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ABSTRACT

Despite extensive research, recovering PDE expressions from experimental ob-
servations often involves symbolic regression. This method generally lacks the
incorporation of meaningful physical insights, resulting in outcomes lacking clear
physical interpretations. Recognizing that the primary interest of Machine Learn-
ing for Science (ML4Sci) often lies in understanding the underlying physical
mechanisms or even discovering new physical laws rather than simply obtaining
mathematical expressions, this paper introduces a novel ML4Sci task paradigm.
This paradigm focuses on interpreting experimental data within the framework
of prior physical hypotheses and theories, thereby guiding and constraining the
discovery of PDE expressions. We have formulated this approach as a nonlinear
mixed-integer programming (MIP) problem, addressed through an efficient search
scheme developed for this purpose. Our experiments on newly designed Fluid Me-
chanics and Laser Fusion datasets demonstrate the interpretability and feasibility
of this method.

1 INTRODUCTION

Partial Differential Equations (PDEs) serve as powerful and pervasive tools for comprehending and
describing intricate systems across physics, engineering, applied mathematics, and various other
domains. Instead of solving PDEs, there has been a growing interest in the task of recovering unknown
mathematical equations from observed data, especially within the machine learning community.
This endeavor is particularly valuable when the observed data is noisy and imperfect, mirroring
real-world conditions. However, existing techniques ranging from reinforcement learning (Du
et al., 2023), genetic programming (Chen et al., 2022), and sparse regression (Wentz & Doostan,
2023) exhibit a heightened sensitivity to data noise. It is crucial to note that previous research
has simply focused on producing a combination of mathematical symbols and operations, while
disregarding their fundamental physical implications. In practice, users of PDE recovery tools
typically seek to grasp the fundamental physical mechanism rather than merely fitting mathematical
models, let alone their fragility to noise. Additionally, note that the field has yet to uncover any
new physical laws or PDE systems through the existing literature on PDE discovery. Based on our
understanding, physicists typically do not require ’re-discovering’ expressions, as they already possess
well-established expressions in most scenarios. Furthermore, even when they identify new expressions
through purely data-driven methods, interpreting these findings within a physics framework remains
essential. Ultimately, their fundamental pursuit lies in the physical interpretation of observed data.

To bridge the gap between mathematical expressions and physical interpretability for data-driven PDE
recovery, we propose an innovative strategy. It leverages physical hypotheses and laws to interpret
observational data to uncover new expressions that enhance our understanding of observed systems.
These task paradigms and algorithms are compared in Figure 1. Take fluid dynamics for example,
our PhysPDE paradigm is based on the conservation of mass, momentum, and energy, and candidate
hypotheses such as constant viscosity (Newtonian fluid). The output of our paradigm is PDEs along
with selected hypotheses. This paradigm shift seeks to align mathematical models more closely with
their underlying physical realities, facilitating a deeper comprehension of complex phenomena.

Possible applications of our method include inferring key factors affecting the efficiency of heat
exchangers (e.g., turbulence) (Wang et al., 2023) and aiding in the diagnosis of physical phenomena
in nuclear fusion that cannot be directly measured (e.g., magnetic fields) (Peebles et al., 2022). In
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Figure 1: Comparison of different PDE learning paradigms. This paper focuses on the PDE Interpre-
tation setting in the bottom box, which, to our best knowledge, is in contrast to existing literature
devoted to the other two settings. Although a pipeline of existing algorithms can interpret PDE data to
some extent, we propose a stronger integrated approach directly solving the combinatorial problem.

these applications, existing mathematical formulas and hypotheses are relatively comprehensive and
do not require "rediscovery." What scientists need is to use this knowledge to explain experimental
results.

The highlights of this paper include:

1) New Task Formulation: Moving beyond the prevalent regression of PDE expressions in existing
literature, we introduce a new ML4Sci task, which standing upon the shoulders of a suite of basic
physical laws and hypotheses, employing machine learning algorithms to identify the hypothesis that
best aligns with the data.

2) New Algorithms: Besides a simple pipeline of existing models, we design a new integrated
algorithm for the task. We formulate the task above as a bi-level mixed-integer optimization problem,
consisting of two layers: hypothesis selection at the outer level and expression recovery at the inner
level.

3) New Datasets and Experiments Design: Following the proposed paradigm, we present two new
datasets, Fluid Mechanics and Laser Fusion. Experiments across multiple scenarios demonstrate the
feasibility and effectiveness of our approach.

2 RELATED WORKS

PDE Solving. Solving PDEs that describe complex system dynamics is crucial in scientific disciplines
like computational physics. The goal is to find a solution function that satisfies the equations given
initial and boundary conditions. Representative datasets include PDEBench (Takamoto et al., 2022),
PDEArena (Gupta & Brandstetter, 2022) , and CFDBench (Luo et al., 2023). Classic methodologies,
including finite difference (Strikwerda, 2004), finite volume (Eymard et al., 2000), and finite element
(Zienkiewicz et al., 2005), concentrate on devising numerical schemes that simplify the problem
into linear equation systems. Deep-learning-based solvers such as PINN (Raissi et al., 2019) and
DeepBSDE (Han et al., 2018) have been emerging, extending the capability of numerical solvers.

PDE Discovery. In the domain of physics phenomenology, the pivotal problem is deducing the
mathematical symbolic expressions (i.e. symbolic regression) of PDE systems from observed
data. There is currently no specifically designed PDE Discovery Benchmark. However, DynaDojo
(Bhamidipaty et al., 2024), as a general-purpose PDE Benchmark, can be used to some extent
for this purpose. Data-driven methodologies, including reinforcement learning (Du et al., 2023),
genetic programming (Xu et al., 2020; Chen et al., 2022), and sparse regression (Rudy et al., 2017;
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Figure 2: Overview of the proposed hypothesis selection framework, selecting hypothesis and
constructing PDE system from both physics theory and observational data. The constructed PDE
system consists of equations from selected physics hypotheses and newly discovered expressions.

Messenger & Bortz, 2021; Wentz & Doostan, 2023), have been prominently applied to this end.
These approaches adeptly identify the mathematical constructs of PDEs but frequently overlook the
integration of physical principles.

PDE Interpretation. A critical examination of existing data-driven methodologies for PDE discovery
underscores a pervasive limitation: their insufficient focus on ensuring interpretability within a
concrete scientific theory framework (e.g. physical theorems). This oversight, as highlighted by Zhang
et al. (2023) and Faroughi et al. (2023), manifests a pronounced divide between mathematical
precision and physical interpretability. Further exploration by Cornelio et al. (2023) and Cory-
Wright et al. (2023) accentuates this concern, advocating for a deeper comprehension of the physical
underpinnings of equations beyond their mere mathematical representation. Despite these insights, to
the best of our knowledge, a universally recognized methodology for the systematic interpretation of
nonlinear PDE system data remains elusive.

Table 1: Comparisons with related PDE solving, discovery, and interpretation tasks in physics
(Takamoto et al., 2022; Raissi et al., 2019; Bhamidipaty et al., 2024; Rudy et al., 2017). To our
knowledge, our work provides the first dataset and algorithm for the PDE interpretation task.

Task Physics Sub-discipline Dataset/Tool Algorithm

PDE Solving Computational Physics PDEBench PINN
PDE Discovery Phenomenology DynaDojo PDE-FIND
PDE Interpretation (ours) Theoretical Physics PhysPDE HSTS

3 PDE INTERPRETATION TASK FORMULATION

This study introduces PDE interpretation, a novel task aimed at the recovery of physics hypotheses
as well as novel expressions from observational data. The cornerstone named Hypothesis Selection,
distinguished by its capacity to conceptualize systems of PDEs as amalgamations of physics hypothe-
ses and theories, effectively narrows the chasm between physical understanding and mathematical
depiction. The subsequent section delineates the technical aspects of our problem formulation and
solution strategy.

Our approach is grounded in two fundamental physics principles: (i) physics formulas, like
PDEs/ODEs, stem from physics laws, and (ii) physics laws are derived from hypotheses and basic the-
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ories (Carcassi & Aidala, 2022). We aim to recover valid PDEs that adhere to underlying hypotheses,
moving beyond mere data fitting. We define our task as selecting the best-fit set of hypotheses from a
"hypothesis universe" to fit a system of PDEs, conceptualized as a two-level min-min optimization
problem.

min
h,θh

min
m,θm

ℓ(X,Eqh,m,θh,θm)

s.t. C(h,m,θh,θm) ≥ 0

Outer level (hypothesis selection): The outer optimization targets the decision variable h and
physics parameter θh. h is a binary vector encoding the selection of physics hypotheses, while θh is
a vector comprising undetermined coefficients and constants of the system.

Inner level (symbolic regression, optional): Selecting the "discover new partial expressions"
hypothesis triggers the inner optimization level, aimed at discovering new expressions within a PDE
expression segment. At this level, m, being an integer vector, denotes selections from a library of
basis functions or operations. These choices instantiate a mathematical expression, characterized by
coefficients represented by the real vector θm.

The combined decisions h,m and parameters θh,θm, informed by physics prior knowledge, collec-
tively define the PDE system Eq and its constraints C.

The abstract loss function is defined as:

ℓ(X,Eq) = MSR(X,Eq) + Reg(Eq). (1)

We combine the mean squared residual (MSR) between observation and recovered system and
regularization (Reg) to enforce simplicity per Occam’s razor principle (Walsh, 1979). For brevity,
the arguments of both Eq and C are omitted here and below. The constraints C encode the physical
validity constraints of variables, for example, the mutual exclusiveness of hypotheses, and bounds of
parameters.

This problem framework is versatile, accommodating various solvers. We next provide a detailed
account of our specific definition and algorithmic approach.

Decision Forest. The hypotheses exhibit complex inter-dependencies, such as mutual exclusiveness
and hierarchy. We opt to represent these dependencies through a decision forest rather than as
constraints in the optimization problem Eq. 1, aiming to improve human readability and streamline
the search process.

We define a decision as a set of choices among a group of mutually exclusive hypotheses. For
instance, the decision labeled Is_Newtonian encompasses two hypotheses, Newtonian_Fluid and
Non_Newtonian Fluid. Subsequent decisions are defined as those influenced by the choices made in
the preceding decisions. For instance, the decision Type_Non_Newtonian is induced by the second
choice made in the Is_Newtonian decision. Based on the definitions above, we organize decisions
hierarchically as a forest, with decisions being nodes. Subsequent decisions are marked as child
nodes of the preceding decisions. Nodes lacking parent nodes are designated as root nodes.

Under this framework, a closed subset of physics hypotheses constitutes a tree, while the aggregate
of these subsets forms a forest. A root-to-leaf path in any tree represents a partial decision instance,
and the ensemble of such paths across all trees defines a complete decision instance. Given the forest,
there is a one-to-one mapping between the full decision instance and a valid hypothesis vector h.

A complete decision, combined with existing physics theorems, can uniquely derive a system of
PDEs. We automatically implement such derivation via the symbolic computing tool (Meurer et al.,
2017). This encoding scheme allows for a comprehensive representation of physical concepts and
their mathematical counterparts. Figure 2 illustrates an example, showcasing the decomposition of
compressible Navier-Stokes equations into two hypotheses: Compressibility and Newtonian fluid.
Figure 3 visualizes the details of PDE construction from hypotheses.

The decision forest is a simplified model postulating that each decision node has a single parent
and that hypotheses across decisions are mutually inclusive. In fluid mechanics, exceptions to these
hypotheses are addressed with an ad-hoc filter function for simplicity. Modeling these exceptions
accurately may require a more sophisticated structure, such as a decision graph, which we reserve for
future work.
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Figure 3: Given observational data and physics theories including 1) laws of physics, 2) physical
quantities, and a search space of hypotheses forest (not shown here), our algorithm can provide a best-
fit set of 3) selected hypotheses and 4) PDE system, possibly with newly discovered expressions. The
example PDE is an incompressible version of our S2 Fluid Mechanics dataset. A brief introduction
to fluid mechanics and the construction of these equations is provided in Appendix C

Loss Function. The loss function ℓ is defined with:

MSR(X,Eq) =
∑
i,j

[Pool(Eqj,L(Xi)− Eqj,R(Xi))]
2

size(X)
, (2)

Reg(Eq) = λEq size(Eq) + λh size(h) + λθh
∥θh∥0

+ λm∥m∥0, (3)

where λ denotes hyperparameters. It calculates the residual as the averaged squared differences
between the left L and right R sides of each equation Eqj , among all collocation points Xi. Average
pooling Pool - a simple weak-form (Messenger & Bortz, 2021), serves as a de-noising technique. The
regularization term Reg(Eq) incorporates the equation system’s complexity of hypothesis selection
and new expression discovery. The former is quantified by a weighted sum of the total equation
size, decision vector size, and count of active physics parameters while the latter is measured by the
sparsity of the chosen basis functions or operators.

Both the outer hypothesis selection and inner symbolic regression problems have exponentially large
search spaces, necessitating specially designed baseline algorithms. We developed a Monte Carlo
Tree Search (MCTS)-inspired algorithm called Hypothesis Selection Tree Search (HSTS) for the
outer problem, and a Sequential Threshold OPtimization (STOP) algorithm for the inner problem.
Due to space limitations, detailed designs of these algorithms are provided in Appendix F.

4 FLUID MECHANICS DATASET AND EXPERIMENTS

4.1 EXPERIMENT SETUP

Physics Hypotheses. In our research, while the proposed methodological framework is adaptable
across multiple physics domains, we specifically target fluid mechanics, a focal area within learning-
based PDE discovery studies. We design 16 decision points across 38 hypotheses based on textbook
(Batchelor, 1967), encapsulating fundamental physics concepts such as flow regimes, compressibility,
constitutive equations, and non-isothermal flows. The validity of our design is also acknowledged by
the mathematician expert in this area. We also explore hypotheses concerning new expressions of
constitutive equations. Details on the complete set of hypotheses are provided in Appendix A.

Scenarios. We design three different scenarios constructed from three representative sets of hypothe-
ses: 1) S1: Newtonian Fluid, 2) S2: Non-Newtonian Fluid with Unknown Constitutive Equation
(Figure 3), 3) S3: Non-isothermal Flow
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Scenario S1 elaborates on the derivation of the Navier-Stokes equations, which are foundational
to fluid mechanics (Constantin & Foiaş, 1988). The flow is set to be compressible, isothermal,
non-turbulent, and non-gravity. The viscosity is constant (Newtonian fluid assumption) µ = 0.01.
Scenario S2, a variation of S1, evaluates the model’s capability of discovering new expressions
by substituting the constitutive equation µ = 0.01 in S1 with an unknown new expression µ =
0.01 + 0.01 cos(γ)/γ + 0.01 log(γ), where γ is the shear rate. S3 deviates from S1 by switching to
the non-isothermal hypothesis. It leads to thermal-hydraulic equations, which are widely applied
in nuclear technology (Zhang et al., 2018) and geophysics (Bächler & Kohl, 2005). The derived
PDEs for these scenarios are solved via COMSOL Multiphysics 1, a commercial simulation software.
Observable physics variables include velocity, density, pressure, and temperature, each modeled as
two-dimensional in both space and time. For each scenario, datasets for training and testing are
generated under varying boundary conditions, ensuring identical sizes.

Performance Metrics. To evaluate the effectiveness of hypothesis selection and PDE term discovery,
we use the recall and precision metric. The recall is defined as the percentage of the number of
correctly learned decision over the true decision, R = ∥blearn ⊙ btrue∥0/∥btrue∥0, and precision is
P = ∥blearn ⊙ btrue∥0/∥blearn∥0, where ⊙ is element-wise product. Vectors b are binary vectors
denoting the selection of hypotheses or PDE terms. Accuracy is measured by MSR on dataset splits,
and efficiency by training wall-time.

4.2 DATA GENERATION AND SAMPLING

S1 and S2. The study investigates fluid dynamics within a rectangular domain of dimensions
1m × 0.3m, with the fluid initially set to a density of 1 kg/m3, x-velocity sin(πx), y-velocity
sin

(
πy
0.3

)
, and pressure at zero. Boundary conditions are implemented as no-slip walls, with the

bottom wall moving left at 1m/s, and the top wall moving right at 1m/s for Scenario 1 (S1) and 2m/s
for Scenario 2 (S2), with pressure fixed at zero at the bottom-left corner. The simulation employs a
finite-element method on a mesh resulting in approximately 30,000 degrees of freedom, with results
sampled on a 100× 100 grid over a temporal range(0, 0.004, 1).

S3. This scenarios is adapted from COMSOL Application Gallery 2. The study models fluid dynamics
within a 0.005m × 0.04m rectangular domain, initially set with a density of 997 kg/m3, velocity
of zero, pressure ρg(0.04− y), and temperature 293.15K. A half-circle heater of radius 0.0025m,
positioned at (0, 0.015), heats the fluid. Boundary conditions are periodic on the left and right, an
inlet at the bottom with a 0.005m/s inflow velocity and 293.15K temperature, and an outlet at the
top designed to suppress backflow. Heater temperatures are set to 303.15K in Scenario 1 (S1) and
323.15K in Scenario 2 (S2). The numerical solution employs a finite-element method focusing on
the upper half of the rectangular domain, encompassing approximately 25,000 degrees of freedom.
Results are sampled over a 50× 100 spatial grid within a temporal range (1, 0.005, 3).

4.3 HYPER-PARAMETERS SETTING

Loss The pooling size is 5. The coefficients are λEq = 10−7, λθh
= 10−5, λh = 10−5, λm = 10−5.

HSTS For S1 and S2, the maximum number of rollout is 30, the ϵ of risk-seeking object is 0.5;
while in the S3, the the maximum number of rollout is 60 and ϵ = 0.05. The bound lmin = 0.0001,
lmax = 1. The exploration weight in the UCT is 1. The 10-core multi-processing is applied at node
level, using the virtual loss technique.

STOP We set the maximum iteration depth at 3, the l2 regularization λθm = 0.01, and the weight
tolerance T = 0.005. The parameters θm are scaled to [0.05, 0.05] for numerical stability.

PDE Parameter Estimation The optimization algorithm is SLSQP implemented in SciPy (Virtanen
et al., 2020), with a timeout of 5 minutes for S1 and S2, and 15 minutes for S3. The parameters are
first initialized from normal distribution N(0,1). For parameters with different orders of magnitude,
for example, the heat capacity at constant pressure Cp ∈ [4100, 4300], we further add biases to the
initialization, e.g. a bias of 4200 in Cp case. The biases and parameter ranges are informed by physics
knowledge.

1www.comsol.com
2https://www.comsol.com/model/heat-transfer-by-free-convection-122
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Experiment Protocols. We perform 5-fold cross-validation on the training set for performance
estimation, highlighting the top three decisions with the highest average validation loss. The hyper-
parameters of the search algorithm are chosen without tuning, and variable initialization θ follows
a normal distribution. Computations are executed on a remote server using 10 CPU cores con-
currently. For the STOP algorithm, the function library comprises second-order polynomials of
{sin, cos, log, pow(−1)}. To restrict the wall-time of ES, we limit its maximum wall-time to 24
hours, only include the new expression hypothesis in the search space in S2, and incorporate STOP
for internal expression discovery. Other numerical settings, including hyper-parameter configurations,
are detailed in Appendix 4.3.

Baselines. As there is no baseline directly available for our hypothesis selection problem, we designed
an Exhaustive Search (ES) baseline that randomly enumerates the search space to demonstrate the
efficiency of the proposed search algorithm. A variant of ES is ES-TL (Exhaustive Search with Time
Limit), which terminates the ES under the same runtime as our method. Also, the performance of
the Ground Truth (GT) hypothesis is reported to evaluate the accuracy of parameter estimation. For
the PDE symbolic regression baseline, we adopt the widely used PDE-FIND (Rudy et al., 2017),
which is still in active updates and maintenance by the open-source community. We have also tried
other more recent peer methods like genetics algorithm based SGA-PDE (Chen et al., 2022) and
reinforcement learning based DISCOVER (Du et al., 2023) yet it remains in vain and these methods
perform less competitive than PDE-FIND in our challenging setting. We further apply GPT-4o
(Achiam et al., 2023), a commonly used Large Language Model (LLM), to extract physics properties
from the underlying system. In our pre-experiment, GPT-4o alone cannot infer the physics hypothesis
directly from raw data, possibly due to the large input size and combinatorial nature of the task. Thus,
we fed PDE expressions (discovered by SINDy or configured manually) and physics hypothesis
priors into GPT-4o to infer the correct physics hypothesis, corresponding to the pipelined approach in
the Figure 1.

4.4 RESULTS AND DISCUSSION

We evaluate our framework by answering the following research questions (RQs):

RQ1: Does HSTS select the hypotheses correctly and efficiently?

RQ2: Is HSTS able to recover known PDEs and to discover unknown expressions?

RQ3: Do the PDEs recovered by HSTS have acceptable interpolation and extrapolation accuracy?

RQ4: How does the pipelined baseline compare with the HSTS (integrated approach) in physics
interpretation?

(RQ1) Hypotheses Selection. Table 2,3, and 4 resent the hypothesis selection performance compari-
son results of HSTS with the ES baseline. With 3500 valid decision combinations in the search space,
HSTS successfully identifies nearly all hypotheses across all scenarios, achieving the same top-1
recall and precision as ES, demonstrating its superior capability in terms of physics interpretability.
Notably, HSTS’s training wall-time is significantly lower than ES’s, by an order of magnitude,
highlighting the efficiency of our search scheme. In Table 2, HSTS outperforms ES in top-2 and top-3
performance metrics, which is attributed to HSTS’s strategy of extending the search space locally,
resulting in a clustering of visited nodes and similar top results. For instance, in scenario S1, HSTS’s
top-1 result is the correct solution, with its top-2 and top-3 variations differing by only one or two
hypotheses. In contrast, ES’s global search approach tends to yield more diverse top results. Detailed
listings of the selected hypotheses for each scenario are provided in Appendix D.

(RQ2) PDE Recovery and Discovery. Table 9 showcases the recovered PDE terms and parameters,
while Table 5 compares the performance of the HSTS (top-1) with that of PDE-FIND in identifying
PDE terms. Our results demonstrate that HSTS accurately recovers the majority of terms and
parameters across all scenarios, including successfully identifying new expressions in S2. Conversely,
PDE-FIND tends to overfit the data with overly complex expressions, resulting in low recall and
extremely low precision. Despite careful tuning of PDE-FIND’s parameters and the application of
denoising techniques (Messenger & Bortz, 2021), performance improvement remains elusive. We
attribute PDE-FIND’s limitations to its lack of embedded physics knowledge, leading to a significantly
larger search space compared to HSTS and, consequently, heightened difficulty in problem-solving.
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Table 2: RQ1 on S1: Hypothesis Selection.
Model ↑ Recall ↑ Precision ↓Wall-time(h)

Ours
Top-1 1.00 1.00

0.14Top-2 0.86 0.86
Top-3 0.71 0.71

ES-TL
Top-1 0.86 0.55

0.28Top-2 0.71 0.45
Top-3 0.57 0.31

ES
Top-1 1.00 1.00

16.68Top-2 0.86 0.55
Top-3 0.86 0.55

Table 3: RQ1 on S2: Hypothesis Selection.
Model ↑ Recall ↑ Precision ↓Wall-time(h)

Ours
Top-1 1.00 1.00

4.10Top-2 0.86 0.86
Top-3 0.86 0.55

ES-TL+
STOP

Top-1 0.71 0.56
4.36Top-2 0.57 0.31

Top-3 0.57 0.31

ES+
STOP

Top-1 1.00 1.00 24.00
(Timeout)Top-2 0.86 0.55

Top-3 0.86 0.55

Table 4: RQ1 on S3: Hypothesis Selection.
Model ↑ Recall ↑ Precision ↓Wall-time(h)

Ours
Top-1 0.91 0.91

3.12Top-2 1.00 1.00
Top-3 0.82 0.82

ES-TL
Top-1 0.82 0.82

3.30Top-2 0.73 0.62
Top-3 0.82 0.82

ES
Top-1 0.91 0.91

21.11Top-2 1.00 1.00
Top-3 0.82 0.82

Table 5: RQ2 on all Scenarios.
Model Scenario ↑ Recall ↑ Precision ↓ Complexity

Ours
S1 1.00 1.00 109
S2 1.00 1.00 360
S3 1.00 0.93 180

PDE-FIND
S1 0.88 0.04 1423
S2 0.20 0.02 1377
S3 0.22 0.01 2176

Table 6: RQ3 on S1: Mean Squared Residuals.
Model Train Valid Test

Ours 2.80 ×10−4 5.22 ×10−4 4.83 ×10−4

GT 2.89 ×10−4 5.09 ×10−4 4.50× 10−4

PDE-FIND 1.58× 10−4 2.79× 10−4 1.48 ×10−1

DISCOVER 0.123 0.132 1.231
SGA-PDE 24.43 - -

Table 7: RQ3 on S2: Mean Squared Residuals.
Model Train Valid Test

Ours 3.24× 10−3 4.49 ×10−3 4.75 ×10−3

GT 3.35 ×10−3 4.38× 10−3 4.29× 10−3

PDE-FIND 7.21 ×10−3 8.44 ×10−3 1.66 ×10−1

DISCOVER 0.144 0.158 1.232
SGA-PDE 28.7 - -

Table 8: RQ3 on S3: Mean Squared Residuals.
Model Train Valid Test

Ours 9.86× 10−3 9.38× 10−3 1.74× 10−2

GT 1.03×10−2 9.83×10−3 1.76×10−2

PDE-FIND 1.93 ×10−4 2.06 ×10−4 9.55 ×10−1

DISCOVER 1.675 1.682 2.312

(RQ3) Interpolation and Extrapolation. To assess the generalization ability of our selected
hypotheses and the induced PDEs, we conduct interpolation and extrapolation tests on both training
and test datasets, which are generated from the same governing equations with different boundary
conditions. Table 6, 7, and 8 illustrate the MSR for all data splits. Our findings affirm that HSTS-
recovered PDEs consistently demonstrate high accuracy in both interpolation and extrapolation,
closely aligning with the ground truth PDEs. In contrast, PDE-FIND-recovered PDEs excel in
interpolation but exhibit significantly diminished extrapolation capabilities, characterized by several
orders of magnitude higher MSR. Furthermore, it’s noteworthy that even the true PDEs themselves
exhibit non-negligible residuals, likely stemming from systematic errors in data generation, sampling,
and finite difference derivative approximations. This observation, coupled with the promising results
of HSTS in RQ1 and RQ2, underscores the robustness of HSTS in the presence of data noise. This
property makes the algorithm well-suited for real-world scenarios where data imperfections are
prevalent.

(RQ4) Integrated vs Pipelined. Table 10 compares the results of the physics hypothesis selection of
both integrated and pipelined models. Our integrated HSTS algorithm is able to get almost everything
correct, while the SINDy+GPT pipeline isn’t able to find physics properties effectively. However, if
ground truth PDE expressions are provided, GPT is able to infer physics better. We conjecture that
the pipelined approach is inferior due to the limitation of information propagation. Specifically, the
PDE discovery step is inaccurate due to the lack of hypothesis selection priors or feedback, and in
turn, such inaccuracy bottlenecks the performance of the latter hypothesis selection step.
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More details about physics interpretation and the meaning of each decision are shown in appendix D.

5 LASER FUSION DATASET AND EXPERIMENTS

To demonstrate the application of PhysPDE in real physics research, we experimented in the field of
Fast Ignition (FI) of inertial confinement fusion (ICF) (Tabak et al., 1994), guided and assisted by
experts in the domain. In the FI experiments, high-density deuterium-tritium plasma is heated by
relativistic electron beams (REB) over a time scale of approximately 10 ps, raising the temperature
by about 10 keV (approximately 120 million Kelvin). During this process, some physical quantities
(such as magnetic fields, REB divergence angles, plasma dopant types and plasma degeneracies, etc.)
are crucial for evaluating the effectiveness of the FI experiments and optimizing the design of future
experiments. However, due to the extremely rapid evolution of the physical system and the difficulty
of diagnosing certain physical processes occurring in high-density plasma through optical methods,
these physical quantities are typically challenging to measure directly and precisely (Abu-Shawareb
et al., 2022; Peebles et al., 2022). Therefore, we aim to indirectly derive these physical quantities
through the evolution of directly observable quantities, such as plasma temperature. Researchers
can provide prior knowledge in the form of theoretical analyses (hypotheses) about how these
physical quantities influence the system’s governing equations (PDEs). In this context, PhysPDE aids
researchers in automating and efficiently conducting diagnostic analyses.

Leveraging domain knowledge, we developed a hypothesis decision forest (Table.15), comprising 5
decisions and 32 valid combinations. The detailed definitions and results are provided in Appendix
H. In this work, we first use a numerical simulation program to simulate the FI experiment and
its diagnostic process to construct a dataset. In the future, the algorithm developed in this work is
expected to be applied to the ongoing double-cone collision ignition FI experiment (Zhang et al., 2020).
The data were simulated using the specialized solver HEETS (Xu et al., 2019), with 80× 80× 80
spatial grids and 26 temporal grids. HEETS is a particle-fluid hybrid simulation program specifically
developed for simulating charged particle transport, nuclear reactions, and the evolution of fields
in high-density plasma in FI. In this program, the motion of the REB is described using relativistic
stochastic partial differential equations (Robinson et al., 2015), while background electron-ion
plasmas are described by a reduced two-fluids model (Gardiner et al., 1985). We constructed the
dataset by performing FI simulations over a physical time of 10 ps under various conditions, including
different applied magnetic fields, REB divergence angles, target doping, and initial plasma degeneracy.
Given the problem’s complexity and dimensionality, each simulation required approximately 0.72h
of wall-time (parallelized across 128 CPU cores). We randomly selected one decision combination as
the ground truth and divided the dataset along the temporal axis into training, validation, and test

Table 9: Examples of identified PDEs and Estimated Parameters (notations defined in Appendix B).
PDE-FIND Ours GT

S1
∂ux
∂t

= −160393 ∂2p
∂x∂y

+ 6878uy
∂p
∂x

. . .

∂uy

∂t
= 12777

∂p
∂x
uy

+ 11125
∂p
∂y

uy
. . .

∂ρ
∂t

= −16339uy
∂p
∂x

− 18572 1
p
. . .

ρDu
Dt

= ∇ · (−pI+ τ )
∂ρ
∂t

+∇ · (ρu) = 0

ρDu
Dt

= ∇ · (−pI+ τ )
∂ρ
∂t

+∇ · (ρu) = 0

µ = 0.01000 µ = 0.01

S2 ∂ux
∂t

= −15580 ∂2p
∂x∂y

+ 60459uy

∂p
∂x
uy

. . .

∂uy

∂t
= −130897

∂p
∂y

uy
+ 48085γ ∂2p

∂y2 . . .
∂ρ
∂t

= 220459γ ∂p
∂x

+ 132342uy
∂p
∂y

. . .

ρDu
Dt

= ∇ · (−pI+ τ )
∂ρ
∂t

+∇ · (ρu) = 0

ρDu
Dt

= ∇ · (−pI+ τ )
∂ρ
∂t

+∇ · (ρu) = 0

µ = 0.01004 + 0.01003
cos(γ)

γ

+0.01007 log(γ))
µ = 0.01(1 +

cos(γ)
γ

+ log(γ))

S3
∂ux
∂t

= −0.001ux − 0.003ux
∂2ux
∂x∂y

. . .
∂uy

∂t
= −0.75uxp

∂ux
∂y

− 0.5p ∂2ux
∂x2 . . .

∂ρ
∂t

= −1.6uy
∂p
∂x

− 1.2

∂2p

∂y2

uy
. . .

∂T
∂t

= 26.7uxuy
∂2ux
∂x∂y

− 17.1T ∂T
∂y

. . .

ρDu
Dt

= ∇ · (−pI+ τ ) + F
∂ρ
∂t

+∇ · (ρu) = 0

ρCp
DT
Dt

= ∇ · (k∇T )

+Qp +Qvd

ρDu
Dt

= ∇ · (−pI+ τ ) + F
∂ρ
∂t

+∇ · (ρu) = 0

ρCp
DT
Dt

= ∇ · (k∇T ) +Qvd

µ = 0.00992, g = −9.8000
k = 0.58704, Cp = 4200.3

β = 0.15747

µ = 0.01, g = −9.8

k = 0.6, Cp = 4186
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Table 10: Experiment results on the physics property extracted from data and expressions. The
number marked red means a wrong decision is made on this property. The term colored red represents
a non-existing property in the original system. Abbreviations: GT+GPT (ground truth equations are
fed into ChatGPT-4o)

S1 S2 S3

Ours

is_compressible: 1
is_isothermal: 1
is_newtonian: 0
is_turbulent: 0

type_body_force: 0
type_non_newtonian: 3
type_non_turbulent: 0

is_compressible: 1
is_isothermal: 1
is_newtonian: 0
is_turbulent: 0

type_body_force: 0
type_non_newtonian: 2
type_non_turbulent: 0

is_compressible: 1
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 1
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 1

type_body_force: 1
type_mu_temperature: 0

type_newtonian: 1
type_non_turbulent: 0

SINDy
+GPT
(with

PhysPDE
prompt)

is_compressible: 1
is_isothermal: 1
is_newtonian: 0
is_turbulent: 1

type_body_force: 0
type_non_newtonian: 3

type_turbulent: 1

is_compressible: 1
is_isothermal: 1
is_newtonian: 0
is_turbulent: 1

type_body_force: 0
type_non_newtonian: 2

type_turbulent: 1

is_compressible: 1
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 1
is_thermal_conductive: 1

is_turbulent: 1
is_viscosity_diffusion: 0

type_body_force: 1
type_mu_temperature: 0

type_newtonian: 2
type_turbulent: 0

GT+
GPT
(with

PhysPDE
prompt)

is_compressible: 1
is_isothermal: 1
is_newtonian: 0
is_turbulent: 0

type_body_force: 0
type_non_newtonian: 3
type_non_turbulent: 0

is_compressible: 1
is_isothermal: 1
is_newtonian: 0
is_turbulent: 0

type_body_force: 0
type_non_newtonian: 2
type_non_turbulent: 1

is_compressible: 1
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 1
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 1

type_body_force: 1
type_mu_temperature: 0

type_newtonian: 1
type_non_turbulent: 0

sets. To simulate data noise, we applied a factor of 1 + 0.01 ∗ N (0, 1) to the training and validation
datasets. The results of the hypothesis selection (RQ1) are shown in Table.16. According to the table,
our method identifies the correct hypotheses in 37% of the wall-time required by Exhaustive Search
(ES), whereas ES-TL fails to produce the correct result.

Despite the problem’s relatively small search space, the high cost of simulation makes exhaustive
search impractical. Previously, searches were manually conducted, relying on expert experience.
Our method offers an efficient and automated way to explore the search space, facilitating scientific
discovery.

6 CONCLUSION

In this paper, we have proposed PhysPDE, a new ML4Sci task, with two datasets and baseline
algorithms. It offers a unified framework for discovering and interpreting PDEs, bridging the gap
between theoretical understanding and practice in scientific research.
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Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Dorothy Walsh. Occam’s razor: A principle of intellectual elegance. American Philosophical
Quarterly, 16(3):241–244, 1979.

Shuoyu Wang, Julio Bravo, Ahmed Abdulridha, Clay Naito, Spencer Quiel, Muhannad Suleiman,
Carlos Romero, and Sudhakar Neti. Numerical simulations and validations of multi-scale
thermosiphon-concrete thermal energy storage battery operating performance. 07 2023.

Jacqueline Wentz and Alireza Doostan. Derivative-based SINDy (DSINDy): Addressing the challenge
of discovering governing equations from noisy data. 413:116096, 2023. ISSN 00457825. doi:
10.1016/j.cma.2023.116096. URL https://linkinghub.elsevier.com/retrieve/
pii/S0045782523002207.

H Xu, XH Yang, J Liu, and Marco Borghesi. Control of fast electron propagation in foam target by
high-z doping. Plasma Physics and Controlled Fusion, 61(2):025010, 2019.

Hao Xu, Haibin Chang, and Dongxiao Zhang. DLGA-PDE: Discovery of PDEs with incomplete
candidate library via combination of deep learning and genetic algorithm. 418:109584, 2020. ISSN
00219991. doi: 10.1016/j.jcp.2020.109584. URL https://linkinghub.elsevier.com/
retrieve/pii/S0021999120303582.

Jie Zhang, WM Wang, XH Yang, D Wu, YY Ma, JL Jiao, Z Zhang, FY Wu, XH Yuan, YT Li, et al.
Double-cone ignition scheme for inertial confinement fusion. Philosophical Transactions of the
Royal Society A, 378(2184):20200015, 2020.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng
Wang, Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du,
Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards,
Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang,
Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu,
Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik,
Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro
Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay,
Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, and Shuiwang Ji.
Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems, 2023. URL
http://arxiv.org/abs/2307.08423.

Yijun Zhang, Liangzhi Cao, Zhouyu Liu, and Hongchun Wu. Newton-krylov method with nodal
coupling coefficient to solve the coupled neutronics/thermal-hydraulics equations in pwr transient
analysis. Annals of Nuclear Energy, 118:220–234, 2018.

Olek C Zienkiewicz, Robert L Taylor, and Jian Z Zhu. The finite element method: its basis and
fundamentals. Elsevier, 2005.

13

https://linkinghub.elsevier.com/retrieve/pii/S0045782523002207
https://linkinghub.elsevier.com/retrieve/pii/S0045782523002207
https://linkinghub.elsevier.com/retrieve/pii/S0021999120303582
https://linkinghub.elsevier.com/retrieve/pii/S0021999120303582
http://arxiv.org/abs/2307.08423


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 11: Fluid Mechanics Hypothesis Decision Forest
Decision ID Decision Name Value Hypothesis Name Child Decision Name

0 is_turbulent 0 non_turbulent type_non_turbulent
1 turbulent type_turbulent

1 type_non_turbulent 0 laminar -
1 creeping -

2 type_turbulent 0 k-epsilon -
1 realizable k-epsilon -

3 is_newtonian 0 non_newtonian type_non_newtonian
1 newtonian type_newtonian

4 type_non_newtonian
0 powerlaw(mu_app) is_dilatant
1 carreau -

2 new_non_newtonian_1 poly_order
Fourier_order

5 poly_order
0 poly_order_0 -
1 poly_order_1 -
2 poly_order_2 -

6 Fourier_order
0 Fourier_order_0 -
1 Fourier_order_1 -
2 Fourier_order_2 -

7 is_dilatant 0 pseudoplastic -
1 dilatant -

8 type_newtonian 0 inviscid -
1 newtonian -

9 is_isothermal 0 nonisothermal

type_mu_temperature
is_thermal_conductive
is_thermal_conductive
is_pressure_work
is_viscosity_diffusion

1 isothermal -

10 type_mu_temperature

0 mu_temperature_independent -
1 powerlaw(mu_T) -
2 Sutherland -
3 Andrade -

11 is_thermal_conductive 0 not_thermal_conductive -
1 Fourier -

12 is_pressure_work 0 no_pressure_work -
1 pressure_work -

13 is_viscosity_diffusion 0 no_viscosity_diffusion -
1 viscosity_diffusion -

14 is_compressible 0 incompressible -
1 compressible -

15 type_body_force 0 no_body_force -
1 gravity -

A FLUID MECHANICS HYPOTHESIS DEFINITION

In this paper, we focus on fluid mechanics. The full decisions, hypotheses, and parent-child relations
are listed in Table 11.
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B FLUID MECHANICS NOTATION DEFINITION

Material Derivative
Df

Dt
=

∂f

∂t
+ u · ∇f

Pressure Work Qp = βT (
∂p

∂t
+ u · ∇p)

Viscosity Diffusion Qvd = τ : u
Body Force F = (0,−ρg)T

Deviatoric Stress τ = µ(∇u + (∇u)T )− 2

3
µ(∇ · u)I

Shear Rate γ =
√
2S : S

Strain Rate S =
1

2
(∇u+ (∇u)T )

C FLUID MECHANICS BASIC INTRODUCTION

Fluid dynamics is governed by the principles of conservation of mass, momentum, and energy, which
are mathematically represented by the continuity equation, the Navier–Stokes equations, and the
energy equation, respectively.

C.1 CONTINUITY EQUATION (CONSERVATION OF MASS)

This equation ensures that mass is neither created nor destroyed within a fluid system. For compress-
ible fluid, it is expressed as:

∂ρ

∂t
+∇ · (ρu) = 0 (4)

where u is the fluid velocity vector, and ρ is density. An incompressible fluid has constant density,
thus ∂ρ

∂t = 0 and∇ρ = 0, and the continuity equation reduces to:

∇ · u = 0 (5)

C.2 NAVIER–STOKES EQUATION (CONSERVATION OF MOMENTUM)

These equations describe the motion of fluid substances by accounting for forces acting on the fluid,
including pressure, viscous forces, and external forces. They are formulated as:

ρ
∂u

∂t
+ ρ(u · ∇)u = ∇ · [−pI+ τ ] + F (6)

where p is the pressure, F represents external body forces (e.g., gravity). τ is the deviatoric stress
tensor:

τ = µ
(
∇u+ (∇u)⊤

)
− 2

3
µ(∇ · u)I. (7)

The µ is the dynamic viscosity. For Newtonian fluids, the dynamic viscosity is a constant. The most
commonly encountered fluids are Newtonian, such as water, gases, and ethanol. However, there
are a number of fluids that do not have constant viscosity, known as non-Newtonian. Examples of
non-Newtonian fluids include blood, paint, and cosmetic products.

C.3 ENERGY EQUATION (CONSERVATION OF ENERGY)

This equation accounts for the energy (temperature) changes within the fluid due to conduction,
convection, and internal energy variations. It is given by:

ρCp(
∂T

∂t
+ u · ∇T ) = ∇ · (k∇T ) +Qp +Qvd (8)
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Table 12: Decisions in S1 (incorrect decisions colored red)
Top-1 Top-2 Top3

Ours

is_compressible: 1
is_isothermal: 1
is_newtonian: 1
is_turbulent: 0

type_body_force: 0
type_newtonian: 1

type_non_turbulent: 0

is_compressible: 0
is_isothermal: 1
is_newtonian: 1
is_turbulent: 0

type_body_force: 0
type_newtonian: 1

type_non_turbulent: 0

is_compressible: 1
is_isothermal: 1
is_newtonian: 0
is_turbulent: 0

type_body_force: 0
type_non_newtonian: 1
type_non_turbulent: 0

ES

is_compressible: 1
is_isothermal: 1
is_newtonian: 1
is_turbulent: 0

type_body_force: 0
type_newtonian: 1

type_non_turbulent: 0

is_compressible: 1
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 0
is_thermal_conductive: 0

is_turbulent: 0
is_viscosity_diffusion: 0

type_body_force: 0
type_mu_temperature: 0

type_newtonian: 1
type_non_turbulent: 0

is_compressible: 1
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 0
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 0

type_body_force: 0
type_mu_temperature: 0

type_newtonian: 1
type_non_turbulent: 0

where Cp is the specific heat capacity at constant pressure, T is the temperature, k is the thermal
conductivity, Qp, Qvd represents pressure work and viscosity diffusion in turbulence. For isothermal
fluid, the temperature is assumed constant, thus the above equation is constantly zero.

These fundamental equations collectively describe fluid behavior under various conditions and are
essential for analyzing and predicting fluid flow phenomena.

D FLUID MECHANICS HYPOTHESIS SELECTION RESULTS

The learned decisions and values of all scenarios are listed in Table 12-14.

E ALGORITHM PRELIMINARIES

Our search algorithm is inspired by two established algorithms MCTS and Sequential Threshold
Ridge Regression (STRidge)

MCTS The MCTS algorithm (Coulom, 2006) stands out as a robust approach frequently utilized
in solving optimal decision-making problems. This method employs a tree search mechanism that
adeptly balances the dual aspects of exploration and exploitation. At its core, the MCTS algorithm
unfolds through a cyclical iteration of four fundamental steps.

1) Selection. The MCTS agent, starting from the root node, selects successive child nodes according
to a given policy until an expandable node or a leaf node is encountered.

2) Expansion. The search tree is then expanded by selecting an unvisited child at an expandable
node.

3) Simulation. Following expansion, the agent performs independent simulations from the selected
child node, executing random actions. The simulation halts if the agent reaches a terminal state or a
predefined time constraint.

4) Backpropagation. Statistics of nodes along the random path are updated according to the ultimate
search result.

To balance exploration and exploitation, the Upper Confidence Bounds applied for Trees (UCT)
algorithm is integrated (Kocsis & Szepesvári, 2006). During the selection phase, child node with the

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 13: Decisions in S2 (incorrect decisions colored red)
Top-1 Top-2 Top3

Ours

is_compressible: 1
is_isothermal: 1
is_newtonian: 0
is_turbulent: 0

type_body_force: 0
type_non_newtonian: 3
type_non_turbulent: 0

is_compressible: 0
is_isothermal: 1
is_newtonian: 0
is_turbulent: 0

type_body_force: 0
type_non_newtonian: 3
type_non_turbulent: 0

is_compressible: 1
is_isothermal: 0
is_newtonian: 0

is_pressure_work: 0
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 0

type_body_force: 0
type_mu_temperature: 0
type_non_newtonian: 3
type_non_turbulent: 0

ES

is_compressible: 1
is_isothermal: 1
is_newtonian: 0
is_turbulent: 0

type_body_force: 0
type_non_newtonian: 3
type_non_turbulent: 0

is_compressible: 1
is_isothermal: 0
is_newtonian: 0

is_pressure_work: 1
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 0

type_body_force: 0
type_mu_temperature: 0
type_non_newtonian: 3
type_non_turbulent: 0

is_compressible: 1
is_isothermal: 0
is_newtonian: 0

is_pressure_work: 1
is_thermal_conductive: 0

is_turbulent: 0
is_viscosity_diffusion: 0

type_body_force: 0
type_mu_temperature: 0
type_non_newtonian: 3
type_non_turbulent: 0

Table 14: Decisions in S3 (incorrect decisions colored red)
Top-1 Top-2 Top3

Ours

is_compressible: 1
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 1
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 1

type_body_force: 1
type_mu_temperature: 0

type_newtonian: 1
type_non_turbulent: 0

is_compressible: 1
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 0
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 1

type_body_force: 1
type_mu_temperature: 0

type_newtonian: 1
type_non_turbulent: 0

is_compressible: 1
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 0
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 0

type_body_force: 1
type_mu_temperature: 3

type_newtonian: 1
type_non_turbulent: 0

ES

is_compressible: 1
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 0
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 0

type_body_force: 1
type_mu_temperature: 0

type_newtonian: 1
type_non_turbulent: 0

is_compressible: 1
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 0
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 1

type_body_force: 1
type_mu_temperature: 0

type_newtonian: 1
type_non_turbulent: 0

is_compressible: 0
is_isothermal: 0
is_newtonian: 1

is_pressure_work: 0
is_thermal_conductive: 1

is_turbulent: 0
is_viscosity_diffusion: 0

type_body_force: 1
type_mu_temperature: 0

type_newtonian: 1
type_non_turbulent: 0
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maximal UCT value is selected:

UCT(s, a) = Q(s, a) + c
√
ln[N(s)]/N(s, a), (9)

where Q(s, a) is the average win ratio of playing action a in state s in previous simulations; N(s) is
the number of times state s has been visited; N(s, a) is the number of times action a gets selected at
state s. Constant c controls the balance between exploration and exploitation, which is represented by√
ln[N(s)]/N(s, a) and Q(s, a) respectively. The convergence and efficiency of this algorithm have

been rigorously validated as demonstrated by Shah et al. (2020).

STRidge. STRidge (Rudy et al., 2017) is an advanced algorithm that combines concepts from both
ridge regression and sparsity-promoting techniques. It is composed of an iterative process of ridge
regression and thresholding. As of the ridge regression step, penalty terms are incorporated into the
objective function to limit the number of predictor variables considered relevant:

ξ̂ = argmin
ξ
||Θ(U)ξ −Ut||22 + ϵ||ξ||22, (10)

where Θ denotes the library of candidate terms, U is data, and ϵ regularization coefficient.

After the initial ridge regression step, STRidge applies a thresholding mechanism, eliminating terms
with coefficients below a threshold value. The idea is to eliminate predictors that have a negligible
effect on the target variable, thereby promoting sparsity in the model. This process continues until it
converges to a stable set of predictors or until a specified number of iterations is reached. STRidge
poses stricter regularization and penalties for overfitting, therefore achieving outstanding performance
in PDE discovery tasks.

F HSTS AND STOP ALGORITHM

The main algorithm is summarized in Alg. 1, and we will elaborate on its details below.

Algorithm 1: HSTS+STOP Algorithm
Input :Decision Forest, Operator Library, Observed Data
Param :(HSTS) loss bound ℓmax,min, risk fraction ϵ, max episode ME, number of rollout NR,

exploration weight
Param :(STOP) Regulariazation λ∗, threshold T , max iteration
Output :Optimal decision h, coefficients θh
Output :(Optionally) new expression m, coefficients θm

1 Initialize h as empty vector, initialize an empty cache;
2 for each episode ≤ME do
3 if h has no child then
4 break;
5 for each rollout ≤ NR do
6 Selection: h0 ←− UCT selection of object J(Eq. 13) among descendants of h;
7 Expansion: h0 ←− Repeatedly select a child of h0 until no child available;
8 Simulation: Calculate reward(Eq.11) of h0 by solving Eq.14 via STOP;
9 Backpropagation:Propagate and cache the reward;

10 Action: h←− the child maximizing J(Eq. 13);
11 Return best solution in the cache;

F.1 HYPOTHESES SELECTION TREE SEARCH (HSTS)

This section addresses solving the outer-level decision vector h. Although the decision forest
effectively represents various physics models and constraints, the search space is vast, making naive
enumeration impractical. With n nodes in the forest and a minimum of 2 choices per node, the total
possible decision instances are O(2n), excluding interdependencies. To tackle this challenge, we
employ the Monte Carlo Tree Search (MCTS) algorithm to efficiently explore the search space for
our hypothesis selection task.
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Figure 4: Overview of the proposed Hypothesis Selection Tree Search (HSTS) algorithm.

MCTS is a heuristic search algorithm renowned for simplicity and effectiveness in complex decision-
making scenarios (Silver et al., 2017). It navigates the search space by expanding selected search
nodes and back-propagating simulation results through the tree structure. In this paper, the MCTS
algorithm is adapted to align with the unique requirements of Hypothesis Selection. The adaptation
involves customizing the search node, reward, and action objective of MCTS to handle the decision
forest representation and evaluation of PDEs within the context of Hypothesis Selection. The resulting
algorithm is thus named HSTS. Figure 4 demonstrates an illustrative example.

Search Node. In MCTS, a search node represents an (in)complete decision instance from the decision
forest, essentially a set of tree paths from roots. The search begins with an empty decision node
and progresses to a terminal node representing a complete decision. A child node is generated by
extending the parent’s decision instance with the next decision, adhering to the predefined sequential
order of decisions within the forest.

Reward Function. Once a valid decision h is sampled, we construct a system of PDEs and evaluate
the system with a reward function R on observation data X . To simplify notation, we denote the
minimal loss of decision h as ℓ(h):

ℓ(h) = min
θh

min
m,θm

ℓ(X,Eq), C ≥ 0. (11)

While a straightforward reward definition could be the negative of ℓ(h), the unpredictable numerical
error level may lead to an unbounded reward range. This unpredictability can potentially disrupt the
balance between exploration and exploitation in the UCT selection. Thus, we normalize the loss and
constrain it within the range [0, 1]:

R(h) = 1− log ℓ(h)− log ℓmin

log ℓmax − log ℓmin
, (12)

where the hyper-parameters ℓmax and ℓmin serve as approximate bounds for the loss.

Risk-seeking Objective. After every N back-propagation iteration, MCTS either terminates or
selects an action for execution, maximizing the current state’s objective. Actions correspond to
moving to child search nodes, while the state encompasses the current search node and all visiting
and rewarding histories. In traditional Monte Carlo Tree Search (MCTS), the objective for action a at
state s is the expected reward under policy p, denoted as J(s, a) = Eh∼p(s,a)[R(h)]. This approach,
however, does not align with the priorities in Hypothesis Selection, which emphasizes the performance
of top outcomes over average-case scenarios. Similar challenges in policy-gradient methods led to the
adoption of risk-seeking objectives, concentrating on the highest rewards within a batch. Inspired by
such methods (Petersen et al., 2019; Tamar et al., 2014), we propose an ϵ-parameterized risk-seeking
objective for MCTS.

J(s, a; ϵ) = Eh∼p(s,a)[R(h)|R(h) ≥ Rϵ(p(s, a))]. (13)
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This objective averages the rewards of the top ϵ fraction of samples from the distribution p(s, a),
disregarding all other samples falling beneath this performance threshold.

F.2 SEQUENTIAL THRESHOLD OPTIMIZATION (STOP)

Here we address the challenge of determining the boolean vector m as specified on the right-hand-
side of Eq. 11. The objective is to select an optimal combination of functions from a predefined
function library for constructing a new expression, where each element of vector m denotes the
inclusion (or exclusion) of a specific function. The loss function indicates that it is an L0 regularized
sparse optimization problem, which is proved to be NP-hard (Virgolin & Pissis, 2022). An intuitive
idea of this complexity is the exponential growth of the search space with the size of the function
library, n, leading to 2n possible function combinations.

Inspired by the sequential threshold ridge regression technique utilized in PDE discovery (Rudy
et al., 2017), we propose a Sequential Threshold Optimization (STOP) method. It adopts an iterative
backward selection strategy, initially setting all elements of m to one. In each iteration, it tackles the
following constrained optimization problem:

θ∗
h,θ

∗
m = argmin

θh,θm

ℓ(X,Eq) + λθm∥θm∥
2
2 (14)

s.t. θm(1−m) = 0, C ≥ 0,

where λθm serves as a hyperparameter to modulate the regularization strength. Subsequently, m is
updated to deactivate elements where θ∗

m falls below a predefined threshold T, with updated rule
m = 1[θ∗

m > T]. This iterative refinement continues until

m stabilizes, effectively reducing the search space by excluding insignificant function choices.

The STOP terminates within at most size(m) iterations since each iteration either diminishes the
count of non-zero elements of m or terminates the algorithm. This approach trades optimality for
efficiency, with STOP’s output not assured to be the optimal solution due to its inherent greedy
selection mechanism. However, as demonstrated by our empirical findings in Section 4.4, STOP
is capable of accurately identifying the correct expression with an appropriate configuration of
hyperparameters.

F.3 NUMERICAL SOLVER OF PDE INVERSE PROBLEM

To solve the PDE parameter estimation problem Eq. 14 or inverse problem (Isakov, 2006), we employ
a two-step approach: 1) discretization of PDE derivatives leveraging the centered finite difference
method (Strikwerda, 2004), transforming it into an ordinary constrained optimization problem, and 2)
application of a sequential least squares quadratic programming solver for optimization (Stoer, 1985).

G RESULT VISUALIZATION

The performance is visualized in Figure. 5-11.

H LASER FUSION HYPOTHESIS DEFINITION AND RESULTS

I LIMITATIONS

It is important to acknowledge the current limitations, including scalability to exceedingly large
datasets and the need for further refinement when dealing with highly complex PDE scenarios.
Future endeavors will be directed toward addressing these challenges and exploring the application
of PhysPDE to real-world data, enhancing its utility. A potential negative societal impact could be
reducing the need for human expertise in certain scientific fields, leading to job losses.
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Figure 5: RQ1-S1

Figure 6: RQ1-S2

Figure 7: RQ1-S3
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Figure 8: RQ2

Figure 9: RQ3-S1

Figure 10: RQ3-S2

Figure 11: RQ3-S3
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Table 15: Laser Fusion Hypothesis Decision Forest
Decision ID Decision Name Value Hypothesis Name Child Decision Name

0 is_magnetic_field 0 no_magnetic_field -
1 magnetic_field -

1 range_divergence_angle 0 divergence_angle<45 -
1 divergence_angle≥45 -

2 range_temperature 0 temperature<T_f -
1 temperature≥T_f -

3 is_dopant 0 no_dopant -
1 dopant type_dopant

4 type_dopant
0 dopant_Au -
1 dopant_Br -
2 dopant_Cl -

Table 16: RQ1 on Laser Fusion: Hypothesis Selection.
Model ↑ Recall ↑ Precision ↓Wall-time(h)

Ours
Top-1 1.00 1.00

8.67Top-2 0.40 0.40
Top-3 0.80 0.80

ES-TL
Top-1 0.80 0.80

8.70Top-2 0.60 0.60
Top-3 0.80 0.80

ES
Top-1 0.60 0.60

23.21Top-2 0.80 0.80
Top-3 1.00 1.00
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