
Exploring and Addressing Reward Confusion in
Offline Preference Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Spurious correlations in a reward model’s training data can prevent Reinforcement1

Learning from Human Feedback (RLHF) from identifying the desired goal and2

induce unwanted behaviors. In this work, we study the reward confusion problem3

in offline RLHF where spurious correlations exist in data. We create a lightweight4

benchmark to study this problem and propose a method that can reduce reward5

confusion by leveraging model uncertainty and the transitivity of preferences with6

active learning.7

1 Introduction8

ot-1

ot

ot+1

at-1

at z2
… zn

R

x Incorrect
association

Corr.

o, a

z1

Figure 1: Illustration of a simplified MDP
(left) and reward confusion (right). The re-
ward R is a function of the feature z1, but not
z2. Spurious correlation between z1 and z2
can cause a network to wrongly model R as a
function of z2.

For many real-world tasks, designing adequate re-9

ward functions is challenging, which has led to the10

rise of Reinforcement Learning from Human Feed-11

back (RLHF) [6]. In this work, we study a failure12

mode of offline RLHF that we refer to as reward con-13

fusion. This occurs when the reward R in a Markov14

Decision Process (MDP) is a function of features15

z1, . . . , zn inferred from the observation-action pair16

(o, a). In a simplified scenario, R relies on z1 but not17

z2, yet z1 and z2 are highly correlated in the training18

data. An empirical risk minimizer might mistakenly19

conclude that z2 affects R. As we’ll see, this incor-20

rect dependence can lead to failures when training21

a policy against the learned reward function. We22

graphically illustrate this problem in Figure 1.23

To better understand this phenomenon, we created a benchmark environment called Confusing24

Minigrid (CMG) that tests reward confusion in models. We carefully designed six tasks with three25

types of spurious information for the minigrid environment, which we introduce in detail in Appendix26

A. We will open source the benchmark’s code soon.27

Besides the CMG benchmark, one other our major contributions is an algorithm named Information-28

Guided Preference Chain (IMPEC) designed to address the reward confusion problem. It involves29

two stages of training: First, we use information gain as the acquisition function to select comparison30

rollouts that reduce uncertainty about the reward function. Second, we form a complete preference31

ordering over the set of selected rollouts, rather than just a partial ordering as in traditional RLHF.32

Our experiments show that these techniques together improve sample efficiency while reducing33

reward confusion. We show in Section 4 that using the same comparison budget, IMPEC can34

Submitted to Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information
Processing Systems (BDU at NeurIPS 2024). Do not distribute.

b1 b2 b3 bn…

ξnew

+

Derived Preferences
Queried Result
Fast-Guess Range

ξx1
ξn1

ξn2

ξn3
ξn4

ξxk

…

Candidate trajectories

Preference
buckets Trajectories in a bucket

Figure 2: The IMPEC algorithm creates a sorted preference chain of n buckets, each containing one
or more rollouts with equal returns.

outperform many other active preference learning baselines. To the best of our knowledge, it is the35

first algorithm that attempts to solve the reward confusion problem in preference learning.36

2 Related Work37

Causal Confusion The problem of causal confusion, which refers to models learning to depend on38

spurious correlations in the training data, has been studied in behavioral cloning [7], reinforcement39

learning [12], and reward learning [20]. Past work shows empirically and theoretically that spurious40

correlations and confounders in the training set can worsen an agent’s deployment performance [22, 9].41

Reward confusion is essentially causal confusion that occurs during reward learning.42

Goal Misgeneralization While past work on causal confusion studies it as a cause of complete43

failure to learn goal-directed behavior, it can also make agents optimize for incorrect goals, i.e. goal44

misgeneralization. For example, in Procgen’s CoinRun, the coin to be picked up is always on the45

right. RL agents can confuse “running to the right” with the real goal of “getting the coin” [10].46

Generally, a model’s behavior can be consistent with a goal, but it may not be the test-time goal [16].47

Preference Learning Learning reward models from preference labels [6] have gained traction due48

to their low cost compared to expert demonstrations [23] or language inputs [21]. We have also seen49

progress in other tasks of “reward engineering”, e.g. reward hacking [18].50

3 Method51

Models We consider an agent in an environment following the Markov Decision Process (MDP)52

defined by (S,A,P,R). S is the state space, A is the action space, p : S × S × A → [0,∞) is53

the transition probability density. A rollout ξ = (st, at) is a sequence of states and actions. Given54

unranked rollouts Ξ, our algorithm actively collects ranking information to sort them into an ordered55

list T = ⟨ξ1, ξ2, ..., ξn⟩. The rank of rollout ξ ∈ T is denoted by ψTξ . On each transition, the56

environment emits a rewardR : S ×A →R. Our goal is to obtainR∗ that induces correct policies.57

Preferences We model the human’s probability of preferring ξ1 in a pair (ξ1, ξ2) through the58

Shepard-Luce choice rule [17, 13]: P [ξ1 ≻ ξ2] =
exp

∑
t r(o

1
t ,a

1
t)

exp
∑

t r(o
1
t ,a

1
t)+exp

∑
t r(o

2
t ,a

2
t)

. We extend this59

model to a ternary one by allowing the human to flag when two rollouts are equally good, ξ1 ≡ ξ2.60

We use cross-entropy loss to improve reward model’s predictions for human’s true preference.61

3.1 Information-Guided Preference Chain (IMPEC)62

Key intuition: Increase Contrast Among Valuable Rollouts. In most preference comparison63

algorithms, a rollout ξ1’s relation is considered explicitly only with another one ξ2. Suppose that in64

the ground truth, ξ1 ≻ ξ2 ≻ ξ3 ≻ ξ4, and we already know ξ1 ≻ ξ2, ξ3 ≻ ξ4. To figure out ξ1 and65

ξ2’s relationship with ξ3 and ξ4, the most efficient query is whether ξ2 ≻ ξ3. Once we establish that,66

we can immediately obtain the preference relations on all four rollouts.67

Creating and Maintaining a Preference Chain We maintain an ordered chain for rollouts. Starting68

from an empty chain, for each new rollout we queried from the dataset, we imitate insertion sort by69

recursively finding the ranking of it using human’s preference labels. Hence, by the time we observe70

2

all the rollouts, we have a sorted list of rollouts, ordered according to human preferences. Rollouts71

can have identical returns, so we treat each element of the chain as a bucket b ∈ B of rollouts with the72

same return. If the human decides that a new rollout ξnew is equally preferred to ξm in bucket bm,73

then ξnew will be added to bm. On the other hand, if ξnew ≻ ξm and ξnew ≺ ξm−1 (ξm−1 resides in a74

previous bucket bm−1), then the algorithm will insert a new bucket containing only ξnew in between75

bm and bm−1. This ensures that b0 contains the best rollouts seen so far and bn contains the least76

preferred rollouts (where n is the chain length). We illustrate this process in Figure 2.77

Our reward model is a Bayesian neural network Algorithm 1 The IMPEC Algorithm

Require: Preference dataset D, network θ, query
budget Q
T ← []
while not converged do

θ ← SupervisedTrain(θ,D)
if budget not reached then

ξ ← argmaxξ I(θ;ψ
T
ξ | T, ξ)

ψT∗
ξ ← InsertionSort(ξ, T, θ)

T ← T ∪ ξ
D ← D ∪ DerivePreferences(ξ, T, ψTξ)

end if
i← i+ 1

end while

78

(BNN) [3] which maintains a Gaussian distribu-79

tion over a network’s weights and biases. As we80

will see, this allows us to incorporate epistemic81

uncertainty over reward functions into the ac-82

tive selection procedure. In the noiseless case,83

insertion sort needs O(log n) queries to find the84

position for ξnew. However, we have access to85

a partially trained reward network, which we86

use to guess the rank for ξnew, reducing the87

number of buckets we must search over. We88

include more design details in Appendix B for89

the design of the fast query.90

Information Gain Given an existing chain91

of rollouts, we use information gain as the ac-92

quisition function to decide which rollouts to93

compare next, so we reduce the most uncertainty over network weights. The information gain over94

network weights θ by selecting a rollout ξ ∈ Ξ for ranking is95

I
(
θ;ψTξ | T, ξ

)
= H(θ | T, ξ)−H

(
θ | ψTξ , T, ξ

)
(1)

where ψTξ is the rollout’s ranking on chain T . Intuitively, it measures how much we expect to96

reduce uncertainty about the weights after observing the ranking ψTξ of rollout ξ. As shown in97

Appendix C, Equation 1 (information gain) can be approximated by drawing M weight samples,98

θ1, θ2, . . . , θM ∼ θ, from the posterior through99

1

M

M∑
i=1

∑
ψ

P
(
ψTξ | T, θi, ξ

)
· log

M · P
(
ψTξ | T, θi, ξ

)
∑
θj
P
(
ψTξ | T, θj , ξ

)
 (2)

P
(
ψTξ | T, θ, ξ

)
is a complicated distribution, and so we (loosely) approximate it with Equation 3.100

Intuitively, it is proportional to the probability that ξi ≻ ξ ≻ ξi+1.101

P
(
ψTξ = i | T, θ, ξ

)
∝ P (ξi ≻ ξ | θ) · P (ξ ≻ ξi+1 | θ) (3)

We summarize the complete process in Algorithm 1. The network is first supervised trained on the102

preference dataset D using cross entropy loss with P [ξ1 ≻ ξ2] modeled through the Shepard-Luce103

choice rule. With the limited query budget for human preferences, we first find out the rollout ξ104

whose ranking ψTξ on chain T will provide the most information gain over the model weights θ. Then105

we use insertion sort to find out ξ’s real ranking ψT∗
ξ in the chain. We add the rollout ξ onto the106

appropriate position of the chain T , then based on its position, derive preference labels with all other107

rollouts on the chain. We repeat this process until the network weight has converged.108

4 Experiments109

Experiment Settings We compare our method with the standard RLHF algorithm, and two other110

RLHF with active learning methods: pairwise information gain [2] and pairwise volume removal [14].111

The information gain (IG) method is similar to ours but reasons only about individual preference112

pairs and not about the result of the ranking process. The volume removal method was designed in113

3

Baseline IMPEC Infogain Vol Removal

Empty 12.90±8.20 18.13±2.15† 7.33±9.98 14.66±8.41
Dyn Obs 7.17±6.56 11.78±2.82† 5.34±6.75 4.06±6.03

Lava 8.70±12.83 17.65±1.97† 13.33±8.35 9.75±9.39
Lava Pos. 3.51±1.26 7.21±2.20† 3.60±1.52 4.66±2.53

Fetch 10.60±2.85 11.52±1.17 9.93±2.47 10.80±1.51
Door 1.58±0.31 1.67±0.53 1.55±0.48 1.68±0.71

Table 1: Ground truth returns (mean ± standard deviation)
for different methods on Confusing Minigrid. † indicates a
p-value of ≤ 0.1 (vs. baseline).

Figure 3: The learning curves for 4
algorithms trained on the Lava task.

the linear reward setting to reduce the volume of weight vectors supported under the posterior after114

each preference update. We conduct experiments on 6 CMG tasks. Detailed information on each task115

and their added spurious correlations can be found in Appendix A.116

We first perform offline reward learning, and then apply online reinforcement learning using the117

learned reward function to obtain a policy. The RL agent receives rewards from the learned function118

instead of the environment, and is trained with Proximal Policy Optimization [15]. More detailed119

experiment and hyperparameter settings can be found in Appendices D and E.120

Main Results Performance on all six tasks can be found in Table 1, with each run repeated over121

five seeds. We further compute the p-values of the results being better than baseline performance,122

with complete results in Appendix H. Except for the task Go To Door where all algorithms perform123

poorly, IMPEC has a higher mean return than other algorithms, and often a lower standard deviation.124

Although IMPEC achieves a higher mean than the other methods on most tasks, its p-values are ≤ 0.1125

(per appendix H). This provides some (albeit not particularly strong) statistical evidence that IMPEC126

has a better mean performance distribution from the baseline. In contrast, the volume removal and127

information gain methods are often statistically indistinguishable from the baseline.128

The decisive factor for each algorithm’s performance is how often they fail: Out of the 5 seeds, how129

often does the reward function learn to optimize for the spurious goal? All methods but IMPEC have130

fairly high probability of taking the spurious feature as the “correct" feature, and hence rewarding131

incorrect behaviors and obtaining low ground truth returns. We plot the learning curves for each132

algorithm in the Lava task, where the baseline curve has the largest standard deviations. We observe133

similar phenomena in other tasks. We include an ablation study in Appendix F. The complete learning134

curves are included in Appendix J.135

Limitations and Future Work A limitation of IMPEC is its potential sensitivity to noise in136

preferences. In our experiments, we keep a relatively low noise level, and we believe more sophisti-137

cated algorithms could improve robustness to noise, perhaps inspired by past work on noisy binary138

search [8, 5]. Our results suggest a deeper connection between the quality of preference datasets139

and the efficiency of preference learning algorithms. In appendix G, we show some first steps of a140

graph theoretic analysis for reasoning about preference dataset quality. We are interested in further141

exploring the influence of graph-theoretic qualities and their effects on preference learning, and using142

the insights in future algorithm design.143

5 Conclusion144

This work studies the reward confusion problem. Our experiments on the Confusing Minigrid145

benchmark show that reward confusion in offline preference learning can lead to undesired policy146

behaviors. The benchmark is easy to configure, and we expect it to be particularly useful for iterative147

research. In addition, we proposed IMPEC to reduce the impact of reward confusion. It exploits148

preference transitivity and obtains decent empirical performance on tasks with different sources of149

reward confusion. We believe that the findings of our work will be helpful for making AI more150

aligned with human values.151

4

References152

[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning153

environment: An evaluation platform for general agents. Journal of Artificial Intelligence154

Research, 47:253–279, 2013.155

[2] Erdem Bıyık, Malayandi Palan, Nicholas C Landolfi, Dylan P Losey, and Dorsa Sadigh.156

Asking easy questions: A user-friendly approach to active reward learning. arXiv preprint157

arXiv:1910.04365, 2019.158

[3] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty159

in neural network. In International conference on machine learning, pages 1613–1622. PMLR,160

2015.161

[4] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environ-162

ment for gymnasium, 2018.163

[5] Sung-En Chiu. Noisy binary search: Practical algorithms and applications. University of164

California, San Diego, 2019.165

[6] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep166

reinforcement learning from human preferences. Advances in neural information processing167

systems, 30, 2017.168

[7] Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning.169

Advances in Neural Information Processing Systems, 32, 2019.170

[8] Richard M Karp and Robert Kleinberg. Noisy binary search and its applications. In Proceed-171

ings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 881–890.172

Citeseer, 2007.173

[9] Daniel Kumor, Junzhe Zhang, and Elias Bareinboim. Sequential causal imitation learning with174

unobserved confounders. Advances in Neural Information Processing Systems, 34:14669–14680,175

2021.176

[10] Lauro Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger. Goal misgener-177

alization in deep reinforcement learning. In International Conference on Machine Learning,178

pages 12004–12019. PMLR, 2022.179

[11] Vito Latora and Massimo Marchiori. Efficient behavior of small-world networks. Physical180

review letters, 87(19):198701, 2001.181

[12] Minne Li, Mengyue Yang, Furui Liu, Xu Chen, Zhitang Chen, and Jun Wang. Causal world182

models by unsupervised deconfounding of physical dynamics. arXiv preprint arXiv:2012.14228,183

2020.184

[13] R Duncan Luce. Individual choice behavior: A theoretical analysis. John Wiley & Sons, Inc.,185

1959.186

[14] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based187

learning of reward functions. 2017.188

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal189

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.190

[16] Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan191

Uesato, and Zac Kenton. Goal misgeneralization: Why correct specifications aren’t enough for192

correct goals. arXiv preprint arXiv:2210.01790, 2022.193

[17] Roger N Shepard. Stimulus and response generalization: A stochastic model relating general-194

ization to distance in psychological space. Psychometrika, 22(4):325–345, 1957.195

[18] Joar Skalse, Nikolaus HR Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and196

characterizing reward hacking. arXiv preprint arXiv:2209.13085, 2022.197

5

[19] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David198

Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.199

arXiv preprint arXiv:1801.00690, 2018.200

[20] Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D Dragan, and Daniel Brown. A study201

of causal confusion in preference-based reward learning. arXiv preprint arXiv:2204.06601,202

2022.203

[21] Hsiao-Yu Tung, Adam W Harley, Liang-Kang Huang, and Katerina Fragkiadaki. Reward204

learning from narrated demonstrations. In Proceedings of the IEEE Conference on Computer205

Vision and Pattern Recognition, pages 7004–7013, 2018.206

[22] Junzhe Zhang, Daniel Kumor, and Elias Bareinboim. Causal imitation learning with unobserved207

confounders. Advances in neural information processing systems, 33:12263–12274, 2020.208

[23] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy209

inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.210

A Confusing Minigrid Definition211

Empty Dynamic obstacles Lava Lava-Position Go to Door Fetch
Figure 4: The six Confusing Minigrid tasks. The tasks require agents to move to goal positions, go to
doors, or fetch objects.

Reward learning methods are often evaluated on benchmarks originally developed for reinforcement212

learning algorithms, like Atari [1] or MuJoCo continuous control [19]. These reinforcement learning213

benchmarks cannot easily be used to test reward confusion failures. Thus we created six new tasks214

based on Minigrid [4], which together form the Confusing Minigrid benchmark.215

Task name Extra Position Color DistShift

Empty Y N* N* N
Dynamic Obs. Y N* N* N

Lava Y N* N* N
Lava-Position N* Y N* Y

Go to door N* Y N* Y
Fetch N* N* Y Y

Table 2: A summary of Confusing Minigrid tasks. Y/N is short for yes/no. An asterisk means that a
feature is off by default but can be optionally turned on. The “extra” column refers for having extra
observation dimensions for the task. The position and color columns refer to spurious correlations
that come from position and color information, respectively. DistShift means there is a difference
between the training and testing environments.

A.1 Spurious Correlations from Extra Observations216

This set of tasks tests whether spurious correlations with redundant observation dimensions can217

interfere with learning. In these tasks, an agent needs to navigate to the goal cell. It can observe218

the state of a glass of water it is holding, which exhibits “ripples” as it moves, and calms down if219

the agent’s position remains unchanged. On rollouts where the agent moves straight to the goal and220

stops, the level of ripples will be predictive of whether the agent has reached the goal, even though in221

general it is possible to cause the ripples to disappear by stopping in any location and not just at the222

goal. The training and testing variants of these tasks are the same.223

6

Empty This is the simplest task in the benchmark. The agent needs to navigate to the goal cell, with224

all other cells being empty. The environment gives a positive reward when the agent reaches the goal,225

and zero otherwise.226

Dynamic Obstacles This task augments the Empty task with obstacles that show up randomly in227

non-goal cells at each time step, which block the agent’s path. We include this task because the228

obstacles may stop the agent at a random grid while it is collecting rollouts, which increases the229

chance that the reward learning algorithm later realizes that “stabilizing the water” is not the correct230

goal.231

Lava The environment contains a row of lava cells with a gap that allows the agent to cross and232

reach the goal. Standing on the lava cells gives a reward of -1. We use this task to observe if negative233

rewards will have any impacts on learning spurious correlations, and if the correlation is exploited,234

whether the agent will at least avoid the lava (low reward) area.235

A.2 Spurious Correlations from Distributional Shifts236

We design these tasks with different training and testing variants. The training environments have a237

90% probability where the goal configuration is spurious.238

Lava-Position It is a variant of Lava with changing goal positions. In the training variant, the goal239

cell is usually located at one particular location. In the test variant, the goal grid can appear at other240

locations too.241

Go to Door In this task, an agent is asked to move to a position adjacent to the goal door embedded242

in one of the four walls surrounding the grid. There are always four doors in the environment, and243

the goal door is most likely to be placed in the upper wall during training. During testing, the goal244

door can be placed in any of the four walls.245

Fetch The agent’s goal in this task is to pick up a key. There is usually a distractor object in the246

environment that an agent can also pick up. In the training variant of this task, most keys are yellow,247

and most distractor objects are non-yellow. At the test time, the keys and distractor objects can appear248

in any color with equal chance.249

For all these tasks, the agent receives a reward of +1 when the goal condition is satisfied. We250

summarize the task settings in Table 2. Changing the confounding type in Confusing Minigrid is251

as easy as modifying a keyword argument when initializing the environment. Training a standard252

preference learning algorithm on the tasks with the simplest observation type takes around 2.5 hours253

on a single Nvidia A6000 GPU, which is faster than many other image-based environments or254

complex control tasks.255

B Use a Partially Trained Model to Reduce Queries256

The network will first update its reward predictions on rollouts in each bucket R̂bi , then predict257

the incoming rollout’s reward R̂ξnew
. Instead of using a point estimate R̂ξnew , we use an interval258

[R̂ξnew − ϵ, R̂ξnew + ϵ] to fast-guess where ξnew may belong. IMPEC queries human preferences of259

two pairs (ξnew, ξl) and (ξnew, ξu). ξl and ξu are the rollouts that are closest to the prediction lower260

bound R̂ξnew
− ϵ and the upper bound R̂ξnew + ϵ, respectively. The ϵ we use is the standard deviation261

of R̂ξnew
by M samples of the BNN. After ξnew is added into the chain, we can derive preference262

relations between it and other rollouts by transitivity.263

7

C The Information Gain Objective Derivation264

This derivation is adapted from [2].265

I(θ;ψTξ | T, ξ) = H(θ|T, ξ)−H(θ|ψTξ , T, ξ)

= −Eθ,T,ξ [logP (θ|T, ξ)] + Eθ,ψT
ξ ,ξ,T

[
logP (θ|ψTξ , T, ξ)

]
= −Eθ,ψT

ξ ,ξ,T
[logP (θ|T, ξ)] + Eθ,ψT

ξ ,ξ,T

[
logP (θ|ψTξ , T, ξ)

]
= Eθ,ψT

ξ ,ξ,T

[
logP (θ|ψTξ , T, ξ)− logP (θ|T, ξ)

]
= Eθ,ψT

ξ ,ξ,T

[
log

P (ψTn
τ |T, θ, ξ)P (T, θ, ξ)
P (ψTξ , T, ξ)

− log
P (θ, T, ξ)

P (T, ξ)

]

= Eθ,ψT
ξ ,ξ,T

[
log

P (ψTξ |T, θ, ξ)P (T, θ, ξ)
P (ψTξ |T, ξ)P (T, ξ)

− log
P (θ, T, ξ)

P (T, ξ)

]

= Eθ,ψT
ξ ,ξ,T

[
log

P (ψTξ |T, θ, ξ)
P (ψTξ |T, ξ)

]
Evaluating this expression requires us to compute a conditional probability with respect to θ, which266

is a random variable capturing our current uncertainty over the reward network weights. We can267

approximate the distribution p(θ) by sampling M weights θ1, θ2, . . . , θM ∼ p(θ) and then treating θ268

as if it were a uniform mixture over the samples; i.e.269

p(θ) ≈ 1

M

M∑
i=1

δθ=θi ,

where δθ=θi denotes a Dirac distribution at θi. Using this approximation, our mutual information270

becomes:271

I(θ;ψTξ | T, ξ) ≈ Eθ,ψT
ξ ,ξ,T

[
log

P (ψTξ |T, θ, ξ)
1
M

∑M
j=1 P (ψ

T
ξ |T, θj , ξ)

]

= Eθ,ψT
ξ ,ξ,T

[
log

M · P (ψTξ |T, θ, ξ)∑M
j=1 P (ψ

T
ξ |T, θj , ξ)

]

≈ 1

M

M∑
i=1

∑
ψT

ξ

P (ψTξ |T, θi, ξ) · log
M · P (ψTξ |T, θi, ξ)∑M
j=1 P (ψ

T
ξ |T, θj , ξ)

D Detailed Experiment Settings272

Offline Dataset and Tasks In real-world settings where failures are much more costly than273

minor failures, rollout datasets will be skewed towards higher-return rollouts. We emulate this by274

constraining the number of rollouts in the low reward region (return ≤ 5) to be at most 10% of the275

dataset.276

Query and Data Budgets Preference comparison algorithms typically obtain n pairs of (query,277

label), [(ξi1, ξi2), labeli]ni=1 for binary classification. For simpler tasks (Empty, DynObs, Lava, and278

Fetch), we set the query budget to be 300. That is, baselines have access to 300 (query, label)279

pairs, [(ξi1, ξi2), labeli]300i=1. IMPEC requires additional queries to precisely rank each sampled280

rollout within the candidate list, so we constrain it to use 150 pairs [(ξi1, ξi2), labeli]150i=1, and use the281

remaining 150 query budget to perform insertion sort for a selected subset of rollouts (decided by IG).282

For the harder tasks (Go to Door and Lava-Position), all algorithms are given a budget of 600 (query,283

label) pairs. IMPEC can access 400 data pairs, and use the remaining 200 query budget for sorting.284

8

Dataset Creation For each task, we first train an RL agent to the expert level, saving its policies at285

various timesteps. We then take 3 of its policy snapshots - an almost random policy, an expert policy,286

and one in-between to generate rollouts. The number of rollouts falling within the low-reward (≤ 5)287

region are controlled to take up within 10% of the dataset.288

IMPEC Training We typically train an algorithm with 20 epochs. For IMPEC, we evenly divide289

its query budget from epoch 1 to epoch 15, using up all queries in this period and ranking as much290

uncertain rollouts as possible. We then use the remaining 5 epochs for learning the full dataset.291

After sampling the initial preference pairs, IMPEC will not obtain new rollouts from the dataset, and292

perform learning only by querying humans for ranking the given rollouts.293

Environment Observations The environment observations are in the vector form, which contains294

[agent position, agent direction, special grid info]. The special grid can be the goal/lava/door, etc.,295

and its information is an encoding of its grid type, current position, and color.296

Ablation Studies In the “no active learning” experiment, we turn off the active selection function,297

and randomly pick rollouts from the candidate list. For “no derived prefs”, we remove the preference298

derivation part of the learning. Note that the preference pairs generated during the sorting process are299

still added to the dataset. Finally, “no ranking” means that the algorithm still selects preference pairs300

with an information gain acquisition function, but does not maintain a preference chain (so there are301

also no transitively derived preferences). This is simply the information gain algorithm of [2].302

E Training Hyperparameters303

The preference learning hyperparameters:304

Hyperparameter Value
All algorithms

Optimizer Adam
Learning Rate 1e-4
Weight Decay 3e-5
Batch Size 32
Temperature 0.1
Fragment Length 30
Training Epochs 20

IMPEC

Max. Preference Chain Size 30
Stop querying at Epoch 15
M 10

The PPO training hyperparameters:305

Hyperparameter Value
Training steps 500,000
Learning rate 0.0017
Gamma 0.98
Lambda 0.975
Entropy Coefficient 0.15
Batch size 64
Clip range 0.2

9

F Ablation Studies306

To understand what leads to IMPEC’s performance, we experiment with removing three different307

components: (1) the active learning process; (2) preference derivations; and (3) the ranking process.308

The results can be found in Table 3.309

Table 3: The failure percentages and their corresponding
p-values of being significantly lower than the failure rate of
the baseline

ALGORITHM-VARIANT FAIL % P-VALUE
(F%<BASELINE)

IMPEC 2/25 0.082
NO ACTIVE LEARNING 4/25 0.267
NO DERIVED PREFS, 3/25 0.161

& NO RANKING 6/25 0.557
BASELINE 6/25 -

We conduct each ablation experiment310

with 25 seeds and report the number311

of failed runs for each algorithm. A312

run fails when its final policy’s aver-313

age return ≤ 10.314

Our results suggest that there is no315

one component that is responsible for316

the entire gap between IMPEC and317

the baseline. However, the combina-318

tion of ranking and active learning can319

be quite powerful: comparing the “no320

derived prefs” and the baseline, the321

failure rate immediately dropped by 50%.322

G Graph-theoretical approach323

The Preference Datasets We visualize the preference datasets gathered by the baseline and IMPEC324

on Lava-Position in Figure 5. The baseline dataset is randomly sampled at the start of the training,325

while we take a snapshot of the IMPEC dataset (which is constructed iteratively) at its last training326

epoch. The datasets are visualized as graphs, with each node being a unique rollout, and each edge327

representing a preference label. Both IMPEC and the baseline have a query budget of 600 pairwise328

queries, and IMPEC uses the first 400 of its queries to do pairwise comparisons between randomly329

selected rollouts, as opposed to actively selected rollouts. The IMPEC and baseline datasets have 405330

and 538 unique rollouts as well as 791 and 594 unique edges, respectively. We include several other331

graph statistics in Table 4.332

IMPEC and the baseline exhibit three notable differences in the graph properties. The first is their333

clustering coefficient, which measures the degree to which nodes tend to cluster together. The334

IMPEC graph has a higher clustering coefficient because of the many preferences it derives from the335

ranked chain. This is relevant to the number of chains in the graph: since most nodes are connected336

to IMPEC’s central cluster through some edges, it creates many more chains between two nodes337

across the graph. In both graphs, we also observe that there are many chains of length 1 that are not338

connected to any larger cluster. We suspect that the algorithms’ sample efficiency can be further339

improved if these pairs can be meaningfully linked to the clusters.340

Finally, we measure the graph’s efficiency, which is a metric from network science that is intended341

to measure the flow of information between “communicating” nodes [11]. The assumption which342

underlies the graph efficiency metric is that more distant nodes are less efficient at information343

exchange. To avoid inflating the metric with the many length 1 that are not connected to the rest344

IMPEC Baseline

Num. Nodes 405 538
Num. Edges 791 594
Cluster Coef. 0.0642 0.0013
Num. Chains 416 81
Efficiency 0.19 0.11

Figure 5: The preference datasets visualized as graphs.
The IMPEC dataset connects more scattered rollouts
through its central cluster.

Table 4: Properties of the dataset
graph.

10

of the graph, we compute efficiency only on the two graphs’ biggest connected components. We345

empirically observe that the IMPEC dataset graph has a higher average global efficiency than the346

baseline graph, which means that the average shortest path between vertex pairs in IMPEC is shorter347

than for the baseline. This raises an interesting question: Is the assumption in network theory, where348

the distance of nodes influences information efficiency, also applicable to preference learning? We349

do not have matured results establishing connections between data connectivity in RLHF and the350

training performance yet, but it would be an interesting next step for research.351

H The Complete P-Value Table352

Table 5: A complete list of all p-values of the algorithms performing better than the baseline for all
tasks

IMPEC Information Gain Volume Removal
Empty 0.10 0.82 0.37

Dynamic Obstacles 0.09 0.66 0.77
Lava 0.08 0.26 0.44

Lava Position 0.01 0.46 0.20
Fetch 0.26 0.65 0.45

Go To Door 0.37 0.55 0.39

I Baseline Comparison and Data Scaling353

We expect that the baseline should suffer less from reward confusion if given more comparison data.354

To test this hypothesis, fig. 6 shows return for the baseline with different query budgets, along with355

IMPEC results from our main experiments (which used 150 preference pairs and 300 queries). We356

tested the baseline with 6× the data used by IMPEC (i.e., 900 preference pairs and queries), then357

gradually pushed up the amount to 1500 (10× of IMPEC data). With 6× the data, we still see some358

learning failures, and the seeds’ standard deviation decreases to IMPEC’s level only when we use359

10× data.360

Figure 6: The learning curves for IMPEC and baseline with different amounts of data.

11

J Learning Curves for All Tasks361

12

	Introduction
	Related Work
	Method
	Information-Guided Preference Chain (IMPEC)

	Experiments
	Conclusion
	Confusing Minigrid Definition
	Spurious Correlations from Extra Observations
	Spurious Correlations from Distributional Shifts

	Use a Partially Trained Model to Reduce Queries
	The Information Gain Objective Derivation
	Detailed Experiment Settings
	Training Hyperparameters
	Ablation Studies
	Graph-theoretical approach
	The Complete P-Value Table
	Baseline Comparison and Data Scaling
	Learning Curves for All Tasks

