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Abstract

Robust overfitting has been observed to arise in adversarial training. We hypothe-
size that this phenomenon may be related to the evolution of the data distribution
along the training trajectory. To investigate this, we select a set of checkpoints
in adversarial training and perform standard training on distributions induced by
adversarial perturbation w.r.t the checkpoints. We observe that the obtained models
become increasingly harder to generalize when robust overfitting occurs, thereby
validating the hypothesis. We show the hardness of generalization on the induced
distributions is related to certain local property of the perturbation operator at each
checkpoint. The connection between the local property and the generalization on
the induced distribution is proved by establishing an upper bound of the generaliza-
tion error. Other interesting phenomena related to the adversarial training trajectory
are also observed.

1 Introduction

Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks where a carefully
designed perturbation may cause the network to make a wrong prediction [18, 7]. Many methods
have been proposed to improve the robustness of DNNs against adversarial perturbations [13, 24, 3],
among which PGD-based adversarial training (PGD-AT) [13] is arguably the most effective [1, 5]. A
recent work in Rice et al. [14] however revealed that PGD-AT can cause robust overfitting: a very
high robust error (i.e., error on the adversarially perturbed instances) appears on the testing set (e.g.,
44.19% on CIFAR-10) with a nearly zero robust error achieved on the training set. This is in sharp
contrast with the standard classification where a significantly lower standard error (i.e., error on the
unperturbed instances) can be achieved on the testing set (e.g., 4% on CIFAR-10).

Since its discovery, robust overfitting has attracted significant research attention. A great deal of
research effort has been spent on understanding its cause and various explanations have been proposed.
These include correlating robust overfitting with the flatness of the loss landscape [20, 17, 2],
the curvature of activation functions [16], the presence of label noise [4], the phenomenon of
memorization during adversarial training [6], training examples with small adversarial loss [22] and
the non-smoothness loss used in adversarial training [10]. A line of mitigation techniques are also
proposed based on the corresponding analysis, although each shown to only reduce the testing robust
error by a few percent. The work in Hameed and Buesser [8] also point out that the explanations
in Dong et al. [6] and Yu et al. [22] appear to conflict to each other. These indicate that the current
understanding of robust overfitting is still arguably far from being conclusive. The robust overfitting
can be due to a multitude of sources, the full picture remaining obscure.
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This work aims at further understanding robust overfitting. The inspiration of this work stems from
the recognition that along adversarial training, adversarial perturbation effectively induces a new data
distribution, say D̃t, at training step t. This distribution, different from the original data distribution
D, continuously evolves in a fashion that depends on the current model parameter θt. A question then
naturally arises: does robust overfitting have anything to do with this evolution of data distribution?
We conducted a set of experiments, in which we inspect whether how well a model trained on a sample
drawn from D̃t (under standard training) generalize. Our experimental results suggest that robust
overfitting may indeed correlates with generalization difficulty inherent in the induced distribution
D̃t and our further theoretical analysis reveals that such difficulty of generalization is governed by
a local “dispersion property” of the adversarial perturbation that induces D̃t. The conclusions are
validated by empirical observations across different datasets.

2 Adversarial training and induced distributions

Given an input space X ⊆ Rd, a label space Y := {1, 2, · · · ,K}, a data distribution D over X × Y ,
a model parameter space Θ ⊆ Rn and a loss function lθ : X × Y → R+ parameterized by θ ∈ Θ,
we define the robust population risk (or robust testing error)1 as:

Rrob
D (θ) := E(x,y)∼D

[
max

v∈B(x,ϵ)
lθ(v, y)

]
(1)

where we have chosen B(x, ϵ) := {t ∈ Rd : ∥t − x∥∞ ≤ ϵ} as the ∞-norm ball around x with
the radius ϵ. To find a model parameter θ that minimizes Rrob

D (θ) but only with access to a training
set S := {(xi, yi)}mi=1 drawn i.i.d from D, in practice, a natural choice is to minimize an empirical
version of Rrob

D (θ), that is to solve

min
θ∈Θ

Rrob
S (θ), where Rrob

S (θ) :=
1

m

m∑
i=1

max
vi∈B(xi,ϵ)

lθ(vi, yi) (2)

The most popular adversarial training technique for solving this problem is iterating between solving
the inner maximization via k-step projected gradient descend (PGD) and updating θ through stochastic
gradient descent. We now give a concise explanation of this procedure.

k-step PGD A k-step PGD can be described by k-fold composition of an one-step PGD mapping.
With a fixed choice of x ∈ X , y ∈ Y , θ ∈ Θ, the one-step PGD mapping Ax,y,θ : Rd → B(x, ϵ) is
defined as

Ax,y,θ(x
′) := ΠB(x,ϵ) [x

′ + λsgn (∇x′ lθ(x
′, y))] (3)

Here ΠB(x,ϵ) : Rd → B(x, ϵ) denotes the operation of projecting onto the set B(x, ϵ) and λ ∈ R+ is
a hyperparameter. The k-step PGD mapping Qx,y,θ : Rd → B(x, ϵ) is then

Qx,y,θ(x
′) := (Ax,y,θ ◦ · · · ◦ Ax,y,θ︸ ︷︷ ︸

k times

)(x′) (4)

Iterations of Adversarial Training In PGD-AT, the process of generating a perturbed example (v, y)
from an example (x, y) w.r.t a model parameter θ can be described as

v = Qx,y,θ(x+ ρ) (5)

where ρ is drawn from U([−ϵ,+ϵ]d), the uniform distribution over the d-dimensional cubic
[−ϵ,+ϵ]d. At iteration t, where the model parameter is θt, the solution of the inner maximiza-
tion maxv∈B(xi,ϵ) lθt(xi, yi) is taken as lθt(vi, yi), and the model parameter is updated by

θt+1 = θt − η∇θt

[
1

m

m∑
i=1

lθt (vi, yi)

]
(6)

It is worth noting that the stochastic mapping (5) that perturbs (x, y) to (v, y) depends on θ. Thus
the distribution of (v, y) = (Qx,y,θt(x + ρ), y) at iteration t depends on θt. We will denote this

1In practice, the robust population risk is estimated by computing the error rate on a given testing set with the
inner maximization approximately solved by some choice of adversarial attack algorithm.
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distribution by D̃θt , or simply D̃t, and refer to it as the (adversarial training) induced distribution at
iteration t. Then at iteration t, we may regard the perturbed examples {(vi, yi)} as an i.i.d. sample
from D̃t. Note that the distribution D̃t evolves with θt during training and in turn affects the update
of θt. This dynamic interplay implies that the evolution of D̃t may significantly affect the robust
generalization perform of θt.

3 Training on the induced distributions

The following experiments are conducted. First PGD-AT is performed on a training set S. Along
this process, for a prescribed set of training iterations (or “checkpoints”) {tj : j = 1, 2, . . . , N}, the
model parameter θtj at each checkpoint tj is saved. Then at each checkpoint tj , each example in
the training set S is perturbed according to (5) with θ = θtj , giving rise to the perturbed training
set S̃tj . The testing set T is also similarly perturbed, giving rise to perturbed testing set T̃tj . The
model is then retrained fully on S̃tj , using standard training (i.e, without perturbation) with random
initialization. The resulting model is tested on T̃tj . Note that in this setting, both S̃tj and T̃tj are i.i.d.
samples from D̃tj . We call these experiments “induced distribution experiment" (IDE) for the ease of
reference.

The experiments are conducted on MNIST [12], CIFAR10, CIFAR100[11] and a "scaled-down"
version of the ImageNet dataset [15] (referred as “Reduced ImageNet"). The detailed experimental
setup is introduced in Appendix 6. For each dataset, the experiments are repeated five times with
different random seeds. The experimental results are shown in Figure 1 where the green and
yellow curves individually plot the evolution of the robust training error Rrob

S (θt) and the robust
generalization gap |Rrob

D (θt)−Rrob
S (θt)|. The red curves in each figures plot the testing error of each

IDEs w.r.t different PGD-AT checkpoints. In Figure 1 (a)-(c), a significant rise in the average IDE
testing error is observed.2 This shift coincides with the onset of robust overfitting, where a substantial
increase in robust generalization gap appears. On the other hand, the experiments on MNIST (see
Figure 1 (d)) shows that the absence of robust overfitting coincides with the consistently low IDE
testing error. We also conduct additional experiments on CIFAR-10 to demonstrate this correlation
between the IDE testing error and the robust overfitting (see Appendix 7).
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(a) CIFAR-10
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(b) CIFAR-100
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(c) Reduced ImageNet
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(d) MNIST

Figure 1: Adversarial training and the corresponding IDE results across different datasets.

At this end, we have established that the increasing difficulty of generalization inherent in the induced
distribution plays an important role in robust overfitting. It remains curious what causes D̃t to become
harder to generalize in adversarial training. We provide a theoretical explanation in the next section.

4 Generalization properties of the induced distributions

As a start, we first introduce a notion characterizing a local property of the perturbation map Qx,y,θ,
through which D̃θ is induced.

2Note that D̃t is “not far” from the original data distribution D, since perturbation at every iteration is
restricted to a small neighborhood of x. It is interesting to observe that generalization on D̃t can become much
harder than D (e.g., 4% error rate on the original CIFAR-10 testing set can be easily achieved compared to
23.89% error rate from the IDE at the 120th checkpoint) despite D̃t and D are “close to" each other.
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Definition 1. Let (X ′, ∥ · ∥2) be a norm space equipped with the 2-norm. Given a map T : X → X ′

and an arbitrary bounded measurable subset C of X , we define the C-dispersion of T by

γC(T ) := Ex,x′∼U(C)∥T (x)− T (x′)∥22 (7)

where U(C) denotes a uniform distribution over C. Intuitively, this quantity measures on average
how far two random points in C spread after being mapped by T . Now restricting T = Qx,y,θ and
C = B(x, ϵ), we have

γB(x,ϵ)(Qx,y,θ) = Eρ,ρ′∼U([−ϵ,+ϵ]d)∥Qx,y,θ(x+ ρ)−Qx,y,θ(x+ ρ′)∥22.

For simplicity we rewrite this quantity as γ̃θ(x, y) and refer to it as the local dispersion of the
perturbation (family)3 Qθ at (x, y). In our experiments, to estimate γ̃θ(x, y), we sample 10 pairs of
(ρ, ρ′) and approximate the expectation by the sample mean.

We now consider a standard classification problem with D̃θ as the underlying data distribution over
X × Y and {(vi, yi)}mi=1 as i.i.d sample from D̃θ. Let F be a hypothesis class for this learning
problem, where each member f ∈ F is a function mapping X × Y to R. Note that the hypothesis
class F may have not be related to the model used for adversarial training in any way. In the following,

we show that for each f ∈ F , the generalization gap
∣∣∣∣ 1
m

m∑
i=1

f(vi, yi)− E(v,y)∼D̃θ
f(v, y)

∣∣∣∣ is related

to the level of γ̃θ(x, y).

Theorem 1. Let f ∈ F and suppose that f satisfies the following conditions: 1. Lipchitzness
of f over X : For any y ∈ Y , |f(x, y) − f(x′, y)| ≤ β∥x − x′∥2 for ∀x, x′ ∈ X . 2. Loss
boundedness: supx,y∈X×Y |f(x, y)| = B < ∞. 3. Boundedness of perturbation-smoothed loss:
supx,y∈supp(D) |Eρf(Qx,y,θ(x+ ρ), y)| = A < ∞, where supp(D) denote the support of distri-
bution D. Then for any τ > 0, with probability at least 1 − τ over the i.i.d. draws of sample
{(vi, yi)}mi=1 from D̃θ,

| 1
m

m∑
i=1

f(vi, yi)− Ef(v, y)| ≤ 2β√
m

√
EDγ̃θ(x, y) +

2A√
m

+ 2B

√
log 1

τ

2m
(8)

We leave the proof in Appendix 8. The theorem shows that a small generalization gap of f w.r.t to
the distribution D̃θ can be achieved when the average local dispersion EDγ̃θ(x, y) is small.
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(a) CIFAR-10
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(b) CIFAR-100

Figure 2: The evolution of EDγ̃t(x, y) w.r.t t and the IDE testing error for each D̃t.

To verify this result, we inspect the evolution of EDγ̃θt(x, y) (or EDγ̃t(x, y) for simplicity) along
the adversarial training trajectory and compare it with the IDE results. Figure 2 shows the results
evaluated on the testing sets of CIFAR-10 and CIFAR-100, where EDγ̃t(x, y) is getting larger,
correlating with the increasing difficulty of generalization on D̃t. The results are consistent with
Theorem 1. Similar experimental results are also observed on the other datasets (see Appendix 9).

The theoretical analysis underscores the critical role played by the local properties of Qx,y,θt in
affecting the generalization performance for D̃t (and potentially robust generalization of θt). In
Appendix 10, we present interesting findings regarding other local properties of Qx,y,θt beyond local
dispersion. This brings various additional insights towards the dynamic of adversarial training.

3The perturbation family refers to {Qx,y,θ : (x, y) ∈ X × Y}, denoted by Qθ
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5 Conclusion

In this paper, we show that adversarial perturbation induced distribution plays an important role
in robust overfitting. In particular, we observe experimentally that the increasing generalization
difficulty of the induced distribution along the training trajectory is correlated with robust overfitting.
Our theoretical analysis suggests that a key factor governing this difficulty is the local dispersion of
the perturbation. The theoretical result is validated by experiments. Remarkably, through this work,
we demonstrate that the trajectory of adversarial training plays an important role in robust overfitting.
Studying the dynamics of adversarial training is arguably a promising approach to developing deeper
understanding of this topic. In particular, we speculate that studying the effect of gradient-based
parameter update may provide additional insight.
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6 Detailed Experimental Setup

Reduced ImageNet Given that adversarial training is known to be significantly challenging and
computationally expensive on the full-scale ImageNet dataset, we draw inspiration from the approach
presented in Tsipras et al. [19] and made a Reduced ImageNet by aggregating several semantically
similar subsets of the original ImageNet, resulting in a total of 66594 images. This dataset is
then partitioned into a training set containing 5,000 images per class and a testing set containing
approximately 1,000 images per class. Compared to the restricted ImageNet in Tsipras et al. [19], our
dataset has a more balanced sample size across each classes. Table 1 illustrates the specific classes
from the original ImageNet that have been aggregated in our dataset.

Classes in the reduced ImageNet Classes in ImageNet

"dog" 86 to 90
"cat" (8,10,55,95,174)

"truck" 279 to 283
"car" 272 to 276

"beetles" 623 to 627
"turtle" 458 to 462
"crab" 612 to 616
"fish" 450 to 454

"snake" 477 to 481
"spider" 604 to 608

Table 1: The left column presents the classes within our reduced ImageNet dataset, with each class
being an aggregation of the corresponding classes from the full-scale ImageNet dataset, as depicted
in the right column.

Settings for adversarial training We use the following settings for adversarial training: For MNIST,
following the settings in Madry et al. [13], we train a small CNN model using 40-step PGD with
step size λ = 0.01 and perturbation radius ϵ = 0.3. For the other three datasets, we train the
pre-activation ResNet (PRN) model [9] and the Wide ResNet (WRN) model [23]. We use 5-step
PGD with ϵ = 4/255 for the Reduced ImageNet and 10-step PGD with ϵ = 8/255 for CIFAR-10 and
CIFAR-100 according to Rice et al. [14] in adversarial training. We set λ = 2/255 on CIFAR10 and
CIFAR100, λ = 0.9/255 on the reduced ImageNet. The settings on different datasets are summarized
in Table 2. Data augmentation is performed on these datasets during the training except for MNIST.
For CIFAR-10 and CIFAR-100 we follow the data augmentation setting in Rice et al. [14]. For
our reduced ImageNet, we adopt the same data augmentation scheme that is used on the restricted
ImageNet in Yang et al. [21].

MNIST CIFAR-10 CIFAR-100 Reduced ImageNet

model small CNN PRN18&WRN-34 WRN-34 PRN-50
optimizer Adam SGD SGD SGD
weight deacy None 5× 10−4 5× 10−4 None
batch size 128 128 128 128
ϵ 0.3 8/255 8/255 4/255
λ 0.01 2/255 2/255 0.9/255
number of PGD 40 10 10 5

Table 2: Settings in adversarial training across different datasets

Settings for IDE For the IDEs on each datasets, the settings are outlined in Table 3. It is important
to note that for each of the individual IDEs conducted on the same dataset, we maintain consistent
training settings. This includes using the same model architecture with identical model size and
the same level of regularization. This ensures a fair comparison of the IDE results obtained from
the same dataset. Furthermore, the model is trained to achieve zero training error in all the IDEs,
excluding the situation that the degeneration in model performance could be attributed to inadequate
training procedures.
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MNIST CIFAR-10 CIFAR-100 Reduced ImageNet

model small CNN WRN-34 WRN-34 PRN-50
optimizer Adam SGD SGD SGD
weight deacy None 5× 10−4 5× 10−4 5× 10−4

batch size 128 128 128 128
Table 3: Settings in the IDE across different datasets

7 Omitted IDE Results

Figure 3 shows results from additional experiments on CIFAR-10. In these experiments, we perform
adversarial training with different level of weight decay to control the level of robust overfitting.
Subsequently, IDEs are conducted for each such variant of adversarial training. In Figure 3, each
distinct color corresponds to a different weight decay factor utilized in adversarial training. Within
each color category, the dashed curves and the corresponding solid lines represent, respectively,
the robust generalization gaps and the IDE results associated with that specific adversarial training
variant. As anticipated, increasing the weight decay factor results in a notable reduction in the
robust generalization gap, while conversely, decreasing the weight decay factor leads to the opposite
effect. This is shown by the downward shift in the dashed curves across the three color categories.
Additionally, a clear synchronization can be observed between each pair of dashed and solid curves,
with lower dashed curves consistently corresponding to lower solid curves in the same color category.
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Figure 3: The outcomes of additional experiments conducted on CIFAR-10. In the experiments,
we perform adversarial training with various weight decay rates and conduct IDEs for each of the
adversarial training variant. The blue curves are reproduced from Figure1 (a), serving as a reference
for a clear comparison. The results further solidify the correlation between the robust overfitting and
the IDE testing error.

8 Proof for Theorem 1

We use the notations introduced in the main text. For shorter notations, let z = (x, y), u = (v, y)
and f(u) := f(v, y). We write Qx,y,θ as Qz , since our derivation does not explicitly depend on the
choice of θ.
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Denote by g(u1 · · ·um) :=

∣∣∣∣ 1
m

m∑
i=1

f(ui)− Ef(u)
∣∣∣∣. We have for any 1 ≤ j ≤ m

sup
u1,··· ,um,u′

j

∣∣g(u1, · · · , um)− g(u1, · · · , u′
j , uj+1, · · ·um)

∣∣ (9)

= sup
u1,··· ,um,u′

j

∣∣∣∣∣∣
∣∣∣∣∣ 1m

m∑
i=1

f(ui)− Ef(u)

∣∣∣∣∣−
∣∣∣∣∣∣ 1m

 m∑
i=1,i̸=j

f(ui) + f(u′
j)

− Euf(u)

∣∣∣∣∣∣
∣∣∣∣∣∣ (10)

≤ sup
u1,··· ,um,u′

j

∣∣∣∣∣∣ 1m
m∑
i=1

f(ui)− Euf(u)−
1

m

 m∑
i=1,i̸=j

f(ui) + f(u′
j)

+ Euf(u)

∣∣∣∣∣∣ (11)

= sup
uj ,u′

j

1

m

∣∣f(uj)− f(u′
j)
∣∣ (12)

≤ 1

m
sup
uj

|f(uj)|+
1

m
sup
u′
j

∣∣f(u′
j)
∣∣ (13)

≤2B

m
(14)

where the inequality (11) follows from the inverse triangle inequality. The inequality (13) and (14)
make use of the triangle inequality and the boundedness condition of f .

With the result derived above, by McDiarmid inequality, we have for all µ > 0

Pr [g(u1 · · ·um)− EUg(u1 · · ·um) ≥ µ] ≤ exp

(
−mµ2

B

)
This is equivalent to saying that with probability 1− τ , we have

g(u1 · · ·um) ≤ EUg(u1 · · ·um) + 2B

√
log 1

τ

2m
(15)

Given this, the following parts aim at constructing an upper bound for the term EUg(u1 · · ·um).

For shorter notation, let U := (u1, · · · , um), Z := (z1, · · · , zm), Γ := (ρ1, · · · , ρm), F (Z,Γ) :=

1
m

m∑
i=1

f(Qzi(xi + ρi), yi). We have

EUg(u1 · · ·um) (16)

=EU

∣∣∣∣∣ 1m
m∑
i=1

f(ui)− Ef(u)

∣∣∣∣∣ (17)

=EU

∣∣∣∣∣ 1m
m∑
i=1

f(ui)− EÛ

[
1

m

m∑
i=1

f(ûi)

]∣∣∣∣∣ (18)

≤EUEÛ

∣∣∣∣∣ 1m
m∑
i=1

f(ui)−
1

m

m∑
i=1

f(ûi)

∣∣∣∣∣ (19)

=EZEΓEẐEΓ̂

∣∣∣∣∣ 1m
m∑
i=1

f(Qzi(xi + ρi), yi)−
1

m

m∑
i=1

f(Qẑi(x̂i + ρ̂i), ŷi)

∣∣∣∣∣ (20)

=EZEΓEẐEΓ̂

∣∣∣F (Z,Γ)− EΓ̄F (Z, Γ̄) + EΓ̄F (Z, Γ̄)− F (Ẑ, Γ̂) + EΓ̃F (Ẑ, Γ̃)− EΓ̃F (Ẑ, Γ̃)
∣∣∣

(21)

≤EZEΓ

∣∣F (Z,Γ)− EΓ̄F (Z, Γ̄)
∣∣+ EẐEΓ̂

∣∣∣F (Ẑ, Γ̂)− EΓ̃F (Ẑ, Γ̃)
∣∣∣+ EZEẐ

∣∣∣EΓ̄F (Z, Γ̄)− EΓ̃F (Ẑ, Γ̃)
∣∣∣

(22)

=2EZEΓ

∣∣F (Z,Γ)− EΓ̄F (Z, Γ̄)
∣∣︸ ︷︷ ︸

1⃝

+EZEẐ

∣∣∣EΓ̄F (Z, Γ̄)− EΓ̃F (Ẑ, Γ̃)
∣∣∣︸ ︷︷ ︸

2⃝

(23)
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where (19) follows from Jensen’s inequality and (22) is by the triangle inequality. We now individually
construct upper bounds for the term 1⃝ and 2⃝.

For the term 1⃝, we have

2EZEΓ

∣∣F (Z,Γ)− EΓ̄F (Z, Γ̄)
∣∣ (24)

≤2EZEΓEΓ̄

∣∣F (Z,Γ)− F (Z, Γ̄)
∣∣ (25)

=2EZEΓEΓ̄

∣∣∣∣∣ 1m
m∑
i=1

f(Qzi(xi + ρi), yi)−
1

m

m∑
i=1

f(Qzi(xi + ρ̄i), yi)

∣∣∣∣∣ (26)

=
2

m
EZEΓEΓ̄EΣ

∣∣∣∣∣
m∑
i=1

σi (f(Qzi(xi + ρi), yi)− f(Qzi(xi + ρ̄i), yi))

∣∣∣∣∣ (27)

≤ 2

m
EZEΓEΓ̄

√√√√ m∑
i=1

|f(Qzi(xi + ρi), yi)− f(Qzi(xi + ρ̄i), yi)|2 (28)

≤ 2

m
EZEΓEΓ̄

√√√√ m∑
i=1

β2∥Qzi(xi + ρi)−Qzi(xi + ρ̄i)∥2 (29)

≤2β

m
EZ

√√√√EΓEΓ̄

[
m∑
i=1

∥Qzi(xi + ρi)−Qzi(xi + ρ̄i)∥2
]

(30)

=
2β

m
EZ

√√√√ m∑
i=1

EρEρ̄∥Qzi(xi + ρ)−Qzi(xi + ρ̄)∥2 (31)

=
2β

m
EZ

√√√√ m∑
i=1

γ(xi, yi) (32)

≤2β

m

√√√√EZ

[
m∑
i=1

γ(xi, yi)

]
(33)

=
2β

m

√√√√ m∑
i=1

Eziγ(xi, yi) (34)

=
2β√
m

√
Ezγ(x, y) (35)

Again, we apply Jensen’s inequality to get (25). In (27), we introduce Rademacher variables
Σ := (σ1, · · · , σm) (i.e., each random variable σi takes values in {−1,+1} independently with equal
probability 0.5). The Rademacher variables introduces a random exchange of the corresponding
difference term. Since Γ and Γ̂ are independently sampled from the same distribution, such a swap
gives an equally likely configuration. Therefore, the equality (27) holds. The inequality (28) is given
by Khintchine’s inequality. The inequality (29) makes use of the lipschitz condition of f . (30) is
derived from Jensen’s inequality and due to that square root is a concave function. (32) is by the
definition of the local dispersion of Qz . Again, we apply Jensen’s inequality to obtain (33). Equation
(34) and (35) follow from the settings that each zi = (xi, yi) is i.i.d.
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For the term 2⃝, we have

EZEẐ

∣∣∣EΓ̄F (Z, Γ̄)− EΓ̃F (Ẑ, Γ̃)
∣∣∣ (36)

=EZEẐ

∣∣∣∣∣EΓ̄

[
1

m

m∑
i=1

f(Qzi(xi + ρ̄i), yi)

]
− EΓ̃

[
1

m

m∑
i=1

f(Qẑi(x̂i + ρ̃i), ŷi)

]∣∣∣∣∣ (37)

=EZEẐ

∣∣∣∣∣ 1m
m∑
i=1

Eρ̄i
[f(Qzi(xi + ρ̄i), yi)]−

1

m

m∑
i=1

Eρ̃i
[f(Qẑi(x̂i + ρ̃i), ŷi)]

∣∣∣∣∣ (38)

=EZEẐ

∣∣∣∣∣ 1m
m∑
i=1

Eρ [f(Qzi(xi + ρ), yi)]−
1

m

m∑
i=1

Eρ [f(Qẑi(x̂i + ρ), ŷi)]

∣∣∣∣∣ (39)

=
1

m
EZEẐEΣ

∣∣∣∣∣
m∑
i=1

σi (Eρ [f(Qzi(xi + ρ), yi)]− Eρ [f(Qẑi(x̂i + ρ), ŷi)])

∣∣∣∣∣ (40)

≤ 1

m
EZEẐ

√√√√ m∑
i=1

|(Eρ [f(Qzi(xi + ρ), yi)]− Eρ [f(Qẑi(x̂i + ρ), ŷi)])|2 (41)

where equation (38) and (39) are due to each ρ̂i and ρ̃i is i.i.d. Again, we introduce
Rademacher variables at (40) and apply Khintchine’s inequality to get (41). For the term
|(Eρ [f(Qzi(xi + ρ), yi)]− Eρ [f(Qẑi(x̂i + ρ), ŷi)])|2, we have

|Eρf(Qzi(xi + ρ), yi)− Eρf(Qẑi(x̂i + ρ), ŷi)|2 (42)

≤(|Eρf(Qzi(xi + ρ), yi)|+ |Eρf(Qẑi(x̂i + ρ), ŷi)|)2 (43)

≤2 |Eρf(Qzi(xi + ρ), yi)|2 + 2 |Eρf(Qẑi(x̂i + ρ), ŷi)|2 (44)

where inequality (44) is derived by the inequality (a+ b)2 ≤ 2(a2 + b2). Returning to (41), we then
have

1

m
EZEẐ

√√√√ m∑
i=1

|(Eρ [f(Qzi(xi + ρ), yi)]− Eρ [f(Qẑi(x̂i + ρ), ŷi)])|2

≤ 1

m
EZEẐ

√√√√ m∑
i=1

2 |Eρf(Qzi(xi + ρ), yi)|2 +
m∑
i=1

2 |Eρf(Qẑi(x̂i + ρ), ŷi)|2 (45)

≤ 1

m

√√√√EZEẐ

[
m∑
i=1

2 |Eρf(Qzi(xi + ρ), yi)|2 +
m∑
i=1

2 |Eρf(Qẑi(x̂i + ρ), ŷi)|2
]

(46)

=
1

m

√√√√ m∑
i=1

2Ezi |Eρf(Qzi(xi + ρ), yi)|2 +
m∑
i=1

2Eẑi |Eρf(Qẑi(x̂i + ρ), ŷi)|2 (47)

=
2√
m

√
Ez |Eρf(Qz(x+ ρ), y)|2 (48)

≤ 2√
m

√
sup

z∈supp(D)

|Eρf(Qz(x+ ρ), y)|2 (49)

=
2A√
m

(50)

The final line is derived by the condition that sup
z∈supp(D)

|Eρf(Qz(x+ ρ), y)| = A. This gives the

final result
EUg(u1 · · ·um) ≤ 2β√

m

√
Ezγ(x, y) +

2A√
m

Plugging back to (15), we derive the bound in Theorem 1. This completes the proof. □
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Lastly we want to remark that the bound is not trivial, since we have

A = sup
z∈supp(D)

|Eρf(Qz(x+ ρ), y)|

≤ sup
z∈supp(D)

Eρ |f(Qz(x+ ρ), y)|

≤ sup
z∈X×Y

sup
∥ρ∥∞≤ϵ

|f(Qz(x+ ρ), y)|

≤ sup
v,y∈X×Y

|f(v, y)| = B

In fact, A could be much smaller than B, meaning the bound is tight.

9 Other Results towards Local Dispersion
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(c) Reduced ImageNet
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Figure 4: histograms of γ̃t on the CIFAR-10, CIFAR-100, Reduced ImageNet and MNIST testing set.
On CIFAR-10, CIFAR-100 and the Reduced ImageNet, the mode of the histogram shifts towards a
larger number, indicating the level of γ̃t increases along adversarial training. By sharp contrast, on
MNIST, the mode of the histogram shifts toward a smaller value. This behaviour matches the IDE
results and the generalization bound derived in Theorem 1.

We observed how the distribution of γ̃t(x, y) evolves along the adversarial training trajectory. Figure
4 plots the histogram of γ̃t(x, y) at three different training checkpoints on the testing sets of different
datasets. In CIFAR-10, CIFAR-100 and the Reduced ImageNet, where robust overfitting appears,
it is the clear that the distribution shifts to the right as adversarial training proceeds, indicating that
perturbation map Qθt becomes more locally dispersed as adversarial training goes on. On the other
hand, on MNIST the distribution of γ̃t(x, y) shifts to the left with the absence of robust overfitting
and constantly low IDE testing error observed. Figure 5 further demonstrate the correlation between
EDγ̃t(x, y) and the IDE testing results (i.e., the generalization performance of model trained on D̃t).
The experimental results match the conclusion in Theorem 1.
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(a) Reduced ImageNet
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Figure 5: The expectation EDγ̃t(x, y) evaluated on the Reduced ImageNet and MNIST testing set
(green curves) and the corresponding IDE results (red curves). In each figure, the green and red
curves are tightly correlated. This supports the conclusion in Theorem 1.

10 Other Implications

Our preceding theoretical analysis underscores the critical role played by the local properties of
Qx,y,θt in affecting the generalization performance for D̃t. This, in turn, inspires our curiosity to
investigate whether additional local properties, beyond local dispersion, also posses critical influences
on the generalization of D̃t. As such, we inspect the expected distance between the adversarial
examples generated by PGD and its clean counterparts, defined as

dθ(x, y) := Eρ∼U([−ϵ,ϵ]d)∥Qx,y,θ(x+ ρ)− x∥2 (51)

By triangle inequality, we notice that

Eρ,ρ′∼U([−ϵ,+ϵ]d)∥Qx,y,θ(x+ ρ)−Qx,y,θ(x+ ρ′)∥2 (52)

=Eρ,ρ′∼U([−ϵ,+ϵ]d)∥Qx,y,θ(x+ ρ)− x+ x−Qx,y,θ(x+ ρ′)∥2 (53)

≤2dθ(x, y) (54)

The term (52) is related to the local dispersion of Qx,y,θ despite that the definition of the local
dispersion computes the square of the l2-distance. Recall that we have observed an increase in the
level of local dispersion along the adversarial training trajectory. According to the inequality (54),
one might logically expect that the level of dθ(x, y) should also increase, meaning that the perturbed
data generated by x are getting not only more “dispersed" around x but also move farther from x.
However, our experimental findings present a contradictory result. Instead of an increase, we observe
a decrease in the level of dθ(x, y) during adversarial training. This unexpected trend suggests that the
perturbed data generated by x are, in fact, moving closer to the original data point x.

In our experiments, we estimate dθ(x, y) by computing the sample mean with 10 samples of ρ drawn
from U([−ϵ, ϵ]d). We analyze the dynamic behavior of dθt(x, y), which we refer to as dt(x, y) for
simplicity, along the adversarial training trajectory. In Figure 6 (a), we present histogram of dt(x, y)
for the CIFAR-10 testing set at three distinct training checkpoints. Notably, the histogram exhibits a
notable mode shift towards a smaller value, indicating a trend that as adversarial training proceeds,
the generated adversarial examples progressively approach their clean counterparts. The reduction
in the level of dt(x, y) along adversarial training is further observed by evaluating the expectation
EDdt(x, y) on the testing set (see Figure 6 (c), green curve), where a clear drop in EDdt(x, y) is
exhibited.

As a reminder, we previously noted that adversarial examples tend to become more dispersed around
their clean counterparts as training progresses. The experimental findings presented here shed light
on this phenomenon, suggesting that the growing dispersion is likely to be a result of the perturbation
angles expanding, while the perturbation magnitudes seem to have a lesser impact on the level of
dispersion.
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Figure 6: Experiments on the CIFAR-10 testing set. (a) and (b): histograms of dt(x, y) and Φt(x, y)
at different adversarial training epochs t. (c): The evolution of EDdt(x, y) and EDΦt(x, y) along
adversarial training trajectory. Combined with the results in Figure 2, an interesting phenomenon in
adversarial training is revealed: as the adversarial proceeds, the perturbed data generated by x are
getting closer to x and in the meanwhile getting more dispersed potentially due to the spreading of
perturbation angles.

To verify this conjecture, we evaluate the expected angle between a pair of perturbations generated
from (x, y), defined as

Φθ(x, y) := Eρ,ρ′∼U([−ϵ,+ϵ]d) cos
−1

(
(Qx,y,θ(x+ ρ)− x)T (Qx,y,θ(x+ ρ′)− x)

∥Qx,y,θ(x+ ρ)− x∥2∥Qx,y,θ(x+ ρ′)− x∥2

)
(55)

with the expectation estimated by computing the sample mean of 10 pairs of ρ, ρ′ drawn from
U([−ϵ,+ϵ]d). Figure 6 (b) plots the histograms of Φθt(x, y) (or Φt(x, y)) at three distinct checkpoint
t and Figure 6 (c) illustrate the evolution of EDΦt(x, y) with the yellow curve. The results present
an increase in the level of Φt(x, y), indicating a spreading of perturbation angles and less “aligned”
perturbations generated by each x during adversarial training. Similar experimental results have been
observed across other datasets. (see Figure 7, 8 and 9).

We conjecture that this wider spread of angles in adversarial perturbations is a consequence of
an intricate or "ragged" shape in the model’s decision boundary. In essence, the shape of the
decision boundary has a substantial influence on the direction of perturbations. For instance, the
perturbations generated by linear classifiers are always aligned due to that the decision boundary is
"smooth". Conversely, one would expect that a jagged or irregular decision boundary could result in
perturbations that are both more dispersed and less aligned. We speculate that the presented dynamics
of EDΦt(x, y) and EDγ̃t(x, y) can be explained as: during the early stages of adversarial training,
the adversarial perturbations generated by the data (x, y) exhibit a higher degree of alignment due to
the initial smoothness of the model’s decision boundary. This results in a smaller level of EDΦt(x, y)
and EDγ̃t(x, y). However, as training progresses, the decision boundary is twisted, in order to fit or
"memorize" the training data, causing the perturbations to become less aligned and more dispersed,
leading to the rise in the level of EDΦt(x, y) and EDγ̃t(x, y). Consequently, the increasing dispersion
or spread of angles may serve as an indicative measure for the degree of irregularity present in the
decision boundary.

Our observation of the increasing dispersion and spreading angles of adversarial perturbations along
adversarial training is, to our best knowledge, a novel finding. This discovery may provide valuable
insights into comprehending the dynamic of adversarial training and the phenomenon of robust
overfitting.
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(a) CIFAR-100
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(b) Reduced ImageNet
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Figure 7: histograms of dt on the CIFAR-100, Reduced ImageNet and MNIST testing set. The
reduction in the level of dt along adversarial training is shown in the figures.
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Figure 8: histograms of Φt on the CIFAR-100, Reduced ImageNet and MNIST testing set. It shows
an increment in the level of Φt along adversarial training.
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Figure 9: The evolution of EDdt(x, y) and EDΦt(x, y) along adversarial training evaluated on the
testing set of CIFAR-100, Reduced ImageNet and MNIST. The behaviours of the two quantities are
similar with those on CIFAR-10.
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