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ABSTRACT

Self-paced learning has been beneficial for tasks where some initial knowledge
is available, such as weakly supervised learning and domain adaptation, to select
and order the training sample sequence, from easy to complex. However its appli-
cability remains unexplored in unsupervised learning, whereby the knowledge of
the task matures during training.
We propose a novel HYperbolic Self-Paced model (HYSP) for learning skeleton-
based action representations. HYSP adopts self-supervision: it uses data augmen-
tations to generate two views of the same sample, and it learns by matching one
(named online) to the other (the target). We propose to use hyperbolic uncertainty
to determine the algorithmic learning pace, under the assumption that less uncer-
tain samples should be more strongly driving the training, with a larger weight
and pace. Hyperbolic uncertainty is a by-product of the adopted hyperbolic neural
networks, it matures during training and it comes with no extra cost, compared to
the established Euclidean SSL framework counterparts.
When tested on three established skeleton-based action recognition datasets,
HYSP outperforms the state-of-the-art on PKU-MMD I, as well as on 2 out of 3
downstream tasks on NTU-60 and NTU-120. Additionally, HYSP only uses pos-
itive pairs and bypasses therefore the complex and computationally-demanding
mining procedures required for the negatives in contrastive techniques.
Code is available at https://github.com/paolomandica/HYSP.

1 INTRODUCTION

Starting from the seminal work of Kumar et al. (2010), the machine learning community has started
looking at self-paced learning, i.e. determining the ideal sample order, from easy to complex, to
improve the model performance. Self-paced learning has been adopted so far for weakly-supervised
learning (Liu et al., 2021; Wang et al., 2021; Sangineto et al., 2019), or where some initial knowledge
is available, e.g. from a source model, in unsupervised domain adaption (Liu et al., 2021). Self-
paced approaches use the label (or pseudo-label) confidence to select easier samples and train on
those first. However labels are not available in self-supervised learning (SSL) (Chen et al., 2020a;
He et al., 2020; Grill et al., 2020; Chen & He, 2021), where the supervision comes from the data
structure itself, i.e. from the sample embeddings.

We propose HYSP, the first HYperbolic Self-Paced learning model for SSL. In HYSP, the self-
pacing confidence is provided by the hyperbolic uncertainty (Ganea et al., 2018; Shimizu et al.,
2021) of each data sample. In more details, we adopt the Poincaré Ball model (Surı́s et al., 2021;
Ganea et al., 2018; Khrulkov et al., 2020; Ermolov et al., 2022) and define the certainty of each
sample as its embedding radius. The hyperbolic uncertainty is a property of each data sample in
hyperbolic space, and it is therefore available while training with SSL algorithms.

HYSP stems from the belief that the uncertainty of samples matures during the SSL training and that
more certain ones should drive the training more prominently, with a larger pace, at each stage of
training. In fact, hyperbolic uncertainty is trained end-to-end and it matures as the training proceeds,
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i.e. data samples become more certain. We consider the task of human action recognition, which has
drawn growing attention (Singh et al., 2021; Li et al., 2021; Guo et al., 2022a; Chen et al., 2021a;
Kim et al., 2021) due to its vast range of applications, including surveillance, behavior analysis,
assisted living and human-computer interaction, while being skeletons convenient light-weight rep-
resentations, privacy preserving and generalizable beyond people appearance (Xu et al., 2020; Lin
et al., 2020a).

HYSP builds on top of a recent self-supervised approach, SkeletonCLR (Li et al., 2021), for train-
ing skeleton-based action representations. HYSP generates two views for the input samples by data
augmentations (He et al., 2020; Chen et al., 2020a; Caron et al., 2020; Grill et al., 2020; Chen & He,
2021; Li et al., 2021), which are then processed with two Siamese networks, to produce two sample
representations: an online and a target. The training proceeds by tasking the former to match the lat-
ter, being both of them positives, i.e. two views of the same sample. HYSP only considers positives
during training and it requires curriculum learning. The latter stems from the vanishing gradients
of hyperbolic embeddings upon initialization, due to their initial overconfidence (high radius) (Guo
et al., 2022b). So initially, we only consider angles, which coincides with starting from the confor-
mal Euclidean optimization. The former is because matching two embeddings in hyperbolic implies
matching their uncertainty too, which appears ill-posed for negatives from different samples, i.e.
uncertainty is specific of each sample at each stage of training. This bypasses the complex and
computationally-demanding procedures of negative mining, which contrastive techniques require*.
Both aspects are discussed in detail in Sec. 3.2.

We evaluate HYSP on three most recent and widely-adopted action recognition datasets, NTU-60,
NTU-120 and PKU-MMD I. Following standard protocols, we pre-train with SSL, then transfer to
a downstream skeleton-base action classification task. HYSP outperforms the state-of-the-art on
PKU-MMD I, as well as on 2 out of 3 downstream tasks on NTU-60 and NTU-120.

2 RELATED WORK

HYSP embraces work from four research fields, for the first time, as we detail in this section: self-
paced learning, hyperbolic neural networks, self-supervision and skeleton-based action recognition.

2.1 SELF-PACED LEARNING

Self-paced learning (SPL), initially introduced by Kumar et al. (2010) is an extension of curricu-
lum learning (Bengio et al., 2009) which automatically orders examples during training based on
their difficulty. Methods for self-paced learning can be roughly divided into two categories. One
set of methods (Jiang et al., 2014; Wu et al., 2021) employ it for fully supervised problems. For
example, Jiang et al. (2014); Wu et al. (2021) employ it for image classification. Jiang et al. (2014)
enhance SPL by considering the diversity of the training examples together with their hardness to
select samples. Wu et al. (2021) studies SPL when training with limited time budget and noisy data.
The second category of methods employ it for weakly or semi supervised learning. Methods
in Sangineto et al. (2019); Zhang et al. (2016a) adopt it for weakly supervised object detection,
where Sangineto et al. (2019) iteratively selects the most reliable images and bounding boxes,
while Zhang et al. (2016a) uses saliency detection for self-pacing. Methods in Peng et al. (2021);
Wang et al. (2021) employ SPL for semi-supervised segmentation. Peng et al. (2021) adds a regu-
larization term in the loss to learn importance weights jointly with network parameters. Wang et al.
(2021) considers the prediction uncertainty and uses a generalized Jensen Shannon Divergence loss.
Both categories require the notion of classes and not apply to SSL frameworks, where sample em-
beddings are only available.

2.2 HYPERBOLIC NEURAL NETWORKS

Hyperbolic representation learning in deep neural networks gained momentum after the pioneer-
ing work hyperNNs (Ganea et al., 2018), which proposes hyperbolic counterparts for the classical
(Euclidean) fully-connected layers, multinomial logistic regression and RNNs. Other representa-
tive work has introduced hyperbolic convolution neural networks (Shimizu et al., 2021), hyperbolic

*Similarly to BYOL (Grill et al., 2020), HYSP is not a contrastive technique, as it only adopts positives.
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Figure 1: (a) SkeletonCLR is a contrastive learning approach based on pushing the embeddings
of two views x and x̂ of the same sample (positives) close to each other, while repulsing from
embeddings of other samples (negatives). In the represented Euclidean space, on the left side, the
attracting/repulsive force is a straight line. (b) The proposed HYSP maps the embeddings into
a hyperbolic space, where the sample uncertainty determines the learning pace. The hyperbolic
Poincaré ball, on the right side, illustrates the embeddings, where the radius indicates the uncertainty.
The attractive force proceeds on a circle, orthogonal to the boundary circle. So the force grows
polynomially with the radius. In HYSP, learning is paced by the uncertainty, which the model learns
end-to-end during SSL.

graph neural networks (Liu et al., 2019; Chami et al., 2019), and hyperbolic attention networks (Gul-
cehre et al., 2019). Two distinct aspects have motivated hyperbolic geometry: their capability to en-
code hierarchies and tree-like structures Chami et al. (2020); Khrulkov et al. (2020), also inspiring
Peng et al. (2020) for skeleton-based action recognition; and their notion of uncertainty, encoded
by the embedding radius Surı́s et al. (2021); Atigh et al. (2022), which we leverage here. More re-
cently, hyperbolic geometry has been used with self-supervision (Yan et al., 2021; Surı́s et al., 2021;
Ermolov et al., 2022). Particularly, Surı́s et al. (2021) and Ermolov et al. (2022) let hierarchical ac-
tions and image categories emerge from the unlabelled data using RNNs and Vision Transformers,
respectively. Differently, our HYSP uses GCNs and it applies to skeleton data. Moreover, unlike
all prior works, HYSP leverages hyperbolic uncertainty to drive the training by letting more certain
pairs steer the training more.

2.3 SELF-SUPERVISED LEARNING

Self-supervised learning aims to learn discriminative feature representations from unlabeled data.
The supervisory signal is typically derived from the input using certain pretext tasks and it is used
to pre-train the encoder, which is then transferred to the downstream task of interest. Among all the
proposed methods (Noroozi & Favaro, 2016; Zhang et al., 2016b; Gidaris et al., 2018; Caron et al.,
2018; 2020), a particularly effective one is the contrastive learning, introduced by SimCLR Chen
et al. (2020a). Contrastive learning brings different views of the same image closer (‘positive pairs’),
and pushes apart a large number of different ones (‘negative pairs’). MoCo (He et al., 2020; Chen
et al., 2020b) partially alleviates the requirement of a large batch size by using a memory-bank
of negatives. BYOL (Grill et al., 2020) pioneers on training with positive pairs only. Without
the use of negatives, the risk of collapsing to trivial solutions is avoided by means of a predictor
in one of the Siamese networks, and a momentum-based encoder with stop-gradient in the other.
SimSiam (Chen & He, 2021) further simplifies the design by removing the momentum encoder. Here
we draw on the BYOL design and adopt positive-only pairs for skeleton-based action recognition.
We experimentally show that including negatives harm training self-supervised hyperbolic neural
networks.

2.4 SKELETON-BASED ACTION RECOGNITION

Most recent work in (supervised) skeleton-based action recognition (Chen et al., 2021a;b; Wang
et al., 2020) adopts the ST-GCN model of Yan et al. (2018) for its simplicity and performance. We
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Figure 2: Analysis of the parts of eq. 5, namely (left) the angle between h and ĥ and (right) the
quantity (1−∥h∥2), monotonic with the embedding uncertainty (1−∥h∥), during the training phases,
i.e. initial (orange), intermediate (yellow), and final (light yellow). See discussion in Sec. 3.2.1.

also use ST-GCN. The self-supervised skeleton-based action recognition methods can be broadly
divided into two categories. The first category uses encoder-decoder architectures to reconstruct the
input (Zheng et al., 2018; Su et al., 2020; Paoletti et al., 2021; Yang et al., 2021; Su et al., 2021). The
most representative example is AE-L (Paoletti et al., 2021), which uses Laplacian regularization to
enforce representations aware of the skeletal geometry. The other category of methods (Lin et al.,
2020a; Thoker et al., 2021; Li et al., 2021; Rao et al., 2021) uses contrastive learning with negative
samples. The most representative method is SkeletonCLR (Li et al., 2021) which uses momentum
encoder with memory-augmented contrastive learning, similar to MoCo. More recent techniques,
CrosSCLR (Li et al., 2021) and AimCLR (Guo et al., 2022a), are based on SkeletonCLR. The
former extends it by leveraging multiple views of the skeleton to mine more positives; the latter
by introducing extreme augmentations, features dropout, and nearest neighbors mining for extra
positives. We also build on SkeletonCLR, but we turn it into positive-only (BYOL), because only
uncertainty between positives is justifiable (cf. Sec. FGX-fill-in). BYOL for skeleton-based SSL has
first been introduced by Moliner et al. (2022). Differently from them, HYSP introduces self-paced
SSL learning with hyperbolic uncertainty.

3 METHOD

We start by motivating hyperbolic self-paced learning, then we describe the baseline SkeletonCLR
algorithm and the proposed HYSP. We design HYSP according to the principle that more certain
samples should drive the learning process more predominantly. Self-pacing is determined by the
sample target embedding, which the sample online embeddings are trained to match. Provided the
same distance between target and online values, HYSP gradients are larger for more certain targets†.
Since in SSL no prior information is given about the samples, uncertainty needs to be estimated end-
to-end, alongside the main objective. This is realized in HYSP by means of a hyperbolic mapping
and distance, combined with the positives-only design of BYOL (Grill et al., 2020) and a curriculum
learning (Bengio et al., 2009) which gradually transitions from the Euclidean to the uncertainty-
aware hyperbolic space (Surı́s et al., 2021; Khrulkov et al., 2020).

3.1 BACKGROUND

A few most recent techniques (Guo et al., 2022a; Li et al., 2021) for self-supervised skeleton rep-
resentation learning adopt SkeletonCLR Li et al. (2021). That is a contrastive learning approach,
which forces two augmented views of an action instance (positives) to be embedded closely, while
repulsing different instance embeddings (negatives).
Let us consider Fig. 1(a). The positives x and x̂ are two different augmentations of the same action
sequence, e.g. subject to shear and temporal crop. The samples are encoded into y = f(x, θ) and
ŷ = f̂(x̂, θ̂) by two Siamese networks, an online f and a target f̂ encoder with parameters θ and θ̂
respectively. Finally the embeddings z and ẑ are obtained by two Siamese projector MLPs, g and ĝ.

†Gradients generally depend on the distance between the estimation (here online) and the reference (here
target) ground truth, as a function of the varying estimation. In self-paced learning, references vary during
training.
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SkeletonCLR also uses negative samples which are embeddings of non-positive instances, queued in
a memory bank after each iteration, and dequeued according to a first-in-first-out principle. Positives
and negatives are employed within the Noise Contrastive Estimation loss (Oord et al., 2018):

Lnce = − log
exp(z · ẑ/τ)

exp(z · ẑ/τ) +
∑M

i=1 exp(z ·mi/τ)
(1)

where z · ẑ is the normalised dot product (cosine similarity), mi is a negative sample from the queue
and τ is the softmax temperature hyper-parameter.
Two aspects are peculiar of SkeletonCLR, important for its robustness and performance: the mo-
mentum encoding for f̂ and the stop-gradient on the corresponding branch. In fact, the parameters
of the target encoder f̂ are not updated by back-propagation but by an exponential moving average
from the online encoder, i.e θ̂ ← αθ̂ + (1 − α)θ, where α is the momentum coefficient. A similar
notation and procedure is adopted for ĝ. Finally, stop-gradient enables the model to only update the
online branch, keeping the other as the reference “target”.

3.2 HYPERBOLIC SELF-PACED LEARNING

Basing on SkeletonCLR, we propose to learn by comparing the online h and target ĥ representations
in hyperbolic embedding space. We do so by mapping the outputs of both branches into the Poincaré
ball model centered at 0 by an exponential map (Ganea et al., 2018):

ĥ = Expc0(ẑ) = tanh(
√
c ∥ẑ∥) ẑ√

c ∥ẑ∥
(2)

where c represents the curvature of the hyperbolic space and ∥ · ∥ the standard Euclidean L2-norm.
h and ĥ are compared by means of the Poincaré distance:

Lpoin(h, ĥ) = cosh−1

(
1 + 2

∥h− ĥ∥2(
1− ∥h∥2

)(
1− ∥ĥ∥2

)) (3)

with ∥h∥ and ∥ĥ∥ the radii of h and ĥ in the Poincaré ball.
Following Surı́s et al. (2021)‡, we define the hyperbolic uncertainty of an embedding ĥ as:

uĥ = 1− ∥ĥ∥ (4)

Note that the hyperbolic space volume increases with the radius, and the Poincaré distance is ex-
ponentially larger for embeddings closer to the hyperbolic ball edge, i.e. the matching of certain
embeddings is penalized exponentially more. Upon training, this yields larger uncertainty for more
ambiguous actions, cf. Sec. 4.4 and Appendix A. Next, we detail the self-paced effect on learning.

3.2.1 UNCERTAINTY FOR SELF-PACED LEARNING.

Learning proceeds by minimizing the Poincaré distance via stochastic Riemannian gradient de-
scent (Bonnabel, 2013). This is based on the Riemannian gradient of Eq. 3, computed w.r.t. the
online hyperbolic embedding h, which the optimization procedure pushes to match the target ĥ:

∇Lpoin(h,ĥ)=
(1−∥h∥2)2

2
√

(1−∥h∥2)(1−∥ĥ∥2)+∥h−ĥ∥2

(
h−ĥ

∥h−ĥ∥
+

h∥h−ĥ∥
1−∥h∥2

)
(5)

Learning is self-paced, because the gradient changes according to the certainty of the target ĥ, i.e.
the larger their radius ∥ĥ∥, the more certain ĥ, and the stronger are the gradients ∇Lpoin(h, ĥ),
irrespective of h. We further discuss the training dynamics of Eq. 5. Let us consider Fig. 2, plotting
for each training epoch the angle difference between h and ĥ, namely ∠(h − ĥ), and respectively
the quantities 1− ∥h∥2 and 1− ∥ĥ∥2:

‡The definition is explicitly adopted in their code. This choice differs from Khrulkov et al. (2020) which
uses the Poincaré distance, i.e. uĥ = 1 − Lpoin(ĥ, 0). However both definitions provide similar rankings of
uncertainty, which matters here. We regard this difference as a calibration issue, which we do not investigate.
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• At the beginning of training (Fig. 2 orange section), following random initialization, the
embeddings are at the edge of the Poincaré ball (1−∥h∥2, 1−∥ĥ∥2 ≈ 0). Assuming that the
representations of the two views be still not close (∥h− ĥ∥ > 0), the gradient∇Lpoin(h, ĥ)
vanishes (Guo et al., 2022b). The risk of stall is avoided by means of curriculum learning
(see Sec. 3.2.3), which considers only their angle for the first 50 epochs;

• At intermediate training phases (Fig. 2 yellow section), the radius of h is also optimized.
h departs from the ball edge (1 − ∥h∥2 > 0 in Fig. 2b) and it moves towards ĥ, marching
along the geodesic (∥h−ĥ∥ > 0). At this time, learning is self-paced, i.e. the importance of
each sample is weighted according to the certainty of the target view: the higher the radius
of ĥ, the larger the gradient. Note that the online embedding h is pushed towards the ball
edge, since ĥ is momentum-updated and it moves more slowly away from the ball edge,
where it was initialized. This prevents the embeddings from collapsing to trivial solutions
during epochs 50-200;

• The training ends (Fig. 2 light yellow section) when ĥ also departs from the ball edge, due
to the updates of the model encoder, brought up by h with momentum. Both h and ĥ draws
to the ball origin, collapsing into the trivial null solution.

Next, we address two aspects of the hyperbolic optimization: i. the use of negatives is not well-
defined in the hyperbolic space and, in fact, leveraging them deteriorates the model performance; ii.
the exponential penalization of the Poincaré distance results in gradients which are too small at early
stages, causing vanishing gradient. We address these challenges by adopting relatively positive pairs
only (Grill et al., 2020) and by curriculum learning (Bengio et al., 2009), as we detail next.

3.2.2 POSITIVE-ONLY LEARNING

The Poincaré distance is minimized when embeddings h and ĥ match, both in terms of angle (co-
sine distance) and radius (uncertainty). Matching uncertainty of two embeddings only really makes
sense for positive pairs. In fact, two views of the same sample may well be required to be known
to the same degree. However, repulsing negatives in terms uncertainty is not really justifiable, as
the sample uncertainty is detached from the sample identity. This has not been considered by prior
work (Ermolov et al., 2022), but it matters experimentally, as we show in Sec. 4.3.
We leverage BYOL (Grill et al., 2020) and learn from positive pairs only. Referring to Fig. 1(b), we
add a predictor head q to the online branch, to yield the predicted output embedding p. Next, p is
mapped into the hyperbolic space to get the embedding z which is pushed to match the target em-
bedding ẑ, reference from the stop-gradient branch, using Eq. 3. Note that this simplifies the model
and training, as it removes the need for a memory bank and complex negative mining procedures.

3.2.3 CURRICULUM LEARNING

The model random initialization yields starting (high-dimensional) embeddings h and ĥ with ran-
dom directions and high norms, which results in vanishing gradients, cf. (Guo et al., 2022b) and
the former discussion on training dynamics. We draw inspiration from curriculum learning (Bengio
et al., 2009) and propose to initially optimize for the embedding angles only, neglecting uncertain-
ties. The initial training loss is therefore the cosine distance of h and ĥ. Since the hyperbolic space
is conformal with the Euclidean, the hyperbolic and Euclidean cosine distances coincide:

Lcos(h, ĥ) =
h · ĥ
∥h∥∥ĥ∥

(6)

The curriculum procedure may be written as the following convex combination of losses:

LHYSP(h, ĥ) = α Lpoin(h, ĥ) + (1− α) Lcos(h, ĥ) (7)

whereby the weighting term α makes the optimization to smoothly transition from the angle-only to
the full hyperbolic objective leveraging angles and uncertainty, after an initial stage. (See Eq. 8 in
Appendix A).

§The reported MCC results refer to the ST-GCN encoder, for a fair comparison, i.e. this is adopted by all
methods in the table.
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Table 1: Results of linear, semi-supervised and finetuning protocols on NTU-60 and NTU-120.

Linear eval. Semi-sup. (10%) Finetune Additional Techniques

NTU-60 NTU-120 NTU-60 NTU-60 NTU-120 Extra Extra
Method xsub xview xsub xset xsub xview xsub xview xsub xset 3s Neg. Aug. Pos. ME

P&C Su et al. (2020) 50.7 76.3 42.7 41.7 - - - - - -
MS2L Lin et al. (2020b) 52.6 - - - 65.2 - 78.6 - - - ✓
AS-CAL Rao et al. (2021) 58.5 64.8 48.6 49.2 - - - - - - ✓
SkeletonCLR Li et al. (2021) 68.3 76.4 56.8 55.9 66.9 67.6 80.5 90.3 75.4 75.9 ✓
MCC§Su et al. (2021) - - - - 55.6 59.9 83.0 89.7 79.4 80.8 ✓
AimCLR Guo et al. (2022a) 74.3 79.7 63.4 63.4 - - - - - - ✓ ✓ ✓
ISC Thoker et al. (2021) 76.3 85.2 67.9 67.1 65.9 72.5 - - - - ✓ ✓ ✓
HYSP (ours) 78.2 82.6 61.8 64.6 76.2 80.4 86.5 93.5 81.4 82.0 ✓

3s-ST-GCN - - - - - - 85.2 91.4 77.2 77.1 ✓
3s-SkeletonCLR Li et al. (2021) 75.0 79.8 - - - - - - - - ✓ ✓
3s-Colorization Yang et al. (2021) 75.2 83.1 - - 71.7 78.9 88.0 94.9 - - ✓
3s-CrosSCLR Li et al. (2021) 77.8 83.4 67.9 66.7 74.4 77.8 86.2 92.5 80.5 80.4 ✓ ✓ ✓
3s-AimCLR Guo et al. (2022a) 78.9 83.8 68.2 68.8 78.2 81.6 86.9 92.8 80.1 80.9 ✓ ✓ ✓ ✓
3s-HYSP (ours) 79.1 85.2 64.5 67.3 80.5 85.4 89.1 95.2 84.5 86.3 ✓ ✓

Table 2: Results of linear, semi-supervised and finetuning protocols on PKU-MMD I

Linear eval. Semi-sup. (10%) Finetune

Method Joint Bone Motion 3s Joint Bone Motion 3s Joint Bone Motion 3s

MS2L Lin et al. (2020b) 64.9 - - - 70.3 - - - 85.2 - - -
SkeletonCLR Li et al. (2021) 80.9 72.6 63.4 85.3 - - - - - - - -
ISC Thoker et al. (2021) 80.9 - - - 72.1 - - - - - - -
AimCLR Guo et al. (2022a) 83.4 82.0 72.0 87.8 - - - 86.1 - - - -
HYSP (ours) 83.8 87.2 70.5 88.8 85.0 87.0 77.8 88.7 94.0 94.9 91.2 96.2

4 RESULTS

Here we present the reference benchmarks (Sec. 4.1) and the comparison with the baseline and the
state-of-the-art (Sec. 4.2); finally we present the ablation study (Sec. 4.3) and insights into the learnt
skeleton-based action representations (Sec. 4.4).

4.1 DATASETS AND METRICS

We consider three established datasets:

NTU RGB+D 60 Dataset (Shahroudy et al., 2016). This contains 56,578 video sequences divided
into 60 action classes, captured with three concurrent Kinect V2 cameras from 40 distinct subjects.
The dataset follows two evaluation protocols: cross-subject (xsub), where the subjects are split
evenly into train and test sets, and cross-view (xview), where the samples of one camera are used for
testing while the others for training.

NTU RGB+D 120 Dataset (Liu et al., 2020). This is an extension of the NTU RGB+D 60 dataset
with additional 60 action classes for a total of 120 classes and 113,945 video sequences. The samples
have been captured in 32 different setups from 106 distinct subjects. The dataset has two evaluation
protocols: cross-subject (xsub), same as NTU-60, and cross-setup (xset), where the samples with
even setup ids are used for training, and those with odd ids are used for testing.

PKU-MMD I (Chunhui et al., 2017). This contains 1076 long video sequences of 51 action cate-
gories, performed by 66 subjects in three camera views using Kinect v2 sensor. The dataset is eval-
uated using the cross-subject protocol, where the total subjects are split into train and test groups
consisting of 57 and 9 subjects, respectively.

The performance of the encoder f is assessed following the same protocols as Li et al. (2021):

Linear Evaluation Protocol. A linear classifier composed by a fully-connected layer and softmax
is trained supervisedly on top of the frozen pre-trained encoder.
Semi-supervised Protocol. Encoder and linear classifier are finetuned with 10% of the labeled data.
Finetune Protocol. Encoder and linear classifier are finetuned using the whole labeled dataset.
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Table 3: Ablation study on NTU-60 (xview). Top-1 accuracy (%) is reported.

HYSP w/ w/o w/o curr. w/ 3-stream hyper.
neg. hyper. learn. ensemble downstream

82.6 69.7 76.9 73.9 85.2 75.5

4.2 COMPARISON TO THE STATE OF THE ART

For all experiments, we used the following setup: ST-GCN (Yu et al., 2018) as encoder, Rieman-
nianSGD (Kochurov et al., 2020) as optimizer, BYOL (Grill et al., 2020) (instead of MoCo) as
self-supervised learning framework, data augmentation pipeline from (Guo et al., 2022a) (See Ap-
pendix B for all the implementation details).

NTU-60/120. In Table 1, we gather results of most recent SSL skeleton-based action recognition
methods on NTU-60 and NTU-120 datasets for all evaluation protocols. We mark in the table the
additional engineering techniques that the methods adopt: (3s) three stream, using joint, bone and
motion combined; (Neg.) negative samples with or without memory bank; (Extra Aug.) extra ex-
treme augmentations compared to shear and crop; (Extra Pos.) extra positive pairs, typically via
nearest-neighbor or cross-view mining; (ME) multiple encoders, such as GCN and BiGRU. The up-
per section of the table reports methods that leverage only information from one stream (joint, bone
or motion), while the methods in the lower section use 3-stream information.
As shown in the table, on NTU-60 and NTU-120 datasets using linear evaluation, HYSP outperforms
the baseline SkeletonCLR and performs competitive compared to other state-of-the-art approaches.
Next, we evaluate HYSP on the NTU-60 dataset using semi-supervised evaluation. As shown, HYSP
outperforms the baseline SkeletonCLR by a large margin in both xsub and xview. Furthermore, un-
der this evaluation, HYSP surpasses all previous approaches, setting a new state-of-the-art. Finally,
we finetune HYSP on both NTU-60 and NTU-120 datasets and compare its performance to the rel-
evant approaches. As shown in the table, with the one stream information, HYSP outperforms the
baseline SkeletonCLR as well as all competing approaches.
Next, we combine information from all 3 streams (joint, bone, motion) and compare results to the
relevant methods in the lower section of Table 1. As shown, on NTU-60 dataset using linear eval-
uation, our 3s-HYSP outperforms the baseline 3s-SkeletonCLR and performs competitive to the
current best method 3s-AimCLR. Furthermore, with semi-supervised and fine-tuned evaluation, our
proposed 3s-HYSP sets a new state-of-the-art on both the NTU-60 and NTU-120 datasets, surpass-
ing the current best 3s-AimCLR.

PKU-MMD I. In Table 2, we compare HYSP to other recent approaches on the PKU MMD I
dataset. The trends confirm the quality of HYSP, which achieves state-of-the-art results under all
three evaluation protocols.

4.3 ABLATION STUDY

Building up HYSP from SkeletonCLR is challenging, since all model parts are required for the
hyperbolic self-paced model to converge and perform well. We detail this in Table 3 using the linear
evaluation on NTU-60 xview:
w/ neg. Considering the additional repulsive force of negatives (i.e, replacing BYOL with MoCo)
turns HYSP into a contrastive learning technique. Its performance drops by 12.9%, from 82.6 to
69.7. We explain this as due to negative repulsion being ill-posed when using uncertainty, cf. Sec.3.2.
w/o hyper. Removing the hyperbolic mapping, which implicitly takes away the self-pacing learning,
causes a significant drop in performance, by 5.7%. In this case the loss is the cosine distance, and
each target embedding weights therefore equally (no self-pacing). This speaks for the importance of
the proposed hyperbolic self-pacing.
w/o curr. learn. Adopting hyperbolic self-pacing from the very start of training makes the model
more unstable and leads to lower performance in evaluation (73.9%), re-stating the need to only
consider angles at the initial stages.
w/ 3-stream ensemble. Ensembling the 3-stream information from joint, motion and bone, HYSP
improves to 85.2%.
Note that all downstream tasks take the SSL-trained encoder f , add to it a linear classifier and train
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Figure 3: (a) Bar plot of the average cosine distance among positive pairs for specific intervals of
uncertainty. The plot shows how cosine distance between embeddings and prediction uncertainty
after the pre-text task are highly correlated. (b, c, d) Visualizations of skeleton samples. Uncertainty
indicates the difficulty in classifying specific actions if they are characterized by less or more peculiar
movements (a) and (b) or unambiguous actions (c).

with cross-entropy, as an Euclidean network. Since HYSP pre-trains in hyperbolic space, it is natural
to ask whether hyperbolic helps downstream too. A hyperbolic downstream task (linear classifier
followed by exponential mapping) yields 75.5%. This is still comparable to other approaches, but
below the Euclidean downstream transfer. We see two reasons for this: i. in the downstream tasks the
GT is given, without uncertainty; ii. hyperbolic self-paced learning is most important in pre-training,
i.e. the model has supposedly surpassed the information bottleneck (Achille & Soatto, 2018) upon
concluding pre-training, for which a self-paced finetuning is not anymore as effective.

4.4 MORE ON HYPERBOLIC UNCERTAINTY

We analyze the hyperbolic uncertainty upon the SSL self-paced pre-training, we qualitatively relate
it to the classes, and illustrate motion pictograms, on the NTU-60 dataset.
Uncertainty as a measure of difficulty. We show in Figure 3a, the average cosine distance between
positive pairs against different intervals of the average uncertainty (1−∥h∥). The plot shows a clear
trend, revealing that the model attributes higher uncertainty to samples which are likely more diffi-
cult, i.e. to samples with larger cosine distance.
Inter-class variability. We investigate how uncertainty varies among the 60 action classes, by
ranking them using median radius of the class sample embeddings. We observe that: i) actions char-
acterized by very small movements e.g writing, lie at the very bottom of the list, with the smallest
radii; ii) actions that are comparatively more specific but still with some ambiguous movements (e.g.
touch-back) are almost in the middle, with relatively larger radii; iii) the most peculiar and under-
standable actions, either simpler (standing up) or characterized by larger unambiguous movements
(handshake), lie at the top of the list with large radii. (See Appendix A for complete list).
Sample action pictograms Figure 3 shows pictograms samples from three selected action classes
and their class median hyperbolic uncertainty: writing (3b), touch back (3c), and standing up (3d).
“Standing up” features a more evident motion and correspondingly the largest radius; by contrast,
“writing” shows little motion and the lowest radius.

5 LIMITATIONS AND CONCLUSIONS

This work has proposed the first hyperbolic self-paced model HYSP, which re-interprets self-pacing
with self-regulating estimates of the uncertainty for each sample. Both the model design and the
self-paced training are the result of thorough considerations on the hyperbolic space.
As current limitations, we have not explored the calibration of uncertainty, nor tested HYSP for the
image classification task, because modeling has been tailored to the skeleton-based action recogni-
tion task and the baseline SkeletonCLR, which yields comparatively faster development cycles.
Exploring the overfitting of HYSP at the latest stage of training lies for future work. This is now an
active research topic (Ermolov et al., 2022; Guo et al., 2021; 2022b) for hyperbolic spaces.
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6 ETHICS STATEMENT

The use of skeletal data respects the privacy of the pictured actors, to a large extent. In most cases,
privacy is affected when the actor’s appearance is required, from the identity could be inferred.
Although it might be possible to recognize people from their motion (e.g. recognition of their Gait),
this is not straightforward. This makes a potential misuse case for this work, however less likely,
compared to the use of images.

7 REPRODUCIBILITY STATEMENT

To ensure the complete reproducibility of our work, we have included in the abstract the link to the
official github repository of the paper. The README file contains instructions on how to download
the data, preprocess it, train the encoder self-supervisedly, and then evaluate the model on the various
protocols described in Sec. 4.1. The datasets are not included in the repository because they are
publicly available for download and use. Furthermore, Appendix B provides detailed information
about implementation details.
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A APPENDIX

Here we provide additional visualizations and analysis of the proposed model HYSP. First, we
present an analysis of the hyperbolic uncertainty, showing how it varies among different action
classes; then, we illustrate how it varies within the same action class with sample pictograms; fi-
nally, we illustrate the relation between action variability and prediction error.

Inter-class variability In support of the discussion in Sec. 4.5 in the main paper, in Fig. 4 we
present the complete list of the 60 action classes from the NTU-60 dataset, ordered according to
the median radius of their embeddings¶. Note that the radius serves as a valid ranking metric for
the median action uncertainty, however this work has not explored the calibration of the actual
uncertainty value (cf. the discussion on limitations in Sec. 5). Note in the figure how the radius ranks
well the level of peculiarity and unambiguous motion in the sequence, e.g. the pictured “Pushing”
action (with radius 0.9697) is easier to recognize than “Shake head” (with radius 0.7181).

In Fig. 4, actions with smaller movements (e.g. writing, eat meal, playing with phone, or brush-
ing teeth) have smallest radii, while actions with comparatively wider movements (e.g. touch-back,
hopping or wearing on glasses) are almost in the middle with relatively larger radii. Finally, actions
with the most peculiar and unambiguous movements, either simpler (standing up, throw) or involv-
ing two people (handshake, walking apart), lie at the top of the list with large radii. Fig. 5 shows
the pictograms of some selected action classes. For each action, we have selected a representative
sequence (with its radius close to the median of the class).

Intra-class variability We complement the above paragraph with qualitative examples of intra-
class variability, i.e. how the action embedding radius (as a proxy to its uncertainty) varies for
sequences within the same class.

As illustrated in Fig. 6, with reference to actions “Touch neck” (a, b, c) and “Staggering” (d, e, f),
some sequences are more ambiguous (6a, 6d), some are a little bit clearer (6b, 6e) and, finally, others
are more specific and easier to represent by the model (6c, 6f).

¶The median is adopted (instead of the mean) because it is a more robust estimator, less affected by outlier
values of radii.
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52. pushing other person
55. hugging other person

60. walking apart from each other
50. punching/slapping other person

56. giving something to other person
51. kicking other person

57. touch other person's pocket
58. handshaking

59. walking towards each other
53. pat on back of other person

54. point finger at the other person
6. pickup

14. wear jacket
15. take off jacket

16. wear a shoe
35. nod head/bow

17. take off a shoe
8. sitting down

48. nausea or vomiting condition
7. throw

42. staggering
43. falling

9. standing up (from sitting position)
24. kicking something

27. jump up
20. put on a hat/cap

41. sneeze/cough
13. tear up paper

45. touch chest (stomachache/heart pain)
25. reach into pocket
21. take off a hat/cap

22. cheer up
18. wear on glasses

26. hopping (one foot jumping)
4. brushing hair

46. touch back (backache)
37. wipe face

19. take off glasses
47. touch neck (neckache)

2. eat meal/snack
40. cross hands in front (say stop)

11. reading
49. use a fan (with hand or paper)/feeling warm

32. taking a selfie
1. drink water

10. clapping
44. touch head (headache)

28. make a phone call/answer phone
39. put the palms together

31. pointing to something with finger
5. drop

34. rub two hands together
23. hand waving

33. check time (from watch)
12. writing

3. brushing teeth
38. salute

30. typing on a keyboard
29. playing with phone/tablet

36. shake head

Ac
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n 
cla

ss

Figure 4: Median radius per action class is an indicator of the understandability of each action class
(vector graphics, please zoom-in for better readability).

• 0. drink water.

• 1. eat meal/snack.

• 2. brushing teeth.

• 3. brushing hair.

• 4. drop.

• 5. pickup.

• 6. throw.

• 7. sitting down.

• 8. standing up (from
sitting position).

• 9. clapping.

• 10. reading.

• 11. writing.

• 12. tear up paper.

• 13. wear jacket.

• 14. take off jacket.

• 15. wear a shoe.

• 16. take off a shoe.

• 17. wear on glasses.

• 18. take off glasses.

• 19. put on a hat/cap.

• 20. take off a hat/cap.

• 21. cheer up.

• 22. hand waving.

• 23. kicking something.

• 24. reach into pocket.

• 25. hopping (one foot
jumping).

• 26. jump up.

• 27. make a phone
call/answer phone.

• 28. playing with
phone/tablet.

• 29. typing on a key-
board.

• 30. pointing to some-
thing with finger.

• 31. taking a selfie.

• 32. check time (from
watch).

• 33. rub two hands to-
gether.

• 34. nod head/bow.

• 35. shake head.

• 36. wipe face.

• 37. salute.

• 38. put the palms to-
gether.

• 39. cross hands in front
(say stop).

• 30. sneeze/cough.

• 41. staggering.

• 42. falling.

• 43. touch head
(headache).

• 44. touch chest (stom-
achache/heart pain).

• 45. touch back (back-
ache).

• 46. touch neck (neck-
ache).

• 47. nausea or vomiting
condition.

• 48. use a fan (with
hand or paper)/feeling
warm.

• 49. punching/slapping
other person.

• 50. kicking other per-
son.

• 51. pushing other per-
son.

• 52. pat on back of other
person.

• 53. point finger at the
other person.

• 54. hugging other per-
son.

• 55. giving something
to other person.

• 56. touch other per-
son’s pocket.

• 57. handshaking.

• 58. walking towards
each other.

• 59. walking apart from
each other.
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(a) Pushing (Radius 0.9697) (b) Hugging (Radius 0.9672) (c) Walking apart (Radius 0.9692)

(d) Take off hat (Radius 0.8143) (e) Cheer up (Radius 0.8091) (f) Standing up (Radius 0.8538)

(g) Playing with phone (Radius
0.7679)

(h) Writing (Radius 0.7721) (i) Shake head (Radius 0.7181)

Figure 5: Visualization of inter-class variability through skeleton sequences with high (a,b,c), aver-
age (d,e,f), and low (g,h,i) median radius.

(a) Touch neck (Radius 0.722) (b) Touch neck (Radius 0.7976) (c) Touch neck (Radius 0.9554)

(d) Staggering (Radius 0.7725) (e) Staggering (Radius 0.873) (f) Staggering (Radius 0.9754)

Figure 6: Visualization of intra-class variability through skeleton sequences of the same class having
low (a,d), average (b,e), and high (c,f) radius.

Relation between intra-class variability and prediction error We complement the study on
action variability and uncertainty by relating those to the prediction error. In Fig. 7, we report the
confusion matrix, whereby actions have been arranged by the median radius of the class embeddings.
So, actions in the rows and columns are sorted according to their median radii (increasing left-
to-right and top-to-bottom), using the values from Fig. 4. One observes that lower radii (bottom
right corner) yield larger prediction errors among the actions. This is the case for actions such as
writing (#11) and brushing teeth (#2), i.e. these are more ambiguous/uncertain because they are
characterized by less distinct motion. (The action IDs are illustrated after the confusion matrix.)

B APPENDIX

Transfer Learning protocol Following Thoker et al. (2021), we additionally test models using
the transfer learning protocol. We leverage the pre-trained models on the NTU-60 and PKU-MMD
I datasets and finetune them (pre-trained encoder and a classifier jointly) on PKU-MMD II. HYSP
outperforms all competing methods in both transfers. Results are reported in Table 4.
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Figure 7: Confusion matrix among the actions of NTU60 (xview, single stream input, linear test
protocol, top-1 accuracy) arranged by decreasing order of the median radii of their class sample
embeddings (values from Fig. 4). Actions with lower radii (bottom-right corner) result in larger
prediction errors. Those actions (IDs listed above) are also more ambiguous and characterized by
less distinct motions.

Table 4: Results of transfer learning on PKU-MMD II, comparing the proposed HYSP against more
recent techniques (performance scores other than HYSP are reported from Thoker et al. (2021)).
The evaluation protocol follows Thoker et al. (2021): after training an encoder on the source dataset
(NTU-60 and PKU-MMD I), the pre-trained encoder and classifier are jointly fine-tuned on a target
dataset (PKU-MMD II) for action classification.

Transfer Learning (PKU-MMD II)

Method PKU-MMD I NTU-60

S+P Zheng et al. (2018) 43.6 44.8
MS2L Lin et al. (2020b) 44.1 45.8
ISC Thoker et al. (2021) 45.1 45.9
HYSP (ours) 50.7 46.3

Data pre-processing Following Li et al. (2021), we pre-process each skeleton sequence by re-
moving all invalid frames and resizing it to the length of 50 frames by linear interpolation. We use
two sets of augmentations, normal and extreme. Normal augmentations include Shear (Rao et al.,
2021) as the spatial and Crop (Shorten & Khoshgoftaar, 2019) as the temporal augmentation. Ex-
treme augmentations (Guo et al., 2022a) include four spatial: Shear, Spatial Flip, Rotate, Axis Mask,
two temporal: Crop, Temporal Flip, and two spatio-temporal augmentations: Gaussian Noise and
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Table 5: Top-1 accuracy varying batch size for the linear protocol. The dataset used in this table is
NTU-60 xview.

Batch size 512 256 128 64 32
Top-1 Acc. 78.3 79.9 81.2 82.2 82.6

Gaussian Blur. Normal augmentations are applied on the target, while extreme ones are applied on
the online sequences.

Self-supervised Pre-training The encoder f is ST-GCN (Yu et al., 2018) with output dimension
1024. Following BYOL (Grill et al., 2020), the projector and predictor MLPs are linear layers with
dimension 1024, followed by batch normalization, ReLU and a final linear layer with dimension
1024. The model is trained with batch size 512 and learning rate lr 0.2 in combination with Rie-
mannianSGD (Kochurov et al., 2020) optimizer with momentum 0.9 and weight decay 0.0001. For
curriculum learning, across all experiments, we set e1 = 50 and e2 = 100 in Eq. 8.

α(e) =


0 if e ≤ e1
e−e1
e2−e1

if e1 < e < e2
1 if e ≥ e2

(8)

Training on 4 Nvidia Tesla A100 GPUs takes approximately 8 hours.

Evaluation In downstream evaluation, the model is trained for 100 epochs using SGD optimizer
with momentum 0.9 and weight decay 0. For the linear evaluation, the base lr of the classifier is set
to 10, dropped by a factor 10 at epochs 60 and 80, keeping the encoder frozen. For semi-supervised
and fine-tuned evaluation, the base lr of the encoder and classifier is set to 0.1, dropped by a factor
10 at epochs 60 and 80. Exponential mapping is not adopted in evaluation phase.

C APPENDIX

Effect of batch size on linear protocol Here we report an interesting finding relating to the batch-
size hyper-parameter when testing with the linear protocol. We find that a lower batch size (32)
results in a considerable performance increase with respect to a larger one (512). For the NTU-60,
xview-subset, the top-1 accuracy grows from 78.3 to 82.6, resulting in a performance increase of
+4.3%. For this test, Table 5 reports performances of various batch sizes.

Effect of higher/lower uncertainty samples on training We experiment to compare the perfor-
mance variation between using harder positives only (i.e. the samples with higher uncertainty) Vs.
easier positives only (those samples with lower uncertainty). For the sake of comparison, we select
an equal number of hard and easy positives, namely the first and second half of the total samples,
after sorting them in decreasing order of uncertainty (as estimated upon the HYSP pre-training on
all samples). It turns out that learning with the harder examples yields the top-1 accuracy of 70.9%,
while the easier ones yield 74.5%. It is expected that both results are well below the performance of
the model trained on the full dataset (82.6% with the joint stream), because of using half the amount
of data. As for the performance discrepancy, we speculate that easier samples have an edge on the
half-sized training set, while harder samples better support when larger amount of data is available.
Let us also add that, as expected, the two new trainings have different durations: that one with harder
samples converges and overfits earlier (at epochs 400 and 500 respectively) than with easier (epochs
400 and 700 correspondingly).

D APPENDIX

Additional insights into the self-paced learning In Fig. 8, we provide further insights into Eq. 5,
the Riemannian gradient of the Poincaré loss, by illustrating the relation between the gradient magni-
tude and the uncertainty of the target-view embedding (1−∥ĥ∥). We consider the model checkpoint
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Figure 8: Bar plot of the average Riemannian gradient norm for specific intervals of uncertainty. The
plot experimentally explains the intuition behind Eq. 5 described in Sec 3.2.1. The gradient norm
and prediction uncertainty after the pre-text task are highly correlated. Learning them is self-paced,
because lower the uncertainty of ĥ and the stronger is the gradient.

for epoch 100, which belongs to the second (the main) stage of training (the analysis of other epochs
has produced similar statistics). Then we compute aggregate histogram statistics across all the train-
ing samples. The plot of Fig. 8 confirms the analysis of Sec. 3.2.1: the lower the uncertainty of the
target view embedding ĥ (left side of the plot), the larger the gradient. As a result, learning is self-
paced because the importance of each sample is weighted, via the respective gradient magnitude,
according to the level of certainty of the target-view embedding.
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