as provided by our MDGE.
As shown in Table 5, removing AQS results in higher mAP
scores for DiGIT, whereas the performance of TE-TAD de-
clines without AQS. Furthermore, as illustrated in Fig. 6,
DiGIT exhibits faster convergence and consistently lower
loss values. These results indicate that our MDGE enhances
the representational ability of the encoder and can reduce
the heuristic part of the query selection, which positively
impactsoverall detection performance.

4.4. Qualitative Results
Visualization of Cosine Similarity on Encoder Output
Features Fig. 7 presents a comparison of cosine similar-
ity matrices for encoder output features between TE-TAD
and DiGIT. Our DiGIT shows improved feature discrim-
inability, indicating that MDGE captures distinct temporal
patterns more effectively compared to TE-TAD [14].

(a) TE-TAD [14] (b) DiGIT
Figure 7. Comparison of cosine similarity on encoder output
features between TE-TAD and DiGIT. Top: represents cosine
similarity, with red boxes indicating regions of similarity among
features within the ground truth. Bottom: displays the ground truth
action timeline for reference. Sample taken from THUMOS14.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Cross-Attention

(a) TE-TAD [14]

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Central-Region Cross-Attention
Adjacent-Region Cross-Attention

(b) DiGIT

Figure 8. Visualization of sampling offsets in cross-attention
layers on THUMOS14. Each point denotes the mean value across
the dataset, with error bars indicating the standard deviation.

Visualization of Sampling Offsets Fig. 8 shows the distri-
bution of sampling offsets relative to the center and width
of each action query. The values 0, -1, and 1 correspond
to the center cq , the start boundary cq − dq , and the end
boundary cq + dq , respectively. This visualization shows
that our method gathers information from diverse sampling
points, covering both central and adjacent regions. Further-
more, while deformable attention allows learnable offsets,
they remain close to their initial points, indicating the im-
portance of the initial value of b in Eq. (10).

5. Conclusion
In this paper, we propose a multi-dilated gated encoder and
central-adjacent region integrated decoder for temporal ac-
tion detection transformer (DiGIT). MDGE offers diverse
receptive fields while maintaining a single-scale encoding
structure by utilizing multi-dilated convolutions. CAID pro-
vides essential information to precisely detect action in-
stances by focusing on both the central- and adjacent- re-
gions of action instances. Extensive experiments demon-
strate that DiGIT outperforms the previous query-based
methods. Furthermore, our method consistently improves
when integrated with the existing query-based detectors.
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