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Abstract

We introduce a method based on Conformal Prediction (CP) to quantify the uncer-
tainty of full ranking algorithms. We focus on a specific scenario where n +m
items are to be ranked by some “black box” algorithm. It is assumed that the
relative (ground truth) ranking of n of them is known. The objective is then to
quantify the error made by the algorithm on the ranks of the m new items among
the total (n+m). In such a setting, the true ranks of the n original items in the total
(n+m) depend on the (unknown) true ranks of the m new ones. Consequently,
we have no direct access to a calibration set to apply a classical CP method. To
address this challenge, we propose to construct distribution-free bounds of the
unknown conformity scores using recent results on the distribution of conformal
p-values. Using these scores upper bounds, we provide valid prediction sets for the
rank of any item. We also control the false coverage proportion, a crucial quantity
when dealing with multiple prediction sets. Finally, we empirically show on both
synthetic and real data the efficiency of our CP method for state-of-the-art ranking
algorithms such as RankNet or LambdaMart.

1 Introduction

Ranking is a fundamental problem in machine learning where the objective is to sort some items,
such as documents or products, by their relevance to a query or user profile. It has a wide range of
applications, ranging from document retrieval [Cao et al., 2006], collaborative filtering [Liu and Yang,
2008], sentiment analysis [Liu et al., 2017], and product rating. These applications are grouped under
the term preference learning [Fürnkranz et al., 2008]. While there exist a lot of ranking algorithms in
the literature (see e.g. Liu et al. [2009] for a review), the quantification of the uncertainty in their
rank predictions using conformal prediction is relatively new [Angelopoulos et al., 2023a, Xu et al.,
2024]. Indeed, so far, the design of ranking algorithms has mainly focused on the training phase
and their evaluations regarding the uncertainty of their predicted ranking, is not often studied. With
the increasing popularity of ranking methods (especially in the learning-to-rank literature Liu et al.,
2009), this evaluation is however a mandatory step to deploy them for real-world applications.

Our main objective is to quantify the uncertainty of ranking algorithms by constructing distribution
free prediction set for the ranks of each items. Formally, given n + m items with an underlying
unknown total order, we want to construct prediction sets that contain the true rank of each item
with high probability. We consider a particular scenario where the first n items have known relative
rankings, but their positions within the whole n+m items are unknown. Furthermore, the remaining
m items have no known ranking information.
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This scenario occurs for many problems. In a matchmaking problem for instance [Herbrich et al.,
2006, Alman and McKay, 2017, Minka et al., 2018], the m new items are new players entering the
game that we want to rank among the previous players to organize matches between players with
similar skills. In product rating, the m new items can be new products such as movies that we want to
rank among those already known by a particular user for which we have his feedback. In these cases,
we can assume that we have access to the exact relative rank of the n first items. We also consider the
case where we want to combine an expensive ranking algorithm with a cheaper but less reliable one
(based, for example, on a smaller architecture). In this situation, we want to estimate the reliability
of the cheaper algorithm compared to the costly one considered as a proxy truth. We can therefore
randomly select n items, rank them using the more efficient algorithm, and then use these rankings to
quantify the uncertainty of the less efficient algorithm when it ranks the remaining m items.

Formally, for each item i ∈ Jn +mK, we want to construct a marginally valid set which contains,
with high probability, its unknown rank Ri inside the n+m items:

P
(
Ri ∈ Ĉi

)
⩾ 1− α , (1)

where α ∈ (0, 1) is a desired miscoverage level. In addition, as we construct prediction sets for
multiple points, we also want to control the false coverage proportion, which is the average number
of mispredictions. More precisely, we want to construct m prediction sets (Ĉi)mi=1 satisfying for some
small β > 0:

P

(
1

m

m∑
i=1

1{Ri /∈ Ĉi
)
⩽ α

)
⩾ 1− β . (2)

There exist several methods to construct marginally valid sets in regression or classification settings,
based on the so-called Conformal Prediction (CP) framework [Papadopoulos et al., 2002, Vovk et al.,
2005, Romano et al., 2019], but these do not directly apply in this specific setting of ranking. Indeed,
the problem of ranking can be seen as a regression problem where the outcome, the rank, depends on
all the points observed, or as a classification problem with a moving number of classes. An important
difference with a classical CP framework is that a calibration set is not directly accessible, as knowing
the relative rank of the n first items is not sufficient to know their ranks within the whole sample.

Contributions. This work constructs marginally valid prediction sets, satisfying Eq. (1), for the ranks
of n+m items. We assume already having a ranking algorithm A (considered as a “black box”) and
knowing the exact relative ranks of n items. These n items will be used to quantify the uncertainty of
the algorithm A. Our main contribution is to propose a general method for this calibration phase.
The difficulty is that we cannot directly quantify the algorithm’s error on the calibration set, as
the true ranks are only known through the relative ranks. We then provide computable bounds of
these ranks, supported by theoretical arguments, to construct valid prediction sets for which we also
control the false coverage proportion. These findings provide a practical solution to the challenges of
constructing valid prediction sets in ranking problems, where traditional CP methods face limitations
due to the interdependence of ranks.

2 Background

2.1 Split conformal prediction

Conformal Prediction (CP) is a framework introduced by Vovk et al. [2005] to construct distribution-
free prediction sets quantifying the uncertainty in the predictions of an algorithm. Formally, given a
calibration set {(Xi, Yi)}i∈JnK of points in X × Y and an algorithm A, a CP method constructs for a
new point Xn+1 ∈ X a set Ĉ containing the unobserved outcome Yn+1 ∈ Y with high probability:

P
(
Yn+1 ∈ Ĉ(Xn+1)

)
⩾ 1− α . (3)

In classification, Y is the set of classes and A a classifier and in regression, Y = R and A is a
regressor. The idea behind CP methods is to first build non-conformity scores Vi := s(Xi, Yi) on the
calibration set, where s : X × Y → R, is a score function which is intended to quantify the error of
the algorithm at a given point. Many score functions have been considered to catch different type of
information, see e.g. Angelopoulos et al. [2023b] for a review. In regression, a common choice is to
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use the absolute residual s(x, y) = |y − A(x)| where the algorithm A can either be trained on an
independent sample (split conformal prediction, Papadopoulos et al., 2002) or retrained on a subset
of points (full conformal prediction Vovk et al., 2005). In this paper, we will focus on the case where
an already trained algorithm is provided, which corresponds to the case of split CP. Then, for this
score function and some integer k, the prediction set is

Ĉk(x) :=
{
y ∈ Y : s(x, y) ⩽ V(k)

}
, (4)

where V(k) is the k-th smallest score of V1, . . . , Vn,∞. This set is marginally valid under mild
assumptions as presented in the following theorem.
Theorem 2.1 (Vovk et al., 2005, Lei et al., 2018). If the scores V1, . . . , Vn+1 are exchangeable, then
for any α ∈ (0, 1) and k = ⌈(1− α)(n+ 1)⌉ the set (4) returned by the split CP method satisfies:

P
(
Yn+1 ∈ Ĉk(Xn+1)

)
⩾ 1− α .

We refer to Vovk et al. [2005], Angelopoulos et al. [2023b] and Fontana et al. [2023] for in-depth
presentations of CP. See also Manokhin [2024] for a curated list of CP papers.

2.2 False coverage proportion

Some recent results have considered the transductive setting [Vovk, 2013] where conformal prediction
sets are constructed for m ⩾ 2 test points {(Xn+i, Yn+i)}mi=1. In this case, while maintaining the
coverage guarantee (3), a usual goal is to control the False Coverage Proportion (FCP) defined as:

FCP :=
1

m

m∑
i=1

1
{
Yn+i /∈ Ĉ(Xn+i)

}
, (5)

where Ĉ(Xn+i) are some prediction sets. They can be constructed as in Eq. (4) for instance. In words,
the FCP is the proportion of observations in the test set that fall outside the constructed prediction
sets.

If the prediction sets are of the form (4), under the assumptions of Theorem 2.1 we have E[FCP] ⩽ α.
Furthermore, the exact distribution of the FCP is known [Marques F., 2024, Huang et al., 2024].
Going further, Gazin et al. [2024] studied the full joint distribution of the insertion ranks of test scores
into calibration scores, leading under the same assumptions to a uniform control of the FCP. The
asymptotic behaviour of the FCP in the form of a functional CLT has also been studied recently by
Gazin [2024]. With all these theoretical results, it is possible to control in probability the FCP by
adjusting the coverage of the prediction sets.

2.3 Related work in ranking

Given a set of items the goal of ranking is to infer a particular ordering over these items. There exist
a multitude of settings and approaches to solve the ranking problem.

In the learning-to-rank literature, and more specifically, in the pairwise approach, the ranking task
is formalized as a classification of pairs of items into two classes: a tuple is correctly ranked or
incorrectly ranked. Herbrich et al. [1999] proposed an algorithm based on Support Vector Machine
(SVM) called RankSVM to solve this classification problem. Alternative techniques can be used
such as boosting with RankBoost [Freund et al., 2003], Neural Network with RankNet [Burges et al.,
2005], random forest with LambdaRank [Burges et al., 2006] and LambdaMart [Wu et al., 2010] (see
Burges, 2010, Qin et al., 2021 for an overview). Other methods based on the pointwise or listwise
approaches are also widely study [Cao et al., 2007, Liu et al., 2009, Li, 2011].

Another line of research solve the ranking problem through binary comparisons of items. The
different settings considered allow these binary comparisons to be measured either completely at
random [Wauthier et al., 2013], actively [Ailon, 2012, Heckel et al., 2019], or several times [Negahban
et al., 2012, Feige et al., 1994]. They can also assume that all the possible comparisons between
the items are known but up to some noise [Braverman and Mossel, 2007, 2009]. A significant body
of literature also focuses on the problem of uncertainty quantification in ranking problems under
the Bradley-Terry-Luce model [Bradley and Terry, 1952, Luce et al., 1959]. For instance, Liu et al.
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[2023] consider the BTL model and infer its general ranking properties. Gao et al. [2023] and Fan
et al. [2025] study the maximum likelihood estimator and the spectral estimator to estimate the
parameters of the BTL model, enabling them to construct confidence intervals for individual ranks.

However, the quantification of uncertainty of these ranking algorithms has been little studied in a CP
framework. Recently, Angelopoulos et al. [2023a] have developed a CP method for quantifying the
uncertainty of learning-to-rank algorithms specially tailored for recommendation systems. Xu et al.
[2024] also proposed to use CP, but for the ranked retrieval task. While related to the present work,
they do not consider the same setting.

3 Conformal prediction for ranking algorithms

We now describe our setting, as well as our methodology to provide valid prediction sets.

Notation: For a point y in R and a finite subset D ⊂ R, the rank of y in D is R(y,D) :=∑
z∈D 1{y ⩾ z} . For an index 1 ⩽ i ⩽ |D|, if D has no ties, we denote the point of D of rank i by

R−1(i,D) :=
∑

z∈D z1{R(z,D) = i} . A multiset (or bag) will be denoted H·I and is an unordered
set with potentially repeated elements.

3.1 Setting

Let us consider n+m items, each associated with a pair (Xi, Yi) ∈ X × R. We suppose that these
items are divided into two sets: a calibration set of size n, {(Xi, Yi)}i∈JnK and a test set of size m,
{(Xn+i, Yn+i)}i∈JmK. For any item i, Xi is, for instance, a vector of features, while Yi allows us to
properly define its true rank within each subset or the entire set through the following variables:

Rc
i = R

(
Yi, HYjIj∈JnK

)
, Rt

i = R
(
Yi, HYn+jIj∈JmK

)
, Rc+t

i = R
(
Yi, HYjIj∈Jn+mK

)
= Rc

i +Rt
i .

We assume throughout the paper that:

Assumption 3.1. The vector (Yi)i∈Jn+mK is exchangeable and has no ties. In particular, this implies
that there is a total order between the n+m items.

The values (Yi)i can be interpreted as an unobservable underlying truth. In our setting, we insist that
only the features (Xi)i∈Jn+mK and the true ranks of the calibration points (Rc

i )i∈JnK are observed. For
example, they can model the intrinsic skill of some players only observable by comparing them with
each other. Assumption 1 is needed to model correctly our problem of full ranking. The following
assumption is essential to be able to construct conformal prediction sets for the ranks.

Assumption 3.2. The vector (Xi, R
c+t
i )i∈Jn+mK is exchangeable.

To estimate the true ranks Rc+t
1 , . . . , Rc+t

n+m, we assume that we have access to an algorithm A :
X × Xn+m → K which is intended to predict the rank of a point inside a set of points. Its inputs are
the target item and the multiset of items among which it seeks to sort it. For clarity, when there is no
confusion, we will sometimes omit the dependence in the multiset of items: A(x) := A(x, HxℓIℓ).
This algorithm can predict for each point either a rank or a value from which a rank can be deduced.
For these two situations, we propose two conformity score functions which quantify the error made
by A in its ranking:

(RA) setting: K = N, the rank is directly predicted by the algorithm A: R̂c+t
i :=

A
(
Xi, HXjIj∈Jn+mK

)
. In this situation, we can consider the classical residual scores, i.e., for

x, (xj)j in X and r ∈ N:

sRA(x, r, HxjIj) := |r −A(x, HxjIj)| .

This is simply the absolute difference between r and the predicted rank of x inside (xj)j .

(VA) setting: K = R, the predicted rank is deduced from values constructed by the algorithm A:

R̂c+t
i := R

(
A
(
Xi, HXℓIℓ

)
,
{
A
(
Xj , HXℓIℓ

)}
j∈Jn+mK

)
.

4



Here, because A(x) is a real value, we consider a more refined score function than sRA, for x, (xj)j
in X and r ∈ N∗:

sVA(x, r, HxjIj) :=
∣∣∣R−1

(
r, HA(xj)Ij

)
−A(x)

∣∣∣ .
This score quantifies the distance between the value attributed by the algorithm to the point x and
the value it should have had to be at rank r. We restrict ourselves to these two scores for our
experiments, but our methodology and theoretical results are more generally valid for any score
function s(x, r, HxiIi).
Remark 3.3. The fact that the algorithm depends on the multiset rather than an (n + m)-tuple is
important, as it implies that the algorithm treats the points exchangeably. With Assumption 3.2, the
vector (A(Xi))i∈Jn+mK is thus exchangeable.
Remark 3.4. By considering the predicted ranks as scores, we see that (RA) is a sub-case of (VA).
Moreover, as in (RA), R−1(r, HA(xi)Ii)i = r, sVA reduces to the residual function sRA.

3.2 Methodology and main results

We now introduce our main theoretical results to construct prediction sets for the ranks
Rc+t

1 , . . . , Rc+t
n+m. Recall that our objective is to build for j ∈ Jn + mK a marginally valid set

Ĉj for Rc+t
j , i.e. satisfying Eq. (1) for a given α ∈ (0, 1). As we construct multiple prediction sets,

we also provide a control of the FCP (Eq.(5)).

To construct these sets, a natural strategy is to calculate the quantile of order 1 − α of the scores
s(Xi, R

c+t
i , HA(Xj)Ij∈Jn+mK) computed on the calibration set as this is done in the split CP method

(see Section 2.1). However, these scores depend on the quantities
{
Rc+t

i

}
i∈JnK which are unknown.

Consequently, they are not computable and we must find another strategy. The following result shows
that, if we can bound the ranks of the calibration

(
Rc+t

i

)
i∈JnK with high probability, then it is possible

to construct marginally valid sets for the test ranks
{
Rc+t

n+i

}
i∈JmK.

Theorem 3.5. Let α ∈ (0, 1), δ < α and R−
i , R

+
i ∈ R (i ∈ JnK) be random variables depending on

(Xi, R
c
i )i∈JnK and satisfying

P
(
∀i ∈ JnK : Rc+t

i ∈
[
R−

i , R
+
i ]
])

⩾ 1− δ . (6)

Let us define the proxy scores for i ∈ JnK:

Si := max
r∈[R−

i ,R+
i ]

s
(
Xi, r, HXjIj∈Jn+mK

)
(7)

and the associated conformal prediction set:

Ĉk(x) =
{
r : s

(
x, r, HXiIi∈Jn+mK

)
⩽ S(k)

}
, (8)

S(k) being the k-th smallest proxy score in S1, . . . , Sn.

If Assumption 3.1 is satisfied, then for k = ⌈(1− α+ δ)(n+ 1)⌉ and any i ∈ JmK:

P
(
Rc+t

n+i ∈ Ĉk(Xn+i)
)
⩾ 1− α .

For the score functions sRA and sVA, the proxy scores of Eq. (7) and the associated conformal sets
have explicit expressions which make them easy to compute.
Example 3.6 (s = sRA). The maximum (7) is necessarily attained at the edges of the interval
[R−, R+]:

max
r∈[R−,R+]

sRA(x, r, HxiIi) = max
(∣∣R− −A(x, HxiIi)

∣∣, ∣∣R+ −A(x, HxiIi)
∣∣) .

The associated conformal set is ĈRA(x) =
[
A(x, HXiIi)± S(k)

]
.

Example 3.7 (s = sVA). Similarly as the previous example, the maximum is attained at the edges of
[R−, R+]:

max
r∈[R−,R+]

sVA(x, r, HxiIi) = max
r∈{R−,R+}

(∣∣∣A(x)− R−1(r, HA(xi)Ii)
∣∣∣) .
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The corresponding conformal set is then the interval

ĈVA(x) =
[
R
(
A(x)− S(k), HA(xi)Ii

)
,R
(
A(x) + S(k), HA(xi)Ii

)]
.

We see that contrary to the conformal intervals ĈRA which have the same length for any point x, the
length of the conformal interval ĈVA can vary depending on the amount of points around A(x).

The following result gives a control in high probability of the false coverage rate on the test sample.

Proposition 3.8. Let α ∈ (0, 1) and consider the prediction sets Ĉk defined in Eq. (8). Assume
Assumption 3.2 holds, let k = ⌈(1− α)(n+ 1)⌉, then with probability at least 1− β − δ:

1

m

m∑
i=1

1
{
Rc+t

n+i /∈ Ĉk(Xn+i)
}
⩽ α+ λn,m , (9)

where λn,m =

√
log(C

√
τn,m/β)

τn,m
, τn,m =

nm

n+m
and C = 4

√
2π works.

When the sample sizes increase, then λn,m → 0 and the average error on the test sample is at most α.
In practice, using α′ = α− λn,m to control the FCP at level α is too conservative. We instead use
the numerical procedure explained by Gazin et al. [2024, Remark 2.6] to find a sharper but implicit
value for λn,m. They use the exact distribution of the FCP to adjust the level of each set accordingly,
in order to control it (see Appendix C for details).

3.3 Alternative targets

In the previous section, we focused on the construction of prediction sets for the ranks of test points
within the entire data set. In this section, we discuss how to derive from this initial construction,
predictions sets for alternative targets. More details are provided in Appendix B.

Calibration points. To obtain predictions sets for the calibration points, we can directly use the
high probability bounds (6) on which our method is built. Indeed, by construction the sets [R−

i , R
+
i ]

contain Rc+t
i and have a null FCP with probability at least 1− δ for i ∈ JnK.

Rank among the test points. A user might also be interested in the ranking of the test points among
themselves, rather than within the entire data set. Such sets can be constructed directly from the
previous sets (8), by substracting the number of calibration points of smaller rank to each interval
boundary (see Corollary B.1).

Top-K items. It is also possible to target the top-K items by selecting all items whose associated
prediction set includes at least one rank smaller than or equal to K. This strategy can be sufficient if
we target a "top" proportion of the items (see Corollary B.2).

4 Rank of the calibration points

To make our method complete, it remains to find R−
i and R+

i satisfying Eq. (6). Let us recall that
Rc+t

i = Rc
i + Rt

i . Hence, we know that Rc+t
i ∈ [Rc

i , R
c
i +m] and we can use Theorem 3.5 with

R−
i = Rc

i and R+
i = Rc

i +m. However, using these bounds for instance with the residual conformity
function sRA, will increase the length of the conformal set ĈRA(x) by m. In this section, we
show that it is possible to find theoretical bounds and practical bounds satisfying Eq. (6) that do not
excessively increase the length of the final conformal sets.

4.1 Theoretical bound

As the calibration and test values (Yi)i∈Jn+mK are exchangeable (Assumption 3.1), we can expect
that a calibration point with a low rank in the calibration set will have a low rank in the test set. The
following proposition justifies this intuition.
Proposition 4.1. Under Assumption 1, for δ ∈ (0, 1):

P
(
Rc+t

i ∈
[
R−

i , R
+
i

]
∩ Jn+mK, i ∈ JnK

)
⩾ 1− δ ,
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where R±
i = Rc

i + (m+ 1)

(
Rc

i

n ±
√

log(C
√
τn,m/δ)

τn,m

)
, τn,m =

nm

n+m
, and C = 4

√
2π works.

The proof can be found in the supplementary and relies on Gazin et al. [2024, Theorem 2.4]. While
the naive method provides an interval of length m for the rank Rc+t, our approach achieves an interval
of length O(m/

√
τn,m). The length has been thus reduced by a factor√τn,m ≃ min(

√
n,
√
m).

This explicit theoretical bound provides qualitative insight into the behavior and evolution of the ranks
with (m,n). However, the constant C is not tight (see Figure 1). To obtain finer envelopes, we propose
in the following a numerical method to calibrate them, with theoretical guarantee (Proposition 4.2).

4.2 Numerical bounds

0 10 20 30 40 50
Rc
j

0

100

200

300

400

500

R
c
+
t

j

Linear

Quantile

Theory

Figure 1: The two envelopes for n = 50, m = 500,
δ = 0.1 and K = 105. The blue and red lines are
respectively the linear and quantile envelopes, and
each black curve is an ordered realization of Rc+t.
The green line is the envelope from Prop. 4.1.

The explicit bounds given by Proposition 4.1
are often too conservative in practice. In this
section, we construct sharp numerical bounds
R−

i , R
+
i for the ranks Rc+t

i such that the event{
∀ 1 ⩽ j ⩽ n, Rc+t

j is between R−
i and R+

i

}
holds with high probability. Let us denote for
r ∈ JnK, Rc+t

(r) the rank in the whole sample of
the item of rank r in the calibration. In partic-
ular, Rc+t

(Rc
i )

= Rc+t
i . Our idea is to use that the

random vector Rc+t
srt = (Rc+t

(1) , . . . , R
c+t
(n) ) fol-

lows a universal distribution independent of the
distribution of the data to simulate them and to
estimate an envelope.

Algorithm 1 Simulation of Rc+t
srt

1: Draw n+m uniform random variable Ui on
[0, 1].

2: for i = 1, . . . , n do
3: R̃c+t

i ← R(Ui, HUjIj∈Jn+mK)
4: end for
5: Output: Sort R̃c+t

This distribution can be drawn using Algo-
rithm 1 thanks to the exchangeability of the data
(Assumption 3.1; see Gazin et al., 2024 for more
details). An envelope can then be estimated by
a Monte-Carlo approach using the empirical cu-
mulative distribution function. We consider two
forms of envelope in this work, the linear and
the quantile detailed below, which are parame-
terized by real factors c and γ. To estimate these
envelopes, we draw K realizations of vectors following the same distribution as (Rc+t

srt ) by repeating
K times Algorithm 1 and estimate the (multidimensional) cumulative function of this sample. Then,
we optimize the parameter c or γ for minimizing the width of the envelope (which depends directly
on this parameter) while containing a proportion 1− δ of the K trajectories.

Linear envelope: We consider an envelope of the form of Proposition 4.1:

R̂±
i = Rc

i + (m+ 1)

(
Rc

i

n
± ĉ

)
,

where ĉ is minimized under the condition that a proportion (1− δ) of the generated vectors are in the
envelope. We then take the minimum with n+m and the maximum with 1 to keep the bounds in
Jn+mK.

Quantile envelope: For an item of rank r = Rc
i , we propose to choose the bound R̂+

i (respectively
R̂−

i ) as the empirical quantile of order 1− γ̂ (resp. γ̂) of the simulated ranks Rc+t
(r) , i.e. the ranks in the

whole sample of the points of rank r in the calibration. As we want uniform control of these bounds,
we need to adjust γ. Hence, the parameter γ is maximized under the condition that a proportion 1− δ
of the generated vectors are in the envelope. Algorithm 2 in Appendix C gives the full process to
construct this envelope.

As it can be observed in Figure 1, the quantile envelope is smaller for the low and high rank points
while the linear envelope is smaller for the points of medium rank. Furthermore, they both outperform
the theoretical envelope.
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Figure 2: Synthetic data: FCP and relative lengths obtained for RankNet with the (RA) and (VA)
score, for the quantile (Qenv) and linear (Lenv) envelopes when m = 500 and n ∈ {100, 500, 2500}.
White circles represent the means.

Monte-Carlo guarantees: The estimation of the envelopes brings another source of error in our
procedure. In the following proposition, we show that this error can be easily controlled and the
parameter K can be chosen large enough to make it negligible.

Proposition 4.2. Let K,n,m ∈ N∗ and (R(k))k∈JKK a K-sample of ordered ranks drawn from
Algorithm 1 with parameters n and m. If (R̂±

i )i∈JnK is an estimated envelope, possibly depending on

(R(k))k such that, almost surely 1
K

∑K
k=1 1

{
∃ i : R(k)

i /∈
[
R̂−

i , R̂
+
i

]}
⩽ δ , then:

P
[
∀i : Rc+t

i ∈
[
R̂−

Rc
i
, R̂+

Rc
i

]]
⩾ 1− δ − 4

√
log nK

K
. (10)

The proof is given in Appendix A.5. Notice that this result is not specific to the linear or the quantile
envelope we consider but rather to the Monte-Carlo procedure itself. It is indeed based on a control
of the multi-dimensional empirical cumulative distribution function from Naaman [2021].

5 Experiments

In this section, we empirically evaluate the performance of our CP method referred to as Transductive
CP for Ranking (TCPR) on different datasets and algorithms. We construct prediction sets using the
score function sRA or sVA and with the linear or the quantile envelopes described in Section 4.2. We
compare ourselves to the Oracle method, which is the conformal method using non-conformity scores
calculated with the unobserved true ranks

{
Rc+t

i

}
i∈JnK. This comparison allows for an evaluation of

the effect of the envelope.

The code of our method is available at https://github.com/pierreHmbt/
transductive-conformal-inference-for-ranking.

Ranking algorithms: We use in the experiments the following algorithms: RankNet [Burges et al.,
2005], LambdaMART [Wu et al., 2010] and RankSVM [Herbrich et al., 1999]. These methods
learn a score function of the features from pairwise comparisons. In the Appendix, we also use the
Balanced Rank Estimation (BRE) [Wauthier et al., 2013] which ranks items using a limited number
of comparisons.

Parameters: The parameters α, 1− β and δ, equal to respectively, the probability of miscoverage,
the probability to control the FCP at level α, and the probability of the quantile envelope, are set to,
respectively, 0.1, 0.75 and 0.02, in all our experiments.

Metrics: We use the following metrics to evaluate our method. 1) The FCP of the new ranks (Eq (5)).
2) The relative length of the prediction sets defined as the average size of the sets divided by n+m.
3) The oracle ratio defined as the ratio between the size of the set from TCPR and from the oracle.

Some metrics are not presented in this section and can be found in Appendix D with additional
information on the data sets and the algorithms, such as their hyperparameters and architecture.
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Figure 3: Data from Section 5.1: True ranks Rc+t
n+j in function of their predicted rank R̂c+t

n+j by
RankNet and their prediction sets with scores sRA and sVA for n = m = 500.

5.1 Synthetic data

Data generation: We use the same generation process as Pedregosa et al. [2012] with slight
modifications to match our setting. In detail, we draw n+m pair of points (Xi, Yi) where Xi is a
Gaussian vectorN (0, Id) of dimension d = 5, Yi =

(
1 + exp(−wTXi)

)−1
+ εi with w ∼ N (0, Id)

and εi ∼ N (0, 0.07). The rank Ri of an observation is defined as the rank of the corresponding Yi.
The sizes of the calibration and test sets are chosen among n,m ∈ {100, 500, 2500} and for each
pair (n,m), we compute the FCP and the relative length on B = 1000 generated data sets.

Results: Figure 2 displays the FCP and the relative length for RankNet with the score function sRA

or sVA and the two proposed envelopes when m = 500. Results for other values of n and m and for
LambdaMART, RankSVM and BRE are in Appendix D.

We first remark that the FCPs are correctly controlled by our method as they remain below α = 0.1
at least 100 · (1 − β)% = 75% of the time, as indicated by the upper boundary of the boxes. It is
important to note, however, that due to the necessity of using proxy scores, our method tends to be
conservative for small values of n. For example, when n = 100, we see that the FCPs obtained
with TCPR are close to 0 whereas those obtained with the oracle method are in average near 0.07.
Nevertheless, this conservatism diminishes as the calibration size n increases with FCPs close to
0.1 when n = 2500. In terms of relative length, the prediction sets constructed using the quantile
envelope are, on average, consistently smaller than those obtained with the linear envelope for FCPs
closer to 0.1. The quantile envelope is therefore preferable. Finally, notice that, at least for RankNet,
using sRA or sVA gives sets with similar sizes.

Adaptivity of score sVA. To further highlight the adaptability of score sVA relatively to sRA, we
consider another data set of size n = m = 500. Each pair (Xi, Yi) is defined by Yi = Xi + εi where
Xi ∼ Beta(.04, .04) and εi ∼ N (0, .07). Here, because the random variables (Xi)i follow a Beta
distribution with parameters lower than 1, the probability of observing a value near 0 or 1 is much
larger than the probability of observing a value near 0.5. As there is more observations close to these
values, RankNet ranks with more difficultly the observations near 0 or 1 than the others. However, as
the prediction sets constructed with sRA have all the same size, they do not reflect this difficulty (see
an example in Figure 3 left panel). On the contrary, the sets returned with sVA are narrower when the
ranking is easier (close to 500 = 0.5 · (n+m)) and wider for small and large ranks (Figure 3 right
panel).

5.2 Real data: Yummly-10k

Dataset: We evaluate our approach on the Yummly Food-10k data set which consists in 12624
images of dishes embedded in R101. These embeddings have been constructed to reflect similarities
in taste among the dishes (see Wilber et al., 20151 for a complete description).

Ranking task: As in Canal et al. [2019], to define a full order of these items, we select an (unknown)
preference point x∗ and define this ordering using the distance to this point. The (Yi)i are thus
these distances. We use RankNet, LambdaMART, and RankSVM to rank the dishes and our method

1Companion website: http://vision.cornell.edu/se3/projects/concept-embeddings
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Rank error FCP (RA) RL (RA) OR (RA) FCP (VA) RL (VA) OR (VA)

RankNet 675.9 0.069± 0.005 0.306± 0.003 1.095± 0.003 0.069± 0.005 0.312± 0.003 1.104± 0.005
LambdaMART 714.8 0.072± 0.004 0.324± 0.003 1.087± 0.005 0.071± 0.005 0.323± 0.003 1.089± 0.004
RankSVM 751.3 0.076± 0.005 0.400± 0.004 1.064± 0.003 0.071± 0.004 0.408± 0.004 1.079± 0.005

Table 1: Results on the Yummly-10k data set. RL is for Relative Length and OR for Oracle Ratio.

Figure 4: Ranks predicted by LambdaMART(leaves, trees) in function of the ranks predicted by a
larger model of 400 trees of 20 leaves.

TCPR with the quantile envelope to construct the prediction sets. We divide the data into a training,
calibration and test sets of respective size ntr = 2624, n = 2000 and m = 8000. We repeat this
splitting 10 times to compute the metrics.

Results: Table 1 reports the values of the different metrics. Firstly, all methods are well-calibrated
with FCP consistently remaining below the chosen threshold 0.1. Secondly, the size of the intervals
decreases as performance improves, as reflected by the rank error and the relative length metrics. The
impact of the envelope is reflected in the ratio with the oracle. This impact is negligible as the ratio
remains close to 1. We can however notice that it increases as model performance improves. Indeed,
the more effective the algorithm, the more the error introduced by the envelope becomes noticeable
and impacts the size of the prediction set. Additional results are given in Appendix E.1.

5.3 Real data: Anime recommendation LTR data set

Dataset and ranking task: This dataset is composed of features of 16681 movies, characteristics of
15163 users and 106 ratings associated with a tuple (user, movie) with values ranging from 0 to 10.
Given the characteristics of a new user, the objective is to produce an ordered list of all the movies
ranked by the user’s level of interest. We aim to quantify the uncertainty of a smaller model relative
to the performance of a larger one, which serves as a reference and defines the ground-truth full
ordering of the items, i.e., Rc+t

i . More details are provided in Appendix E.2.

Results: As shown in Figure 4, the size of the prediction sets for both (RA) and (VA) decreases as
the model quality improves. In particular, LambdaMART (leaves=20, trees=300) yields results that
are closer to those of the larger model (LambdaMART with 20 leaves and 400 trees) than the smaller
ranker (LambdaMART with 5 leaves and 50 trees). This approach has the advantage of allowing
for an easy comparison between the two methods without requiring the large model to be run on all
movies which can be expensive. We can also point out again the better adaptivity of the score sVA

The metrics and comparisons with other architectural configurations are presented in Appendix E.2.

6 Conclusion

We have developed a conformal prediction method that quantifies the error of an algorithm ranking
m new items among n previously ranked items. Our approach is based on constructing an envelope
around these n ranks to quantify the algorithm’s error. Both theoretical and empirical evidence
demonstrate that this envelope does not significantly impact the size of the intervals, especially when
n is large relative to m. One limitation of our work is that we only focus on full ranking. It would
therefore be interesting to extend our method to a partial ranking framework. Another important
line of research would be to cover top-k algorithms. Finally, the dependence of our method on the
choice of the envelope we select should be investigated. We expect that a choice more adapted to the
problem considered could improve the size of the prediction sets.
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Appendix

A Proofs

A.1 Proof of Theorem 3.5

Let us denote Eδ =
{
∀i ∈ JnK : Rc+t

i ∈
[
R−

i , R
+
i

]}
. On the event Eδ , for all i ∈ JnK, we have:

Strue
i := s

(
Xi, R

c+t
i , (Xk)k∈Jn+mK

)
⩽ max

r∈[R−
i ,R+

i ]
s
(
Xi, r, (Xk)k∈Jn+mK

)
:= Si .

Hence, the quantiles of the “true” scores Strue
i are upper bounded by the quantiles of the proxy scores

{Si}i∈JnK, i.e., for all k ∈ JnK:
Strue
(k) ⩽ S(k) . (11)

Then, for i ∈ JmK:

P
(
Rc+t

n+i /∈ Ĉ(Xn+i)
)
⩽ P

(
Rc+t

n+i /∈ Ĉ(Xn+i) ∩ Eδ

)
+ P(Ec

δ)

⩽ P
(
s
(
Xn+i, R

c+t
n+i, (Xj)j∈Jn+mK

)
> S(k) ∩ Eδ

)
+ P(Ec

δ)

⩽ P
(
s
(
Xn+i, R

c+t
n+i, (Xj)j∈Jn+mK

)
> Strue

(k)

)
+ δ ⩽ α− δ + δ = α .

To pass from the second to the third line, we have used (11) which is satisfied on the event Eδ . The last
inequality is obtained using that if the score function s(x, r, (xj)j) is invariant by permutation of its
last argument and the vectors (Xi, R

c+t
i )i∈Jn+mK are exchangeable, then the true scores {Strue

i }i∈JnK
are exchangeable. Therefore, we can use Theorem 1 with k = ⌈(n+ 1)(1− α+ δ)⌉.

A.2 Restatement of Gazin et al. [2024, Theorem 2.4]

We restate here Theorem 2.4 of Gazin et al. [2024] which controls the empirical cumulative distribu-
tion function of conformal p-values.
Theorem A.1. Let n,m ⩾ 2, V1, . . . , Vn+m be exchangeable real random variables having no ties
almost surely. Let us, for 1 ⩽ i ⩽ n, define the conformal p-values:

pi =
1

m+ 1

1 +

m∑
j=1

1{Vi ⩾ Vn+j}

 (12)

and F̂n(t) := n−1
∑n

i=1 1{pi ⩽ t} be their empirical cumulative distribution function. Then, for
β ∈ (0, 1):

P

 sup
t∈[0,1]

∣∣∣F̂n(t)− Im(t)
∣∣∣ >

√
log(1/β) + log

(
1 +

√
2πτn,m

)
2τn,m

 ⩽ 2β , (13)

where τn,m = nm
n+m and Im(t) = ⌊(m+ 1)t⌋/(m+ 1).

Proof. The concentration inequality is obtained from Gazin et al. [2024, Theorem 2.4]. The lower
deviation was enounced in its proof (Equation (38)). We apply the theorem with r = 1 and upper
bound τn,m/

√
n+m by√τn,m/2:

Ψ(1) = 1 ∧

(
log(1/β) + log(1 +

√
2π

2τn,m√
n+m

)

2τn,m

)
⩽

log(1/β) + log(1 +
√
2πτn,m)

2τn,m

⩽
log(2

√
2πτn,m/β)

2τn,m
.

The first term is the deviation obtained by Gazin et al. [2024]. The first upper bound is the one
appearing in equation (13). The second upper bound is used to get Proposition 3.8
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A.3 Proof of Proposition 3.8

On the event
{
∀i ∈ JnK : Rc+t

i ∈
[
R−

i , R
+
i

]}
, we have:

Strue
i := s

(
Xi, R

c+t
i , (Xk)k∈Jn+mK

)
⩽ max

r∈[R−
i ,R+

i ]
s
(
Xi, r, (Xk)k∈Jn+mK

)
:= Si .

Hence, as earlier the quantiles of the “true” scores Strue
i are upper bounded by the quantiles of the

proxy scores {Si}i∈JnK, i.e., for all k ∈ JnK:

Strue
(k) ⩽ S(k) . (14)

Then, on this event:
m∑
i=1

1
{
Rc+t

n+i /∈ Ĉk(Xn+i)
}
=

m∑
i=1

1
{
Strue
n+i > S(k)

}
⩽

m∑
i=1

1
{
Strue
n+i > Strue

(k)

}
. (15)

If the true scores have no ties, we can directly apply Theorem A.1 to obtain a control of the FCP. The
following technical details allow to control it in the case where the score function is discrete, for
instance when s = sRA. Let us introduce

Γ := min
1⩽i,j⩽n+m
Strue
i ̸=Strue

j

∣∣Strue
i − Strue

j

∣∣
and an independent family of random variables γi for i ∈ Jn + mK (also independent of
(Strue

i )i∈Jn+mK) following a uniform distribution on (−Γ/2,Γ/2). Define S̃i := Strue
i + γi for

i ∈ Jn +mK. Observe that Γ depends on the true scores, but is invariant by permutation of these
scores. Hence, the “perturbed” scores S̃i are exchangeable and have (almost surely) no ties 2.
Moreover for i ∈ JmK:{

Strue
n+i > Strue

(k)

}
=

{ n∑
j=1

1
{
Strue
n+i > Strue

j

}
⩾ k

}

⊆
{ n∑

j=1

1
{
Strue
n+i + γn+i > Strue

j + γj
}
⩾ k

}

=

{ n∑
j=1

1
{
S̃n+i > S̃j

}
⩾ k

}
=
{
S̃n+i > S̃(k)

}
.

The main argument of these inequalities is that by construction of the random variables γi, for all i, j,
the event

{
Strue
i > Strue

j

}
is included in

{
S̃i > S̃j

}
.

Then we can upper bound the FCP using (15):

1

m

m∑
i=1

1
{
Rc+t

n+i /∈ Ĉk(Xn+i)
}
⩽

1

m

m∑
i=1

1
{
S̃n+i > S̃(k)

}
. (16)

We want to apply Theorem A.1 to the exchangeable random variables S̃, which have no ties. Let us
express the FCP in term of conformal p-values. We introduce for i ∈ JmK

p̃i :=
1

n+ 1

(
1 +

n∑
j=1

1
{
S̃n+i ⩾ S̃j

})
and for t ∈ (0, 1)

F̃m(t) :=
1

m

m∑
i=1

1{p̃i ⩽ t} .

2Γ is not defined if all scores are equal. However, in this case the FCP is null and then upper bounded by α.
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Then for i ∈ JmK, the following events are equal:{
S̃n+i > S̃(k)

}
=

{ n∑
j=1

1
{
S̃n+i > S̃j

}
⩾ k

}
=

{ n∑
j=1

1
{
S̃n+i ⩾ S̃j

}
⩾ k

}

=

{ n∑
j=1

1

{
S̃n+i ⩾ S̃j

}
> k − 1

}
=
{
p̃i > k/(n+ 1)

}
,

where we have used that the scores S̃ have no ties. Injecting these equalities into (16), we get:

1

m

m∑
i=1

1
{
Rc+t

n+i /∈ Ĉk(Xn+i)
}
⩽ 1− F̃m

(
k/(n+ 1)

)
.

Then, with probability 1− (β + δ), using (13) (inverting n and m), we get:

1

m

m∑
i=1

1
{
Rc+t

n+i /∈ Ĉk(Xn+i)
}
⩽ 1− In

(
k/(n+ 1)

)
+ λn,m = 1− k

n+ 1
+ λn,m ⩽ α+ λn,m ,

where λn,m =

√
log(C

√
τn,m/β)

τn,m
.

A.4 Proof of Proposition 4.1

Let us apply Theorem A.1 to Vi = Yi for 1 ⩽ i ⩽ n + m. Then the p-value pi-s are affine
transformations of the ranks of the calibration point in the test sample:

pi =
1

m+ 1

(
1 +Rt

i

)
,

where we recall that Rt
i := R

(
Yi, {Yn+j}j∈JmK

)
. Let us then rewrite the empirical cumulative

distribution function F̂n in function of Rt
i , for t ∈ (0, 1):

F̂n(t) =
1

n

n∑
i=1

1
{
Rt

i ⩽ (m+ 1)t− 1
}
.

Let us now remark that for some u ∈ R+, it is equivalent for a calibration sample point j to have its
rank in the test set smaller than u than to have more points than its rank in the calibration with a rank
smaller than u:

∀j ∈ JnK : Rt
j ⩽ u⇐⇒

n∑
i=1

1
{
Rt

i ⩽ u
}
⩾ Rc

j ⇐⇒ nF̂n

(
(u+ 1)/(m+ 1)

)
⩾ Rc

j .

We point out that the first equivalence is satisfied as the order of the items in the calibration set is
conserved when considering their insertion ranks in the test set: for all 1 ⩽ i, j ⩽ n, Rc

i ⩽ Rc
j ⇒

Rt
i ⩽ Rt

j . Thus, for j ∈ JnK, if Rt
j ⩽ u, the Rc

j calibration items i ∈ JnK satisfying Rc
i ⩽ Rc

j also
satisfy Rt

i ⩽ u, showing the direct implication (⇒) in the last display. Conversely, if k is the number
of calibration items i ∈ JnK satisfying Rt

i ⩽ u, they are necessarily exactly the items corresponding
to the k smallest calibration ranks. Otherwise, there would be a calibration item j ∈ JnK with
Rc

j = k′ > k and Rt
j ⩽ u, implying (by the previous token) that

∑n
i=1 1{Rt

i ⩽ u} ⩾ k′ > k, a
contradiction. Thus any calibration item with Rc

j ⩽ k satisfies Rt
j ⩽ u.

Thus, with probability 1− 2δ, thanks to (13), for all t ∈ (0, 1):∣∣∣F̂n(t)− Im(t)
∣∣∣ ⩽ λ, where λ =

√
log(1/δ) + log

(
1 +

√
2πτn,m

)
2τn,m

.

Assume this event is satisfied. Then in particular, for u = (m+ 1)
(
Rc

j/n+ λ
)
:

nF̂n

(
(u+ 1)/(m+ 1)

)
= nF̂n

(
Rc

j/n+ λ+ 1/(m+ 1)
)

⩾ nIm
(
Rc

j/n+ λ+ 1/(m+ 1)
)
− nλ

= n
⌊
(m+ 1)

(
Rc

j/n+ λ
)
+ 1
⌋
/(m+ 1)− nλ

⩾ n
(
Rc

j/n+ λ
)
− nλ ⩾ Rc

j .
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Thus, Rt
j ⩽ (m+ 1)

(
Rc

j/n+ λ
)

for 1 ⩽ j ⩽ n. Let us now lower bound these ranks. Similarly, we
have the equivalence for u ∈ R and 1 ⩽ j ⩽ n:

Rt
j > u⇐⇒

n∑
i=1

1
{
Rt

i ⩽ u
}
⩽ Rc

j ⇐⇒ nF̂n

(
(u+ 1)/(m+ 1)

)
⩽ Rc

j .

With u = (m + 1)
(
Rc

j/n− λ
)
, we have nF̂n

(
(u + 1)/(m + 1)

)
⩽ Rc

j and then Rt
j ⩾ (m +

1)
(
Rc

j/n− λ
)

for 1 ⩽ j ⩽ n which concludes the proof.

A.5 Proof of Proposition 4.2

The proof is based on the concentration bound of Naaman [2021] recalled below which is a recent
multi-dimensional version of the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [Dvoretzky et al.,
1956].
Theorem A.2 (Naaman, 2021). Let X(1), . . . X(K) i.i.d. random vectors in Rn. Then for t ⩾ 0,

P
[
sup
θ∈Rn

∣∣∣F (θ)− F̂K(θ)
∣∣∣ ⩾ t

]
⩽ n(K + 1)e−2Kt2 , (17)

where F (θ) = P
[
X

(1)
i ⩽ θi,∀i

]
and F̂K is the empirical cdf defined by:

F̂K(θ) =
1

K

K∑
k=1

1
{
X

(k)
i ⩽ θi,∀i

}
.

Proof of Proposition 4.2. For θ ∈ Rn, let us denote

F (θ) = P
[
∀i ∈ JnK : Rc+t

(i) ⩽ θi

]
and F̂K , the empirical cdf:

F̂K(θ) =
1

K

K∑
k=1

1
{
R

(k)
i ⩽ θi,∀i ∈ JnK

}
.

Let us now remark that:

P
[
∀i ∈ JnK : Rc+t

i ∈
[
R−

Rc
i
, R+

Rc
i

]]
= P

[
∀i ∈ JnK : Rc+t

(i) ∈
[
R−

i , R
+
i

]]
= E

[
F (R+)− F (R−)

]
.

The ordered ranking vector Rc+t
(i) follows indeed the same distribution than the drawn vectors R(k)

i .
Then:

F (R+)− F (R−) =
(
F (R+)− F̂K(R+)

)
−
(
F (R−)− F̂K(R−)

)
+ F̂K(R+)− F̂K(R−)

⩾ −2 sup
θ∈Rn

∣∣∣F (θ)− F̂K(θ)
∣∣∣+ (1− δ) ,

as by assumption on the envelope, F̂K(R+)− F̂K(R−) ⩾ 1− δ almost surely. Then after taking the
expectation, we get:

P
[
∀i ∈ JnK : Rc+t

i ∈
[
R−

Rc
i
, R+

Rc
i

]]
⩾ 1− δ − 2E

[
sup
θ

∣∣∣F (θ)− F̂K(θ)
∣∣∣] .

It remains to upper bound that expectation. Let us denote Z = supθ

∣∣∣F (θ)− F̂K(θ)
∣∣∣, let t ⩾ 0,

E[Z] = E[Z1Z⩽t + Z1Z>t] ⩽ t+ P[Z > t] ⩽ t+ n(K + 1)e−2Kt2 .

We have used that Z is bounded by 1 and Theorem A.2. We conclude by choosing t =
√

lognK
K .
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B Alternative targets

We detail in this section the guarantees we get on the alternative target sets evoked in Section 3.3.

Rank among the test points. A user might be interested in the ranking of the test points among
themselves, rather than within the entire dataset. Such a set can be constructed directly from the
previous sets, as presented in following Corollary B.1.

Corollary B.1. For i ∈ JmK, let

an+i = min Ĉk(Xn+i), and bn+i = max Ĉk(Xn+i), (18)

N+
n+i = |

{
j ∈ JnK, R+

j ⩽ an+i

}
| and N−

n+i = |
{
j ∈ JnK, R−

j ⩽ bn+i

}
|. (19)

Then Ĉtk(Xn+i) = [an+i−N−
n+i, bn+i−N+

n+i] is marginally valid, P
[
Rt

n+i ∈ Ĉtk(Xn+i)
]
⩾ 1−α

and has a controlled FCP, with probability 1− β − δ:

1

m

m∑
i=1

1
{
Rt

n+i /∈ Ĉtk(Xn+i)
}
⩽ α+ λn,m , (20)

with λn,m defined in Proposition 3.8 .

Proof. As in the proof of Theorem 2.1, we assume that the event Eδ ={
∀j ∈ JnK : Rc+t

j ∈ [R−
j , R

+
j ]
}

holds. Then if Rc+t
n+i ∈ Ĉk(Xn+i) ⊂ [an+i, bn+i] it implies

that Rt
n+i ∈ [an+i − Rc

n+i, bn+i − Rc
n+i]. Thus, we can upper and lower bound Rc

n+i by just
noticing that Rc

n+i =
∣∣{j ∈ JnK, Rc+t

j ⩽ Rc+t
n+i

}∣∣. It follows:

N+
n+i ⩽

∣∣{j ∈ JnK, Rc+t
j ⩽ an+i

}∣∣ ⩽ Rc
n+i ⩽

∣∣{j ∈ JnK, Rc+t
j ⩽ bn+i

}∣∣ = N−
n+i ,

as Rc+t
j ∈ [R−

j , R
+
j ]. It gives the marginal coverage as, then:

[an+i −Rc
n+i, bn+i −Rc

n+i] ⊂ [an+i −N−
n+i, bn+i −N+

n+i].

The control of the FCP is obtained in the same manner using Proposition 3.8.

Top-K items. It is also possible to target the top-K items by selecting all items whose prediction set
includes at least one rank smaller than or equal to K. Corollary B.2 exhibits that this set contains in
average K− αm of the top K items. This can be sufficient if we target a "top" proportion of the items.
This strategy is used in Section E.1 to identify top-1 candidates in the Yummy Food dataset.

Corollary B.2. For K ∈ JmK, let ĈtopK =
{
Xn+i : ∃ℓ ⩽ K, ℓ ∈ Ĉk(Xn+i)

}
. Then

E
[∣∣∣ĈtopK ∩ CtopK∣∣∣] ⩾ K− αm, (21)

where CtopK =
{
Xn+i : R

c+t
n+i ⩽ K

}
is the set of the true top K items.

Proof. Let us just link the expectation size to the coverage:

|(ĈtopKk )c ∩ CtopKk | =
∣∣∣{i ∈ JmK : Rc+t

n+i ⩽ K, and ∀ℓ ∈ JKK, ℓ /∈ Ĉk(Xn+i)
}∣∣∣

⩽
∣∣∣{i ∈ JmK : Rc+t

n+i ⩽ K, and Rc+t
n+i /∈ Ĉk(Xn+i)

}∣∣∣
⩽
∣∣∣{i ∈ JmK : Rc+t

n+i /∈ Ĉk(Xn+i)
}∣∣∣

=

m∑
i=1

1
{
Rc+t

n+i /∈ Ĉk(Xn+i)
}
.

By taking the expectation, we get that E
[
|(ĈtopKk )c ∩ CtopKk |

]
⩽ αm and then E

[
|ĈtopKk ∩ CtopKk |

]
⩾

K− αm.
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C Details on the procedure

C.1 Quantile envelope

Algorithm 2 explicitly details the construction of the quantile envelope, estimated by Monte Carlo
with a sample of size K.

Algorithm 2 Quantile envelope procedure

1: Input: n,m,K, and δ ∈ (0, 1), (Rc
i )i∈JnK

2: for k = 1, . . . ,K do
3: R̃(k) ← Output of Algorithm 1
4: end for
5: γ̂ ← max γ

such that:
∑

k 1
{
∃ i : R̃(k)

i /∈
[
Q̂γ

(
(R̃

(ℓ)
i )ℓ

)
, Q̂1−γ

(
(R̃

(ℓ)
i )ℓ

)]}
⩽ Kδ

6: for j = 1, . . . , n do
7: R̂−

j ← Q̂γ̂

(
(R̃

(ℓ)
j )ℓ∈JKK

)
8: R̂+

j ← Q̂1−γ̂

(
(R̃

(ℓ)
j )ℓ∈JKK

)
9: end for

10: Output: R̂−
Rc

i
, R̂+

Rc
i

for i ∈ JnK.

In this algorithm, for x ∈ RK and u ∈ (0, 1), Q̂u(x) denotes the empirical quantile of order u of the
sample x.

C.2 FCP control

In this section, we give details on the procedure to control the FCP at level ᾱ ∈ (0, 1). First, let us
remark that FCP := m−1

∑m
i=1 1{pi ⩽ t}, where the pi are given in Eq. (12). In other words, the

FCP is the proportion of conformal p-values that are lower than t. Furthermore, we have that [Gazin
et al., 2024]:

{FCP ⩽ ᾱ} =

{
m−1

m∑
i=1

1{pi ⩽ t} ⩽ ᾱ

}
=

{
m∑
i=1

1{pi ⩽ t} ⩽ ⌊m · ᾱ⌋

}
=
{
p(⌊m·ᾱ⌋+1) > t

}
,

where p(a) denotes the a-th smallest value among (p1, . . . , pm). We see that controlling the FCP
at level ᾱ is equivalent to control that the ordered p-value p(⌊m·ᾱ⌋+1) is strictly larger than t.
Hence, for β̄ > 0, if we denote by tβ̄ the quantile of level β̄ of the distribution of p(⌊m·ᾱ⌋+1), then
P(FCP ⩽ ᾱ) = P

(
p(⌊m·ᾱ⌋+1) > tβ̄

)
⩾ 1− β̄.

It remains to find tβ̄ . As proven by Gazin et al. [2024, Proposition 2.1], if the scores V1, . . . , Vn+m

are exchangeable random variables having no ties almost surely, the vector of conformal p-values
(p1, . . . , pm) follows a known universal distribution. Hence, it is possible to simulate samples
following the same distribution as p(⌊m·ᾱ⌋+1) by first simulating the vector (p1, . . . , pm) and then by
tacking the (⌊m · ᾱ⌋+ 1) smallest value. Then, we compute the empirical quantile of order β̄ to find
tβ̄ . The full procedure is given in Algorithm 3.

D Additional results on synthetic data

We present in this section additional experiments on the synthetic data of Section 5.1 and on another
synthetic data set especially constructed to highlight the adaptivity of the score sVA.

D.1 Additional results for synthetic data of Section 5.1

We complete the results of Section 5.1 when instead of using RankNet we use:
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Algorithm 3 Control of the FCP

1: Input: ᾱ, β̄, n,m and K
2: P̃ ← vector of size K
3: for k = 1, . . . ,K do
4: Draw n+m uniform random variable Ui on [0, 1]
5: for i = 1, . . . ,m do
6: p̃i ← 1

m+1

(
1 +

∑m
j=1 1{Uj+n ⩾ Ui}

)
7: end for
8: P̃k ← Q̂⌊m·ᾱ⌋+1(p̃1, . . . , p̃m)
9: end for

10: t̂β̄ ← Q̂β̄(P̃ )

11: Output: t̂β̄

Figure 5: Synthetic data: True ranks Rc+t
n+j in function of their predicted rank R̂c+t

n+j by RankNet and
their prediction sets with scores sRA and sVA for n = m = 500.

• LambdaMART with 100 trees of 5 leaves trained on ntr = 300 data points. Performances,
in term of FCP and relative length, for different values of n ∈ {100, 500, 2500} and
m ∈ {100, 500, 2500} are presented in Figure 9.

• RankSVM trained with ntr = 300. Performances for different values of n ∈
{100, 500, 2500} and m ∈ {100, 500, 2500} are presented in Figure 10.

• BRE applied with 1% of all the possible comparisons. Performances for different values
of n ∈ {100, 500, 2500} and m ∈ {100, 500, 2500} are presented in Figure 11. Note that
BRE is of different nature than the three other algorithms as it does not learn a score from
their features but ranks items using a small number of pairwise comparisons. The ranking
errors are due to this limited number of comparisons.

We also provide performances when using RankNet for n ∈ {100, 500, 2500} and m ∈ {100, 2500}
in Figure 12. Note that in all the synthetic experiments, we use RankNet with a ReLU Neural Network
(NN) of 5 hidden layers of size 10. This NN is trained using Pytorch [Paszke, 2019]. Figure 5
displays an example of the prediction sets we construct with TCPR and with the oracle method. All
the numerical results are postponed to Section E.3 for clarity of presentation.

Results: As already observed in the main paper, our method, TCPR, always control the false coverage
proportion at level α = 0.1. Furthermore, at any given size m, as the size n of the calibration set
increases, our methods return better sets with FCP closer to 0.1 and increasingly smaller sizes. In
general, we need more calibration points than the number of test points to be able to construct
prediction sets that are not too large, which is quite intuitive. For n large relatively to m, we reach
the performance of the oracle. For LambdaMART and RankSVM, the score function sRA gives
in general better prediction sets than those constructed with sVA. However, this difference is less
notable for BRE. Nevertheless, it should be noted that sets with sRA are less adaptive than the
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Figure 6: Yummly-10k: True ranks Rc+t
n+j in function of their predicted rank R̂c+t

n+j by RankNet and
their prediction sets with scores sRA and sVA.

ones with sVA as explain in Section 5.1. Overall, the difference of performance between the score
functions depends on the distribution of the data and the algorithm.

E Additional results on real data

In this section, we present additional information and results on the two real data sets considered in
the main paper.

E.1 Yummly-10k

Hyper-parameters: For all the experiments on this data set, we use RankNet with a ReLU NN of 5
hidden layers of size 10. This NN is trained using PyTorch [Paszke, 2019].

Additional results: Figure 6 illustrates an example of the prediction sets returned by our method
and by the oracle. As already seen from Table 1, the differences between TCPR and the oracle are
relatively small. This can be explained by the large size of the data set which makes the impact of
the envelopes negligible. Notice that from these predictions sets, we can infer who the potential
candidates of rank 1 would be. Figure 7 shows these candidates when the prediction sets are
constructed using TCPR or the oracle method with sVA. The candidates are all the images containing
the rank 1 in their prediction set, i.e. we display

{
dishes X : 1 ∈ Ĉ(X)

}
. As the prediction set of

the image of true rank 1 contains 1 with high probability, this set will contain this image with high
probability. The image highlighted in red is the randomly chosen reference x∗ which is, by definition,
the true rank 1 dish (see Section 5.2). Firstly, we observe that the reference x∗ is included among
these top-1 candidates and that the other dishes are closely related to it. Secondly, as expected, the
number of candidates is greater for TCPR (14 candidates) than for Oracle (10 candidates) but not
by much. Thirdly, remark that, due to the use of sVA, the prediction sets are narrower for the lower
ranks, so the number of candidates remains relatively low. For this specific task, the score sVA is
particularly more adapted than sRA.

E.2 Anime recommendation LTR data set

Data set: In details, this data set consists in the three following lists3:

1. A list of 16681 movies with the following associated features: name, genres, is_tv, year,
is_adult, above_five_star_users, above_five_star_ratings, above_five_star_ratio.

2. A list of 15163 users with the following associated characteristics: review_count,
user_feature avg_score, user_feature score_stddev, user_feature above_five_star_count,
user_feature, above_five_star_ratio.

3https://www.kaggle.com/datasets/ransakaravihara/anime-recommendation-ltr-dataset
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(a) TCPR

(b) Oracle

Figure 7: Candidates for the rank 1 dish when using TCPR or the oracle methods with sVA. The
reference x∗ (which is the true rank 1 dish) is highlighted in red.

Figure 8: Results on the anime recommendation LTR data set. Each point corresponds to a model
LambdaMART(tree,leaves) trees ∈ {50, 100, 200, 300} and leaves ∈ {5, 10, 15, 20}. The FCP,
relative length, and ratio with the oracle are displayed for each score in function of the average rank
error of each model.

3. A list of ratings for 106 tuples (movie, user), with values ranging from 0 to 10.

Ranking task and calibration: We use LambdaMART from the LightGBM implementation4 for
this LTR problem. The model assigns a score to each (user, movie) tuple and has been trained on
a subset of 15000 users. The reference model has 400 trees and 20 leaves, the smaller ones have
trees = {50, 100, 200, 300} and leaves = {5, 10, 15, 20}. For a particular user, we then suppose only
having access to the scores predicted by the large model for n = 2000 anime, and evaluate the others
m = 16681− n scores with the smaller models.

Results: Figure 8 displays the different metrics with respect to the rank error of all the LambdaMART
models. The uncertainty across different instances is well captured by our procedure, as illustrated in
the second row of the plots: the size of the prediction intervals increases with the ranking algorithm’s
errors. For all methods, the FCP is well controlled and remains below the threshold of 0.1. Once
again, we observe that the envelope effect is more pronounced for high-performing algorithms: the
ratio with the oracle decreases as the ranking error increases. Nevertheless, the ratios remain close to
1 for all methods, suggesting that the overall effect of the envelope is minor.

4https://github.com/microsoft/LightGBM
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E.3 Additional numerical results

This section contains additional experiments for the synthetic dataset (different tuples (n,m)).
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Figure 9: Synthetic data: FCP and relative lengths obtained for LambdaMART with the (RA) and
(VA) score, for the quantile (Qenv) and linear (Lenv) envelopes when m = {100, 500, 2500} and
n ∈ {100, 500, 2500}. White circles represent the means.
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Figure 10: Synthetic data: FCP and relative lengths obtained for RankSVM with the (RA) and
(VA) score, for the quantile (Qenv) and linear (Lenv) envelopes when m = {100, 500, 2500} and
n ∈ {100, 500, 2500}. White circles represent the means.
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Figure 11: Synthetic data: FCP and relative lengths obtained for BRE with the (RA) and (VA)
score, for the quantile (Qenv) and linear (Lenv) envelopes when m = {100, 500, 2500} and n ∈
{100, 500, 2500}. White circles represent the means.
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Figure 12: Synthetic data: FCP and relative lengths obtained for RankNet with the (RA) and
(VA) score, for the quantile (Qenv) and linear (Lenv) envelopes when m = {100, 2500} and n ∈
{100, 500, 2500}. White circles represent the means.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the introduction explain our approach et the setting of full
ranking we consider.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: In all the experiments, we evaluate the ratio with the oracle length and
discuss multiple times the potentially disruptive impact of the envelope when assessing the
performance of a high-performing algorithm.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Proofs are given in Appendix A. The assumptions are stated in the main paper
and recall at each result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: The Python code is provided in the supplementary material, and the datasets
are either simulated or open data. Overall the method is simple and could be reimplemented
from scratch by an interested reader.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The Python code is provided in the supplementary material, and the datasets
are either simulated or open data. Overall the method is simple and could be reimplemented
from scratch by an interested reader.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These informations are in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide boxplots and the standard deviations of all the metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
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Justification: Our experiments do not require a lot of computational resources and run on a
standard machine.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are fully in accordance with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: It is discussed in the introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: This is not applicable to our method.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the datasets we used precisely. For the code, apart from standard
Python code (numpy, pytorch, matplotlib, etc.) we rely mostly on our own code. It will be
release under MIT License.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: A notebook is provided with our code in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not have experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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